人教版七年级下册数学 第五章 相交线与平行线 5.1.2 垂线 习题练习(附答案)
- 格式:docx
- 大小:110.70 KB
- 文档页数:14
5.1.1-2相交线、垂线检测题一、填空1.如图,直线AB,CD 相交于O,OE 平分∠AOD,FO ⊥OD 于O,∠1=40°,则∠2=•___ __,∠4=______.421D CAB (5)OFE D C A B NM(6)O FE(第1题图) (第2题图)2.如图,AB ⊥CD 于O,EF 为过点O 的直线,MN 平分∠AOC,若∠EON=100•°,•那么 ∠EOB=________,∠BOM=________.3.如图,AB 是一直线,OM 为∠AOC 的角平分线,ON 为∠BOC 的角平分线,则OM,ON 的位置关系是_______.4.直线外一点与直线上各点连结的线段中,以_________为最短.5.从直线外一点到这条直线的________叫做这点到直线的距离.C AB NM(7)DCA B(8)O(第3题图) (第7题图) (第8题图)6.经过直线外或直线上一点,有且只有______直线与已知直线垂直.7.如图,要证BO ⊥OD,请完善证明过程,并在括号内填上相应依据:∵AO ⊥CO,∴∠AOC=__________(___________).又∵∠COD=40°(已知),∴∠AOD=_______.•∵∠BOC=∠AOD=50°(已知),∴∠BOD=_______, ∴_______⊥_______(__________).8. 如图,点B 到AC 的距离是线段_________的长度,_________是线段BC 到A 的距离二、选择9.下列语句正确的是( )A.相等的角为对顶角B.不相等的角一定不是对顶角C.不是对顶角的角都不相等D.有公共顶点且和为180°的两个角为邻补角10.两条相交直线与另外一条直线在同一平面内,它们的交点个数是( ) A.1 B.2 C.3或2 D.1或2或311.如图10,PO ⊥OR,OQ ⊥PR,能表示点到直线(或线段)的距离的线段有( ) A.1条 B.2条 C.3条 D.5条(10)PQDCAB(11)O D C AB(12)FE (第11题图) (第12题图) (第14题图)12.如图,OA ⊥OB,OC ⊥OD,则( )A.∠AOC=∠AODB.∠AOD=∠DOBC.∠AOC=∠BODD.以上结论都不对 13.下列说法正确的是( )A.在同一平面内,过已知直线外一点作这条直线的垂线有且只有一条B.连结直线外一点和直线上任一点,使这条线段垂直于已知直线C.作出点P 到直线的距离D.连结直线外一点和直线上任一点的线段长是点到直线的距离 14.如图,与∠C 是同旁内角的有( ). A.2 B.3 C.4 D.5 15.下列说法正确的是( ).A.两条直线相交成四个角,如果有三个角相等,那么这两条直线垂直.B.两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直.C.两条直线相交成四个角,如果有一对对顶角互余,那么这两条直线垂直.D.两条直线相交成四个角,如果有两个角互补,那么这两条直线垂直. 16.如果∠1与∠2互为补角,且∠1>∠2,那么∠2的余角是( )A. 12(∠1+∠2)B. 12∠1C. 12(∠1-∠2)D.12∠2三、作图题17、如图,按要求作出:(1)AE ⊥BC 于E; (2)AF ⊥CD 于F;(3)连结BD,作AG ⊥BD 于G.18、如下左图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 分别是位于公路AB 两侧的村庄,(1)现在公路AB 上修建一个超市C ,使得到M 、N 两村庄距离最短,请在图中画出点C (2)设汽车行驶到点P 位置时离村庄M 最近;行驶到点Q 位置时,距离村庄N 最近,请在图中公路AB 上分别画出P 、Q 两点的位置。
第五章相交线与平行线5.1.2 垂线分层作业1.如图,图中直角的个数有()A.个B.个C.个D.个【答案】D【分析】根据直角的定义进行求解即可.【详解】解:由题意得,图中的直角有一共五个,故选D.【点睛】本题主要考查了垂线的定义,熟知垂线的定义是解题的关键.2.如图,,,若,则的度数是()A.B.C.D.【答案】C【分析】先求出,即可求出.【详解】解:,,.,.故选:C.【点睛】本题主要考查直角的概念以及角度的计算,比较简单.3.如图,在纸片上有一直线l,点A在直线l上,过点A作直线l的垂线、嘉嘉使用了量角器,过90°刻度线的直线a即为所求;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a即为所求,下列判断正确的是()A.只有嘉嘉对B.只有淇淇对C.两人都对D.两人都不对【答案】C【分析】根据垂直的定义即可解答.【详解】解:嘉嘉利用量角器画90°角,可以画垂线,方法正确;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a垂直直线l,方法正确,故选:C.【点睛】本题主要考查了作图、垂线的定义,掌握垂直的定义是解答本题的关键.4.如图,直线,相交于点,,平分,若,则的度数为()A.B.C.D.【答案】C【分析】根据垂直定义得到∠AOF+∠BOD=,求出∠AOF的度数,利用角平分线的定义求出∠EOF即可.【详解】解:∵∠DOF=,∴∠AOF+∠BOD=,∵∠BOD=,∴∠AOF=,∵OF平分∠AOE,∴∠EOF=∠AOF=,故选:C.【点睛】此题考查了垂直的定义,几何图形中角度的计算,正确理解图形中各角度的关系是解题的关键.5.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为( )A.35°B.45°C.55°D.65°【答案】C【分析】根据角平分线的定义,得出∠MOC=35°,再根据题意,得出∠MON=90°,然后再根据角的关系,计算即可得出∠CON的度数.【详解】解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C【点睛】本题主要考查了角平分线的定义和垂线的定义,解决本题的关键在正确找出角的关系.6.如图,为了解决村民饮水困难,需要在河边建立取水点,下面四个点中哪个最方便作为取水点()A.A点B.B点C.C点D.D点【答案】B【分析】根据“垂线段最短”可得结论.【详解】解:根据“垂线段最短”可知要在河边建立取水点,点B作为取水点最方便,故选:B【点睛】此题主要考查了垂线段最短,正确掌握垂线段的性质是解题关键.7.如图,,垂足是点,,,,点是线段上的一个动点包括端点,连接,那么的长为整数值的线段有()A.条B.条C.条D.条【答案】D【分析】根据垂线段最短解答即可.【详解】解:∵,,,,且点是线段上的一个动点包括端点,∴长的范围是,∴的长为整数值的线段有、、、,,共条,故选:D.【点睛】本题考查垂线段最短.理解和掌握垂线段最短是解题的关键.8.如图,直线AB,CD相交于点O,EO⊥CD,垂足为O,若∠1=50°,则∠2的度数为()A.B.C.D.【答案】B【分析】应用垂线性质可得∠EOD=90°,由∠1+∠BOD=90°,即可算出∠BOD的度数,再根据对顶角的性质即可得出答案.【详解】解:∵EO⊥CD,∴∠EOD=90°,∵∠1+∠BOD=90°,∴∠BOD=∠EOD-∠1=90°-50°=40°,∴∠2=∠BOD=40°.故选:B.【点睛】本题主要考查了垂线及对顶角,熟练掌握垂线及对顶角的性质进行求解是解决本题的关键.9.已知,与的度数之比为,则等于___.【答案】或【分析】根据垂直定义知,由,可求,根据与的位置关系,分类求解.【详解】解:,,,即∠AOB:90°=3:5,.分两种情况:①当OB在内时,如图,∴;②当OB在外时,如图,∴.故答案是:或.【点睛】本题考查垂直定义,角的和差运算,解题的关键是利用分类讨论的思想进行求解.10.如图,点,在直线上,且,的面积为.若是直线上任意一点,连接AP,则线段AP的最小长度为_____cm.【答案】8【分析】根据点到直线的垂线段最短,再由面积求出高,即为AP的最小值,由题知,过点A作BC的垂线,即为所求,此时,该垂线也是三角形的高.【详解】解:过点A作BC的垂线AP,根据点到直线的所有线段中,垂线段最短,∴垂线段即为AP的最小值,∵BC=5cm,ΔABC的面积为20,∴,∴AP=8,故答案为:8.【点睛】本题考查三角形的面积公式,垂线段最短的性质,属于基础题.11.已知的两边与的两边分别垂直,且比的倍少,则______【答案】80°或92°【分析】因为两个角的两边分别垂直,则这两个角相等或互补,又因∠A比∠B的倍少40°,设∠B是x 度,利用方程即可解决问题.【详解】解:设∠B是x度,根据题意,得①两个角相等时,如图1:∠B=∠A=x°,x=x-40,解得,x=80,故∠A=80°,②两个角互补时,如图2:x+x-40=180,所以x=88,×88°-40°=92°综上所述:∠A的度数为:80°或92°.故答案为:80°或92°.【点睛】本题考查垂线,本题需仔细分析题意,利用方程即可解决问题.关键是得到∠A与∠B的关系.12.如图,直线AB,CD相交于点O,若,且,则的度数是______.【答案】54°##54度【分析】设,则,可得,再由,可得,可求出x,即可求解.【详解】解:设,则,∴,∵,∴∠AOE=∠BOE=90°,∴,即,∴.故答案为:54°【点睛】本题主要考查了垂直的性质,对顶角的性质,熟练掌握垂直的性质,对顶角的性质进行求解是解决本题的关键.13.