地层压力预测汇报
- 格式:pptx
- 大小:4.92 MB
- 文档页数:55
地层压力预测分析方法在秦皇岛某油田中应用地层压力预测是钻井基本设计与钻井工程设计的基础,是确定钻井井身结构、钻井液体系及密度、预防和减少井下复杂情况不可缺少的关键数据。
文章通过对Drillworks压力预测软件分析及操作流程应用在秦皇岛某油田。
根据现场监测到的压力及地漏试验数据对该油田的孔隙压力、破裂压力、坍塌压力进行了预测。
计算发现该井坍塌压力为1.128-1.271g/cc大于孔隙压力,因此,在进行钻井设计时,应参照坍塌压力和破裂压力确定泥浆安全密度窗口。
标签:软件;压力预测;Drillworks;三压力Abstract:Formation pressure prediction is the basis of drilling basic design and drilling engineering design. It is an indispensable key data to determine drilling well structure,drilling fluid system and density,so as to prevent and reduce the complex situation in downhole. In this paper,Drillworks pressure prediction software analysis and operation process are applied in Qinhuangdao Oil Field. The pore pressure,fracture pressure and collapse pressure of the oilfield are forecast according to the pressure monitored in the field and the ground drain test data. It is found that the collapse pressure of the well is 1.128-1.271 g/cc larger than the pore pressure,therefore,in drilling design,the mud safety density window should be determined by reference to collapse pressure and fracture pressure.Keywords:software;stress prediction;Drillworks;three stresses钻井工程所谓的地层压力是“地层孔隙压力、地层破裂压力、地层坍塌压力”的总称[1-2]。
地震地层压力预测摘要目前,地震地层压力预测方法归纳起来可以分为图解法和公式计算法两大类10余种。
本文对各种地震地层压力预测方法进行了系统地归纳和总结,并对各种方法的特点、适用性以及存在的问题进行分析和讨论.在此基础上,就如何提高压力预测的精度,提出了一种简单适用的改进措施,经J1.K地区的实测资料的验证,效果良好。
主题词地层压力地震预测正常压实异常压实引言众所周知,油气层的压力是油气层能量的反映,是推动油气在油层中流动的动力,是油气层的“灵魂”。
因此,在石油和天然气的勘探开发中,研究油气层的压力具有十分重要的意义。
首先,在油气田勘探中,研究油气层压力特别是油气层异常压力的分布,以及预测和控制油气层压力的方法,不仅可以保证安全快速地钻进,而且可以正确地设计泥浆比重和工程套管程序;同时也可以帮助选择钻井设备类型和有效安全正确的完井方法等。
这些都直接关系到钻井的成功率以及油气田的勘探速度等问题。
