当前位置:文档之家› 风光储能系统容量配比等关键技术研究

风光储能系统容量配比等关键技术研究

风光储能系统容量配比等关键技术研究
风光储能系统容量配比等关键技术研究

一、风光储能系统的智能能量管理控制技术研究

风光互补储能系统,就是按照一定的配置关系,将风力机和光伏组件和蓄电池进行组合,综合考虑系统配置的性能和储能成本,得出最佳的系统配置。在风光储能系统的容量配比中,需要从所在地区自然资源条件、负载情况以及综合成本几个方面考虑,以下是基本的配置原则:

1)在用电负荷相同时,由于太阳能电池板的费用较高。为降低系统投资,在保证用电安全和自然资源条件允许时,应尽量降低太阳能在发电系统

中的能源比率;

2)水平轴风机的启动风速高、需较高风速才能发电、能量转化效率低;垂直轴风机在较低的风速时即可发电。在同样的用电需求时,所用水平轴

风机功率一般要大于垂直轴风机,导致水平轴风机费用较高;但对于同

样功率的风力发电机,垂直轴风机费用高于水平轴风机,但其体积、重

量和所需运行空间均小于水平轴风机,且具有运行稳定、噪音低、无对

风要求等优点;

3)储能系统中,蓄电池的费用较高且寿命较短(一般5~10年),设计时应认真分析所在区域的资源条件和用电设备情况,合理地确定储能时间,

以减少蓄电池用量、降低系统投资;

虽然风能的成本低于风光互补,但风光互补系统利用了两种自然资源,能较好地避免蓄电池过放电,延长电池寿命,虽一次性投资稍高,但供电的安全性、稳定性高于风能系统。

风光互补储能系统主要由风力发电机组、太阳能光伏电池组、智能能量控制与管理、电池管理与蓄电池、安全控制与远程维护、逆变器、交流直流负载等部分组成。

(1)风力发电部分是利用风力机将风能转换为机械能,通过风力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电;

(2)光伏发电部分利用太阳能电池板的光伏效应将光能转换为电能,然后对蓄电池充电,通过逆变器将直流电转换为交流电对负载进行供电;

智能能量控制管理部分是保证电源系统正常运行的重要核心设备。一方面根据日照强度、风力大小以及瞬态储能系统和储能电池组的状态,实时调整暂态储能设备和储能电池组之间的能量分配,达到对风光发电不确定性的平滑和储能能量匹配;另一方面实时监控负载的变化,不断对蓄电池组的工作状态进行切换和调节:或者把调整后的电能直接送往直流或交流负载,或者把多余的电能送往蓄电池组存储。发电量不能满足负载需要时,控制器把蓄电池的电能送往负载,保证了整个系统工作的连续性和稳定性;

(3)储能电池组部分由多块蓄电池组成,在系统中同时起到能量调节和平衡负载两大作用。它将风力发电系统和光伏发电系统输出的电能转化为化学能储存起来,以备供电不足时使用。

(4)逆变系统由几台逆变器组成,把蓄电池中的直流电变成标准的220V交流电,保证交流电负载设备的正常使用。同时还具有自动稳压功能,可改善风光互补发电系统的供电质量。

当前国风光互补系统中普遍采用的控制策略是对蓄电池进行浮充充电的控制模式,也就是让负载尽可能多地消耗由太阳电池方阵和风力机组发出的电能。一般通过蓄电池电压检测来确定其状态,若有系统功率输入大于负载功率,则给蓄电池充电;若输入功率不足,则蓄电池放电以保证负载运行。也有一些控制器采用电流、温度因素来补偿阻损耗引起的蓄电池状态变化。

国外在小型风光互补控制器的控制策略上开展了较多的研究工作。在传统的浮充充电模式的基础上,注意到将剩余容量(SOC)作为蓄电池充放电管理的判断准则,从负荷用电与系统供电平衡的方面来改善控制器性能和系统性能。在SOC 计算方面,根据有关资料显示,较为普遍接受的方法采用多参数进行准确度补偿。

本项目在吸取国外最新风光互补储能系统的基础上,提出了采用暂态储能和长期储能结合的模式,采用国产自主知识产权的“龙芯嵌入式SOC”作为系统主控CPU,利用了该SOC芯片的64位DSP运算能力和400M的CPU核,采用最优化的控制算法,对风光互补储能系统的太阳能光伏、风力车进行最大功率追踪调节,对暂态储能系统和长期储能系统的运行状态进行实时分析和控制,通过高速现场总线将多个目标联系起来,并采用多目标跟踪优化控制的“智能能量控制管理”对系统进行优化的能量分配与平滑,已达到整个系统的最优化。同时,利用自主知识产权的国产CPU作为核心运算和控制系统,能够有效保证能源的安全,具有重要的战略意义。

一)太阳能光伏电池的基本特性

关于太阳能光伏电池原理、结构的详细讨论不在本项目容之列,这里只给出光伏电池的等效电路和输出特性。

下图是光伏电池等效电路图,其中:电流I为太阳能电池输出电流,Id为二极管工作电流,IRsh 为漏电流,ILG为光电池电流源,Rsh为光伏电池的并联等效电阻;Rs:光伏电池的串联等效电阻。

I LG I Rsh

I

d

R

sh

R

s

I

R

L

光伏电池的输出特性方程:

()

sh

s

S

os

LG

Rsh

d

LG R

IR

V

IR

V

AKT

q

I

I

I

I

I

I

+

-

?

?

?

?

?

?

-

??

?

??

?

+

-

=

-

-

=1

exp

并联电阻Rsh较大,不会影响短路电流的数值。所以下面设计中忽略Rsh,得到简化的光伏电池输出特性方程:

()

?

?

?

-

?

?

?

??

?

??

?