如图,直线与直线相交于点,,垂足为,,则的度数为______.【答案】60°##60度【分析】根据对顶角相等可得,由,可得,由,即可求解.【详解】解:∵,∴,∵,,,解得.故答案为:60°.【点睛】本题考查了垂直的定义,对顶角相等,几何图形角度的计算,数形结合是解题的关键.14.如图,点P是直线l外一点,过点P作于点O,点A是直线l上任意一点,连接,若,则的长可能是___________(写出一个即可).【答案】4【分析】直接利用垂线段最短即可得出答案.【详解】解∶∵点P是直线l外一点,过点P作于点O,点A是直线l上任意一点,∴3≤AP,∴PA可以为4,故答案为4(答案不唯一).【点睛】此题主要考查了垂线段最短,正确得出A P的取值范围是解题的关键.15.如图,直线和相交于点,,,,求的度数.【答案】【分析】根据,得出,根据,可得,根据角的倍分关系,可得∠的度数,根据是邻补角,可得答案.【详解】解:∵,∴,∵,∴,∵,∴,∴,∵,∴.∴.【点睛】本题考查垂直的性质、角的和差、角的倍分关系、邻补角的性质等知识,是基础考点,掌握相关知识是解题关键.16.如图,是直线上一点,,平分(1)求的度数.(2)试猜想与的位置关系,并说明理由.【答案】(1)的度数为(2)OD⊥AB,理由见解析【分析】(1)设=x,根据题意得,再根据平角的定义进而求解即可;(2)根据角平分线的定义即可得到解答.【详解】(1)解:设=x,∵,∴,∵直线,∴x+3x=180°,解得,∴的度数为;(2)解:OD⊥AB,理由如下,∵OC平分∠AOD,∴∠COD=∠AOC=45°.∴∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.【点睛】此题考查了垂线,平角的定义以及角平分线的定义,对定义的熟练掌握是解题的关键.平角:等于180°的角叫做平角;角平分线:从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线.17.如图,两直线、相交于点,平分,如果::.(1)求;(2)若,,求.【答案】(1)145°(2)125°【分析】(1)根据邻补角的性质和已知求出和的度数,根据对顶角相等求出和的度数,根据角平分线的定义求出的度数,可以得到的度数;(2)根据垂直的定义得到,根据互余的性质求出的度数,计算得到答案.(1)解:,::,,,,,平分,,.(2)解:,,平分,,,.【点睛】本题考查的是邻补角的性质、对顶角的性质和角平分线的定义,掌握邻补角互补、对顶角相等和垂直的定义是解题的关键.18.如图,已知直线AB、CD相交于点O,OE⊥AB,点O为垂足,OF平分∠AOC.(1)若∠COE=54°,求∠DOF的度数;(2)若∠COE∶∠EOF=2∶1,求∠DOF的度数.【答案】(1)∠DOF=108°;(2)∠DOF=112.5°.【分析】(1)先由OE⊥AB得出∠AOE=∠BOE=90°,再根据角平分线定义求出∠COF=72°,然后由∠DOF=180°-∠COF即可求解;(2)设∠EOF=x°,则∠COE=2x°,则∠COF=3x°,再根据角平分线定义求出∠AOF=∠COF=3x°,所以∠AOE=4x°,由垂直的定义可知∠AOE=90°,则4x=90,解之,求出x即可.(1)解:∵OE⊥AB,∴∠AOE=90°;∵∠COE=54°,∴∠AOC=∠AOE+∠COE=144°,∵OF平分∠AOC,∴∠COF=∠AOC=72°,∴∠DOF=180°-∠COF=108°;(2)解:设∠EOF=x°,则∠COE=2x°,∴∠COF=3x°,∵OF平分∠AOC,∴∠AOF=∠COF=3x°,∴∠AOE=4x°,∵OE⊥AB,∴∠AOE=90°,∴4x=90,解得x=22.5,∴∠COF=3x°=67.5°,∴∠DOF=180°-∠COF=112.5°.【点睛】本题考查了角的计算,根据垂直的定义、角的和差关系列方程进行求解,即可计算出答案,难度适中.1.如图,直线AB,CD相交于点O,OE⊥CD,OF平分∠BOD,∠AOE=24°,∠COF的度数是()A.146°B.147°C.157°D.136°【答案】B【分析】欲求∠COF,需求∠DOF.由OE⊥CD,得∠EOD=90°,故求得∠BOD=66°.由OF平分∠BOD,故∠DOF==33°.【详解】解:∵OE⊥CD,∴∠EOD=90°.∴∠BOD=180°﹣∠AOE﹣∠DOE=66°.又∵OF平分∠BOD,∴∠DOF==33°.∴∠COF=180°﹣∠DOF=180°﹣33°=147°.故选:B.【点睛】本题主要考查垂直的定义、角平分线的定义以及邻补角的性质,熟练掌握垂直的定义、角平分线的定义以及邻补角的性质是解决本题的关键.2.如图,,,平分,则的度数为()A.45°B.46°C.50°D.60°【答案】A【分析】先根据垂直的定义得,由已知,相当于把四等分,可得的度数,根据角平分线可得,从而得结论.【详解】解:,,,,,平分,,.故选:.【点睛】本题考查了角平分线的定义,垂直的定义及有关角的计算,解题的关键是确定.3.如图所示,直线AB,CD相交于点O,于点O,OF平分,,则下列结论中不正确的是()A.B.C.与互为补角D.的余角等于【答案】D【分析】根据垂直的定义及角平分线的性质判断A,利用对顶角的性质判断B,利用邻补角的性质判断C,根据余角的定义判断D.【详解】∵于点O,∴∠AOE=,∵OF平分,∴∠2=,故A正确;∵直线AB,CD相交于点O,∴∠1与∠3是对顶角,∴∠1=∠3,故B正确,∵,∴与互为补角,故C正确;∵,∴的余角=,故D错误,故选:D.【点睛】此题考查垂直的定义,角平分线的性质,对顶角的性质,余角的定理,邻补角的性质,几何图形中角度的计算,熟记各定义及性质是解题的关键.4.已知点P为直线m外一点,点A,B,C为直线m上三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线m的距离为()A.4 cm B.5 cm C.小于2 cm D.不大于2 cm【答案】D【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥m时,PC是点P到直线m的距离,即点P到直线m的距离2cm,当PC不垂直直线m时,点P到直线m的距离小于PC的长,即点P到直线m的距离小于2cm,综上所述:点P到直线m的距离不大于2cm,故选D.【点睛】此题考查了点到直线的距离,利用了垂线段最短的性质.5.如图,若直线与相交于点,平分,且,则的度数为()A.B.C.D.【答案】C【分析】根据角平分线的定义得到,根据垂线的定义得到,利用邻补角的定义即可求解.【详解】解:∵,平分,∴,∵,∴,∴,故答案为:C.【点睛】本题考查邻补角的定义、角平分线的定义、垂直的定义等内容,运用几何知识进行角的和差运算是解题的关键.6.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=55°,则∠AOM的度数为()A.35°B.45°C.55°D.25°【答案】A【分析】根据垂直得出∠NOM=90°,求出∠COM=35°,根据角平分线定义得出∠AOM=∠COM,即可得出答案.【详解】解:∵ON⊥OM,∴∠NOM=90°,∵∠CON=55°,∴∠COM=90°-55°=35°,∵射线OM平分∠AOC,∴∠AOM=∠COM=35°,故选:A.【点睛】本题考查了垂直定义,角平分线定义等知识点,解题的关键是能求出∠COM的度数和求出∠AOM=∠COM.7.已知,如图,直线,相交于点,⊥于点,∠=35°.则∠的度数为().A.35°B.55°C.65°D.70°【答案】B【分析】直接利用垂线的定义结合已知角得出∠COE的度数即可.【详解】∵OE⊥AB于点O(已知),∴∠AOE=90°(垂直定义).∵直线AB,CD相交于点O,∠BOD=35°(已知),∴∠AOC=35°(对顶角相等).∴∠COE=∠AOE−∠AOC=90°−35°=55°.∴∠COE=55°.故选B.【点睛】此题考查垂线的定义,对顶角,解题关键在于得出∠AOC=35°.8.如图,直线,相交于点,,平分,若,则的度数为()A.B.C.D.【答案】B【分析】由垂直得∠COE=90°,从而知∠AOC=64°,则∠BOD也得64°,由角平分线和平角定义得∠COF 的度数.【详解】∵OE⊥CD,∴∠COE=90°,∴∠AOC=∠COE-∠AOE=90°-26°=64°,∵∠AOC=∠BOD,∴∠BOD=64°,又∵OF平分∠BOD,∴∠DOF=∠BOD=×64°=32°,∴∠COF=180°-∠DOF=180°-32°=148°.故选B.【点睛】本题考查了垂线的定义、邻补角、对顶角定义、角平分线定义等知识点.本题属于基础题,推理过程的书写是关键,从垂直入手与已知相结合得出∠AOC的度数,使问题得以解决;同时要注意对顶角和平角性质的运用.9.如图,直线,,相交于点,,,射线,则的度数为___________.【答案】20°或160°【分析】先求出∠EOD=70°,再分射线OG在直线EF的两侧进行讨论求解即可.【详解】解:∵,,∠2=∠AOE,∴∠EOD=180°-50°-60°=70°,分两种情况:①如图,∵,∴∠EOG=90°,∴∠DOG=∠EOG-∠EOD=90°-70°=20°;②如图,∵∠EOG=90°,∠EOD=70°,∴∠DOG=∠EOD+∠EOG=70°+90°=160°,综上,的度数为20°或160°,故答案为:20°或160°.