八年级上册数学《全等三角形》全等三角形判定-知识点整理
- 格式:doc
- 大小:116.00 KB
- 文档页数:6
《三角形全等的判定》知识全解课标要求1.探索几何的基本图形——三角形,探索全等三角形的基本性质、三角形全等的判定条件和其相互关系,及角平分线性质,进一步丰富对空间图形的认识和感受.2.在探索全等三角形的性质、与他人合作交流等活动过程中,发展合情合理,进一步学习有条理地思考与表达;在积累了三角形的性质的基础上,探索全等三角形的判定条件和角平分线性质及其逆运用.知识结构内容解析在一个三角形的三条边,三个角中任取三个元素,可以有下列组合;SAS、SSA、ASA、AAS、SSS、AAA,但其中SSA和AAA不能判定三角形全等。
◆如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等。
(2)可以从已知条件出发,看已知条件确定哪两个三角形可证它们全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,可采用添加辅助线的方法,构造三角形全等。
重点难点本节的重点是:掌握三角形全等的判定定理,并灵活运用。
本节的难点是:在较复杂的图形中,找出证明两个三角形全等的条件,恰当的选择判定定理,正确地书写演绎推理过程。
教法导引1.注重培养探索归纳能力经历探究三角形全等条件的过程:由全等三角形的定义可以知道,由三条边对应相等、三个角对应相等能判定三角形全等,那么减少条件能否判定三角形全等呢?于是,依次探究:满足一个条件、两个条件、三个条件、……能否判定三角形全等.通过探究得到:满足一个条件、两个条件不能判定三角形全等;满足三个条件不一定能判定三角形全等,即“边边边”、“边角边”、“角边角”、“角角边”能判定三角形全等,“边边角”、“角角角”不能判定三角形全等.将三角形全等的判定方法运用于直角三角形,可以判定直角三角形全等;但对于满足斜边和直角边对应相等的两个直角三角形,就无法运用三角形全等的判定方法来进行判断了,因此应探究“斜边、直角边”能否判定直角三角形全等.2.注重培养推理能力本章要求学生有理有据地推理论证,精炼准确地表达推理过程,这对于学生比较困难,因此我们在教学中应采取以下措施突破难点:(1)注意减缓坡度,循序渐进.精心选择全等三角形的证明问题,开始阶段的例题,证明方向明确、过程简单,容易规范书写格式,主要让学生体会证明思路及格式.然后逐步增加题目的复杂程度,每一步都为下一步做准备,下一步又要注意复习前一步训练过的内容.(2)在不同的阶段,安排不同的内容,突出一个重点.先安排证明两个三角形全等,进而安排通过证明三角形全等证明两条线段或两个角相等,重点使学生熟悉证明的步骤和方法.最后安排的问题涉及前面学过的内容,重点培养学生分析问题,选择推理途径的证明能力.(3)注重分析思路注重分析思路,让学生学会思考问题.(4)注重规范书写格式注重规范书写格式,让学生学会清楚地表达思考的过程.3.注重联系实际从实际例子引入全等形的概念,易于学生理解概念,易于调动学生学习的积极性.从分析平分角仪器的原理引入角平分线的画法,通过确定集贸市场位置的问题引出“角的内部到角的两边的距离相等的点在角的平分线上”的结论,使学生感受理论来源于实际的需要.运用全等三角形可以解决实际中许多测量边、角的问题.学法建议学生在初一学习过三角形的相关知识,会作一个三角形等于已知三角形,本节是使学生在原有知识的基础上探索怎样判定三角形全等的判定条件及恰当地选择判定定理来判别两个三角形全等,并能灵活运用全等三角形的判定方法解决线段或者角相等的问题。
八年级数学上册第十二章全等三角形知识点总结归纳单选题1、如图,OD平分∠AOB,DE⊥AO于点E,DE=5,点F是射线OB上的任意一点,则DF的长度不可能是()A.4B.5C.6D.7答案:A分析:根据角平分线的性质,可知点D到OB和OA的距离相等,并且点到直线的线段中,垂线段最短,最短距离为5,即可判断.∵OD平分∠AOB,DE⊥AO于点E,DE=5,∴D到OB的距离等于5,∴DF≥5故DF的长度不可能为4,故选A.小提示:本题考查了角平分线的性质,点到直线的线段中,垂线段最短,熟练掌握性质是本题的关键.2、下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个全等图形形状一定相同C.两个周长相等的图形一定是全等图形D.两个正三角形一定是全等图形答案:B分析:根据全等图形的定义进行判断即可.解:A:两个面积相等的图形不一定是全等图形,故A错误,不符合题意;B:两个全等图形形状一定相同,故B正确,符合题意;C:两个周长相等的图形不一定是全等图形,故C错误,不符合题意;D:两个正三角形不一定是全等图形,故D错误,不符合题意;故选:B.小提示:本题考查了全等图形,熟练运用“能够完全重合的两个图形叫做全等形”是本题的关键.3、如图,在△ABC中,AD是BC边上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF,则下列结论:①BG=CF;②BG⊥CF;③∠EAF=∠ABC;④EF=EG,其中正确的有()A.①②③B.①②④C.①③④D.①②③④答案:D分析:证得△CAF≌△GAB(SAS),从而推得①正确;利用△CAF≌△GAB及三角形内角和与对顶角,可判断②正确;证明△AFM≌△BAD(AAS),得出FM=AD,∠FAM=∠ABD,则③正确,同理△ANG≌△CDA,得出NG=AD,则FM=NG,证明△FME≌△GNE(AAS).可得出结论④正确.解:∵∠BAF=∠CAG=90°,∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB,又∵AB=AF=AC=AG,∴△CAF≌△GAB(SAS),∴BG=CF,故①正确;∵△FAC≌△BAG,∴∠FCA=∠BGA,又∵BC与AG所交的对顶角相等,∴BG与FC所交角等于∠GAC,即等于90°,∴BG⊥CF,故②正确;过点F作FM⊥AE于点M,过点G作GN⊥AE交AE的延长线于点N,∵∠FMA=∠FAB=∠ADB=90°,∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°,∴∠BAD=∠AFM,又∵AF=AB,∴△AFM≌△BAD(AAS),∴FM=AD,∠FAM=∠ABD,故③正确,同理△ANG≌△CDA,∴NG=AD,∴FM=NG,∵FM⊥AE,NG⊥AE,∴∠FME=∠ENG=90°,∵∠AEF=∠NEG,∴△FME≌△GNE(AAS).∴EF=EG.故④正确.故选:D.小提示:本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识.熟练掌握全等三角形的判定与性质是解题的关键.4、如图,BD是△ABC的角平分线,AE⊥BD,垂足为F,若∠ABC=35°,∠C=50°,则∠CDE的度数为()A .35°B .40°C .45°D .50°答案:C分析:根据角平分线的定义和垂直的定义得到∠ABD =∠EBD =12∠ABC =35°2,∠AFB =∠EFB =90°,推出AB =BE ,根据等腰三角形的性质得到AF =EF ,求得AD =ED ,得到∠DAF =∠DEF ,根据三角形的外角的性质即可得到结论. 解:∵BD 是△ABC 的角平分线,AE ⊥BD ,∴∠ABD =∠EBD =12∠ABC =35°2,∠AFB =∠EFB =90°,∴∠BAF =∠BEF ,∴AB =BE ,AE ⊥BD ,∴BD 是AE 的垂直平分线,∴AD =ED ,∴∠DAF =∠DEF ,∵∠BAC =180°-∠ABC -∠C =95°,∴∠BED =∠BAD =95°,∴∠CDE =95°-50°=45°,故选C .小提示:本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.5、如图,△ABC ≌△DEF ,若∠A =80°,∠F =30°,则∠B 的度数是( )A.80°B.70°C.65°D.60°答案:B分析:由△ABC≌△DEF根据全等三角形的性质可得∠C=∠F=30°,再利用三角形内角和进行求解即可.∵△ABC≌△DEF,∴∠C=∠F,∵∠F=30°,∴∠C=30°,∵∠A=80°,∠A+∠B+∠C=180°,∴∠B=180°−∠A−∠C=70°,故选:B.小提示:本题考查了全等三角形的性质及三角形的内角和定理,熟练掌握知识点是解题的关键.6、小明同学只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.在角的内部,到角的两边距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形的三条高交于一点D.三角形三边的垂直平分线交于一点答案:A分析:过两把直尺的交点P作PF⊥BO与点F,由题意得PE⊥AO,因为是两把完全相同的长方形直尺,可得PE=PF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB如图所示:过两把直尺的交点P作PF⊥BO与点F,由题意得PE⊥AO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.小提示:本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.7、如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE//AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=9答案:A分析:根据角平分线的性质得到CD=DF=3,故B正确;根据平行线的性质及角平分线得到AE=DE=5,故C正确;由此判断D正确;再证明△BDF≌△DEC,求出BF=CD=3,故A错误.解:在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DF⊥AB,∴CD=DF=3,故B正确;∵DE=5,∴CE=4,∵DE//AB,∴∠ADE=∠DAF,∵∠CAD=∠BAD,∴∠CAD=∠ADE,∴AE=DE=5,故C正确;∴AC=AE+CE=9,故D正确;∵∠B=∠CDE,∠BFD=∠C=90°,CD=DF,∴△BDF≌△DEC,∴BF=CD=3,故A错误;故选:A.小提示:此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角相等,全等三角形的判定及性质,熟记各知识点并综合应用是解题的关键.8、已知图中的两个三角形全等,则∠α等于()A.72∘B.60∘C.58∘D.50∘答案:D分析:根据全等三角形的性质:全等三角形对应角相等,即可得到结论.∵图中的两个三角形全等,∠α为a和c的夹角又∵第一个三角形中a和c的夹角为50°∴∠α=50°故选:D.小提示:本题考查了全等三角形的性质,准确找到对应角是解题的关键.9、下列四个图形中,有两个全等的图形,它们是()A.①和②B.①和③C.②和④D.③和④答案:B分析:根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.