+

-

=1

exp

S

OS

LG

IR

V

AKT

q

I

I

I

上式中:I:光伏电池输出电流;V:光伏电池输出电压;IOS:光伏电池暗饱和电流 T:光伏电池的表面温度;k:波尔兹曼常数 (1.38*10-23 J/。K) :日照强度;q:单位电荷(1.6*10-19C);ILG:光电流;EGO:半导体材料的禁带宽度;Tr:参考温度(301.18。K);A:理想因子,一般介于1和2之间。

光伏电池的伏安特性如下图示:

当负载RL从0变化到无穷大时,即可得到如图所示太阳能电池输出特性曲

线。调节负载电阻RL到某一值Rm时,在曲线上得到一点M,其对应的工作电压和工作电流之积最大,即Pm=Im*Vm,将此M点定义为最大功率输出点(MPP)。

二)光伏电池的最大功率跟踪技术

太阳能光伏阵列的输出特性受外界环境的影响具有强烈的非线性,为了提高系统的整体效率,一个重要的途径就是实时调整光伏电池的工作点,进行最大功率点跟踪(MPPT),使之始终工作在最大功率点附近,从而提高光伏电池的转换效率。MPPT就是一个不断测量和不断调整以达到最优的过程,它不需要知道光伏阵列精确的数学模型,而是在运行过程中不断改变可控参数的整定值,使得当前工作点逐渐向峰值功率点靠近,使光伏系统运作在峰值功率点附近。

下图是太阳能电池阵列带不同负载时工作点示意图。A、B、C三点分别表示带三个不同负载时的工作点。点B对应太阳能电池阵列的最大功率点,此时负载阻抗为R。根据戴维南定理,一定日照强度和温度下的太阳能电池阵列,对外可简化等效为一个电压源与一个电阻的串联电路。当负载电阻与等效阻相等时,太阳能输出功率最大。

MPPT的实现实质上是一个动态自寻优过程,通过测量阵列当前的输出电压与电流,得到当前阵列输出功率,再与已被存储的前一时刻功率相比较,得到它们之间的变化关系,决定当前工作点与峰值点的位置关系,然后控制电流(或电压)向当前工作点与峰值功率点移动,最后控制电流(或电压)在峰值功率点附近一定围来回摆动。

太阳能电池最大功率点跟踪方法一般有定电压跟踪法、扰动观察法、功率回授法、增量电导法、模糊逻辑控制、滞环比较法、神经元网络控制法、最优梯度法等。

1、定电压跟踪法

如下图所示,当太阳能电池温度一定时,最大功率点近似于一条垂直线。如太阳能电池不同特性曲线与负载线L的交点即为当前工作点,然而工作点并不正好落在特性曲线的最大功率点处。为了提高太阳太阳能电池输出能量的利用率,只要保持太阳能电池的输出电压恒定并且等于最大功率点电压Um即可,这就是恒电压跟踪的原理。

定电压跟踪法控制简单、易于实现、稳定性高,但是该种方法忽略了温度对太阳能电池开路电压的影响。一般硅太阳能电池的开路电压都在较大程度上受结温影响,这表明太阳能电池最大功率点电压Urn将随电池温度的变化而变化,其中对太阳能电池温度影响最大的因素是环境温度和日照温度,因此对于四季温差或日温差较大的地区,定电压跟踪方法并不能完全跟踪太阳能电池阵列最大功率点,从而导致功率损失。

2、扰动观察法

扰动观测法的原理图如下图所示,控制对象可以是太阳能电池的电压或电流,在每个控制周期用较小的步长改变控制对象,改变的步长是一定的,方向可以是增加也可以是减小,这一过程称为“扰动”。然后,通过比较干扰周期前后

风力发电用储能系统的优化配置及其仿真研究

华中科技大学 硕士学位论文 风力发电用储能系统的优化配置及其仿真研究 姓名:张琳 申请学位级别:硕士 专业:电气工程 指导教师:唐跃进 2011-05

摘 要 随着环境压力不断增加,新能源发电技术得到了广泛的发展和应用,其中风力发电技术在近几年发展尤为迅速。但由于自然风具有波动性与间歇性的特点,使得风电场输出功率不稳定。随着电力系统中风电装机容量的不断增加,由并网风电场带来的危害不容忽视。超导磁储能装置具有快速的响应速度和四象限独立控制有功功率和无功功率输出的特性,能有效增强风电场稳定性,克服自然风波动带来的危害。蓄电池储能装置存储容量大,技术成熟且价格低廉,能够有效增强电力系统供电可靠性,克服自然风间歇性带来的危害。 本文主要对超导磁储能装置增强风电场稳定性、蓄电池储能装置增强风电场供电可靠性进行了研究,并运用遗传算法优化设计了蓄电池储能装置的容量。通过仿真分析验证了有效性。 论文首先研究了风电并网存在的主要问题及储能装置在风电场中的应用现状,分析了储能装置增强风电场稳定性和供电可靠性的原理。在此基础上搭建了超导磁储能装置和蓄电池储能装置的数学模型,并运用遗传算法,以经济性指标为目标函数,给出了以求解蓄电池装置容量的适应度函数。 最后,在Matlab平台下,搭建了含风电场的电力系统模型,仿真分析了超导磁储能装置对于抑制风电场并网瞬间功率波动、风电场输出功率波动和风电机组三相短路故障的作用。利用Matlab遗传算法工具箱,对蓄电池储能装置容量进行了优化配置,仿真分析验证了蓄电池在增强风电场供电可靠性和增加经济效益方面的作用。 关键词:风力发电超导磁储能蓄电池储能遗传算法