【点睛】本题考查邻补角、对顶角、垂线性质、角的运算,熟练掌握对顶角相等、邻补角互补,分情况讨论是解答的关键.10.如图,点C,O,D在一条直线上,,OE平分比大,的度数为________.【答案】##72.5度【分析】根据比大,和互补,即可求出,进而由垂直性质可求出,再由角平分线性质即可得出答案.【详解】解:∵比大,∴设,则,∵,∴,∴,∴,∵,∴,∴,∴,∵OE平分,∴.故答案为:.【点睛】本题考查了垂直的性质,角平分线的性质以及角的运算,掌握以上知识是解题的关键.11.如图,直线AB,CD交于点O,OC平分∠BOE,OE⊥OF,若∠DOF=15°,则∠EOA=_________.【答案】30°##30度【分析】根据垂直定义可得∠EOF=90°,从而利用平角定义求出∠COE=75°,然后利用角平分线的定义求出∠BOE=2∠COE=150°,最后利用平角定义求出∠EOA,即可解答.【详解】解:∵OE⊥OF,∴∠EOF=90°,∵∠DOF=15°,∴∠COE=180°﹣∠EOF﹣∠DOF=75°,∵OC平分∠BOE,∴∠BOE=2∠COE=150°,∴∠AOE=180°﹣∠∠BOE=30°,故答案为:30°.【点睛】本题考查了垂线,角平分线的定义,根据题目的已知条件并结合图形分析是解题的关键.12.如图,直线AB、CD相交于点O,,O为垂足,如果,则________°.【答案】57.5【分析】根据垂线的定义,可得,根据角的和差,可得的度数,根据邻补角的定义,可得答案.【详解】解:∵∴∴∵,∴,∴,∴,故答案为:.【点睛】本题考查了垂线的定义,邻补角的和等于180°,角与分的转化等知识.解题的关键在于领会由垂直得直角.13.如图,直线AB和CD交于O点,OD平分∠BOF,OE⊥CD于点O,∠AOC=40 ,则∠EOF=_______.【答案】130°【分析】根据对顶角性质可得∠BOD=∠AOC=40°.根据OD平分∠BOF,可得∠DOF=∠BOD=40°,根据OE ⊥CD,得出∠EOD=90°,利用两角和得出∠EOF=∠EOD+∠DOF=130°即可.【详解】解:∵AB、CD相交于点O,∴∠BOD=∠AOC=40°.∵OD平分∠BOF,∴∠DOF=∠BOD=40°,∵OE⊥CD,∴∠EOD=90°,∴∠EOF=∠EOD+∠DOF=130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.14.如图所示,已知,若,,,则点到的距离是______,点到的距离是______.【答案】 4 2.4【分析】根据点到直线的距离概念可得点到的距离为垂线段AC的长,设点到的距离为,依据三角形面积,即可得到点到的距离.【详解】解:∵,∴,∴点到的距离为垂线段AC的长,又∵,∴点到的距离为4cm;设点到的距离为,,,,∵,,,,,故答案为:4;2.4.【点睛】本题考查了点到直线的距离,利用三角形的面积得出是解题关键.15.如图,直线,相交于点,平分.(1)若,,求的度数;(2)若平分,,求的度数.【答案】(1)70°(2)50°【分析】(1)根据角平分线的性质可得,根据垂线的定义以及已知条件求得,继而求得,根据对顶角相等即可求解;(2)根据角平分线的性质可得,,设,则,根据平角的定义建立方程,解方程即可求解.(1)解:平分,,,,,,∴;(2)平分,,,设,则,,解得:,故的度数为:.【点睛】本题考查了几何图形中角度的计算,角平分线的定义,垂线的定义,一元一次方程的应用,数形结合是解题的关键.16.如图,直线相交于点O,平分,求:(1)的度数;(2)写出图中互余的角;(3)的度数.【答案】(1)70°(2)∠BOF与∠BOD互余,∠EOF与∠EOD互余,∠EOF与∠BOE互余,∠BOF与∠AOC互余(3)55°【分析】(1)根据对顶角相等即可得到;(2)根据余角的定义求解即可;(3)先根据角平分线的定义求出∠DOE=35°,则∠EOF=∠DOF-∠DOE=55°.(1)解:由题意得;(2)解:∵∠COF=90°,∴∠DOF=180°-∠COF=90°,∴∠BOF+∠BOD=90°,∠EOF+∠EOD=90°,∵OE平分∠BOD,∴∠BOE=∠DOE,∴∠EOF+∠BOE=90°,∵∠AOC=∠BOD,∴∠BOF+∠AOC=90°,∴∠BOF与∠BOD互余,∠EOF与∠EOD互余,∠EOF与∠BOE互余,∠BOF与∠AOC互余;(3)解:∵∠BOD=70°,OE平分∠BOD,∴∠DOE=35°,∴∠EOF=∠DOF-∠DOE=55°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,对顶角相等,余角的定义,熟知相关知识是解题的关键.17.如图,已知,,是内三条射线,平分,平分.(1)若,,求的度数.(2)若,,求的度数.(3)若,,求的度数.【答案】(1)(2)(3)【分析】对于(1),由角平分线的定义求出和,再根据即可求解;对于(2),先求出,再根据角平分线的定义求出和,然后根据即可求解;对于(3),由角平分线的定义得,结合已知条件可得,,即,进而得出,可得答案.【详解】(1)∵平分,平分,∴,,∴;(2)∵,∴.∵,∴.∵平分,平分,∴,,∴;(3)∵平分,∴.∵,∴.∵,∴,∴,∴,∴.【点睛】本题主要考查了角的和差,关键是由角平分线定义得出相关等式.18.点O为直线l上一点,射线均与直线l重合,如图1所示,过点O作射线和射线,使得,,作的平分线.(1)求与的度数;(2)作射线,使得,请在图2中画出图形,并求出的度数;(3)如图3,将射线从图1位置开始,绕点O以每秒的速度逆时针旋转一周,作的平分线,当时,求旋转的时间.【答案】(1),(2)或(3)6秒或秒【分析】(1)根据,,即可得出的度数,根据角平分线的定义得出,然后根据得出的度数;(2)根据题意得出的度数,然后分两种情况进行讨论:①当射线在内部时;②当射线在外部时;分别进行计算即可;(3)根据平分得出,根据题意画出图形,计算的角度,然后计算时间即可.【详解】(1)解:由题意可知,,∵,∴,∵平分,∴,∴;(2)由(1)知,,∴,①当射线在内部时,如图2(1),;②当射线在外部时,如图2(2),,综上所述,的度数为或;(3)∵平分,∴,①如图3,,∵平分,∴,∴,∴旋转的时间(秒);②如图3(1),此时,,∵平分,∴,∴,∴,∴旋转的时间(秒);综上所述,旋转的时间为6秒或秒.【点睛】本题主要考查角度的计算,角平分线的定义等内容;第(2)问进行合适的分类讨论是解题的关键;第(3)问,搞清楚在射线旋转的过程中,和的相对位置在不断的变化,以此进行分类画图.1.(2022·江苏常州·中考真题)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行【答案】A【分析】根据垂线段最短解答即可.【详解】解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,故选:A.【点睛】本题考查垂线段最短,熟知垂线段最短是解答的关键.2.(2022·河南·中考真题)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°【答案】B【分析】根据垂直的定义可得,根据平角的定义即可求解.【详解】解:EO⊥CD,,,.故选:B .【点睛】本题考查了垂线的定义,平角的定义,数形结合是解题的关键.3.(2021·北京·中考真题)如图,点在直线上,.若,则的大小为()A.B.C.D.【答案】A【分析】由题意易得,,进而问题可求解.【详解】解:∵点在直线上,,∴,,∵,∴,∴;故选A.【点睛】本题主要考查垂直的定义及邻补角的定义,熟练掌握垂直的定义及邻补角的定义是解题的关键.4.(2021·浙江杭州·中考真题)如图,设点是直线外一点,,垂足为点,点是直线上的一个动点,连接,则()A.B.C.D.【答案】C【分析】根据垂线段距离最短可以判断得出答案.【详解】解:根据点是直线外一点,,垂足为点,是垂线段,即连接直线外的点与直线上各点的所有线段中距离最短,当点与点重合时有,综上所述:,故选:C.【点睛】本题考查了垂线段最短的定义,解题的关键是:理解垂线段最短的定义.5.(2020·湖北孝感·中考真题)如图,直线,相交于点,,垂足为点.若,则的度数为()A.B.C.D.【答案】B【分析】已知,,根据邻补角定义即可求出的度数.【详解】∵∴∵∴故选:B【点睛】本题考查了垂直的性质,两条直线垂直,形成的夹角是直角;利用邻补角的性质求角的度数,平角度数为180°.6.(2020·河北·中考真题)如图,在平面内作已知直线的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【答案】D【分析】在同一平面内,过已知直线上的一点有且只有一条直线垂直于已知直线;但画已知直线的垂线,可以画无数条.【详解】在同一平面内,画已知直线的垂线,可以画无数条;故选:D.【点睛】此题主要考查在同一平面内,垂直于平行的特征,解题的关键是熟知垂直的定义.7.(2020·吉林·中考真题)如图,某单位要在河岸上建一个水泵房引水到处,他们的做法是:过点作于点,将水泵房建在了处.这样做最节省水管长度,其数学道理是_______.【答案】垂线段最短【分析】直线外一点与直线上各点连结的所有线段中,垂线段最短.【详解】通过比较发现:直线外一点与直线上各点连结的所有线段中,垂线段最短.故答案为:垂线段最短.【点睛】此题主要考查点到直线的距离,动手比较、发现结论是解题关键.。