解:①和③可以完全重合,因此全等的图形是①和③.故选:B.小提示:此题主要考查了全等图形,关键是掌握全等图形的概念.AD,BD平分∠ABC,则点D到AB的距离等于( ) 10、如图,在ΔABC中,∠C=90°,AC=8,DC=13A.4B.3C.2D.1答案:C分析:如图,过点D作DE⊥AB于E,根据已知求出CD的长,再根据角平分线的性质进行求解即可.如图,过点D作DE⊥AB于E,∵AC=8,DC=1AD,3∴CD=8×1=2,1+3∵∠C=90°,BD平分∠ABC,∴DE=CD=2,即点D到AB的距离为2,故选C.小提示:本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.填空题11、如图,四边形ABCD中,∠B+∠D=180°,AC平分∠DAB,CM⊥AB于点M,若AM=4cm,BC=2.5cm,则四边形ABCD的周长为_____cm.答案:13分析:过C作CE⊥AD的延长线于点E,由条件可证△AEC≌△AMC,得到AE=AM.证明△ECD≌△MBC,由全等的性质可得DE=MB,BC=CD,则问题可得解.解:如图,过C作CE⊥AD的延长线于点E,∵AC平分∠BAD,∴∠EAC=∠MAC,∵CE⊥AD,CM⊥AB,∴∠AEC=∠AMC=90°,CE=CM,在Rt△AEC和Rt△AMC中,AC=AC,CE=CM,∴Rt△AEC≌Rt△AMC(HL),∴AE=AM=4cm,∵∠ADC+∠B=180°,∠ADC+∠EDC=180°,∴∠EDC=∠MBC,在△EDC和△MBC中,{∠DEC=∠CMB∠EDC=∠MBCCE=CM,∴△EDC≌△MBC(AAS),∴ED=BM,BC=CD=2.5cm,∴四边形ABCD的周长为AB+AD+BC+CD=AM+BM+AE﹣DE+2BC=2AM+2BC=8+5=13(cm),所以答案是:13.小提示:本题考查全等三角形的判定与性质,掌握常用的判定方法是解题的关键.12、把两个全等的三角形重合到一起,重合的顶点叫做_________,重合的边叫做_________,重合的角叫做_________.记两个三角形全等时,通常把表示_________的字母写在对应位置上.答案:对应顶点对应边对应角对应顶点分析:根据能够完全重合的两个图形叫做全等形,以及对应顶点、对应边、对应角的概念填空.解:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.记两个三角形全等时,通常把表示对应顶点的字母写在对应位置上.所以答案是:对应顶点;对应边;对应角;对应顶点.小提示:此题主要考查了全等形及相关概念,属于基本概念题,是需要识记的内容.13、如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,一条线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP=_____.答案:12cm或6cm##6cm或12cm分析:当AP=12cm或6cm时,△ABC和△PQA全等,根据HL定理推出即可.解:∵∠C=90°,AO⊥AC,∴∠C=∠QAP=90°,①当AP=6cm=BC时,在Rt△ACB和Rt△QAP中∵{AB=PQ,BC=AP∴Rt△ACB≌Rt△QAP(HL),②当AP=12cm=AC时,在Rt△ACB和Rt△PAQ中{AB=PQ,AC=AP∴Rt△ACB≌Rt△PAQ(HL),所以答案是:12cm或6cm.小提示:本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,AAS,SAS,SSS,HL.14、如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点B的坐标为(1,5),则A点的坐标是_____.答案:(-7,3)分析:先作辅助线AD ⊥OC 、BE ⊥OC ,通过导角证明∠CAD =∠BCE ,再证明△ADC ≌△CEB , 得到AD 的长度(A 的纵坐标长度)、DC 长度(加上OC 得到A 横坐标长度),根据A 点所在象限的符号,确定A 点坐标. 如图,过点A 作AD ⊥OC 于点D ,过点B 作BE ⊥OC 于点E∵ 点C 的坐标为(-2,0),点B 的坐标为(1,5)∴ OC =2,OE =1,BE =5∵∠ACB =90°∴∠ACD +∠CAD =90°,∠ACD +∠BCE =90°∴∠CAD =∠BCE在△ADC 和△CEB 中,{∠ADC =∠BEC =90°∠CAD =∠BCE AC =BC∴△ADC ≌△CEB(AAS)∴DC =BE =5,AD =CE =1+2=3∴OD =2+5=7∴ A 点的坐标是(-7,3) .小提示:本题考查了全等三角形的证明(在两个三角形中,如果有两组对应角,和其中一组对应角的对边分别相等,那么这两个三角形全等) .15、如图是由九个边长为1的小正方形拼成的大正方形,图中∠1+∠2+∠3+∠4+∠5的度数为______.答案:225°分析:首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=∠2+∠BDA=90°,即可求得∠1+∠2+∠3+∠4+∠5的值.解:如图所示:在△ABC和△AEF中,{AB=AE∠B=∠E=90°BC=EF∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在Rt△ABD和Rt△AEH中,{AB=AEAD=AH∴Rt△ABD≌Rt△AEH(HL),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.所以答案是:225°.小提示:此题主要考查了全等三角形的判定和性质,关键是掌握全等三角形的性质:全等三角形对应角相等即可求解.解答题16、(1)如图,在正方形ABCD中,E、F分别是BC,CD上的点,且∠EAF=45°.直接写出BE、DF、EF之间的数量关系;(2)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC,CD上的点,且∠EAF=1∠BAD,求证:EF=BE+DF;2(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,延长BC到点E,延长CD到点F,使得∠BAD,则结论EF=BE+DF是否仍然成立?若成立,请证明;不成立,请写出它们的数量关系并∠EAF=12证明.答案:(1)EF=BE+DF,理由见详解;(2)见详解;(3)结论EF=BE+FD不成立,应当是EF=BE−FD.理由见详解.分析:(1)在CD的延长线上截取DM=BE,连接AM,证出△ABE≌△ADM,根据全等三角形的性质得出BE=DM,再证明△AEF≌△AMF,得EF=FM,进而即可得出答案;(2)在CD的延长线上截取DG=BE,连接AG,证出△ABE≌△ADG,根据全等三角形的性质得出BE=DG,再证明△AEF≌△AGF,得EF=FG,即可得出答案;(3)按照(2)的思路,我们应该通过全等三角形来实现相等线段的转换.就应该在BE上截取BG,使BG=DF,连接AG.根据(2)的证法,我们可得出DF=BG,GE=EF,那么EF=GE=BE−BG=BE−DF.所以(1)的结论在(3)的条件下是不成立的.(1)解:EF=BE+DF,理由如下:延长CD,使DM=BE,连接AM,∵在正方形ABCD中,AB=AD,∠B=∠ADM=90°,∴△ABE≌△ADM,∴∠BAE=∠DAM,AE=AM,∵∠EAF=45°,∴∠BAE+∠DAF=∠DAM+∠DAF =90°-45°=45°,∴∠EAF=∠MAF=45°,又∵AF=AF,AE=AM,∴△AEF≌△AMF,∴EF=MF=MD+DF=BE+DF;(2)在CD的延长线上截取DG=BE,连接AG,如图,∵∠ADF=90°,∠ADF+∠ADG=180°,∴∠ADG=90°,∵∠B=90°,∴∠B=∠ADG=90°,∵BE=DG,AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AG=AE,∴∠EAG=∠EAD+∠DAG=∠EAD+∠ABE=∠BAD,∵∠EAF=1∠BAD,2∴∠EAF=1∠EAG,2∴∠EAF=∠FAG,又∵AF=AF,AE=AG,∴△AEF≌△AGF(SAS),∴EF=FG=DF+DG=EB+DF;(3)结论EF=BE+FD不成立,应当是EF=BE−FD.理由如下:如图,在BE上截取BG,使BG=DF,连接AG.∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .∵在△ABG 与△ADF 中,{AB =AD∠ABG =∠ADF BG =DF,∴△ABG ≌△ADF (SAS ).∴∠BAG =∠DAF ,AG =AF .∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF =12∠BAD =12∠GAF . ∴∠GAE =12∠BAD =∠EAF .∵AE =AE ,AG =AF .∴△AEG ≌△AEF .∴EG =EF ,∵EG =BE −BG∴EF =BE −FD .小提示:本题考查了三角形综合题,三角形全等的判定和性质等知识,解题的关键是学会利用旋转变换的思想添加辅助线,构造全等三角形解决问题,解题时注意一些题目虽然图形发生变化,但是证明思路和方法是类似的,属于中考压轴题.17、(1)如图1,已知△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D,E .求证:DE =BD +CE .(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC,D,A,E 三点都在直线m 上,并且有∠BDA =∠AEC=∠BAC.请写出DE,BD,CE三条线段的数量关系,并说明理由.答案:(1)证明见解析;(2)DE=BD+CE,证明见解析分析:(1)利用已知得出∠CAE=∠ABD,进而利用AAS得出则△ABD≌△CAE,即可得出DE=BD+CE;(2)根据∠BDA=∠AEC=∠BAC,得出∠CAE=∠ABD,在△ADB和△CEA中,根据AAS证出△ADB≌△CEA,从而得出AE=BD,AD=CE,即可证出DE=BD+CE;(1)DE=BD+CE.理由如下:∵BD⊥m,CE⊥m,∴∠BDA=∠AEC=90°又∵∠BAC=90°,∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°,∴∠CAE=∠ABD在△ABD和△CAE中,{∠ABD=∠CAE∠ADB=∠CEA=90°AB=AC,∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD;(2)DE=BD+CE,理由如下:∵∠BDA=∠AEC=∠BAC,∴∠DBA +∠BAD =∠BAD +∠CAE ,∴∠CAE =∠ABD ,在△ADB 和△CEA 中,{∠ABD =∠CAE∠ADB =∠CEA AB =AC,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴BD +CE =AE +AD =DE ;小提示:本题考查了全等三角形的判定与性质综合中的“一线三等角”模型:判定三角形全等的方法有“SSS ”、“SAS ”、“ASA ”、“AAS ”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.18、如图,在五边形ABCDE 中,AB =CD ,∠ABC =∠BCD ,BE ,CE 分别是∠ABC ,∠BCD 的角平分线.