储能在电网发展中的作用

储能在电网发展中的作用 ——Jon Wellinghoff 先生的演讲题目 1.目前世界上有很多种储能技术,可以提供多种服务。 这些技术包括超级电容(Supercapacitors)、超导磁储能(SMES)、铅酸电池(Lead-Acid)、锂电池(Li-Ion)、钠硫电池(NaS)、液流电池(Redox Flow)、飞轮储能(Flywheels)、压缩空气储能(CAES)、抽水蓄能(Pumped Hydro)等。 这些不同技术可以提供多样化供电功率(从kW级到GW级)和供电时长(从秒级到小时级),可以在UPS 系统(不间断电源系统)、削峰填谷电网输配系统及大容量电力管理系统等三个层面加以应用。在提供大容量能源服务方面,储能技术可以大幅度提升电网供电能力并使电力运营商通过峰谷电价差获利。 另外,储能技术还可以为输电基础设施、配电基础设施、用户能源管理等方面提供诸多辅助服务功能,如:给风光系统补充旋转备用能力、黑启动、配合监管等。 2. 储能技术在电力系统各环节都可以发挥作用。 一是在发电端与传统发电技术配合,提升清洁能源的并网率。在发电端,大容量储能系统可以作为发电厂的辅助服务设施,对太阳能、风电等不稳定电源起到稳压、稳流作用。 二是在输配环节,储能技术可以用在变电站上起到削峰填谷的作用。这一环节的应用在美国正变得日益重要。储能技术可以作为配电网中变电站的技术升级,推迟电网的更新换代,降低成本。 三是在消费环节,在“电表前”和“电表后”,都有储能技术的应用。 3. 在联邦层面,监管政策做出了及时的调整来支持储能设施的应用。 在服务计量方面,不光要计算总共接收到的电量,还要根据反应速度、调频准确度来计算报酬。这一规定主要考虑到储能技术的需求响应速度比常规发电技术要快很多这一特点。能源监管委员会的第719号法规要求独立电力系统运营商(ISO)和区域输电组织(RTO)接受来自需求侧所提供的辅助服务,这使商业和工业用户利用储能设施作为需求侧响应手段成为可能。能源监管委员会的第745号法规则要求电力公司和零售商支付大客户利用储能来替代电网调峰的费用。 4. 在州层面,美国也对储能设施的利用有一定的监管政策激励。 加州电网系统运行商(CAISO)制定了采购灵活电源的政策,鼓励装配和使用具有储能功能的灵活电源,以保证大量清洁能源的并网和有效使用(加州通过立法要求清洁能源的装机在2030年必须达到50% 。)。加州公用事业委员会( CPUC)制定了储能法规(AB2514),要求加州境内的三家公共电力公司(PG&E,SCE,SGD&E)必须在2020年前采购至少1.325GW的储能设备。这项法规还设立了评估储能服务、成本效益的框架规则,并且制定了可能的电网储能指标。这个法规直接帮助加州上马了一大批储能项目,很多新的储能技术在这些项目中得到了体现。CPUC制定的“自发电奖励激励计划规定”给予储能$2,000/kW补贴,这项补贴每年递减10%。

储能技术的三类价值体现

储能技术的三类价值体现 在过去相当长一段时间,储能在电网的应用技术主要是抽水蓄能,应用领域主要是移峰填谷、调频及辅助服务等。近年来,随着新能源发电技术的发展,风电、太阳能光伏发电等波动性电源接入电网的规模不断扩大,以及分布式电源在配网应用规模的扩大,储能及其在电网的应用领域和应用技术都发生了很大变化。储能技术类型不断增多,应用范围也在扩大,本文就从储能技术的类型与应用范围谈起。 储能技术即能量存储和再利用的技术,按其基本原理分类,可分为物理储能、化学储能以及一些前沿储能技术,其中物理储能包括抽水蓄能、压缩空气储能、飞轮储能、超导储能等,化学储能有铅炭电池、锂离子电池、液流电池、钠硫电池、超级电容器等,液态金属电池、铝空气电池、锌空气电池等属于比较前沿的技术。不同的储能技术其特征和应用范围也有所区别。单从储能技术评价指标来看,就包括功率规模、持续时间、能量密度、功率密度、循环效率、寿命、自放电率、能量成本、功率成本、技术成熟度、环境影响等。可以说,没有一种单一储能技术可以适应所有的储能需求,应按需选择合适的储能技术或技术组合。 1、储能技术简介 1.1抽水蓄能电站 抽水蓄能使用两个不同水位的水库。谷负荷时,将下位水库中的水抽入上位水库;峰负荷时,利用反向水流发电。抽水储能电站的最大特点是储存能量大,可按任意容量建造,储存能量的释放时间可以从几小时到几天,其效率在70%——85%。 1.2压缩空气储能 压缩空气储能系统主要由两部分组成:一是充气压缩循环,二是排气膨胀循环。在夜间负荷低谷时段,电动机—发电机组作为电动机工作,驱动压缩机将空气压入空气储存库;白天负荷高峰时段,电动机—发电机组作为发电机工作,储存的压缩空气先经过回热器预热,再与燃料在燃烧室里混合燃烧后,进入膨胀系统中(如驱动燃气轮机)发电。 1.3飞轮储能系统 飞轮储能利用电动机带动飞轮高速旋转,将电能转化成机械能储存起来,在需要时飞轮带动发电机发电。近年来,一些新技术和新材料的应用,使飞轮储能技术取得了突破性进展,例如:磁悬浮技术、真空技术、高性能永磁技术和高温超导技术

300KW储能系统初步设计方案及配置

中山铨镁能源科技有限公司 储能系统项目 初 步 设 计 方 案 2017年06月

目录 1 项目概述?错误!未定义书签。 2项目方案?错误!未定义书签。 2.1智能光伏储能并网电站................................................................... 错误!未定义书签。 3.2储能系统?错误!未定义书签。 3.2.1磷酸铁锂电池............................................................................... 错误!未定义书签。 3.2.2电池管理系统(BMS)................................................................ 错误!未定义书签。 3.2.3储能变流器(PCS)?错误!未定义书签。 3.2.4 隔离变压器?错误!未定义书签。 3.3能量管理监控系统............................................................................ 错误!未定义书签。 3.3.1微电网能量管理........................................................................ 错误!未定义书签。 3.3.2系统硬件结构............................................................................. 错误!未定义书签。 3.3.3系统软件结构?错误!未定义书签。 3.3.4系统应用功能................................................................................ 错误!未定义书签。

储能系统方案设计doc资料

储能系统方案设计

商用300KW储能方案 技术要求及参数 电倍率0.5C; 储能系统配置容量:300kWh。 电池系统方案 术语定义 池采集均衡单元:管理一定数量串联电池模块单元,进行电压和温度的采集,对本单元电池模块进行均衡管理。在本方案中管计60支的电池。电池簇管理单元:管理一个串联回路中的全部电池采集均衡单元,同时检测本组电池的电流,在必要时采取本方案中管理17台电池采集均衡单元。电池阵列管理单元:管理PCS下辖全部电池簇管理单元,同时与PCS和后台监控系统池组状态请求PCS调整充放电功率。在本方案中管理2个并联的电池簇。 池模块:由10支5并2串的单体电池组成。 1 电池成组示意图 电池系统集成设计方案 .1电池系统构成 照系统配置300kWh储存能量的技术需求,本储能系统项目方案共使用1台150kW的PCS。储能单元由一台PCS和2个电池簇组台电池阵列管理单元设备。每个电池簇由一台电池簇管理设备和17 个电池组组成。