第五章相交线与平行线5.1.1 相交线复习检测(5分钟):1、如图所示,/1和/2是对顶角的图形有()A.1个B.2 个C.3 个D.4 个2、如图,若/ 1=60° ,那么/ 2=3、如图是一把剪刀,其中 1 40,则24、如图三条直线AB,CD,EF相交于一点O, /AOD勺对顶角是,/AOC勺邻补角是,若/ A0C=50 ,贝U/ BOD= ./ COB= J AOE+ DOB + COF=5、如图,直线AB,CD相交于0,0评分/ AOC若/ AOD/DOB=50 ,?求/EOB勺度数.6、如图,直线a,b,c两两相交,/1=2/ 3, / 2=68° ,求/4的度数5.1.2 垂线复习检测(5分钟):1、两条直线互相垂直,则所有的邻补角都相等.()2、一条直线不可能与两条相交直线都垂直.()3、两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.()4、两条直线相交有一组对顶角互补,那么这两条直线互相垂直.().5、如图1,OAL OB,OCL OC,O为垂足,若/AOC=3 5,则/BOD=.6、如图2,A0± BO,O为垂足,直线CDi点O,且/ BOD=2AOC则/ BOD=.7、如图3,直线AB CD相交于点0,若/E0D=40 , /B0C=130,那么射线0E与直线AB的位置关系是C8、已知:如图,直线AB,射线0位于点的位置关系.9、如图,AC± BC,C为垂足,CD± AB,D为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6 ,那么点C 到AB 的距离是,点A 到BC 的距离是,点B 到CD 的距离是 ,A 、B 两点间的距离是.10、如图,在线段AB AG AD AE AF 中AD 最短.小明说垂线段最短,因此线段AD 的 长是点A 到BF 的距离,对小明的说法,你认为对吗?11、用三角尺画一个是30的/AOB 在边OA±任取一点P,过P 作POL OB,垂足为Q, 量一量OP 的长,你发现点P 到OB 的距离与OP 长的关系吗?5.1.3同位角、内错角、同旁内角3、如图(6),直线DE 截AB, AC,构成八个角: ①、指出图中所有的同位角、内错角、同旁内角复习检测(5分钟):1、如图(4),卜列说法不正确的是( )人./1与/2是同位角 B. / 2与/ 3是同位角C. / 1与/ 3是同位角D. / 1与/ 4不是同位角2、如图(5),直线AB CDM 直线EF 所g, / A 和一 错角,/A 班是同旁内角.^ /\ \ /--- ---------- 4 届 -------------------- R图⑷ 图⑸—是同位角,/ A 和 ________ 是内A40(3) c'②、/人与/5, /A 与/6, /A 与/8,分别是哪一条直线截哪两条直线而成的什么 角?4、如图(7),在直角 ABCt\ / C= 90 , DU AC 于 E,交 A.一 L①、指出当BG DE 被AB 所截时,/ 3的同位角、内错角和礴内他(门②、若/ 3+/ 4=180试说明/ 1 = /2=/3的理由.5.2.1平行线复习检测(5分钟):1、在同一平面内,两条直线的位置关系有2、两条直线L 1与L 2相交点A,如果L 1//L ,那么12与L ()3、在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必.D ./3=/4 D. /BACW ACD4、两条直线相交,交点的个数是 ,两条直线平行,交点的个数是 _____________ 个.判断题5、6、7、85、不相交的两条直线叫做平行线.()6、如果一条直线与两条平行线中的一条直线平行,那么它与另一条直线也互相平行.()7、过一点有且只有一条直线平行于已知直线.()8、读下列语句,并画出图形后判断.(1)直线a 、b 互相垂直,点P 是直线a 、b 外一点,过P 点的直线c 垂直于直线b. (2)判断直线a 、c 的位置关系,并借助于三角尺、直尺验证.9、试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况5.2.2平行线的判定复习检测(10分钟):1、如图1所示,下列条件中,能判断AB// CD 的是()DAFCA./BADh BCDB. /1 = /2;C.AD C B如图5,直线a,b 被直线c 所截,现给出下列四个条件: ?①/ 1 = /5;②/ 1=/7;③/ 2+/ 3=180 ;@Z4=Z 7.其中能说明 a // b 的条件序号为() A.①② B.①③ C.①④ D. ③④如果/ 9=,那么AD// BC;如果/ 9=,那么AB// CD.7、在同一平面内,若直线a,b,c 满足a±b,a ±c,则b 与c 的位置户系是8、如图所示,BE 是AB 的延长线,量得/ CBEh A=/ C. //.... AB E(1) 由/ CBEh A 可以判断//,根据是.⑵ 由/ CBEh C 可以判断//,根据是2、 如图2所示,如果/ D=/ EFC 那么()A.AD // BCB.EF // BC 3、 F 列说法错误的是()A.同位角不一定相等B. 内错角都相等C. 同旁内角可能相等D.同旁内角互补,两直线平行4、 5、如图5,如果/ 3=/7,那么,理由是 如果/ 5=/ 3,那么 ,理由是 如果/ 2+ /5=那么a // b,理由是6、如图4,若/ 2=/6,则,如果/3+/4+/ 5+/ 6=180 ,那么(4)C.AB // DCD.AD9、已知直线a、b被直线c所截,且/1+/ 2= 试判断直线a、b的位置关系,并说明理由.10、如图,已知AEM DG , 1 2 ,试问EF是否平行GH并说明理由.11、如图所示,已知/ 1=/ 2,AC平分/ DAB试说明DCI AB.12、如图所示,已知直线EF和AB,CM别相交于K,H,且EGL AB,/CHF=60 / E=30°试说明AB// CD.13、提高训练:如图所示,已知直线a,b,c,d,e,且/ 1=/ 2, / 3+/4=180° ,则a与c平行吗?劝什么?5.3.1平行线的性质复习检测(10分钟):1、如图1所示,AB//CD则与/ 1相等的角(/1除外)共有()A.5 个B.4 个C.3 个D.2 个 B AA B —(4) (5) (6)5、如图5,在甲、乙两地之间要修一条笔直的公路,从甲地测得公路的走向是南偏西(3)2、如图 2 所示,CD// AB,O 评分/ AOD,OFOE,/D=50,则/BOF 为(A.35B.30C.253、如图 3 所示,AB II CD,Z D=80CAD=, /ACD=?.4、如图 4,若 AD// BC,则/=/ D.20/ABC 廿=180 ;若 DC/ZAB,则/=/A,/ CAD:/ BAC=3:2则/56° ,甲、乙两地同时开工,若干天后公路准确接通,则乙地所修公路的走向是,因为.6、河南)如图6所示,已知AB// CD直线EF分别交AB,CD于E,F,EG?平分/ B-EF,若/ 1=72 ,贝U/2=.7、如图,AB/ZCQ / 1 = 102° ,求/ 2、/3、/4、/ 5的度数,并说明根据?8、如图,ERiz\ABC勺一个顶点A,且EF// BC 如果/ B= 40° , / 2= 75° ,那么/1、/3、/G / BAO /B+ 是多少度,并说明依据?9、如图,已知:DE/ZCB,/1 = /2,求证:CD平分/ ECB.10、如图所示,把一张长方形纸片ABCD& EF折叠,若/ EFG=50 ,求/ DEG勺度数.1111、如图所示,已知:AE平分/BAC CE平分/ACD且AB//CD求证:/1+/ 2=90° . 证明:・•. AB//CD (已知)・♦/BAC/ACD180 , ()又.. AE平分/ BAC C评分/ ACD (). 1 1•• 1 - BAC , 2 万ACD,( ___________________ ) __________1 1 0 0. .1 2 -( BAC ACD) —1800 90°.2 2即Z1+Z 2=90 .结论:若两条平行线被第三条直线所截,则一组同旁内角的平分线互相.推广:若两条平行线被第三条直线所截,则一组同位角的平分线互相^5.3.2命题、定理、证明复习检测(5分钟):1、判断下列语句是不是命题(1)延长线段AB( ) (3)画线段AB的中点( (2)两条直线相交,只有一交点((4)若|x|=2 ,则x=2 ( )134、命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有()A.1 个B.2个C.3个D.4个5、分别指出下列各命题的题设和结论(1)如果a// b, b // c,那么all c ⑵ 同旁内角互补,两直线平行 6、分别把下列命题写成“如果……,那么……”的形式 (1)两点确定一条直线; (2)等角的补角相等;(3)内错角相等.7、如图,已知直线a 、b 被直线c 所截,在括号内为下面各小题的推理填上适当的根据(1) '.'all b,「•/ 1=/ 3( ); (2) ・// 1=/ 3, ..・all b( ); (3) '.'all b,「•/ 1=/ 2( );(4) 「a// b,「./ 1+/ 4=180o ( (5) ・// 1=/ 2, ..・all b( ); (6) •// 1+/ 4=180o,「.a// b( ). 8、已知:如图 ABL BG BCLCD 且/ 1=/ 2, 证明:.「AB!BG BCLCD (已知)= =90(5)角平分线是一条射线( 2、下列语句不是命题的是( A.