(1)求证:△ABE ≌△DCE ;(2)当∠A =80°,∠ABC =140°,时,∠AED =_________度(直接填空).答案:(1)见解析;(2)100分析:(1)根据∠ABC =∠BCD ,BE ,CE 分别是∠ABC ,∠BCD 的角平分线,可得∠ABE =∠DCE ,∠CBE =∠BCE ,推出BE =CE ,由此利用SAS 证明△ABE ≌△DCE ;(2)根据三角形全等的性质求出∠D 的度数,利用公式求出五边形的内角和,即可得到答案.(1)证明:∵∠ABC =∠BCD ,BE ,CE 分别是∠ABC ,∠BCD 的角平分线,∴∠ABE =∠CBE =12∠ABC ,∠BCE =∠DCE =12∠BCD ,∴∠ABE =∠DCE ,∠CBE =∠BCE ,∴BE=CE,又∵AB=CD,∴△ABE≌△DCE(SAS);(2)∵△ABE≌△DCE,∴∠D=∠A=80°,∵五边形ABCDE的内角和为(5−2)×180°=540°,∴∠AED=540°−80°×2−140°×2=100°,所以答案是:100.小提示:此题考查了全等三角形的判定及性质,多边形内角和计算,正确掌握全等三角形的判定及性质定理是解题的关键.。
人教版八年级数学上册第十二章全等三角形知识点归纳12.1全等三角形经过平移、翻折、旋转,能够完全重合的两个图形叫做全等形。
经过平移、翻折、旋转,能够完全重合的两个三角形叫作全等三角形。
全等用符号“≌”表示,读作“全等于”。
例1、△ABC≌△DEF读作:三角形ABC全等于三角形DEF。
把两个全等的三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
用“≌”表示两个图形全等的时候,必须把对应的顶点写在对应的位置上。
例2、已知△ABC≌△DEF,那么就说明:①点A对应点D,点B对应点E,点C对应点F②∠A=∠D,∠B=∠E,∠C=∠F③AB=DE,AC=DF,BC=EF用“全等于”这个词表示两个图形全等的时候,顶点不一定有一一对应关系。
例3、已知△ABC全等于△DEF,那么点A不一定对应D,点A也可能对应点E或者点F 。
全等三角形的性质:①对应边相等②对应角相等③角平分线、中线、高分别对应相等④周长相等⑤面积相等12.2三角形全等的判定全等三角形的判定依据:①三边对应相等的两个三角形全等,简称“边边边”或“SSS ”。
②两边一夹角对应相等的两个三角形全等,简称“边角边”或“SAS ”。
③两角一夹边对应相等的两个三角形全等,简称“角边角”或“ASA ”。
④两角一对边对应相等的两个三角形全等,简称“角角边”或“AAS ”。
⑤一条斜边和一条直角边对应相等的两个直角三角形全等,简称“斜边直角边”或“HL ”。
温馨提示:“SSA ”和“AAA ”不能证明两个三角形全等。
全等三角形的证明格式:SSS 、SAS 、ASA 、AAS 的证明格式: HL 的证明格式:在△ABC 与△DEF 中 在Rt △ABC 与Rt △DEF 中∵{ 条件1条件2条件3∵{条件1条件2 ∴△ABC ≌△DEF (条件) ∴△ABC ≌△DEF (HL )12.3角的平分线的性质如果从一个角的顶点引出一条射线把这个角分成两个相等的角,那么这条射线叫做这个角的角平分线。
第二课时——全等三角形的判定知识点一:全等三角形的判定:判定方法内容数学语言 图形表示 注意点边边边(SSS )三边分别相等的两个三角形全等。
可简写为“边边边”或“SSS ”在△ABC 与△DEF中:⎪⎩⎪⎨⎧===EF BC DF AC DE AB ∴△ABC ≌△DEF边角边(SAS )两边及其夹角分别对应相等的两个三角形全等。
可简写为“边角边”或“SAS ”在△ABC 与△DEF中:⎪⎩⎪⎨⎧=∠=∠=DF AC D A DEAB ∴△ABC ≌△DEF用“边角边(SAS )判定全等时,角一定是两边的夹角,否则不能判定全等。
在写条件的时候角必须写在中间。
角边角(ASA )两角及其夹边分别对应相等的两个三角形全等。
可简写为“角边角”或“ASA ”在△ABC 与△DEF中:⎪⎩⎪⎨⎧∠=∠=∠=∠E B DE AB DA ∴△ABC ≌△DEF用“角边角(ASA )判定全等时,边是两角的夹边,在书写的过程中需把边写在中间特别提示:在写全等三角形的数学语言时,等号左边写“≌”左边三角形的条件,等号右边写“≌”右边三角形的条件。
并且条件的顺序必须和判定条件顺序一致。
方法总结:【类型一:补充证全等条件】1.如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是()A.BC=DE B.AE=DBC.∠A=∠DEF D.∠ABC=∠D2.如图,在△ABC和△BAD中,AC=BD,要使△ABC≌△BAD,则需要添加的条件是()第2题第3题A.∠BAD=∠ABC B.∠BAC=∠ABD C.∠DAC=∠CBD D.∠C=∠D3.如图,BC=BD,添加下列一个条件后,仍无法判定△ABC≌△ABD的是()A.AC=AD B.∠ABC=∠ABD C.∠CAB=∠DAB D.∠C=∠D=90°4.如图,已知点A,D,C,F在同一条直线上,AB=DE,AD=CF,要使△ABC≌△DEF,则下列条件可以添加的是()第4题第5题第7题A.∠B=∠E B.∠A=∠EDF C.AC=DF D.BC∥EF5.如图,已知AB=AE,∠EAB=∠DAC,添加一个条件后,仍无法判定△AED≌△ABC的是()A.AD=AC B.∠E=∠B C.ED=BC D.∠D=∠C6.下列条件,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.一个锐角和斜边对应相等C.两条直角边对应相等D.一条直角边和斜边对应相等7.如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,添加一个条件,不能使得Rt△ABC≌Rt△DCB 的是()A.AB=DC B.AC=DB C.∠ABC=∠DCB D.BC=BD8.如图,已知AB⊥BD,CD⊥BD,若用“HL”判定Rt△ABD和Rt△CDB全等,则需要添加的条件是()A.AD=CB B.∠A=∠CC.BD=DB D.AB=CD【类型二:证明三角形全等】9.请将以下推导过程补充完整.如图,点C在线段AB上,AD∥BE,AC=BE,AD=BC,CF平分∠DCE.求证:△DCF ≌△ECF 证明:∵AD ∥BE ∴∠A =∠B在△ACD 和△BEC 中()⎪⎩⎪⎨⎧=∠=∠BC AD B A ∴△ACD ≌△BEC ( )∴CD =CE ( ) ∵CF 平分∠DCE ∴ 在△DCF 和△ECF 中()⎪⎩⎪⎨⎧==CE CD CF CF ∴△DCF ≌△ECF (SAS )10.如图,点C 在BD 上,AB ⊥BD ,ED ⊥BD ,AC ⊥CE ,AB =CD .求证:△ABC ≌△CDE .11.如图,点A、D、B、E在一条直线上,AD=BE,AC=DF,AC∥DF,求证:△ABC≌△DEF.12.如图,点D在线段BC上,AB=AD,∠1=∠2,DA平分∠BDE:求证:△ABC≌△ADE.13.天使是美好的象征,她的翅膀就像一对全等三角形.如图AD与BC相交于点O,且AB=CD,AD=BC.求证:△ABO≌△CDO.14.如图,在△ABC中,点D在BC的延长线上,DE∥AC,且DE=BC,AC=BD.求证:△ABC≌△BED.15.如图,CA=CD,∠BCE=∠ACD,BC=EC.求证:△ABC≌△DEC.16.如图,D、C、F、B四点在一条直线上,AC=EF,AC⊥BD,EF⊥BD,垂足分别为点C、点F,BF=CD.试说明:△ABC≌△EDF.17.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.18.如图,点C、E、B、F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE =BF.19.如图,AB=BC,∠BAD=∠BCD=90°,点D是EF上一点,AE⊥EF于E,CF⊥EF于F,AE=CF,求证:Rt△ADE≌Rt△CDF.【类型三:全等三角形的判定与性质】20.如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D,∠F AC =40°,则∠BFE=()第20题第21题A.35°B.40°C.45°D.50°21.如图,在△ABC中,BD平分∠ABC,∠C=2∠CDB,AB=12,CD=3,则△ABC的周长为()A.21B.24C.27D.3022.如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=4,BF=3,EF=2,则AD的长为()第22题第23题A.3B.5C.6D.723.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.424.如图,CB为∠ACE的平分线,F是线段CB上一点,CA=CF,∠B=∠E,延长EF与线段AC相交于点D.(1)求证:AB=FE;(2)若ED⊥AC,AB∥CE,求∠A的度数.25.如图,四边形ABCD中,AD∥BC,E为CD的中点,连结BE并延长交AD的延长线于点F.(1)求证:△BCE≌△FDE;(2)连结AE,当AE⊥BF,BC=2,AD=1时,求AB的长.26.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A=25°,∠D=15°,求∠ACB的度数.【类型四:全等三角形的应用】27.如图,要测池塘两端A,B的距离,小明先在地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA;连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,DE的长度就是A,B间的距离.那么判定△ABC和△DEC全等的依据是()第27题第28题A.SSS B.SAS C.ASA D.AAS28.打碎的一块三角形玻璃如图所示,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是()A.带①②去B.带②③去C.带③④去D.带②④去29.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离为cm.第29题第30题30.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB =OC,测得AB=a,EF=b,圆形容器的壁厚是()A .aB .bC .b ﹣aD .21(b ﹣a )一、选择题(10题)1.