.2 电池系统计算书项目单体电池模块电池组电池簇电池阵列 体电池数目 1 10 60 1020 2040 称电压(V) 3.2 6.4 38.4 652.8 652.8 量(Ah) 55 275 275 275 -- 定能量(kWh) 0.176 1.76 10.56 179.52 359.04 低工作电压(V) 2.5 5 30 510 510 高充电电压(V) 3.6 7.2 43.2 734.4 734.4 统配置裕量 (359.04kWh -300 kWh)/300 kWh =19.68% 于以上各项分析设计,300kWh 电池系统计算如下。 .3电池柜设计方案 池机柜内部主要安装电池箱和BMS主控管理系统、配套电线电缆、高低压电气保护部件等。机柜采用分组分层设计,机柜外观柜采用免维护技术、模数化组合的装配式结构,保证柜体结构具有良好的机械强度,整体结构能最大程度地满足整个系统的可。其中,三个电池架组成的示意图如图3所示,尺寸为3600mm×700mm×2300mm。

储能技术及其在现代电力系统中的应用

储能技术及其在现代电力系统中的应用 内容摘要 从电力系统安全高效运行的角度论述了电能存储技术的重要性,介绍了目前常用的几种储能技术的发展现状,指出了该领域当前的热点研究问题。 现代电力系统中的新问题 安全、优质、经济是对电力系统的基本要求。近年来,随着全球经济发展对电力需求的增长和电力企业市场化改革的推行,电力系统的运行和需求正在发生巨大的变化,一些新的矛盾日显突出,主要的问题有:①系统装机容量难以满足峰值负荷的需求。②现有电网在输电能力方面落后于用户的需求。③复杂大电网受到扰动后的安全稳定性问题日益突出。④用户对电能质量和供电可靠性的要求越来越高。⑤电力企业市场化促使用户则需要能量管理技术的支持。⑥必须考虑环境保护和政府政策因素对电力系统发展的影响。 2000年到2001年初,美国加州供电系统由于用电需求的增长超过电网的供电能力,出现了电力价格大范围波动以及多次停电事故;我国自2002年以来,已连续四年出现多个省市拉闸限电的状况;在世界上的其他国家和地区,也不同程度地出现了电力供应短缺的现象。系统供电能力,尤其是在输电能力和调峰发电方面的发展已经落后于用电需求的增长,估计这种状况还会在一段时间内长期存在,对电力系统的安全运行将带来潜在的威胁。 加强电网建设(新建输电线路和常规发电厂),努力提高电网输送功率的能力,可以保证在满足系统安全稳定运行的前提下向用户可靠地输送电能。但是,由于经济、环境、技术以及政策等方面因素的制约,电网发展难以快速跟上用户负荷需求增长的步伐,同时电网在其规模化发展过程中不可避免地会在一段时间甚至长期存在结构上的不合理问题;另一方面,随着电力企业的重组,为了获取最大利益,企业通常首先选择的是尽可能提高设备利用率,而不是投资建设新的输电线路和发电厂。因此,单靠上述常规手段难以在短时间内有效地扭转电力供需不平衡的状况。 长期以来,世界各国电力系统一直遵循着一种大电网、大机组的发展方向,按照集中输配电模式运行。在这种运行模式下,输电网相当于一个电能集中容器,系统中所有发电厂向该容器注入电能,用户通过配电网络从该容器中取用电能。对于这种集中式输配电模式,由于互联大系统中的电力负荷与区域交换功率的连续增长,远距离大容量输送电能不可避免,这在很大程度上增加了电力系统运行的复杂程度,降低了系统运行的安全性。 目前,电力系统还缺乏高效的有功功率调节方法和设备,当前采用的主要方法是发电机容量备用(包括旋转备用和冷备用),这使得有功功率调控点很难完全按系统稳定和经济运行的要求布置。某些情况下,即使系统有充足的备用容量,如果电网发生故障导致输电能力下降,而备用机组又远离负荷中心,备用容量的电力就难以及时输送到负荷中心,无法保证系统的稳定性。因此,在传统电力系统中,当系统中出现故障或者大扰动时,同步发电机并不总是能够足够快地响应该扰动以保持系统功率平衡和稳定,这时只能依靠切负荷或者切除发电机来维持系统的稳定。但是,在大电网互联的模式下,局部的扰动可能会造成对整个电网稳定运行的极大冲击,严重时会发生系统连锁性故障甚至系统崩溃。美国和加拿大2003年8月14日发生的大停电事故就是一个惨痛的教训。如果具有有效的有功和无功控制手段,快速地平衡掉系统中由于事故产生的不平衡功率,就有可能减小甚至消除系统受到扰动时对电网的冲击。 在现代电力系统中,用户对于电能质量和供电可靠性的要求越来越高。冲击过电压、电压凹陷、电压闪变与波动以及谐波电压畸变都不同程度地威胁着用户设备特别是敏感性负荷的正常运行。电力市场化的推行也促使电力供应商和用户一起共同寻求新的能量管理技术支

户用储能系统中的电池的配置

户用储能系统中的电池如何配置 一、电池类型的选择 随着电池技术发展和成本的快速下降,目前在户用储能项目中,锂电池已成为主流选择,新增化学电池市场占有率达95%以上。 【解读】相比铅酸电池,锂电池具有效率高、循环寿命长、电池数据精确,一致性高等优势。 二、电池容量设计常见四大误区 1、只根据负载功率和用电量选择电池容量 电池容量设计中,负载情况是最重要的参考因素。但电池充放电能力、储能机的最大功率、负载的用电时段等同样不容忽视。 2、电池的理论容量和实际容量

通常,电池手册上面标注的是电池的理论容量,也就是在理想状态下,电池从SOC100%到SOC0%时电池能够释放的最大电量。 而在实际的应用中,考虑到电池寿命,不允许放电到SOC0%,会设置保护电量。 3、电池容量选择越大越好 在实际应用中,要考虑电池使用率。如果光伏系统容量较小,或负载用电量较大,电池无法充满即造成浪费。 4、电池容量设计完美契合 由于过程损耗的原因,电池放电量小于电池存电量,负载耗电量小于电池放电量。忽视效率损耗很可能造成电池供电不足的现象。