两点之间,线段最短 C.x 与y 的和等于0吗? 3、下列命题中真命题是( )A.两个锐角之和为钝角)B.不平行的两条直线有一个交点 D.对顶角不相等.B.两个锐角之和为锐角D.锐角小于它的余角・ ・•/ 1 = /2 (已知)(等式性质)/ ACB=90 ()・ ••/ BCD^/ ACD 勺余角・ ・•/BCD^/B 的余角(已知) ・•・ / ACDN B ()5.4平移复习检测(5分钟):1、下列哪个图形是由左图平移得到的( )B.沿射线EC 的方向移动C 冰C.沿射线BD 的方向移动BD 长;D.沿射线BD 的方向移动DC 长3、下列四组图形中,?有一组中的两个图形经过平移其中一个能得到 -另一个,这组图形9、已知: 求证: 证明: BE// CF (/ ACDM B・•. ACL BC (已知)2、如图所示,4FDE 经过怎样的平移可得到4A.沿射线EC 的方向移动DB 长; 如图,ACL BCC 垂足为CABC.()4、如图所示,△ DEF经过平移可以得到△ ABC那的对应角和ED的对应边分-别是()A. / F,ACB. / BOD,BA;C. / F,BAD.5、在平移过程中,对应线段()A.互相平行且相等;B.互相垂直且相等C.互相平行(或在同一条直线上)且相等6、在平移过程中,平移后的图形与原来的图形________ 都相同,?因-此对应线段和对应角7、如图所示,平移△ ABC可得到△ DEF,如果// C=60 ,那么/ E=?-度,/ EDF=/F= ______ 度,/DOB= .........8、将正方形ABCDg对角线AC方向平移,且平移后的图形的一个顶点恰好在AC的中点。
新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
最新人教版七年级数学下册章节基础训练题(含答案)(全册合集)第五章相交线与平行线5.1.1 相交线1.下列图形中,∠1与∠2是对顶角的是()2.下列说法正确的是()A.大小相等的两个角互为对顶角B.有公共顶点且相等的两个角是对顶角C.两角之和为180°,则这两个角互为邻补角D.—个角的邻补角可能是锐角、钝角或直角3.如图所示,AB与CD相交所成的四个角中,∠1的邻补角是______________,∠1的对顶角是______________。
4.如图,直线AB,CD相交于点O,所形成的∠1、∠2、∠3和∠4中,一定相等的角有()A.0对B.1对C.2对D.4对5.如图,直线AB,CD相交于点O,若∠1+80°=∠BOC,则∠BOC等于()A.130° B.140° C.150° D.160°6.如图,点A,O,B在同一直线上,已知∠BOC=50°,则∠AOC=______________7.如图是一把剪刀,其中∠1=40°,则∠2=______________,其理由是__________________。
8.在括号内填写依据:如图,因为直线a,b相交于点O,所以∠1+∠3=180°(____________________________),∠1=∠2(____________________________).9.如图所示,AB,CD,EF交于点O,∠1=20°,∠2=60°,求∠BOC的度数.10.如图,直线AB,CD相交于点O,∠EOC=70°,OA平分∠EOC,求∠BOD的度数.11.如图,三条直线l1,l2,l3相交于一点,则∠1+∠2+∠3等于()A.90° B.120° C.180° D.360°12.如图所示,直线AB和CD相交于点O,若∠AOD与∠BOC的和为236°,则∠AOC的度数为()A.62° B.118° C.72° D.59°13.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A.35° B.70° C.110° D.145°14.如图,已知直线AB,CD,EF相交于点O.(1)∠AOD的对顶角是______________;∠EOC的对顶角是______________;(2)∠AOC的邻补角是______________;∠EOB的邻补角是______________.15.如图,直线a,b,c两两相交,∠1=80°,∠2=2∠3,则∠4=______________16.如图,直线a,b相交于点O,已知3∠1-∠2=100°,则∠3=______________17.如图所示,直线AB与CD相交于点O,OE平分∠AOD,∠BOC=80°,求∠BOD和∠AOE 的度数.18.如图,直线AB,CD相交于点O,OE平分∠AOB,OB平分∠DOF,若∠DOE=50°,求∠DOF的度数.参考答案:1.C2.D3.∠2,∠4 ∠34.C5.A6.130°7.40° 对顶角相等8.邻补角互补对顶角相等9.解:因为∠BOF=∠2=60°,所以∠BOC=∠1+∠BOF=20°+60°=80°.10.解:因为OA平分∠EOC,∠EOC=70°,所以∠AOC=12∠EOC=35°.所以∠BOD=∠AOC=35°.11.C12.A13.C14.(1)∠BOC ∠DOF(2)∠AOD和∠BOC ∠EOA和∠BOF 15.140°16.130°17.解:因为∠BOD与∠BOC是邻补角,∠BOC=80°,所以∠BOD=180°-∠BOC=100°.又因为∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC=80°.又因为OE平分∠AOD,所以∠AOE=12∠BOC=40°.18.解:因为AB为直线,OE平分∠AOB,所以∠AOE=∠BOE=90°.因为∠DOE=50°,所以∠DOB=∠BOE-∠DOE=40°.因为OB平分∠DOF,所以∠DOF=2∠DOB=80°5.1.2 垂线1.如图,OA∠OB,若∠1=55°,则∠2的度数是()A.35° B.40° C.45° D.60°2.如图,直线AB,CD相交于点O,若∠AOC=90°,则AB与CD的位置关系是___________;若已知AB∠CD,则∠AOC=∠COB=∠BOD=∠AOD=____________.3.如图,已知直线AB,CD,EF相交于点O,AB∠CD,∠DOE=127°,求∠AOF的大小.4.画一条线段的垂线,垂足在()A.线段上B.线段的端点C.线段的延长线上D.以上都有可能5.下列各图中,过直线l外点P画l的垂线CD,三角板操作正确的是()6.下列说法正确的有()∠在平面内,过直线上一点有且只有一条直线垂直于已知直线;∠在平面内,过直线外一点有且只有一条直线垂直于已知直线;∠在平面内,可以过任意一点画一条直线垂直于已知直线;∠在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个7.下面可以得到在如图所示的直角三角形中斜边最长的原理是()A.两点确定一条直线B.两点之间线段最短C.过一点有且只有一条直线和已知直线垂直D.垂线段最短8.某中学创建绿色和谐校园活动中要在一块三角形花园里种植两种不同的花草,同时拟从点A修建一条花间小径到边BC.若要使修建小路所使用的材料最少,请在图中画出小路AD,你这样画的理由是______________________.9.点到直线的距离是指这点到这条直线的()A.垂线段B.垂线C.垂线的长度D.垂线段的长度10.如图所示,在灌溉农田时,要把河(直线l表示一条河)中的水引到农田P处,设计了四条路线PA,PB,PC,PD(其中PB∠l),你选择哪条路线挖渠才能使渠道最短()A.PA B.PB C.PC D.PD11.如图所示,AB∠AC,AD∠BC,垂足分别为A,D,AB=6 cm,AD=5 cm,则点B到直线AC的距离是___________,点A到直线BC的距离是_____________.12.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数有()A.1个B.2个C.3个D.4个13.如图,AB∠AC,AD∠BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有()A.2条B.3条C.4条D.5条14.如图,∠ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP的长不可能是()A.2.5 B.3 C.4 D.515.点P为直线l外一点,点A,B,C为直线上三点,PA=2 cm,PB=3 cm,PC=4 cm,则点P到直线l的距离为()A.等于2 cm B.小于2 cm C.大于2 cm D.不大于2 cm16.如图,田径运动会上,七年级二班的小亮同学从C点起跳,假若落地点是D.当AB与CD___________时,他跳得最远.17.如图,当∠1与∠2满足条件______________________时,OA∠OB.18.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON∠OM,若∠AOM=35°,则∠CON的度数为___________.参考答案:1.A2.垂直90°3.解:因为AB∠CD,所以∠DOB=90°.又因为∠DOE=127°,所以∠BOE=∠DOE-∠DOB=127°-90°=37°.所以∠AOF=∠BOE=37°.4.D5.D6.C7.D8.垂线段最短9.D10.B11.6 cm 5 cm12.D13.D14.A15.D16.垂直17.∠1+∠2=90°18.55°5.1.3 同位角、内错角、同旁内角1.