如图为正方形网格,则∠1+∠2+∠3=( )第1题 第2题 第3题A .105°B .120°C .115°D .135°2.如图,已知∠C =∠D =90°,添加一个条件,可使用“HL ”判定Rt △ABC 与Rt △ABD 全等.以下给出的条件适合的是( )A .∠ABC =∠ABDB .∠BAC =∠BAD C .AC =AD D .AC =BC3.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带( )去.A .①B .②C .③D .①和②4.根据下列已知条件,能唯一画出△ABC 的是( )A.∠C=90°,AB=6B.AB=4,BC=3,∠A=30°C.AB=5,BC=3D.∠A=60°,∠B=45°,BC=45.如图,测河两岸A,B两点的距离时,先在AB的垂线BF上取C,D两点,使CD=BC,再过点D画出BF的垂线DE,当点A,C,E在同一直线上时,可证明△EDC≌△ABC,从而得到ED=AB,测得ED的长就是A,B的距离,判定△EDC≌△ABC的依据是()A.ASA B.SSS C.AAS D.SAS6.如图,已知∠EAC=∠BAD,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠D.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个7.如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,则两个木桩离旗杆底部的距离BD与CD的距离间的关系是()第7题第8题A.BD>CD B.BD<CD C.BD=CD D.不能确定8.如图,AB=12m,CA⊥AB于点A,DB⊥AB于点B,且AC=4m,点P从B向A运动,每分钟走1m,点Q从B向D运动,每分钟走2m,P、Q两点同时出发,运动()分钟后,△CAP与△PQB全等.A.2B.3C.4D.89.把等腰直角三角形ABC,按如图所示立在桌上,顶点A顶着桌面,若另两个顶点距离桌面5cm和3cm,则过另外两个顶点向桌面作垂线,则垂足之间的距离DE的长为()第9题第10题A.4cm B.6cm C.8cm D.求不出来10.如图,在△AOB和△COD中,OA=OB,OC=OD(OA<OC),∠AOB=∠COD=α,直线AC,BD 交于点M,连接OM.下列结论:①AC=BD,②∠OAM=∠OBM,③∠AMB=α,④OM平分∠BOC,其中正确结论的个数是()A.4B.3C.2D.1二、填空题(6题)11.如图,线段AB,CD相交于点O,AO=BO,添加一个条件,能使△AOC≌△BOD,所添加的条件的是.12.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.第12题第14题13.在△ABC中,AB=3cm,AC=4cm,则BC边上的中线AD的取值范围是.14.在直角三角形中,存在斜边的平方等于两条直角边的平方的和。
千里之行,始于足下。
八年级上册数学《全等三角形》全等三角形判
定-知识点整理
全等三角形是指具有相同的形状和大小的三角形。
在判断两个三角形是否全等时,可以通过以下方法确定:
1. SSS判定法:如果两个三角形的三边分别相等,则这两个三角形全等。
2. SAS判定法:如果两个三角形的一边与其对应角的边段分别相等,并且包含相等的角,则这两个三角形全等。
3. ASA判定法:如果两个三角形的两个角和它们的夹边分别相等,则这两个三角形全等。
4. AAS判定法:如果两个三角形的两个角和它们的一边分别相等,则这两个三角形全等。
5. RHS判定法:如果两个直角三角形的一个锐角和两个直角边分别相等,则这两个直角三角形全等。
这些全等三角形判定方法可以根据题目给出的已知条件进行判定。
需要注意的是,当两个三角形的对应边或对应角不相等时,不能得出这两个三角形全等的结论。
第1页/共1页。
沪科版八年级上册数学全等三角形复习[知识要点] 一、全等三角形 一般三角形直角三角形判定 边角边(SAS )、角边角(ASA ) 角角边(AAS )、边边边(SSS ) 具备一般三角形的判定方法 斜边和一条直角边对应相等(HL ) 性质对应边相等,对应角相等对应中线相等,对应高相等,对应角平分线相等② 全等三角形面积相等. 2.证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 性质1、全等三角形的对应角相等、对应边相等。
2、全等三角形的对应边上的高对应相等。
3、全等三角形的对应角平分线相等。
4、全等三角形的对应中线相等。
5、全等三角形面积相等。
6、全等三角形周长相等。
(以上可以简称:全等三角形的对应元素相等) 7、三边对应相等的两个三角形全等。
(SSS)8、两边和它们的夹角对应相等的两个三角形全等。
(SAS) 9、两角和它们的夹边对应相等的两个三角形全等。
(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。
(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。
(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3,当图中出现两个以上等边三角形时,应首先考虑用SAS 找全等三角形。
4、用在实际中,一般我们用全等三角形测等距离。
以及等角,用于工业和军事。
有一定帮助。
5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上做题技巧一般来说考试中线段和角相等需要证明全等。
三角形三条中线的交于一点,这一点叫做“三角形的重心〞。
三角形的中线可以将三角形分为面积相等的两个小三角形。
3. 三角形的角平分线∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。
∠1=∠2=∠BAC.要区分三角形的“角平分线〞与“角的平分线〞,其区别是:三角形的角平分线是条线段;角的平分线是条射线。
三角形三条角平分线的交于一点,这一点叫做“三角形的内心〞。
要求会的题型:①三角形中两条高和其所对的底边中的三个长度,求其中未知的高或者底边的长度“等积法〞,将三角形的面积用两种方式表达,求出未知量。
三角形的稳定性1. 三角形具有稳定性2. 四边形及多边形不具有稳定性三角形的内角1. 三角形的内角和定理三角形的内角和为180°,与三角形的形状无关。
2. 直角三角形两个锐角的关系直角三角形的两个锐角互余〔相加为90°〕。
有两个角互余的三角形是直角三角形。
三角形的外角1. 三角形外角的意义三角形的一边与另一边的延长线组成的角叫做三角形的外角。
2. 三角形外角的性质三角形的一个外角等于与它不相邻的两个内角之和。
三角形的一个外角大于与它不相邻的任何一个内角。
多边形1. 多边形的概念在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角。
多边形的边与它邻边的延长线组成的角叫做外角。
连接多边形不相邻的两个顶点的线段叫做多边形的对角线。
一个n边形从一个顶点出发的对角线的条数为〔n-3〕条,其所有的对角线条数为.3. 正多边形各角相等,各边相等的多边形叫做正多边形。
〔两个条件缺一不可,除了三角形以外,因为假设三角形的三内角相等,那么必有三边相等,反过来也成立〕要求会的题型:①告诉多边形的边数,求多边形过一个顶点的对角线条数或求多边形全部对角线的条数n边形从一个顶点出发的对角线的条数为〔n-3〕条,其所有的对角线条数为.将边数带入公式即可。
多边形的内角和1. n边形的内角和定理n边形的内角和为2. n边形的外角和定理多边形的外角和等于360°,与多边形的形状和边数无关。
八年级数学上册第十二章全等三角形知识点总结全面整理单选题AD,BD平分∠ABC,则点D到AB的距离等于( )1、如图,在ΔABC中,∠C=90°,AC=8,DC=13A.4B.3C.2D.1答案:C分析:如图,过点D作DE⊥AB于E,根据已知求出CD的长,再根据角平分线的性质进行求解即可.如图,过点D作DE⊥AB于E,AD,∵AC=8,DC=13∴CD=8×1=2,1+3∵∠C=90°,BD平分∠ABC,∴DE=CD=2,即点D到AB的距离为2,故选C.小提示:本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.2、如图,在△ADE和△ABC中,∠E=∠C,DE=BC,EA=CA,过A作AF⊥DE,垂足为F,DE交CB的延长线于点G,连接AG.四边形DGBA的面积为12,AF=4,则FG的长是()A.2B.2.5C.3D.103答案:C分析:过点A作AH⊥BC于H,证△ABC≌△AED,得AF=AH,再证Rt△AFG≌Rt△AHG(HL),同理Rt△ADF≌Rt△ABH,得S四边形DGBA=S四边形AFGH=12,然后求得Rt△AFG的面积=6,进而得到FG的长.如图所示,过点A作AH⊥BC于H,在△ABC与△ADE中,{AC=AE∠C=∠E BC=DE,∴△ABC≌△ADE(SAS),∴AD=AB,S△ABC=S△AED,又∵AF⊥DE,∴12×DE×AF=12×BC×AH,∴AF=AH,∵AF⊥DE,AH⊥BC,∴∠AFG=∠AHG=90°,在Rt△AFG和Rt△AHG中,,{AG=AGAF=AH∴Rt△AFG≌Rt△AHG(HL),同理:Rt△ADF≌Rt△ABH(HL),∴S四边形DGBA=S四边形AFGH=12,∵Rt△AFG≌Rt△AHG,∴SRt△AFG=6,∵AF=4,∴1×FG×4=6,2解得:FG=3.故选:C.小提示:本题考查全等三角形的判定与性质,综合运用各知识点是解题的基础,作出合适的辅助线是解此题的关键.3、如图,在△ABC中,∠C=90°,以点B为圆心,任意长为半径画弧,分别交AB、BC于点M、N.分别以点M、MN的长度为半径画弧,两弧相交于点P,过点P作线段BD,交AC于点D,过点D作N为圆心,以大于12∠ABC;③BC=BE;④AE=BE中,一定正确的是()DE⊥AB于点E,则下列结论①CD=ED;②∠ABD=12A.①②③B.①②③④C.②④D.②③④答案:A分析:由作法可知BD是∠ABC的角平分线,故②正确,根据角平分线上的点到角两边的距离相等可得①正确,由HL可得Rt△BDC≌Rt△BDE,故BC=BE,③正确,解:由作法可知BD是∠ABC的角平分线,故②正确,∵∠C=90°,∴DC⊥BC,又DE⊥AB,BD是∠ABC的角平分线,∴CD=ED,故①正确,在Rt△BCD和Rt△BED中,{DE=DC,BD=BD∴△BCD≌△BED,∴BC=BE,故③正确.故选A.小提示:本题考查了角平分线的画法及角平分线的性质,熟练掌握相关知识是解题关键.4、如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为ΔABC,提供了下列各组元素的数据,配出来的玻璃不一定符合要求的是()A.AB,BC,CA B.AB,BC,∠B C.AB,AC,∠B D.∠A,∠B,BC答案:C分析:根据SSS,SAS,ASA逐一判定,其中SSA不一定符合要求.A. AB,BC,CA.