三、不同应用场景下的电池容量设计 本文主要介绍三种常见应用场景下的电池容量设计思路:自发自用(电费较高或没有补贴)、峰谷电价、备用电源(电网不稳定或有重要负载)。 1、“自发自用” 由于电价较高或者光伏并网补贴较低(无补贴),安装光伏储能系统以降低电费支出。 ·假设电网稳定,不考虑离网运行 ·光伏只是为了降低电网用电量 ·一般白天光照比较充足 最理想状态是,光伏+储能系统能够完全覆盖家庭用电。但是这种情况很难实现。所以我们综合考虑投入成本和用电情况,可以选择根据家庭平均日用电量(kWh)来选择电池的容量(默认光伏系统能量充足)。设计逻辑如下:

超导磁储能系统(SMES)及其在电力系统中的应用

高温超导磁储能系统及在电力系统中的应用 一、超导磁储能基本原理 1、什么是超导磁储能系统? 超导储能系统(Superconducting Magnetic Energy Storage, SMES)是利用超导线圈将电磁能直接储存起来,需要时再将电磁能返回电网或其它负载的一种电力设施,一般由超导线圈、低温容器、制冷装臵、变流装臵和测控系统部件组成。 超导储能系统可用于调节电力系统峰谷(例如在电网运行处于其低谷时把多余的电能储存起来,而在电网运行处于高峰时,将储存的电能送回电网),也可用于降低甚至消除电网的低频功率振荡从而改善电网的电压和频率特性,同时还可用于无功和功率因素的调节以改善电力系统的稳定性。超导储能系统具有一系列其它储能技术无法比拟的优越性: (1)超导储能系统可长期无损耗地储存能量,其转换效率超过90%; (2)超导储能系统可通过采用电力电子器件的变流技术实现与电网的连接,响应速度快(毫秒级); (3)由于其储能量与功率调制系统的容量可独立地在大范围内选取,因此可将超导储能系统建成所需的大功率和大能量系统; (4)超导储能系统除了真空和制冷系统外没有转动部分,使用寿命长; (5)超导储能系统在建造时不受地点限制,维护简单、污染小。 目前,超导储能系统的研究开发已经成为国际上在超导电力技术研究开发方面的一个竞相研究的热点,一些主要发达国家(例如美国、日本、德国等)在超导储能系统的研究开发方面投入了大量的人力和物力,推动着超导储能系统的实用化进程和产业化步伐。 2、储能工作原理 SMES在电力系统中的应用首先是由Ferrier在1969年提出的。最初的设想是将超导储能用于调节电力系统的日负荷曲线。但随着研究的深入,人们逐渐认识到调节现代大型电力系统的日负荷曲线需要庞大的线圈,在技术和经济上存在着困难。现在,SMES在电力系统应用中的研究重点主要着眼于利用SMES四象限的有功、无功功率快速响应能力,提高电力系统稳定性、改善供电品质等。超导磁能储存的概念最开始来自于充放电时间很短的脉冲能量储存,大规模能量储存开始于电器元件,其原理就是电能可以储存在线圈的磁场中。如果线圈是由超导材料制成,即保持在临界温度以下,即使发生变化,电流也不会发生衰减。线圈卸载荷,可以将电流释放回电路中去。 电流I循环储存在线圈中的能量E为

风电功率波动平抑效能与储能容量之间关系的分析

2009年中国电机工程学会年会 风电功率波动平抑效能与储能容量之间关系的分析 研究 宇航,张真卿,苑田芬,黄亚峰 (东北电力大学,吉林吉林 132012) The relationships between the efficiency of stabilizing wind power fluctuations and capacity of storage system YU Hang,ZHANG Zhenqing,YUAN Tianfen,HUANG Yanfeng (Northeast Dianli University,Jilin 132012,JilinProvince,China) abstract: This paper takes the relationships between the efficiency of stabilizing wind power fluctuations and capacity of storage system as research objectives while proposing the methods of stabilizing wind power fluctuations and the algorithms of calculating the storage system capacity based on the principles of low-pass filter.Then simulating the process of stabilizing power fluctuations based on the output power data. The simulation results show that stabilizing the short-tem fluctuations in minutes level could reduce the change rate of wind farm output power and the needed storage capacity is smaller, while stabilizing the mid-tem or long-tem fluctuations in hours level could make the waves of output power more stably but the increase amplitude of the needed storage capacity is larger. keywords:storage system;wind power fluctuations;low-pass fliter 摘 要:本文以风电功率波动平抑效能与储能容量之间的关系为研究目标,提出了基于低通滤波原理的风电功率波动储能平抑方法及满足平抑过程能量需求的储能容量算法,根据风电场实际输出功率数据对功率波动平抑过程进行仿真。研究结果表明,滤除风电功率的分钟级短期波动,可明显减小风电场输出功率的变化率,而且所需的储能容量较小,滤除风电功率的小时级甚至一天的中、长期波动,虽然可以使风电场输出功率更加平稳,但所需储能容量增幅很大。 关键字:储能;风功率波动;低通滤波 0 引言 随着能源和环境问题的日益突出,作为一种新型的可再生能源,风力发电具有环境友好、技术成熟、全球可行的特点,越来越受到人们的重视。近年来我国风电得到较快发展,截止到2008年底,装机容量达到892万千瓦,预计在2020年,我国风电累计装机可以达到1亿千瓦。 风电机组输出功率取决于风速,具有不可预期性和波动性。当电网所接纳的风电容量超过一定份额时,风电功率波动将增加电网运行调整负担[1],因此,对于大型风电场往往需要限制其输出功率的波动,如中华人民共和国国家标准化指导性文件GB/Z 19963-2005中对风电场输出功率变化率作出了明确的规定[2]。 在风电场出口处安装储能系统是减小风电场输出功率变化率的理想途径[3-4],当储能系统容量足够大时,可以利用储能系统对风电功率波动进行有效调控,使风电场成为可调度电源。然而,由于储能系统成本往往比较昂贵,实际上只能利用有限容量的储能系统来优化风电场的功率输出,风电场输出功率的可控程度与所配置的储能容量密切相关。因此,分析风电功率波动平抑效能与储能容量之间的关系是风电控制领域前沿的研究课题之一。 本文提出了一种利用储能系统抑制风电功率变化率的方法以及满足平抑过程能量需求的储能容量算法,以某额定容量为50MW的风电场为例,根据其实际输出功率数据对功率波动平抑过程进行仿真,验证该平抑方法的有效性,分析风电功率波动平抑效能与储能容量之间的关系,为风电场通过配置储能系统平抑风电功率波动提供有效的参考。 1 基于低通滤波原理的风电功率波动储能平抑方法 应用储能系统平抑风电功率波动的原理如图1