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D.对顶角2.如图,以下说法正确的是()A.∠1和∠2是内错角B.∠2和∠3是同位角C.∠1和∠3是内错角D.∠2和∠4是同旁内角3.如图,下列说法错误的是()A.∠A与∠EDC是同位角B.∠A与∠ABF是内错角C.∠A与∠ADC是同旁内角D.∠A与∠C是同旁内角4.看图填空:(1)∠1和∠3是直线_____________被直线___________所截得的_____________;(2)∠1和∠4是直线_____________被直线___________所截得的_____________;(3)∠B和∠2是直线_____________被直线___________所截得的_____________;(4)∠B和∠4是直线_____________被直线___________所截得的_____________.5.如图所示,若∠1=∠2,在∠∠3和∠2;∠∠4和∠2;∠∠3和∠6;∠∠4和∠8中相等的有()A.1对B.2对C.3对D.4对6.如图,如果∠2=100°,那么∠1的同位角等于_____________,∠1的内错角等于_____________,∠1的同旁内角等于_____________.7.如图所示,∠1与∠2不是同位角的是()8.如图,属于内错角的是()A.∠1和∠2 B.∠2和∠3 C.∠1和∠4 D.∠3和∠49.如图,下列说法错误的是()A.∠1和∠3是同位角B.∠A和∠C是同旁内角C.∠2和∠3是内错角D.∠3和∠B是同旁内角10.∠1与∠2是直线a,b被直线c所截得的同位角,∠1与∠2的大小关系是()A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定11.如图,∠ABC与____________________是同位角;∠ADB与___________________是内错角;∠ABC与___________________是同旁内角.12.根据图形填空:(1)若直线ED,BC被直线AB所截,则∠1和_____________是同位角;(2)若直线ED,BC被直线AF所截,则∠3和_____________是内错角;(3)∠1和∠3是直线AB,AF被直线_____________所截构成的_____________角;(4)∠2和∠4是直线__________,__________被直线BC所截构成的__________角.13.根据图形说出下列各对角是什么位置关系?(1)∠1和∠2;(2)∠1和∠7;(3)∠3和∠4;(4)∠4和∠6;(5)∠5和∠7.14.如图:(1)找出直线DC,AC被直线BE所截形成的同旁内角;(2)指出∠DEF与∠CFE是由哪两条直线被哪一条直线所截形成的什么角;(3)试找出图中与∠DAC是同位角的所有角.参考答案:1.B2.C3.D4.(1)AB,BC AC 同旁内角(2)AB,BC AC 同位角(3)AB,AC BC 同位角(4)AC,BC AB 内错角5.C6.80° 80° 100°7.B8.D9.A10.D11.∠EAD ∠DBC,∠EAD ∠DAB,∠BCD12.(1)∠2(2)∠4(3)ED 内错(4)AB AF 同位角13.解:(1)∠1和∠2是同旁内角;(2)∠1和∠7是同位角;(3)∠3和∠4是内错角;(4)∠4和∠6是同旁内角;(5)∠5和∠7是内错角.14.解:(1)∠FBC和∠CFB,∠DFB和∠FBA是直线DC,AC被直线BE所截形成的同旁内角.(2)∠DEF与∠CFE是由直线AG,DF被直线EF所截形成的内错角.(3)∠DAC的同位角:∠EBH,∠DCH,∠EDF,∠GEF.5.2.1 平行线1.点P,Q都是直线l外的点,下列说法正确的是()A.连接PQ,则PQ一定与直线l垂直B.连接PQ,则PQ一定与直线l平行C.连接PQ,则PQ一定与直线l相交D.过点P能画一条直线与直线l平行2.在同一平面内的两条不重合的直线的位置关系()A.有两种:垂直或相交B.有三种:平行,垂直或相交C.有两种:平行或相交D.有两种:平行或垂直3.在同一平面内,直线a与b满足下列条件,把它们的位置关系填在后面的横线上.(1)a与b没有公共点,则a与b____________;(2)a与b有且只有一个公共点,则a与b____________;(3)a与b有两个公共点,则a与b____________.4.如图,在下面的方格纸中,找出互相平行的线段,并用符号表示出来:____________,____________.5.在同一平面内,下列说法中,错误的是()A.过两点有且只有一条直线B.过一点有无数条直线与已知直线平行C.过直线外一点有且只有一条直线与已知直线平行D.过一点有且只有一条直线与已知直线垂直6.若直线a∠b,b∠c,则a∠c的依据是()A.平行公理B.等量代换C.等式的性质D.平行于同一条直线的两条直线互相平行7.如图,PC∠AB,QC∠AB,则点P,C,Q在一条直线上.理由是___________________________8.下列说法错误的是()A.过一点有且只有一条直线与已知直线平行B.平行于同一条直线的两条直线平行C.若a∠b,b∠c,c∠d,则a∠dD.同一平面内,若一条直线与两平行线中的一条相交,那么它也和另一条相交9.如图,AB∠CD,EF∠AB,AE∠MN,BF∠MN,由图中字母标出的互相平行的直线共有()A.4组B.5组C.6组D.7组10.如图所示,直线AB,CD是一条河的两岸,并且AB∠CD,点E为直线AB,CD外一点,现想过点E作河岸CD的平行线,只需过点E作_________的平行线即可,其理由是___________________________________11.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必__________________12.观察下图所示的长方体,回答下列问题.(1)用符号表示两棱的位置关系:A1B1______AB,AA1______AB,A1D1______C1D1,AD______BC;(2)AB与B1C1所在的直线不相交,它们不是平行线(填“是”或“不是”).由此可知,在____________内,两条不相交的直线才是平行线.13.在同一平面内,有三条直线a,b,c,它们之间有哪几种可能的位置关系?画图说明.参考答案:1.D2.C3.平行相交重合4.CD∠MN GH∠PN5.B6.D7.经过直线外一点,有且只有一条直线与这条直线平行8.A9.C10.AB 平行于同一条直线的两条直线平行11.相交12.∠ ∠ ∠ ∠ 不是同一平面内13.解:有四种可能的位置关系,如下图:5.2.2 平行线的判定1.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是_____________________.2.如图,∠1=60°,∠2=60°,则直线a与b的位置关系是_________3.如图,∠3与∠1互余,∠3与∠2互余.试说明AB∠CD.4.如图所示,已知∠1=∠2,则图中互相平行的线段是___________________________5.如图,请在括号内填上正确的理由:∠∠DAC=∠C(已知),∠AD∠BC(___________________________).6.将一副直角三角尺拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F,试判断CF与AB是否平行,并说明理由.7.如图,已知∠1=70°,要使AB∠CD,则需具备的另一个条件是()A.∠2=70° B.∠2=100° C.∠2=110° D.∠3=110°8.如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC =150°,∠BCD=30°,则()A.AB∠BC B.BC∠CD C.AB∠DC D.AB与CD相交9.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∠CD.10.如图,下列说法错误的是()A.若a∠b,b∠c,则a∠c B.若∠1=∠2,则a∠cC.若∠3=∠2,则b∠c D.若∠3+∠5=180°,则a∠c11.如图,在下列条件中,能判断AD∠BC的是()A.∠DAC=∠BCA B.∠DCB+∠ABC=180°C.∠ABD=∠BDC D.∠BAC=∠ACD12.对于图中标记的各角,下列条件能够推理得到a∠b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=180°13.已知a,b,c为平面内三条不同直线,若a∠b,c∠b,则a与c的位置关系是_________ 14.如图,用几何语言表示下列句子.(1)因为∠1和∠B相等,根据“同位角相等,两直线平行”,所以DE和BC平行;(2)因为∠1和∠2相等,根据“内错角相等,两直线平行”,所以AB和EF平行;(3)因为∠BDE和∠B互补,根据“同旁内角互补,两直线平行”,所以DE和BC平行.15.如图所示,推理填空:(1)∠∠1=_________(已知),∠AC∠ED(____________________________________).(2)∠∠2=_________(已知),∠AB∠FD(____________________________________).