根据SSS一定符合要求;B. AB,BC,∠B.根据SAS一定符合要求;C. AB,AC,∠B.不一定符合要求;D. ∠A,∠B,BC.根据ASA一定符合要求.故选:C.小提示:本题考查了三角形全等的判定,解决问题的关键是熟练掌握判定三角形全等的SSS,SAS,ASA三个判定定理.5、如图,点B,C,E在同一直线上,且AC=CE,∠B=∠D=90°,AC⊥CD,下列结论不一定成立的是()A.∠A=∠2B.∠A+∠E=90°C.BC=DE D.∠BCD=∠ACE答案:D分析:根据直角三角形的性质得出∠A=∠2,∠1=∠E,根据全等三角形的判定定理推出△ABC≌△CDE,再逐个判断即可.解:∵AC⊥CD,∴∠ACD=90°,∵∠B=90°,∴∠1+∠A=90°,∠1+∠2=90°,∴∠A=∠2,同理∠1=∠E,∵∠D=90°,∴∠E+∠2=∠A+∠E=90°,在△ABC和△CDE中,{∠A=∠2∠B=∠D AC=CE,∴△ABC≌△CDE(AAS),∴BC=DE,∴选项A、选项B,选项C都正确;根据已知条件推出∠A=∠2,∠E=∠1,但是∠1=∠2不能推出,而∠BCD=90°+∠1,∠ACE=90°+∠2,所以∠BCD=∠ACE不一定成立故选项D错误;故选:D.小提示:本题考查了全等三角形的判定定理和直角三角形的性质,能灵活运用知识点进行推理是解此题的关键,注意:全等三角形的判定定理有:ASA,SAS,AAS,SSS,两直角三角形全等,还有HL.6、在△ABC中,AB=4,AC=6,AD是BC边上的中线,则AD的取值范围是()A.0<AD<10B.1<AD<5C.2<AD<10D.0<AD<5答案:B分析:延长AD至点E,使得DE=AD,可证△ABD≌△CDE,可得AB=CE,AD=DE,在△ACE中,根据三角形三边关系即可求得AE的取值范围,即可解题.解:延长AD至点E,使得DE=AD,∵在△ABD和△CDE中,∵{AD=DE∠ADB=∠CDEBD=CD,∴△ABD≌△CDE(SAS),∴AB=CE,AD=DE∵△ACE中,AC﹣AB<AE<AC+AB,∴2<AE<10,∴1<AD<5.故选:B.小提示:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABD≌△CDE是解题的关键.7、如图,D是AB上一点,DF交AC于点E,DE=FE,FC//AB,若AB=4,CF=3,则BD的长是( )A.0.5B.1C.1.5D.2答案:B分析:根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出ΔADE≅ΔCFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.∵CF//AB,∴∠A=∠FCE,∠ADE=∠F,在ΔADE和ΔFCE中{∠A=∠FCE∠ADE=∠FDE=FE,∴ΔADE≅ΔCFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB−AD=4−3=1.故选B.小提示:本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定ΔADE≅ΔFCE是解此题的关键.8、下列选项可用SAS证明△ABC≅△A′B′C′的是()A.AB=A′B′,△B=△B′,AC=A′C′B.AB=A′B′,BC=B′C′,△A=△A′C.AC=A′C′,BC=B′C′,△C=△C′D.AC=A′C′,BC=B′C′,△B=△B′答案:C分析:根据全等三角形SAS的判定逐项判定即可.解:A.不满足SAS,不能证明△ABC△△A′B′C′,故该选项不符合题意;B.不满足SAS,不能证明△ABC△△A′B′C′,故该选项不符合题意;C.满足SAS,能证明△ABC△△A′B′C′,故该选项符合题意;D.不满足SAS,不能证明△ABC△△A′B′C′,故该选项不符合题意,故选:C.小提示:本题考查全等三角形的判定,熟练掌握全等三角形的判定条件是解答的关键.9、如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为().A.4B.3C.2D.1答案:B分析:根据题意逐个证明即可,①只要证明△AOC≌△BOD(SAS),即可证明AC=BD;②利用三角形的外角性质即可证明; ④作OG⊥MC于G,OH⊥MB于H,再证明△OCG≌△ODH(AAS)即可证明MO平分∠BMC.解:∵∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,{OA=OB∠AOC=∠BODOC=OD,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中,{∠OCA=∠ODB∠OGC=∠OHDOC=OD,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;正确的个数有3个;故选B.小提示:本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.10、如图,AB=AC,AD=AE,∠BAC=∠DAE,点B,D,E在同一直线上,若∠1=25°,∠2=35°,则∠3的度数是()A.50°B.55°C.60°D.70°答案:C分析:由∠BAC=∠DAE可证得∠BAD=∠CAE,继而证明△BAD≅△CAE(SAS),由全等三角形对应角相等得到∠2=∠CAE,∠ABD=∠1,最后由三角形的外角性质解答即可.解:∵∠BAC=∠DAE∴∠BAC−∠DAC=∠DAE−∠DAC∴∠BAD=∠CAE∵AB=AC,AD=AE,∴△BAD≅△CAE(SAS)∴∠2=∠CAE,∠ABD=∠1∵∠1=25°,∠2=35°∴∠3=∠2+∠ABD=∠2+∠1=60°故选:C.小提示:本题考查全等三角形的判定与性质、三角形的外角性质等知识,是重要考点,掌握相关知识是解题关键.填空题11、如图,在Rt△ABC中,∠ACB=90°,△ABC的角平分线AD,BE相交于点P,过P作PF⊥AD,交BC延长线于F,交AC于H,则下列结论:①∠APB=135°;②BF=BA;③PH=HC;④PH=PD;其中正确的有____________________.答案:①②④分析:由角平分线的定义,可得∠PAB+∠PBA=45°,由三角形内角和定理可得结论①;由△BPA≌△BPF可得结论②;由△APH≌△FPD可得结论④;若PH=HC,则PD=HC,由AD>AC可得AP>AH不成立,故③错误;解:∵∠CAB+∠CBA=90°,AD、BE平分∠CAB、∠CBA,∴∠PAB+∠PBA=1(∠CAB+∠CBA)=45°,2△PAB中,∠APB=180°-(∠PAB+∠PBA)=135°,故①正确;∵∠ADF+∠F=90°,∠ADF+∠DAC=90°,∴∠F=∠DAC=∠DAB,△BPA和△BPF中:∠PBA=∠PBF,∠PAB=∠PFB,BP=BP,∴△BPA≌△BPF(AAS),∴BA=BF,PA=PF,故②正确;△APH和△FPD中:∠PAH=∠PFD,PA=PF,∠APH=∠FPD=90°,∴△APH≌△FPD(ASA),∴PH=PD,故④正确;若PH=HC,则PD=HC,AD>AC,则AD-PD>AC-HC,即AP>AH,不成立,故③错误;综上所述①②④正确,所以答案是:①②④小提示:本题考查了三角形内角和定理,全等三角形的判定和性质等知识;掌握全等三角形的判定和性质是解题关键.12、如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,过点D作DE⊥AB,若CB=7,则DE+ DB=______.答案:7分析:先利用角平分线性质证明CD=DE,再求出DE+DB的值即可.解:∵AD平分∠BAC交BC于点D,∠C=90°,DE⊥AB,∴CD=ED.∵CB=7,∴BD+CD=7,∴DE+DB=7,所以答案是:7.小提示:本题主要考查了角平分线的性质,解题的关键是熟练掌握角平分线的性质.13、如图,在△ABC中,A(0,1),B(3,1),C(4,3),D是坐标平面上一点,若以A,B,D为顶点的三角形与△ABC全等,则点D的坐标是________.答案:D1(-1,3),D2(4,-1),D3(-1,-1)分析:若要△ABD≌△ABC,则D点可在AB的上方或下方,分别讨论即可.如图,要和△ABC全等,且有一边为AB的三角形,D点可为:D1(-1,3),D2(4,-1),D3(-1,-1)所以答案是:D1(-1,3),D2(4,-1),D3(-1,-1).小提示:本题考查判定全等三角形的概念,注意不要遗漏可能的情况是解题关键.14、如图,在△ABC中,∠A=90°,DE⊥BC,垂足为E.若AD=DE且∠C=50°,则∠ABD=_____°.答案:20分析:利用三角形的内角和定理先求解∠ABC,再利用角平分线的性质定理的逆定理证明:BD平分∠ABC,从而可得答案.解:∵∠A=90°,∠C=50°,∴∠ABC=180°−90°−50°=40°,∵∠A=90°,DE⊥BC,DA=DE,∴BD平分∠ABC,∠ABD=1∠ABC=20°,2所以答案是:20小提示:本题考查的是三角形的内角和定理,角平分线的定义及性质定理的逆定理,掌握角平分线的性质定理的逆定理是解题的关键.15、如图,已知AB=CB,要使△ABD≌△CBD(SSS),还需添加一个条件,你添加的条件是__________.答案:AD=CD分析:要利用SSS判定△ABD≌△CBD,已知AB=CB,公共边BD=BD,只需要再添加一组对边相等即可.解:∵AB=CB,BD=BD,∴要利用SSS判定△ABD≌△CBD,只需要在添加一组对边相等即可.∴AD=CD,所以答案是:AD=CD.小提示:本题考查用三边对应相等判定三角形全等,根据图形找到相关的条件是解题关键.解答题16、如图,在△ABC中,AD是高,E、F分别是AB、AC的中点,AB=8,AC=6.(1)求四边形AEDF的周长;(2)若∠BAC=90°,求四边形AEDF的面积.答案:(1)14;(2)12.分析:(1)延长DE到G,使GE=DE,连接BG,根据线段中点的定义求出AE=4,AF=3,并利用SAS证明AB=4,△AED≌△BEG,由全等三角形的性质并再次利用全等三角形的判定得出△GBD≌△ABD,可证得DE=12同理DF=1AC=3,即可计算出四边形的周长;2(2)利用SSS可证△AEF≌△DEF,根据直角三角形的面积计算方法求出△AEF的面积,则四边形的面积即可求解.解:(1)延长DE 到G ,使GE =DE ,连接BG ,∵E 、F 分别是AB 、AC 的中点,AB =8,AC =6,∴AE =BE =12AB =4,AF =CF =12AC =3.在△AED 和△BEG 中,{AE =BE∠AED =∠BEG DE =GE,∴△AED ≌△BEG (SAS ).∴AD =BG ,∠DAE =∠GBE .∵AD ⊥BC ,∴∠DAE +∠ABD =90°.∴∠GBE +∠ABD =90°.即∠GBD =∠ADB =90°.在△GBD 和△ABD 中,{BG =DA∠GBD =∠ADB BD =DB,∴△GBD ≌△ABD (SAS ).∴GD =AB .