其次,在油气田开发过程中,准确的压力预测以及认真而系统的油气层压力分布规律的研究,不仅可以帮助我们认识和发现新的油气层,而且对于了解地下油气层能量、控制油气层压力的变化,并合理地利用油气层能量最大限度地采出地下油气均具有十分重要的意义。
多少年来,人们在异常地层压力(这里主要指异常高压或超压)预测方面进行了种种尝试,然而直到本世纪70年代以来,随着岩石物理研究的不断深人以及地震技术的不断提高,才真正使得地层压力的地震预测成为现实。
对于异常高压地层,一般表现为高孔隙率、低密度、低速度、低电阻率等特点,因此,凡是可以反映这些特点的各种地球物理方法均可用于检测地层压力。
但是,由于各种测井方法均为“事后”技术,这就使得在初探区内利用地震方法进行钻前预测显得尤为重要。
与此同时,地震地层压力预测还可以提供较测井方法更为丰富的空间压力分布信息。
利用地震资料进行地层压力预测,主要是利用了超压层的低速特点,因为在正常情况下,速度随深度的增加而增加,当出现超压带时,将伴随出现层速度的降低。
科 学 技 术 与 工 程V o l. 12 No. 30 Oct . 2012第 12 卷 第 30 期 2012 年 10 月 1671— 1815( 2012) 30-7854-06Sc i e n ce Tec hn o l o gy and En g i n ee r i n g2012 Sc i. Te c h . En grg .石油技术井间地层压力分布预测方法及应用姚君波1立1 王长浩1 叶金亮1 赵文苹2袁 ( 成都理工大学1 ,成都 610059; 中国石油新疆油田采油二厂2 ,克拉玛依 834008)摘 要 油藏的井间地层压力分布是油田开发过程中重要的开发指标之一。
对动态预测、储量计算来说是一个非常重要的 参数,如何获得准确的井间地层压力分布数据就显得尤为重要。
以往的地层压力分布计算方法具有一定的局限性,无法准确 的利用少数井来预测井与井之间的地层压力分布。
在理论模型的研究基础之上编制了地层压力分布预测的计算机程序语言 和计算模块,根据建立的压力场分布预测技术,预测并绘制了二区七断块历年压力场分布图。
预测结果与实际生产一致,说 明该地层压力预测技术是可行的,为油田的开发提供了较准确的参数依据。
关键词 地层压力分布 理论模型 压力场计算机模块预测中图法分类号文献标志码 AR 1 ,R 2 — 分别为 M 点至生产井和注水井的距离。
在油田开发中能够获取井间地层压力分布的准确性尤为重要[1]。
从国内外来看,王庆魁等人利 用密度与声波测井资料,运用等效深度法预测油藏的地层压力分布,但是精确性一般[2,3]。
在国外确 定平均地层压力的方法基本上都是关井测压力恢复曲线,然后再用 MBH 法、MD H 法、D i etz 法和扩展 的 Mu s k at 法确定[4—6]。
这都需要压力恢复的相关 数据,或者局限于拟稳态及生产时间很长,所以不 可避免会有一定的误差。
K在 A 井井壁上 Ф = Фw ,Φw =P w ,R 1 = R w ,由 μ于 R w < < 2a ,因此可取 R 2 ≈ 2a ,则有: R W q ( 2)= R w , Φw= ln + C 2π 2a 在 B 井井壁上,Ф = ФH ,R 1 ≈2a ,R 2 得:q 2 a( 3)=2πln R + CΦH式( 3) 减去式( 2) 得:w井间地层流压分布模型1 π( ΦH - Φw ) πKh ( P H - P w ) Q =( 4) 无限大地层中存在等产量一源一汇,B 和 A 。
地层压力预测技术第一章油田的地质特点油田位于松辽盆地北部,其储油层属于陆湖盆地叶状复合三角洲沉积,是一个大型的多层砂岩油田,共有三套含油组合,即上部黑帝庙、中部萨葡高和下部扶含油组合。