(3)∠∠2+_________=180°(已知),∠AC∠ED(____________________________________).参考答案:1.同位角相等,两直线平行2.平行3.解:∠∠3与∠1互余,∠3与∠2互余,∠∠1=∠2.∠AB∠CD.4.AD∠BC(或AD与BC平行)5.内错角相等,两直线平行6.解:CF∠AB.理由如下:∠图中是一副直角三角板,∠∠BAC=45°.∠CF平分∠DCE,∠DCE=90°,∠∠DCF=12∠DCE=45°.∠∠DCF=∠BAC.∠CF∠AB.7.C 8.C9.解:∠∠ACD=70°,∠ACB=60°,∠∠BCD=130°.∠∠ABC=50°,∠∠BCD+∠ABC=180°.∠AB∠CD.10.C 11.A 12.D13.平行14.解:(1)∠∠1=∠B(已知),∠DE∠BC(同位角相等,两直线平行).(2)∠∠1=∠2(已知),∠EF∠AB(内错角相等,两直线平行).(3)∠∠BDE+∠B=180°(已知),∠DE∠BC(同旁内角互补,两直线平行).15.(1)∠C 同位角相等,两直线平行(2)∠BED 内错角相等,两直线平行(3)∠AFD 同旁内角互补,两直线平行5.3.1 平行线的性质1.如图,直线AB∠CD,直线EF分别与直线AB,CD相交于点G,H.若∠1=135°,则∠2的度数为()A.65° B.55° C.45° D.35°2.如图,在∠ABC中,∠ACB=90°,CD∠AB,∠ACD=40°,则∠B的度数为()A.40° B.50° C.60° D.70°3.如图,AB∠CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A.40° B.35° C.50° D.45°4.如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4=()A.70° B.80° C.110° D.100°5.如图,AB∠CD,直线l分别与AB,CD相交,若∠1=50°,则∠2的度数为___________.6.如图,直线a,b被第三条直线c所截,如果a∠b,∠1=70°,那么∠3的度数是__________.7.某商品的商标可以抽象为如图所示的三条线段,其中AB∠CD,∠EAB=45°,则∠FDC的度数是()A.30°B.45°C.60°D.75°8.一只因损坏而倾斜的椅子,从背后看到的形状如图所示,其中两组对边的平行关系没有发生变化,若∠1=76°,则∠2的大小是()A.76°B.86°C.104°D.114°9.如图,在A,B两地挖一条笔直的水渠,从A地测得水渠的走向是北偏西42°,A,B两地同时开工,B地所挖水渠走向应为南偏东__________.10.某次考古发掘出的一个梯形残缺玉片,工作人员从玉片上量得∠A=115°,∠D=100°,已知梯形的两底AD∠BC,请你帮助工作人员求出另外两个角的度数,并说明理由.11.如图,在∠ABC中,∠B=40°,过点C作CD∠AB,∠ACD=65°,则∠ACB的度数为()A.60° B.65° C.70° D.75°12.如图,AB∠CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论错误的是()A.∠EMB=∠END B.∠BMN=∠MNCC.∠CNH=∠BPG D.∠DNG=∠AME13.如图,AB∠CD∠EF,AC∠DF,若∠BAC=120°,则∠CDF=()A.60°B.120°C.150°D.180°14.一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD =__________15.如图,一只船从点A出发沿北偏东60°方向航行到点B,再以南偏西25°方向返回,则∠ABC=__________16.如图,直线AB∠CD,BC平分∠ABD,∠1=65°,求∠2的度数.17.如图,已知AB∠DE∠CF,若∠ABC=70°,∠CDE=130°,求∠BCD的度数.参考答案:1.C2.B3.A4.A5.50°6.70°7.B8.C9.42°10.解:∠AD∠BC,∠A=115°,∠D=100°,∠∠B=180°-∠A=180°-115°=65°,∠C=180°-∠D=180°-100°=80°.11.D12.D13.A14.270°15.35°16.解:∠直线AB∠CD,∠1=65°,∠∠ABC=∠1=65°.∠BC平分∠ABD,∠∠ABD=2∠ABC=130°.∠直线AB∠CD,∠∠ABD+∠BDC=180°.∠∠2=∠BDC=180°-∠ABD=180°-130°=50°. 17.解:∠AB∠CF,∠ABC=70°,∠∠BCF=∠ABC=70°.又∠DE∠CF,∠CDE=130°,∠∠DCF+∠CDE=180°.∠∠DCF=50°.∠∠BCD=∠BCF-∠DCF=70°-50°=20°.5.3.2 命题、定理、证明1.下列语句中,是命题的是()∠若∠1=60°,∠2=60°,则∠1=∠2;∠同位角相等吗?∠画线段AB=CD;∠如果a>b,b>c,那么a>c;∠直角都相等.A.∠∠∠ B.∠∠∠ C.∠∠∠ D.∠∠∠∠2.把“垂直于同一条直线的两条直线平行”改写成“如果……那么……”的形式是____________ ___________________________________________________________3.把下列命题改写成“如果……那么……”的形式,并分别指出它们的题设和结论:(1)两点确定一条直线;(2)同角的补角相等;(3)两个锐角互余.4.下列说法错误的是()A.命题不一定是定理,定理一定是命题B.定理不可能是假命题C.真命题是定理D.如果真命题的正确性是经过推理证实的,这样得到的真命题就是定理5.下列命题:∠若|a|>|b|,那么a2>b2;∠两点之间,线段最短;∠对顶角相等;∠内错角相等.其中真命题的个数是()A.1个B.2个C.3个D.4个6.下列命题中,是假命题的是()A.相等的角是对顶角B.垂线段最短C.同一平面内,两条直线的位置关系只有相交和平行两种D.两点确定一条直线7.判断下列命题的真假,是假命题的举出反例.∠两个锐角的和是钝角;∠一个角的补角大于这个角;∠不相等的角不是对顶角.8.如图,BD平分∠ABC,若∠BCD=70°,∠ABD=55°.求证:CD∠AB.9.把下列命题写成“如果……那么……”的形式,并判断其真假.(1)等角的补角相等;(2)不相等的角不是对顶角;(3)相等的角是内错角.10.下列说法正确的是()A.“作线段CD=AB”是一个命题B.过一点作已知直线的平行线有一条且只有一条C.命题“若x=1,则x2=1”是真命题D.所含字母相同的项是同类项11.下列命题中,是真命题的是()A.若|x|=2,则x=2 B.平行于同一条直线的两条直线平行C.一个锐角与一个钝角的和等于一个平角D.任何一个角都比它的补角小12.“直角都相等”的题设是_______________________,结论是_______________________ 13.已知:如图,C,D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF∠AB.(1)求证:CE∠DF;(2)若∠DCE=130°,求∠DEF的度数.参考答案:1.A2.如果两条直线垂直于同一条直线,那么这两条直线平行3.解:(1)如果在平面上有两个点,那么过这两个点能确定一条直线.题设:在平面上有两个点;结论:过这两个点能确定一条直线.(2)如果两个角是同角的补角,那么它们相等.题设:两个角是同角的补角;结论:这两个角相等.(3)如果两个角是锐角,那么这两个角互余.题设:两个角是锐角;结论:这两个角互余.4.C5.C6.A7.解:∠假命题.反例为:30°与40°的和为70°.∠假命题.反例为:120°的补角为60°.∠真命题.8.证明:∠BD平分∠ABC,∠ABD=55°,∠∠ABC=2∠ABD=110°.又∠∠BCD=70°,∠∠ABC+∠BCD=180°.∠CD∠AB.9.解:(1)如果两个角是两个相等的角的补角,那么这两个角相等.是真命题.(2)如果两个角不相等,那么这两个角不是对顶角.是真命题.(3)如果两个角相等,那么这两个角是内错角.是假命题.10.C11.B12.两个角是直角这两个角相等13.解:(1)证明:∠C,D是直线AB上两点,∠∠1+∠DCE=180°.∠∠1+∠2=180°,∠∠2=∠DCE.∠CE∠DF.(2)∠CE∠DF,∠DCE=130°,∠∠CDF=180°-∠DCE=180°-130°=50°.∠DE平分∠CDF,∠∠CDE=12∠CDF=25°.∠EF∠AB,∠∠DEF=∠CDE=25°.5.4 平移1.下列现象不属于平移的是()A.飞机起飞前在跑道上加速滑行B.汽车在笔直的公路上行驶C.游乐场的过山车在翻筋斗D.起重机将重物由地面竖直吊起到一定高度2.在A、B、C、D四个选项中,能通过如图所示的图案平移得到的是()3.如图,将直线l1沿AB的方向平移得到l2,若∠1=40°,则∠2=()A.40° B.50° C.90° D.140°4.如图所示,四幅汽车标志设计中,能通过平移得到的是()5.如图所示,∠FDE经过怎样的平移可得到∠ABC()A.沿射线EC的方向移动DB长B.沿射线CE的方向移动DB长C.沿射线EC的方向移动CD长D.沿射线BD的方向移动BD长6.将长度为5 cm的线段向上平移10 cm所得线段长度是()A.10 cm B.5 cm C.0 cm D.无法确定7.