1.1线性规划模型
- 格式:ppt
- 大小:1.58 MB
- 文档页数:53
四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
运筹学课程讲义第一部分 线性规划 第一章 线性规划的基本性质 1.1 线性规划的数学模型一、 线性规划问题的特点胜利家具厂生产桌子和椅子两种家具。
桌子售价50元/个,椅子售价30元/个。
生产桌子和椅子需木工和油漆工两种工种。
生产一个桌子需要木工4小时,油漆工2小时。
生产一个椅子需要木工3小时,油漆工1小时。
该厂每月可用木工工时为120小时,油漆工工时为50小时。
问该厂如何组织生产才能使每月的销售收入最大?213050m ax x x z +=⎪⎩⎪⎨⎧≥≤+≤+0,50212034212121x x x x x x 例:某工厂生产某一种型号的机床。
每台机床上需要 2.9m 、2.1m 、1.5m 的轴,分别为1根、2根和1根。
这些轴需用同一种圆钢制作,圆钢的长度为74m 。
如果要生产100台机床,问应如何安排下料,才能用料最省?二、 数学模型的标准型 1. 繁写形式 2. 缩写形式 3. 向量形式 4. 矩阵形式三、 任一模型如何化为标准型?1. 若原模型要求目标函数实现最大化,如何将其化为最小化问题?2. 若原模型中约束条件为不等式,如何化为等式?3. 若原模型中变量x k 是自由变量,如何化为非负变量?4. 若原模型中变量x j 有上下界,如何化为非负变量?⎪⎪⎩⎪⎪⎨⎧≥≤-=--≤+--≥-+----=无约束321321321321321,0,052010651535765max x x x x x x x x x x x x x x x z 令'''3'3''3'331'1,0,,,Z Z x x x x x x x =-≥-=-=⎪⎪⎩⎪⎪⎨⎧≥-=+-++=+-+-=+-+-+--+-++-=0,,,,,,,5201010651533507765min 7654''3'32'17''3'32'15''3'32'164''3'32'1765''3'32'1'x x x x x x x x x x x x x x x x x x x x x x x x Mx Mx x x x x x z 1. 2图解法该法简单直观,平面作图适于求解二维问题。
线性规划知识点引言概述:线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在工程、经济学、管理学等领域有着广泛的应用。
本文将详细介绍线性规划的相关知识点。
一、线性规划的定义与基本概念1.1 目标函数:线性规划的目标是通过最大化或最小化目标函数来达到最优解。
目标函数是一条线性方程,表示需要优化的目标。
1.2 约束条件:线性规划问题还需要满足一组线性约束条件,这些条件对决策变量的取值范围进行了限制。
1.3 决策变量:决策变量是指在线性规划问题中需要进行决策的变量,其取值将影响目标函数的值。
二、线性规划的基本模型2.1 标准型线性规划:标准型线性规划是指目标函数为最小化问题,约束条件为等式形式的线性规划问题。
2.2 松弛变量与人工变量:为了将约束条件转化为等式形式,我们引入松弛变量和人工变量。
2.3 基变量与非基变量:在标准型线性规划中,基变量和非基变量是用来描述决策变量的状态的。
三、线性规划的解法3.1 单纯形法:单纯形法是一种常用的线性规划解法,通过迭代计算基变量和非基变量的取值,直到找到最优解。
3.2 对偶性理论:线性规划问题与其对偶问题之间存在着对偶关系。
对偶性理论可以帮助我们求解原始问题的最优解。
3.3 整数线性规划:当决策变量需要取整数值时,我们可以使用整数线性规划方法来求解。
整数线性规划问题更加复杂,通常需要使用分支定界等方法求解。
四、线性规划的应用领域4.1 生产计划:线性规划可以用于优化生产计划,通过合理安排生产资源和生产量,实现最大化利润或最小化成本。
4.2 运输问题:线性规划可以用于解决运输问题,通过合理分配运输量和运输路径,实现最优的物流方案。
4.3 资源分配:线性规划可以用于资源分配问题,如人力资源、资金分配等,通过最优化决策,实现资源的合理利用。
五、线性规划的局限性与拓展5.1 非线性规划:线性规划只适用于目标函数和约束条件为线性关系的问题。
对于非线性问题,我们需要使用非线性规划方法进行求解。