我国电力系统对大规模储能的需求分析

我国电力系统对大规模储能的需求分析 摘要:电化学储能作为一种调节速度快、布置灵活、建设周期短的调节资源日 益受到人们的关注和重视。推动 GW 级电化学储能建设应用,构建更加灵活高效的电力系统,是保障“十四五”以及未来新能源健康发展和电力系统稳定运行的 必然要求。本文所研究的大规模储能指的是技术上的电化学储能,所提及 的储能电站指的工程上的电化学储能电站。 关键词:电力系统;大规模储能;需求分析 常见储能技术 (1)物理储能包括抽水蓄能、压缩空气储能、飞轮储能等,其中最成熟的也是最普及 的是抽水储能,其主要的应用场景是在电力系统中参与削峰填谷、调频调相等。抽水储能的 时间长短各异,从几个小时一直到几天,其能量转换效率为 70%~85% 之间。但抽水储能电 站也有其不利因素,其建设受到地形的限制因素较多,建设周期也因地形地貌而异,一般周 期都较长。当用电的区域与抽水蓄能电站相距较远时,其效率也得不到保证,过程中的消耗 较大。压缩空气储能早在 1978 年就实现了应用,但由于受地形、地质条件制约,没有大规 模推广。飞轮储能是将电能转化成机械能,以能量转换的方式将能量储存起来,在需要时飞 轮运转使发电机发电产生电能。飞轮储能的有点是寿命较长且无污染,但是其可发出的能量 密度较低,可以考虑作为蓄电池方式的补充方案进行建设。(2)化学储能的方式是现有的 几种储能方式中最多的。在化学储能范围内其技术水平和应用的条件也各有不同。首先,蓄电池储能是最成熟,最被广泛大众所应用的技术,根据其化学组成部分的不同可分为铅酸电池、镍镉电池、镍氢电池、锂离子电池、钠硫电池等。铅酸电池的技术在现阶段已经成熟, 可以作为大容量大规模储能系统,其单位成本和储能成本都很低,安全性可靠性也十分优秀,已经与小型的风力、光伏发电系统和中小型的分布式发电系统中得到了应用,但是铅酸电池 有一个致命弱点就是铅是重金属,会对环境造成污染,不符合当下绿色能源、清洁能源的发 展趋势,所以其不具备未来的发展空间,仅能在现阶段小范围使用。锂离子、钠硫、镍氢电池等这些蓄电池存在着其制造成本过高的问题,作为大规模的储能电站还不成熟,产品的性 能目前尚无法满足储能的要求,其经济性也无法实现商业化运营。最后超级电容是 1970 年 来开始产生的储能器件,其原理是使用特殊的电极材料和电解质,这种超级电容是普通的 20-1000 倍,其优点是容量巨大,而且还保留了传统的电容器的释放能量快的特点,目前已 经不断应用于高山气象站、边防哨所等电源供应场合。 我国电力系统对大规模储能的需求分析 特高压电网过渡期面临的问题 随着大容量直流、高比例新能源的发展,我国电源、电网格局都发生了重大变化。以低 惯量、弱支撑为特征的新能源机组在电网中的比例不断增加,跨区输送的大容量直流替代了 受端电网的部分常规电源,导致电网中传统的同步发电机组占比逐渐降低,同步电网的惯量支撑和一次调频能力不断下降,频率的支撑和调节能力难以应对大容量直流闭锁造成的功率 不平衡量冲击,造成频率跌落深度增大,频率恢复困难,系统安全稳定受到威胁。在跨大区 交直流混联电网中,跨区直流的闭锁还可能引发大区间交流联络线上的大规模潮流转移,造成跨区同步互联电网之间的失稳和解列事故。2015 年 9 月 19 日锦 苏特高压直流发生双极闭锁,引起华东电网瞬时损失功率 490 万千瓦 ( 设计容量 720 万 千瓦 ),当日负荷水平 1.5 亿千瓦,网内开机容量

风光储能系统容量配比等关键技术研究

一、风光储能系统的智能能量管理控制技术研究 风光互补储能系统,就是按照一定的配置关系,将风力机和光伏组件和蓄电池进行组合,综合考虑系统配置的性能和储能成本,得出最佳的系统配置。在风光储能系统的容量配比中,需要从所在地区自然资源条件、负载情况以及综合成本几个方面考虑,以下是基本的配置原则: 1)在用电负荷相同时,由于太阳能电池板的费用较高。为降低系统投资,在保证用电安全和自然资源条件允许时,应尽量降低太阳能在发电系统 中的能源比率; 2)水平轴风机的启动风速高、需较高风速才能发电、能量转化效率低;垂直轴风机在较低的风速时即可发电。在同样的用电需求时,所用水平轴 风机功率一般要大于垂直轴风机,导致水平轴风机费用较高;但对于同 样功率的风力发电机,垂直轴风机费用高于水平轴风机,但其体积、重 量和所需运行空间均小于水平轴风机,且具有运行稳定、噪音低、无对 风要求等优点; 3)储能系统中,蓄电池的费用较高且寿命较短(一般5~10年),设计时应认真分析所在区域的资源条件和用电设备情况,合理地确定储能时间, 以减少蓄电池用量、降低系统投资; 虽然风能的成本低于风光互补,但风光互补系统利用了两种自然资源,能较好地避免蓄电池过放电,延长电池寿命,虽一次性投资稍高,但供电的安全性、稳定性高于风能系统。 风光互补储能系统主要由风力发电机组、太阳能光伏电池组、智能能量控制与管理、电池管理与蓄电池、安全控制与远程维护、逆变器、交流直流负载等部分组成。

(1)风力发电部分是利用风力机将风能转换为机械能,通过风力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电; (2)光伏发电部分利用太阳能电池板的光伏效应将光能转换为电能,然后对蓄电池充电,通过逆变器将直流电转换为交流电对负载进行供电; 智能能量控制管理部分是保证电源系统正常运行的重要核心设备。一方面根据日照强度、风力大小以及瞬态储能系统和储能电池组的状态,实时调整暂态储能设备和储能电池组之间的能量分配,达到对风光发电不确定性的平滑和储能能量匹配;另一方面实时监控负载的变化,不断对蓄电池组的工作状态进行切换和调节:或者把调整后的电能直接送往直流或交流负载,或者把多余的电能送往蓄电池组存储。发电量不能满足负载需要时,控制器把蓄电池的电能送往负载,保证了整个系统工作的连续性和稳定性; (3)储能电池组部分由多块蓄电池组成,在系统中同时起到能量调节和平衡负载两大作用。它将风力发电系统和光伏发电系统输出的电能转化为化学能储存起来,以备供电不足时使用。 (4)逆变系统由几台逆变器组成,把蓄电池中的直流电变成标准的220V交流电,保证交流电负载设备的正常使用。同时还具有自动稳压功能,可改善风光互补发电系统的供电质量。