∵DE =12GD ,∴DE =12AB =4.同理可证:DF =12AC =3.∴四边形AEDF 的周长=AE +ED +DF +FA =14.(2)由(1)得AE =DE =12AB =4,AF =DF =12AC =3, 在△AEF 和△DEF 中,{AE =DEAF =DF EF =EF,∴△AEF ≌△DEF (SSS ).∵∠BAC =90°,∴S △AEF =12AE•AF =12×4×3=6. ∴S 四边形AEDF =2S △AEF =12.小提示:本题主要考查了全等三角形的判定与性质,掌握全等三角形的判定与性质并能利用倍长中线法构造全等三角形是解题的关键.17、已知:如图1,在Rt △ABC 中,∠ACB =90°,∠B =60°,AD ,CE 是角平分线,AD 与CE 相交于点F ,FM ⊥AB ,FN ⊥BC ,垂足分别为M ,N .【思考说理】(1)求证:FE =FD .【反思提升】(2)爱思考的小强尝试将【问题背景】中的条件“∠ACB =90°”去掉,其他条件不变,观察发现(1)中结论(即FE =FD )仍成立.你认为小强的发现正确吗?如果不正确请举例说明,如果正确请仅就图2给出证明.答案:(1)证明见详解;(2)正确,证明见详解;分析:(1)由角平分线的性质、三角形内角和定理证RtΔFDN ≅RtΔ∠FEM (AAS )即可求解;(2)在AB上截取CP=CD,分别证ΔCDF≅ΔCPF(SAS)、ΔAFE≅ΔAFP(ASA)即可求证;证明:(1)∵AD平分∠BAC,CE平分∠ACB,∴点F是ΔABC的内心,∵FM⊥AB,FN⊥BC,∴FM=FN,∵∠ACB=90°,∠ABC=60°,∴∠CAB=30°∴∠CAD=15°∴∠ADC=75°∵∠ACE=45°∴∠CEB=75°∴∠ADC=∠CEB∴RtΔFDN≅RtΔ∠FEM(AAS)∴FE=FD(2)如图,在AB上截取CP=CD,在ΔCDF和ΔCPF中,∵{CD=CP∠DCF=∠PCFCF=CF∴ΔCDF≅ΔCPF(SAS)∴FD=FP,∠CFD=∠CFP,∵AD平分∠BAC,CE平分∠ACB,∴∠CAD=∠BAD,∠ACE=∠BCE,∵∠B=60°,∴∠ACB+∠BAC=120°,∴∠CAD+∠ACE=60°,∴∠AFC=120°,∵∠CFD=∠AFE=180°-∠AFC=60°,∵∠CFD=∠CFP,∴∠AFP=∠CFP=∠CFD=∠AFE=60°,在ΔAFE和ΔAFP中,∵{∠AFE=∠AFP AF=AF∠PAF=∠EAF∴ΔAFE≅ΔAFP(ASA)∴FP=EF∴FD=EF.小提示:本题主要考查三角形的全等证明及性质,角平分线的性质,掌握相关知识并正确作出辅助线构造全等三角形是解题的关键.18、(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D,E.求证:DE=BD+CE.(2)组员小明想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB,AC 向外作正方形ABDE和正方形ACFG,AH是BC边上的高.延长HA交EG于点I.若S△AEG=7,则S△AEI=______.答案:(1)见解析;(2)结论成立,理由见解析;(3)3.5分析:(1)由条件可证明△ABD≌△CAE,可得DA=CE,AE=BD,可得DE=BD+CE;(2)由条件可知∠BAD+∠CAE=180°-α,且∠DBA+∠BAD=180°-α,可得∠DBA=∠CAE,结合条件可证明△ABD≌△CAE,同(1)可得出结论;(3)由条件可知EM=AH=GN,可得EM=GN,结合条件可证明△EMI≌△GNI,可得出结论I是EG的中点.解:(1)证明:如图1中,∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,{∠ABD=∠CAE∠BDA=∠CEAAB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.(2)解:成立.理由:如图2中,∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠DBA=∠CAE,在△ADB和△CEA中,{∠BDA=∠AEC∠DBA=∠CAEAB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.(3)如图3,过E作EM⊥HI于M,GN⊥HI的延长线于N.∴∠EMI=∠GNI=90°由(1)和(2)的结论可知EM=AH=GN∴EM=GN在△EMI和△GNI中,{∠GIN=∠EIM EM=GN∠GNI=∠EMI,∴△EMI≌△GNI(AAS),∴EI=GI,∴I是EG的中点.∴S△AEI=12S△AEG=3.5.所以答案是:3.5.小提示:本题是四边形综合题,考查了全等三角形的判定和性质,正方形的性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.。
八年级数学上册第十二章全等三角形重点知识归纳单选题1、如图,已知△ABC与△DEF,B,E,C,D四点在同一条直线上,其中AB=DF,BC=EF,AC=DE,则∠ACB等于()A.∠EFD B.∠ABC C.2∠D D.12∠AFE答案:D分析:根据已知条件可证△ABC≌△DFE,则∠ACB=DEF,再利用三角形的外角的性质可得∠AFE=∠ACB+∠DEF,进而可求解.在△ABC和△DFE{AB=DF BC=EF AC=DE∴△ABC≌△DFE∴∠ACB=DEF∵∠AFE=∠ACB+∠DEF∴∠AFE=2∠ACB,即∠ACB=12∠AFE故选:D小提示:本题考查了三角形全等的判定和性质,三角形外角的性质,解题关键是利用三角形全等得出对应角相等.2、图中的小正方形边长都相等,若△MNP≌△MFQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D答案:D分析:根据全等三角形的判定即可解决问题.解:观察图象可知ΔMNP≌ΔMFD.故选:D.小提示:本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.3、下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个全等图形形状一定相同C.两个周长相等的图形一定是全等图形D.两个正三角形一定是全等图形答案:B分析:根据全等图形的定义进行判断即可.解:A:两个面积相等的图形不一定是全等图形,故A错误,不符合题意;B:两个全等图形形状一定相同,故B正确,符合题意;C:两个周长相等的图形不一定是全等图形,故C错误,不符合题意;D:两个正三角形不一定是全等图形,故D错误,不符合题意;故选:B.小提示:本题考查了全等图形,熟练运用“能够完全重合的两个图形叫做全等形”是本题的关键.4、工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA、OB上分别在取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是()A.SAS B.ASA C.AAS D.SSS答案:D分析:根据全等三角形的判定条件判断即可.解:由题意可知OC=OD,MC=MD在△OCM和△ODM中{OC=ODOM=OMMC=MD∴△OCM≅△ODM(SSS)∴∠COM=∠DOM∴OM就是∠AOB的平分线故选:D小提示:本题考查全等三角形的判定及性质、角平分线的判定、熟练掌握全等三角形的判定是关键.5、如图,BD是△ABC的角平分线,AE⊥BD,垂足为F,若∠ABC=35°,∠C=50°,则∠CDE的度数为()A .35°B .40°C .45°D .50°答案:C分析:根据角平分线的定义和垂直的定义得到∠ABD =∠EBD =12∠ABC =35°2,∠AFB =∠EFB =90°,推出AB =BE ,根据等腰三角形的性质得到AF =EF ,求得AD =ED ,得到∠DAF =∠DEF ,根据三角形的外角的性质即可得到结论. 解:∵BD 是△ABC 的角平分线,AE ⊥BD ,∴∠ABD =∠EBD =12∠ABC =35°2,∠AFB =∠EFB =90°,∴∠BAF =∠BEF ,∴AB =BE ,AE ⊥BD ,∴BD 是AE 的垂直平分线,∴AD =ED ,∴∠DAF =∠DEF ,∵∠BAC =180°-∠ABC -∠C =95°,∴∠BED =∠BAD =95°,∴∠CDE =95°-50°=45°,故选C .小提示:本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.6、下列说法不正确的是( )A .有两条边和它们的夹角对应相等的两个三角形全等B .有三个角对应相等的两个三角形全等C .有两个角及其中一角的对边对应相等的两个三角形全等D .有三条边对应相等的两个三角形全等答案:B分析:根据全等三角形的判定定理逐一判断即可得答案.A.符合判定SAS ,故该选项说法正确,不符合题意,B.全等三角形的判定必须有边的参与,AAA不能判定两个三角形全等,故该选项说法不正确,符合题意,C.正确,符合判定AAS,故该选项说法正确,不符合题意,D.正确,符合判定SSS,故该选项说法正确,不符合题意,故选:B.小提示:本题考查全等三角形的判定,全等三角形常用的判定方法有:SSS、SAS、AAS、ASA、HL,注意:AAS、AAA不能判定两个三角形全等,当利用SAS判定两个三角形全等时,角必须是两边的夹角;熟练掌握全等三角形的判定定理是解题关键.7、如图,三条公路两两相交,现计划在△ABC中内部修建一个探照灯,要求探照灯的位置到这三条公路的距离都相等,则探照灯位置是△ABC()A.三条中线的交点B.三边垂直平分线的交点C.三条高的交点D.三条角平分线的交点答案:D分析:根据三角形内心的性质解答即可.△ABC三个内角的平分线交于一点,且到三边的距离相等,所以探照灯的位置是三条角平分线的交点.故选:D.小提示:本题主要考查了三角形内心的性质,即三角形的三个内角的平分线交于一点,且到三边的距离相等.8、如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE//AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=9分析:根据角平分线的性质得到CD=DF=3,故B正确;根据平行线的性质及角平分线得到AE=DE=5,故C正确;由此判断D正确;再证明△BDF≌△DEC,求出BF=CD=3,故A错误.解:在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DF⊥AB,∴CD=DF=3,故B正确;∵DE=5,∴CE=4,∵DE//AB,∴∠ADE=∠DAF,∵∠CAD=∠BAD,∴∠CAD=∠ADE,∴AE=DE=5,故C正确;∴AC=AE+CE=9,故D正确;∵∠B=∠CDE,∠BFD=∠C=90°,CD=DF,∴△BDF≌△DEC,∴BF=CD=3,故A错误;故选:A.