由于湖盆频繁而广泛的变化,形成了泛滥平原、分流平原、三角洲外前缘等不同的沉积相带,在萨尔图、葡萄花、高台子含油层段,由于不同的沉积时期和不同的沉积环境,又形成了不同类型的沉积砂体和沉积旋回,因此造成其平面上和垂向上的严重非均质性。
由于这种特定的陆湖相沉积环境,构成了油田的许多基本特点。
一是油层多,含油井段长,储量丰度高。
萨尔图、葡萄花、高台子油层组,约有49~130多个单层,含油井段几十米到几百米,每平方公里的储量从几十万吨到几百万吨不等。
二是油层厚度大,差异也大,最薄的0.2m,一般1m~3m,最大单层厚度可达10m~13m。
三是渗透率差异大,空气渗透率最低0.02μm2,最高达5μm2。
在纵向剖面上,形成了砂岩与泥岩,厚层与薄层,高渗透层与低渗透层交错分布的复杂情况。
第二章浅气层分布规律及下表层原则2.1 浅气层的分布规律浅气层在油田尤其是油田长垣北部的喇、萨、杏油田具有广泛的分布。
在构造轴部的嫩二段顶部粉砂岩及泥质粉砂岩层,嫩三段的粉砂岩及泥质粉砂岩层,嫩四段的细砂岩及粉砂岩层,只要具备以下三条件,就能形成浅气层(在外围就是黑帝庙油层)。
1)具备2.5m视电阻率为10Ω·m,自然电位3mv的砂岩。
2)该砂岩必须在一定海拔深度以上才能形成气层。
3) 同时形成一定的局部构造圈闭及断层遮挡条件(即断层断裂后相对隆起的下盘被断层遮挡),有利于浅气层的聚集。
,萨尔图、杏树岗油田浅气含气围见表1-1,喇嘛甸油田浅气含气围见表1-2。
图1-1 浅气层分区示意图表1-1 萨尔图、杏树岗油田浅气层分布及防喷地质要求表1-2 喇嘛甸油田浅气层分布及防喷地质要求储集在各储集层的浅气层的产状有很大的差别,嫩二段顶部砂岩的浅气层产状以纯气层为主,而嫩三段、嫩四段砂岩中的浅气层则以气水同层为主,在钻井过程中,如果不采取防措施或采取措施不当,极易发生气浸、井涌、井喷甚至井喷失控等复杂情况,重者造成钻机陷入地下,固后管外喷冒而报废井,轻者套管外冒气、冒水而影响油水井投产,使企业、国家蒙受重大经济损失,地下资源遭到人为破坏,环境遭受严重污染,人民群众生命受到严重威协,因此必须引起足够的重视。
4地层压力预测4.1dcs 指数法1、d 指数=D WOB RPM ROP d AV AV AV 61012ln 60ln 式中,ROP A V RPM —平均钻速,英尺/小时;A V WOB —平均转速,转/分钟; A V D—钻头直径,英寸。
—平均钻压,磅; 2、dc 指数消除钻井液密度对d 指数的影响。
ECDd dc nρ×=式中,d—d 指数;ρn —正常地层孔隙压力梯度,通常ρn =1.03克/厘米3ECD—钻井液循环当量泥浆密度,克/厘米; 33、dcs 指数。
消除钻头钝化对dc 指数的影响。
ECD D WOB RPM ROP B dcs n AV AV AV ρ××=61012ln 60ln 式中,ROP A V RPM —平均钻速,英尺/小时; A V WOB —平均转速,转/分钟; A V D—钻头直径,英寸;—平均钻压,磅; ρn —正常地层孔隙压力梯度,通常ρn =1.03克/厘米3ECD—钻井液循环当量泥浆密度,克/厘米;3B—钻头磨损校正因子。
; (1)、非牙轮钻头,B=1;(2)、牙轮钻头,其钻头磨损校正因子B 是钻头进尺和钻头最终磨损量的函数:pB α=16928125.02++=T T α1331.01331.022++++×=X X F F X TLH H F X 0−×= 式中,F—钻头最终磨损量,介于0~1;H—当前井深,米;H 0L—该钻头总进尺,米;—该钻头使用的起始井深,米; P—“P ”指数(由钻头IADC 编码的第一位数字查得); X 、T—代换变量。