户用储能系统中的电池的配置

户用储能系统中的电池如何配置 一. 电池类型的选择 随着电池技术发展和成本的快速下降z 目前在户用储能项目中z 锂电池已 成为主流选择,新增化学电池市场占有率达95%以上。 【解读】相比铅酸电池,锂电池具有效率高、循环寿命长、电池数据精 确,—致性高等优势。 二. 电池容量设计常见四大误因 1. 只根据负载功率和用电量选择电池容量 电池容量设计中,负载情况是最重要的参考因素。但电池充放电能力、储 能机的最大功率、负载的用电时段等同样不容忽视。 2、电池的理论容量和实际容量 液潦电述 2000-2017年全球化学储能技术分布 铅酸电池 2017年全球新増化学储能技术分布

通常,电池手册上面标汪的是电池的理论容量z也就是在理想状态下,电池从SOC100%到SOCO%时电池能够释放的最大电量。 而在实际的应用中,考虑到电池寿命,不允许放电到SOCO% ,会设置保 护电量。 SOC保护 电池保护电量 3. 电池容量选择越大趣好 在实际应用中,要考虑电池使用率。如果光伏系统容量较小,或负载用电量较大,电池无法充满即造成浪费。 4. 电池容量设计完美契合 由于过程损耗的原因,电池放电量小于电池存电量,负载耗电量小于电池放电量。忽视效率损耗很可能造成电池供电不足的现氨

纟E 件功率充电:电迪充电效率 -T — 电迪供负载:电迪放电效率岌逆变效率孩负裁端效率 u E.不同应用场景下的电池容量设讯 本文主要介绍三种常见应用场景下的电池容量设计思路:自发自用(电费 较高或没有补贴)、峰谷电价、备用电源(电网不稳定或有重要负载)。 1. "自发自用" 由于电价较高或者光伏并网补贴较低(无补贴),安装光伏储能系统以降 低电费支出。 ?假设电网稳定,不考虑离网运行 ?光伏只是为了降低电网用电量 ?—般白天光照比较充足 最理想状态是,光伏+储能系统能够完全覆盖家庭用电。但是这种情况很 难实现。所以我们综合考虑投入成本和用电情况,可以选择根据家庭平均日用 电量(kWh )来选择电池的容量(默认光伏系统能量充足)。设计逻辑如下: 电网 负载 组件 逆变 匚 匚 电池

电池储能系统在电力系统中的应用

电池储能系统在电力系统中的应用 孔令怡1,廖丽莹1,张海武2,赵家万3 (1.广西大学电气工程学院,南宁530004;2.德清县供电局,德清313200;3.遵义 供电局,遵义市563000) 摘要:电池储能系统(BESS)是一种新兴的FACTS器件。具有控制有功功率流的能力,能够同时对接入点的有功功率和无功功率进行调节,为高压输电系统提供快速的响应容量,有效提高了电力系统的稳定性、可靠性和电能质量。介绍了电池储能系统的基本原理、特点和国外的应用情况,并对它在电力系统中的不同应用进行了综述。 1引言 迄今为止,由于电力系统缺乏有效地大量储存电能的手段,发电、输电、配电与用电必须同时完成,这就要求系统始终处于动态的平衡状态中,瞬间的不平衡就可能导致安全稳定问题。大功率逆变器的出现为储能电源和各种可再生能源与交流电网之间提供了一个理想的接口。从长远的角度看,由各种类型的电源和逆变器组成的储能系统可以直接连接在配电网中用户负荷附近,构成分布式电力系统,通过其快速响应特性,迅速吸收用户负荷的变化,从根本上解决电力系统的控制问题。 可用在电力系统中的储能电源种类繁多,比较常见的有超导储能(SMES)、电池储能(BESS)、飞轮储能、超级电容器储能、抽水储能、压缩空气储能等。在各种类型的储能电源当中,电池储能系统是一种比较适合电力系统使用的储能电源,具有技术相对成熟、容量大、安全可靠、无污染、噪声低、环境适应性强、便于安装等优点。 2电池储能系统的基本原理 电池储能系统主要有电池组和变流器两部分组成,其变流器主要是基于电压源型变流器,其基本结构如图1所示。

电池组部分一般采用技术比较成熟的钠硫电池或铅酸电池,其中钠硫电池在能量密度、使用寿命、运行效率上有较明显优势,所以钠硫电池的应用更广泛。钠硫电池与铅酸电池特性参数比较如表1所示。 变流器的实质是大容量的电压逆变器,它是连接储能电池和接入电网之间的接口电路,实现了电池直流能量和交流电网之间的双向能量传递。电池储能系统的电路原理图如图2所示。 图2中电池储能系统等效为一个理想的电压源,其电压的幅值为U1,电压相角为H;串联的R、L代表总的功率损耗、线路损耗等;电池储能系统注入电力系统的电流的幅值为I L,电流相角为U;电力系统的接入点的电压幅值为U S,电压相角为D。 在电池储能系统中,电压幅值U1和电压相角H都是可以控制的,当我们需要向系统注入有功功率时,便可以控制H>D,这时电池储能系统的电压相角超前于系统接入点的电压相角,所以有功功率由电池储能系统流入系统;反之亦然。当我们需要向系统注入无功功率时,便可以控制U1>U S,这时电池储能系统的电压幅值高于系统接入点的电压幅值,所以无功功率由电池储能系统流入系统;反之亦然。可见,适当的调整换流器来控制电池储能系统的电压幅值U1和相角H,便可以实现电池储能系统与接入的电力系统之间的有功功率和无功功率的交换。 3电池储能系统在电力系统中应用的目的 电池储能系统在电力系统中有着极为广泛的应用,因为它本身可以快速的对接入点的有功功率和无功功率进行调节,所以可以用来提高系统的运行稳定性、提高供电的质量,当其容量足够大时,甚至可以发挥电力调峰的作用。