小提示:此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角相等,全等三角形的判定及性质,熟记各知识点并综合应用是解题的关键.9、如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4√5B.4√3C.10D.8分析:连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.解:如图,连结AE,设AC交EF于O,依题意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以,△OAF≌△OCE(ASA),所以,EC=AF=5,因为EF为线段AC的中垂线,所以,EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以,AC=√AB2+BC2=√16+(3+5)2=4√5小提示:本题考查了全等三角形的判定、勾股定理,熟练掌握是解题的关键.10、下列四个图形中,有两个全等的图形,它们是()A.①和②B.①和③C.②和④D.③和④答案:B分析:根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.解:①和③可以完全重合,因此全等的图形是①和③.故选:B.小提示:此题主要考查了全等图形,关键是掌握全等图形的概念.填空题11、如图,BE 交AC 于点M ,交CF 于点D ,AB 交CF 于点N ,∠E =∠F =90°,∠B =∠C,AE =AF ,给出的下列五个结论中正确结论的序号为 .①∠1=∠2;②BE =CF ;③△CAN ≅△BAM ;④CD =DN ;⑤△AFN ≌△AEM .答案:①;②;③;⑤分析:①先证明△ABE ≌△ACF ,然后根据全等三角形的性质即可判定;②利用全等三角形的性质即可判定;③根据ASA 即可证明三角形全等;④无法证明该结论;⑤根据ASA 证明三角形全等即可.解:在△ABE 和△ACF 中,{∠E =∠F =90°∠B =∠C AE =AF,∴△ABE ≌△ACF (AAS ),∴∠BAE =∠CAF ,BE =CF ,故②正确,∴∠BAE -∠BAC =∠CAF -∠BAC ,即∠1=∠2,故①正确,∵△ABE ≌△ACF ,∴AB =AC ,在△CAN 和△BAM 中,{∠N AC =∠M AB ,AB=AC∠B =∠C, ∴△CAN ≌△BAM (ASA ),故③正确,CD =DN 不能证明成立,故④错误在△AFN和△AEM中{∠1=∠2 AF=AE∠F=∠E,∴△AFN≌△AEM(ASA),故⑤正确.结论中正确结论的序号为①;②;③;⑤.故答案为①;②;③;⑤.小提示:本题主要考查了三角形全等的判定和性质,解题的关键是正确寻找全等三角形全等的条件.12、如图,在ΔABC中,∠ACB=α,∠ACB的平分线与∠ABC的外角平分线交于点E,则∠AEB的度数为___________.(用含α的式子表示)答案:90°−α2分析:如图,过点E作ΔABC三边的垂线,垂足分别为D,F,G,先根据角平分线的性质证得EF=DE,然后根据角平分线的判定证得∠FAE=∠EAD,再根据三角形外角的性质和角平分线的性质求得∠EBA=α+∠BAC2,∠BAE=α+∠ABC2,最后根据三角形内角和求解.解:过点E作ED⊥AB于点D,EF⊥AC于点F,EG⊥BC于点G,∵CE平分∠ACB,BE平分∠ABC的外角,∴EF=FG=ED,∴AE也是∠BAC外角的平分线,∴∠ABG=2∠ABE,∠BAE=2∠BAE∵∠ABG=∠ACB+∠BAC,∠BAF=∠ACB+∠ABC∴∠EBA=α+∠BAC2,∠BAE=α+∠ABC2,∴∠EBA+∠BAE=α+∠BAC+∠ABC2=180°+α2,∴∠AEB=180°−α2=90°−α2.所以答案是:90°−α2.小提示:本题是三角形的综合题,考查了三角形的内角和定理,三角形外角的性质,角平分线的性质和判定,正确理解三角形的有关性质是解本题的关键.13、把两个全等的三角形重合到一起,重合的顶点叫做_________,重合的边叫做_________,重合的角叫做_________.记两个三角形全等时,通常把表示_________的字母写在对应位置上.答案:对应顶点对应边对应角对应顶点分析:根据能够完全重合的两个图形叫做全等形,以及对应顶点、对应边、对应角的概念填空.解:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.记两个三角形全等时,通常把表示对应顶点的字母写在对应位置上.所以答案是:对应顶点;对应边;对应角;对应顶点.小提示:此题主要考查了全等形及相关概念,属于基本概念题,是需要识记的内容.14、如图,在△ABC中,∠ABC=90°,AB=CB,F为AB延长线上一点,点E在BC上,且AE=CF,若∠CAE=29°,则∠ACF的度数为________°.答案:61分析:由“HL”可证Rt △ABE ≌Rt △CBF ,可得∠BAE =∠BCF =16°,即可求解.解:∵在△ABC 中,∠ABC =90°,AB =CB ,∴∠BAC =∠BCA =45°,∵∠CAE =29°,∴∠BAE =16°,在Rt △ABE 和Rt △CBF 中,{AB =BC AE =CF, ∴Rt △ABE ≌Rt △CBF (HL ),∴∠BAE =∠BCF =16°,∴∠ACF =∠BCA +∠BCF =61°,所以答案是:61.小提示:本题考查了全等三角形的判定和性质,证明Rt △ABE ≌Rt △CBF 是本题的关键.15、如图,在平面直角坐标系中,以A (2,0),B (0,1)为顶点作等腰直角三角形ABC (其中∠ABC =90°,且点C 落在第一象限),则点C 关于y 轴的对称点C'的坐标为______.答案:(−1,3)分析:过点C 向y 轴,引垂线CD ,利用△OAB ≌△DBC ,确定DC ,DO 的长度,即可确定点C 的坐标,对称坐标自然确定.如图,过点C作CD⊥y轴,垂足为D,∵∠ABC=90°,∴∠DBC+∠OBA=90°,∵∠OAB+∠OBA=90°,∴∠DBC=∠OAB,∵AB=BC,∠BDC=∠AOB=90°∴△OAB≌△DBC,∴DC=OB,DB=OA,∵A(2,0),B(0,1)∴DC=OB=1,DB=OA=2,∴OD=3,∴点C(1,3),∴点C关于y轴的对称点坐标为(-1,3),所以答案是:(-1,3).小提示:本题考查了点的坐标及其对称点坐标的确定,熟练分解点的坐标,利用三角形全等,把坐标转化为线段的长度计算是解题的关键.解答题16、如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC=∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)______(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是______(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.答案:(1)①,SSS(2)见解析分析:(1)根据SSS即可证明△ABC≌∆DEF,即可解决问题;(2)根据全等三角形的性质可得可得∠A=∠EDF,再根据平行线的判定即可解决问题.(1)解:在△ABC和△DEF中,{AC=DF AB=DE BC=EF,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.(注意:只需选一个条件,多选不得分)所以答案是:①,SSS;(2)证明:∵△ABC≌△DEF.∴∠A=∠EDF,∴AB∥DE.小提示:本题考查了平行线的性质和全等三角形的性质,和判定定理,能熟记全等三角形的判定定理是解此题的关键.17、(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E.求证:DE=BD+CE.(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC.请写出DE,BD,CE三条线段的数量关系,并说明理由.答案:(1)证明见解析;(2)DE=BD+CE,证明见解析分析:(1)利用已知得出∠CAE=∠ABD,进而利用AAS得出则△ABD≌△CAE,即可得出DE=BD+CE;(2)根据∠BDA=∠AEC=∠BAC,得出∠CAE=∠ABD,在△ADB和△CEA中,根据AAS证出△ADB≌△CEA,从而得出AE=BD,AD=CE,即可证出DE=BD+CE;(1)DE=BD+CE.理由如下:∵BD⊥m,CE⊥m,∴∠BDA=∠AEC=90°又∵∠BAC=90°,∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°,∴∠CAE=∠ABD在△ABD和△CAE中,{∠ABD=∠CAE∠ADB=∠CEA=90°AB=AC,∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD;(2)DE=BD+CE,理由如下:∵∠BDA=∠AEC=∠BAC,∴∠DBA +∠BAD =∠BAD +∠CAE ,∴∠CAE =∠ABD ,在△ADB 和△CEA 中,{∠ABD =∠CAE∠ADB =∠CEA AB =AC,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴BD +CE =AE +AD =DE ;小提示:本题考查了全等三角形的判定与性质综合中的“一线三等角”模型:判定三角形全等的方法有“SSS ”、“SAS ”、“ASA ”、“AAS ”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.18、如图,在五边形ABCDE 中,AB =CD ,∠ABC =∠BCD ,BE ,CE 分别是∠ABC ,∠BCD 的角平分线.(1)求证:△ABE ≌△DCE ;(2)当∠A =80°,∠ABC =140°,时,∠AED =_________度(直接填空).答案:(1)见解析;(2)100分析:(1)根据∠ABC =∠BCD ,BE ,CE 分别是∠ABC ,∠BCD 的角平分线,可得∠ABE =∠DCE ,∠CBE =∠BCE ,推出BE =CE ,由此利用SAS 证明△ABE ≌△DCE ;(2)根据三角形全等的性质求出∠D 的度数,利用公式求出五边形的内角和,即可得到答案.(1)证明:∵∠ABC =∠BCD ,BE ,CE 分别是∠ABC ,∠BCD 的角平分线,∴∠ABE =∠CBE =12∠ABC ,∠BCE =∠DCE =12∠BCD ,∴∠ABE =∠DCE ,∠CBE =∠BCE ,∴BE=CE,又∵AB=CD,∴△ABE≌△DCE(SAS);(2)∵△ABE≌△DCE,∴∠D=∠A=80°,∵五边形ABCDE的内角和为(5−2)×180°=540°,∴∠AED=540°−80°×2−140°×2=100°,所以答案是:100.小提示:此题考查了全等三角形的判定及性质,多边形内角和计算,正确掌握全等三角形的判定及性质定理是解题的关键.。
三角形知识点导学案
1. 三角形的概念
由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
2。
三角形按边分类
3.