4、dcs 正常趋势线dcsB H dcsA dcsn V +•=)ln(式中,H V a—斜率,1/米; —垂直井深,米;b—截距。
可用下面两种方法计算a 、b :(1)、在dcs 半对数坐标图上,合理画出正常趋势线,读出其上的两点坐标A (H V1,dcs 1)、B (H V2,dcs 21212ln V V H H dcs dcs a −=),用两点式计算出a 、b 。
地层压力预测技术研究技术总结报告中国石油吉林油田分公司采油工艺研究院2006年11月编写人:李洪伟参加人:孙超刘小明雷正义代群初审人:鞠德审核人:姚忠义目录第一部分概述 (1)第二部分地层压力预测的基本原理 (2)2.1 基本概念 (2)2.2 异常压力成因及影响因素 (3)2.3 地层压力预测基本原理 (5)第三部分地层压力计算主要方法 (6)3.1 地层孔隙压力计算方法 (6)3.2 地层破裂压力计算方法 (12)3.3 地层坍塌压力计算方法 (14)第四部分DrillWorks软件基本用法及地层压力预测实例 (16)4.1 DrillWorks软件预测地层压力的基本流程 (17)4.2 软件的用法及地层压力预测实例 (17)4.3 地层压力预测工作量 (33)4.4 地层压力预测准确性影响因素分析 (33)第五部分DrillWorks软件的二次开发应用典型实例 (35)5.1 利用室内岩心可钻性试验建立数学模型 (35)5.2 利用UDM/UDP编辑器进行可钻性计算程序开发 (36)第六部分结论及建议 (37)6.1 结论 (37)6.2 存在的问题及建议 (37)第一部分概述地层压力是石油及天然气勘探、开发中非常重要的一个参数。
多年以来,石油行业一直致力于不同油藏条件下地层压力预测技术的研究,并形成了预测、监测地层压力的技术理论。
钻井工程所谓的地层压力是“地层孔隙压力、地层破裂压力、地层坍塌压力”的总称。
准确的地层压力剖面预测是钻井工程设计与施工的基础,是确定钻井井身结构、钻井液密度、钻井井控及完井等工艺不可缺少的关键数据。
只有准确掌握地层的三压力剖面,才能够采取有针对性的油气层保护技术措施,并且确保钻井施工的安全顺利。
在新探区或未探明地层条件下的地层压力预测尤为重要,因为在钻穿未知高压层时,地层压力的失控会引起井喷、钻机烧毁和油气藏的严重破坏。
孔隙压力预测不准的案例:吉林油田在昌31井施工过程中,由于对地层中存在的高压认识不清,钻井过程中的钻井液密度明显偏低,不能平衡地层压力,实际地层压力系数达到了1.23g/cm3,在钻井施工中发生了井喷,造成了重大经济损失。
地层破裂压力和坍塌压力预测摘要地层破裂压力和地层坍塌压力是钻井工程设计的重要依据,对确定合理的钻井液密度和其他钻井参数有重要意义。
在参考了一些书籍和相关论文的基础上,对地层破裂压力和坍塌压力的预测方法做出了较为系统的总结。
地层破裂压力的预测主要有H-W模式和H-F模式,包括伊顿法、黄荣樽法、安德森法等;地层坍塌压力的预测主要基于井壁岩石剪切和拉伸破坏的原理。
关键词:破裂压力;坍塌压力;预测第一章前言地层破裂压力是指使地层产生水力裂缝或张开原有裂缝时的井底流体压力。
它是钻井和压裂设计的基础和依据。
如何准确地预测地层破裂压力,对于预防漏、喷、塌、卡等钻井事故的发生及确保油气井压裂增产施工的成功有着重要的意义。
地层坍塌压力是指随着钻井液密度的降低,井眼围岩的剪应力水平不断提高,当超过岩石的抗剪强度时,岩石发生剪切破坏时的临界井眼压力。
它的确定对于确定合理的钻井液密度和钻井设计及施工有重要意义。
地层三项压力研究历史及发展现状:✧八十年代以前,地层孔隙压力以监测为主,地层破裂压力预测处于经验模式阶段,如马修斯-凯利模式、伊顿模式等。
没有地层坍塌压力的概念。
✧八十年代,提出了地层坍塌压力的概念,从理论上对地层三个压力进行了公式推导。