风电储能容量优化计算

大型并网风电场储能容量优化方案 2012-08-17 00:00 原文链接 为减少大型并网风电场输出功率不稳定给系统频率造成的较大影响,在Matlab平台中仿真了风电机组输出功率随风速变化的规律,以风电机组输出功率特性函数和风电场风速概率分布函数为基础,提出了一种计算大型风电系统长时间稳定输出所需储能容量的方法,并用实际风电场数据验证了该方法的有效性,以期为风电场设计提供决策参考。 0 引言 风能是一种清洁的可再生能源,风力发电是风能利用的主要形式。风力发电作为一种特殊的电力,其原动力是风。自然界风的变化是很难预测的,风速和风向的变化影响着风力发电机的出力。风力发电机输出功率的不稳定性使风力发电具有许多不同于常规能源发电的特点。大规模风电场并网对系统稳定性[1-2]、电能质量[3-6]的影响不容忽视,如果这些问题得不到适当的处理,不仅会危及负荷端用电,甚至可能导致整个电网崩溃,而且会制约风能的利用,限制风电场的规模。 我国《可再生能源发展“十一五”规划》[7]指出,在“十一五”期间全国将重点建设约30 个10万kW以上的大型发电场和5个百万kW 级风电基地。大型风电并网将对电网运行的稳态频率产生一定影响。风电场优化输出[8]是保证电网频率稳定的重要技术问题。 文献[9]用飞轮储能系统来实现风电机输出功率补偿,具有储能密度大、充放电速度快且无环境污染的优点。 文献[10]仿真研究了串并联型超级电容器储能系统对平滑风力发电系统输出功率的影响,具有高功率密度、高充放电速度、控制简单、转换效率高、无污染等特点。 文献[11]研究了电池储能系统(battery energy storage system,BESS)在改善并网风电场电能质量方面的应用情况,具有快速的功率吞吐率和灵活的4 象限调节能力。 文献[12-14]对超导储能装置(superconducting magnetic energy storage,SMES)在并网型风力发电系统中的应用作了深入研究,发现超导储能系统具有良好的动态特性、4 象限运行能力和无损储能等优势。 储能技术在并网风电场中的应用已被广泛研究,相关学者正努力攻克大容量储能技术,并不断降低单位储能成本。目前,容量为5GW.h 的SMES已通过可行性分析和技术论证[1 5]。不过,按现有的储能方式,即风力发电机始终以最大功率点跟踪(maximum power poi nt tracking,MPPT)方式运行,当负荷较轻(如夜间)时,部分电能被储存,当负荷重且遇到弱风时,储能设备中的能力被转换成电能进行补偿,这时因为电网负荷的波动特性往往并不与风电功率的波动特性一致,仍存在如何合理选取储能容量大小的问题。另一种办法是降额发电,即在正常情况下,风电场不按照最大功率点跟踪的方式运行,而是按最大功率的一定百分比发电,当风力下降或上升时,相应地提升或降低发电能力,以减缓发电量的随机波动。这种方法直接影响了风能利用的效率,大大降低了运营利润,且调节能力有限。

以净效益最大为目标的储能电池参与二次调频的容量配置方法

2019年3月电工技术学报Vol.34 No. 5 第34卷第5期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Mar. 2019 DOI:10.19595/https://www.doczj.com/doc/9d12905694.html,ki.1000-6753.tces.L80372 以净效益最大为目标的储能电池参与 二次调频的容量配置方法 汤杰1李欣然1黄际元2徐飘1何聪1 (1. 湖南大学电气与信息工程学院长沙 410082 2. 国网湖南省电力有限公司长沙供电分公司长沙 410015) 摘要针对储能电源参与电网辅助调频问题,提出一种以净效益最大为目标的储能电池参与二次调频的容量配置方法。综合考虑实时电量、备用功率和环境效益,构建储能电池全寿命周期的成本-效益计算模型;进而建立以净效益最大为目标,以容量及功率为决策变量,综合考虑实时出力、调频需求约束和荷电状态(SOC)约束的储能电池优化配置模型;基于经验模态分解(EMD)原理,设计一种考虑常规机组爬坡率限制的储能参与二次调频的初始功率指令分配方法;并给出了利用遗传算法辅助求解该优化模型的容量配置方法流程。仿真结果表明,所提出的容量配置方法不仅可以得到能够较好地协调经济效益和调频效果的容量配置方案,同时可得到储能出力功率,该功率可作为储能电池的运行调度参考方案,提高了配置方法的工程实用性。 关键词:储能电池二次调频成本-效益容量配置优化模型 中图分类号:TM732 Capacity Allocation of BESS in Secondary Frequency Regulation with the Goal of Maximum Net Benefit Tang Jie1 Li Xinran1 Huang Jiyuan2 Xu Piao1 He Cong1 (1. College of Electrical and Information Engineering Hunan University Changsha 410082 China 2. State Grid Hunan Electric Power Corporation Limited Changsha Power Supply Company Changsha 410015 China) Abstract Energy storage power has brought some problems involved in the auxiliary frequency regulation, aiming at the problems, a capacity allocation method of BESS in secondary frequency regulation with the goal of maximum net benefit is proposed. Considering the real-time electricity, reserve power and environmental benefit, the cost-benefit calculation model of full life cycle of BESS is constructed. Then taking the maximum net benefit as the goal, the capacity and the power as the decision variables, and considering the real-time output, the frequency regulation demand constraint and the SOC boundary, the optimization configuration model of BESS is established; Based on the principle of empirical mode decomposition (EMD) and considering the limitation of ramp rate of conventional units, this paper designs an initial power instruction allocation method for BESS in secondary frequency regulation; Also this paper gives the flow chart of capacity allocation method assisted by genetic algorithm. The simulation results show that the proposed capacity allocation method can not only obtain the capacity allocation scheme that can coordinate the economic benefit and frequency regulation effect, but also obtain the energy storage output power. The output power can be used as a reference scheme of BESS, which improves the engineering 国家自然科学基金(51477043)、湖南省科技重大专项(2016GK1003)和国网湖南省电力有限公司科技项目(5216A1170002)资助。 收稿日期 2018-06-29 改稿日期 2018-09-09

相关主题
文本预览
相关文档 最新文档