三角形的任意两边之和大于第三边.
三角形的任意两边之差小于第三边。
(这两个条件满足其中一个即可)
用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。
已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b
要求会的题型:
①数三角形的个数
方法:分类,不要重复或者多余.
②给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形
方法:最小边+较小边>最大边不用比较三遍,只需比较一遍即可
③给出多条线段的长度,要求从中选择三条线段能够组成三角形
方法:从所给线段的最大边入手,依次寻找较小边和最小边;直到找完为止,注意不要找重,也不要漏掉。
④已知三角形两边的长度分别为a,b,求第三边长度的范围
方法:第三边长度的范围:|a-b|<c<a+b
⑤给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长
方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上",将上面讨论的结果做个总结。
D C B A
21D C B A
三角形的高、中线与角平分线
1. 三角形的高
从△ABC 的顶点向它的对边BC 所在的直线画垂线,垂足为D ,那么线段AD 叫做△ABC 的边BC 上的高。
三角形的三条高的交于一点,这一点叫做“三角形的垂心”。
2. 三角形的中线
连接△ABC 的顶点A 和它所对的对边BC 的中点D ,所得的线段AD 叫做△ABC 的边BC 上的中线.BD=DC=12BC 。
三角形三条中线的交于一点,这一点叫做“三角形的重心".
三角形的中线可以将三角形分为面积相等的两个小三角形。
3。
三角形的角平分线
∠A 的平分线与对边BC 交于点D ,那么线段AD 叫做三角形的角平分线。
∠1=∠2=12∠BAC。
要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线.
三角形三条角平分线的交于一点,这一点叫做“三角形的内心”。
要求会的题型:
①已知三角形中两条高和其所对的底边中的三个长度,求其中未知的高或者底边的长度 方法:利用“等积法",将三角形的面积用两种方式表达,求出未知量。
三角形的稳定性
1. 三角形具有稳定性
2. 四边形及多边形不具有稳定性
要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了。
三角形的内角
1. 三角形的内角和定理
三角形的内角和为180°,与三角形的形状无关.
2。
直角三角形两个锐角的关系
直角三角形的两个锐角互余(相加为90°)。
有两个角互余的三角形是直角三角形.
三角形的外角
1。
三角形外角的意义
三角形的一边与另一边的延长线组成的角叫做三角形的外角。
2。
三角形外角的性质
三角形的一个外角等于与它不相邻的两个内角之和。
三角形的一个外角大于与它不相邻的任何一个内角.
多边形
1. 多边形的概念
在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角.多边形的边与它邻边的延长线组成的角叫做外角。
连接多边形不相邻的两个顶点的线段叫做多边形的对角线。
一个n边形从一个顶点出发的对角线的条数为(n-3)条,其所有的对角线条数为.
3. 正多边形
各角相等,各边相等的多边形叫做正多边形。
(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)
要求会的题型:
①告诉多边形的边数,求多边形过一个顶点的对角线条数或求多边形全部对角线的条数
方法:一个n边形从一个顶点出发的对角线的条数为(n-3)条,其所有的对角线条数为.将边数带入公式即可.
多边形的内角和
1. n边形的内角和定理
n边形的内角和为
2. n边形的外角和定理
多边形的外角和等于360°,与多边形的形状和边数无关.
全等三角形的判定
一、本节学习指导
本节较难,考试题目千变万化,更是容易和其他几何联合起来出题,同学们要牢牢的掌握好。
二、知识要点
1、两个三角形全等的条件【重点】
(1)判定1-—边边边公理
三边对应相等的两个三角形全等,简写成“边边边”或“SSS”.
“边边边”公理的实质:三角形的稳定性(用三根木条钉三角形木架)。
注意:边边边是三条边都相等,并且在书写时边与边要对应书写.在已知两边相等的情况下优先考虑.
(2)判定2—-边角边公理
两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”.
注意:边角边中,角是指两对应边的夹角,如上图中,同样在书写时对应边角对准。
比如上图中正确的写法是:△ABC≌△A'B'C'
(3)判定3-—角边角公理
两角和它们的夹边对应相等的两个三角形全等。
简写为“角边角"或“ASA"。
注意:角边角中,边是两个角中间时,才能描述为角边角,否则就是下面的角角边.
(4)判定4——角角边推论
两角和其中一角的对边对应相等的两个三角形全等.简称“角角边”或“AAS”。
(5)直角三角形全等的判定—-斜边直角边公理
斜边和一条直角边对应相等的两个直角三角形全等。
简写成“斜边直角边"或“HL”。
判定直角三角形全等的方法:
①一般三角形全等的判定方法都适用;
②斜边—直角边公理
2、证明三角形全等一般有以下步骤:
(1)读题:明确题中的已知和求证;
(2)要观察待证的线段或角,在哪两个可能全等的三角形中
(3)、分析要证两个三角形全等,已有什么条件,还缺什么条件.有公共边的,公共边一定是对应边,有公共角的,公共角一定是对应角,有对顶角,对顶角也是对应角
(4)、先证明缺少的条件
(5)、再证明两个三角形全等
三、经验之谈:
对于常见的四种判定三角形全等的方法我们都要掌握,并且知道“边"是什么边,“角"是什么角,上面中并没有“边边角”这点要记牢了.本节是非常重要的一章节,同学们一定要多做练习题,
不会的要向老师及时请教
全等三角形的性质:
全等三角形的对应边相等;全等三角形的对应角相等。
∵△ABC≌△A'B'C'
∴AB=A'B',BC=B'C',AC=A'C';∠A=∠A', ∠B=∠B', ∠C=∠C'
二、知识要点
1、角平分线的定义:从一个角的顶点出发把一个角分成两个相等的角的射线叫做角的平分线。
如右图:OC平分∠AOB
∵OC平分∠AOB
∴∠AOC=∠BOC
2、角的平分线的性质:角平分线上的点到角的两边的距离相等。
【重点】
如上图:
∵OC平分∠AOB(或∠1=∠2),PE⊥OA,PD⊥OB
∴PD=PE,此时我们知道△OPE≌△OPD(直角三角形斜边是OP即公共边,直角边斜边)
3、角的平分线的判定:角的内部到角的两边距离相等的点在角的平分线上.
如上图:
∵PE⊥OA,PD⊥OB,PD=PE
∴OC平分∠AOB(或∠1=∠2)
4、线段的中点的定义:把一条线段分成两条相等的线段的点叫做线段的中点。
如右图:
∵C是AB的中点
∴AC=BC
5、垂直的定义:两条直线相交所成的四个角中有一个是直角,这两条直线互相垂直。
如右图:【重点】
∵AB⊥CD
∴∠AOC=∠AOD=∠BOC =∠BOD=90°
或∵∠AOC=90°
∴AB⊥CD
注意:要判断两条直线垂直,只要知道这两条相交直线所形成的四个角中的一个角是直角就可以了。
反过来,两条直线互相垂直,它们的四个交角都是直角.。