✧九十年代以来,一般根据岩石力学的基本原理由地应力和地层的抗拉强度预测地层的破裂压力,进入实用技术开发阶段。
目前,地层三项压力预测技术已经得到广泛的重视,也从各个方面对其进行了研究和应用:●室内实验研究方法(研究院)●地震层速度法(石大北京)●常规测井资料法(华北钻井所、石大)●页岩比表面积法(Exxon)●人造岩心法(Norway)●岩屑法(Amoco、石油大学)●LWD、SWD法(厂家)●经验模式法(USA)第二章 地层三项压力预测机理2.1 地应力模型1、各向同性模型利用电缆地层测试或压力恢复测试资料,在不考虑构造应力影响情况下,各向同性模型计算水平应力公式为:()p p b x P P P PR PR αασ+-⎪⎪⎭⎫⎝⎛-=01(2-1) 式中:PR — 泊松比;Pob — 上覆岩层压力;Pp — 孔隙流体压力;α — Biot 常量。
一、地层压力预测软件有:1.JASON软件Jason软件是一套综合应用地震、测井和地质等资料解决油气勘探开发不同阶段储层预测和油气藏描述实际问题的综合平台。
Jason 的重要特点就是随着越来越多的非地震信息(测井,测试,地质)的引入,由地震数据推演的油气藏参数模型的分辨率和细节会得到不断的改善。
用户可根据需要由Jason 的模块构建自己的研究流程。
其反演模块包括:InverTrace:递归反演稀疏脉冲反演InverTrace_plus:稀疏脉冲反演RockTrace:弹性反演InverMod:特征反演(主组分分析)StatMod:随机模拟随机反演FunctionMod:函数运算压力预测原理:由JASON反演出地层速度,速度计算垂直有效应力,进而求出孔隙流体压力。
2、地层孔隙压力和破裂压力预测和分析软件DrillWorks/PREDICTGNG软件功能:•趋势线(参考线)的建立--手工--最小二乘方拟合--参考线库•页岩辨别分析•上覆岩层梯度分析--体积密度测井--密度孔隙度测井--用户定义方法(程序)•孔隙压力分法--指数方法电阻率、D一指数声波、电导率地震波--等效深度方法电阻率、D--指数声波--潘尼派克方沾--用户定义方法(程序)•压裂梯度分法--伊顿方法--马修斯和凯利方法--用户定义方法(程序)•系统支持项目和油井数据库•系统支持所有趋势线方法•系统包括交叉绘图功能•用户定义方法(程序)•包括全套算子•系统支持井与井之间的关联分析•系统支持岩性显示•系统支持随钻实时分析•系统支持随钻关联分析•多用户网络版本数据装载功能:•斯仑贝谢LIS磁盘输入•斯仑贝谢LIS磁带输入•CWLS LAS输入•ASCII输入•离散的表格输入•井眼测斜数据•测深/垂深表格用户范围:•美国墨西哥湾•北海•西部非洲•南美•尼日利亚三角洲•南中国海•澳大利亚DrillWorks/PREDICTGNG 与其它软件的区别•世界上用得最多的地层压力软件•钻前预测、随钻监测和钻后检测•用户主导的软件系统•准确确定--上覆岩层压力梯度--孔隙压力梯度--破裂压力梯度•使用下列数据的任何组合来分析地层: -地震波速度-有线测井-MWD、LWD数据-重复地层测试(RFT)-泄漏试验(LOT)数据-录井资料-地质资料•面向现实世界中数据资料不尽人意、而新的方法又层出不穷的用户而设计的•地层压力软件平台:新的预测压力方法可通过"用户定义方法(程序)"编入系统软件用途:•准确预测地层压力•有效降低钻井成本•提高经济效益•优化井眼尺寸•优化泥浆和水力学•避免井涌和卡钻•减少地层污染•延伸套管鞋深度•减少套管数目•保障施工安全3、GeoPredict地层孔隙压力预测软件本程序基于当量深度法,根据钻进过程中钻时的快慢,并结合岩屑的岩性,由操作人员在图中用拖动鼠标的方式挑出的泥/页岩段,完成压力预测原理中首先选取泥/页岩段的过程。