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′=____________.8.如图,三角形A′B′C′是由三角形ABC沿射线AC方向平移2 cm得到,若AC=3 cm,则A′C =____________.9.如图,三角形DEF是三角形ABC平移所得,观察图形:(1)点A的对应点是点________,点B的对应点是点________,点C的对应点是点________;(2)线段AD,BE,CF叫做对应点间的连线,这三条线段之间有什么关系呢?10.如图,在6×6方格中有两个涂有阴影的图形M,N,图1中的图形M平移后位置如图2所示,以下对图形M的平移方法叙述正确的是()图1图2A.向右平移2个单位,向下平移3个单位B.向右平移1个单位,向下平移3个单位C.向右平移1个单位,向下平移4个单位D.向右平移2个单位,向下平移4个单位11.如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长12.如图,现将四边形ABCD沿AE进行平移,得到四边形EFGH,则图中与CG平行的线段有()A.0条B.1条C.2条D.3条13.如图,4根火柴棒形成象形“口”字,只通过平移火柴棒,原图形能变成的汉字是()14.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3=____________.参考答案:1.C2.C3.A4.A5.A6.B7.58. 1 cm9.(1)D E F(2)解:AD∠BE∠CF,AD=BE=CF.10.B11.D12.D13.B14.110°第六章实数6.1.1 算术平方根1.25的算术平方根是()A.5 B.-5 C.±5 D.5 29=()A.2 B.3 C.4 D.53.14的算术平方根是()A.12B.-12 C.116D.±124.0.49的算术平方根的相反数是()A.0.7 B.-0.7 C.±0.7 D.0 5.(-2)2的算术平方根是()A.2 B.±2 C.-2 D.2 6.下列式子没有意义的是()A.-3B.0C. 2D.(-1)2 7.下列说法正确的是()A.因为52=25,所以5是25的算术平方根B.因为(-5)2=25,所以-5是25的算术平方根C.因为(±5)2=25,所以5和-5都是25的算术平方根D.以上说法都不对8.求下列各数的算术平方根:(1)144;(2)1;(3)1625;(4)0.9.求下列各式的值:(1)64;121225;(3)108;(4)(-3)2.10.一个正方形的面积为50平方厘米,则正方形的边长约为()A.5厘米B.6厘米C.7厘米D.8厘米11.设n为正整数,且n<65<n+1,则n的值为()A.5 B.6 C.7 D.812.比较大小:4________15(用“>”或“<”号填空).13.设a-3是一个数的算术平方根,那么()A.a≥0 B.a>0 C.a>3 D.a≥3 14.下列整数中,与30最接近的是()A.4 B.5 C.6 D.715.16的算术平方根是()A.±4 B.4 C.±2 D.216.若一个数的算术平方根等于它本身,则这个数是()A.1 B.-1 C.0 D.0或1 17.下列说法中:∠一个数的算术平方根一定是正数;∠100的算术平方根是10,记为±100=10;∠(-6)2的算术平方根是6;∠a2的算术平方根是a. 正确的有()A.1个B.2个C.3个D.4个18.已知一个表面积为12 dm2的正方体,则这个正方体的棱长为()A.1 dm B. 2 dm C. 6 dm D.3 dm19.若一个数的算术平方根是11,则这个数是_____________.20.若x-3的算术平方根是3,则x=_____________.21.若数m,n满足(m-1)2+n+2=0,则(m+n)5=_____________.参考答案:1.A2.B3.A4.B5.A6.A7.A8.12 1 4509.8 1115104310.C11.D12.>13.D14.B15.D16.D17.A18.B19.1120.1221.-16.1.2 平方根1.9的平方根是()A.±3 B.±13C.3 D.-32.±2是4的()A.平方根B.相反数C.绝对值D.算术平方根3.下面说法中不正确的是()A.6是36的平方根B.-6是36的平方根C.36的平方根是±6 D.36的平方根是64.下列说法正确的是()A.任何非负数都有两个平方根B.一个正数的平方根仍然是正数C.只有正数才有平方根D.负数没有平方根5.(-2)2的平方根是()A.2 B.-2 C.±2 D.26.填表:7.计算:±425=_______,-425=_______,425=_______.8.求下列各数的平方根:(1)100 (2)0.008 1;(3)25 36.9.下列各数是否有平方根?若有,求出它的平方根;若没有,请说明理由.(1)(-3)2;(2)-42;(3)-(a2+1).10.下列说法不正确的是()A.21的平方根是±21 B.49的平方根是23C.0.01的算术平方根是0.1 D.-5是25的一个平方根11.下列式子中,计算正确的是()A.- 3.6=-0.6 B.(-13)2=-13C.36=±6 D.-9=-312.求下列各数的平方根与算术平方根:(1)(-5)2;(2)0;(3)-2;(4)16.13.求下列各式的值:(1)225;(2)-3649;(3)±144121.14.下列说法正确的是()A.-8是64的平方根,即64=-8 B.8是(-8)2的算术平方根,即(-8)2=8 C.±5是25的平方根,即±25=5 D.±5是25的平方根,即25=±515.81的平方根是()A.±3 B.3 C.±9 D.916.若x2=16,则5-x的算术平方根是()A.±1 B.±4 C.1或9 D.1或317.如果某数的一个平方根是-6,那么这个数的另一个平方根是_______,这个数是________.18.若x+2=3,求2x+5的平方根_________.19.已知25x2-144=0,且x是正数,求25x+13的值.20.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根.参考答案:1-5 AADDC7. ±25,-25,25.8.±10 ±0.09 ±5 69.(1)±3. (2)没有平方根,因为-42是负数.(3)没有平方根,因为-(a2+1)是负数.10.B11.D12.解:平方根分别是:(1)±5;(2)0;(3)没有平方根;(4)±2. 算术平方根分别是:(1)5;(2)0;(3)没有算术平方根;(4)2. 13.(1) 解:∠152=225,∠225=15. (2) 解:∠(67)2=3649,∠-3649=-67.(3) 解:∠(1211)2=144121,∠±144121=±1211. 14.B 15.A 16.D17.6 3618. 19.解:由25x 2-144=0,得x =±125.∠x 是正数,∠x =125.∠25x +13=25×125+13=2×5=10.20.解:依题意,得2a -1=9且3a +b -1=16,∠a =5,b =2.∠a +2b =5+4=9. ∠a +2b 的平方根为±3.即±a +2b =±3.6.2 立方根1.64的立方根是( )A .4B .±4C .8D .±8 2.化简:38=( )A .±2B .-2C .2D .22 3.若一个数的立方根是-3,则该数为( )A .-33B .-27C .±33 D .±274.-8等于()A.2 B.2 3 C.-12D.-25.下列结论正确的是()A.64的立方根是±4 B.-18没有立方根C.立方根等于本身的数是0 D.3-216=-32166.下列计算正确的是()A.30.012 5=0.5 B.3-2764=34C.3338=112D.-3-8125=-257.下列说法正确的是()A.如果一个数的立方根是这个数本身,那么这个数一定是0 B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是08.-64的立方根是___________,-13是___________的立方根.9.若3a=-7,则a=___________.10.-338的立方根是___________.11.求下列各数的立方根:(1)0.216;(2)0;(3)-21027;(4)-5.12.求下列各式的值:(1)30.001 (2)3-343125(3)-31-1927.13.(-1)2的立方根是( )A .-1B .0C .1D .±1 14.下列说法正确的是( )A .一个数的立方根有两个,它们互为相反数B .一个数的立方根比这个数平方根小C .如果一个数有立方根,那么它一定有平方根 D.3a 与3-a 互为相反数 15.38的算术平方根是( )A .2B .±2 C. 2 D .±2 16.若a 2=(-5)2,b 3=(-5)3,则a +b 的值为( )A .0B .±10C .0或10D .0或-10 17.若x -1是125的立方根,则x -7的立方根是___________. 18.求下列各式中的x :(1)8x 3+125=0; (2)(x +3)3+27=0.参考答案:1-7 ACBDDCD 8.-4 -127 9.-343 10.-3211.(1)解:∠0.63=0.216,∠0.216的立方根是0.6,即30.216=0.6. (2)解:∠03=0,∠0的立方根是0,即30=0.(3)解:∠-21027=-6427,且(-43)3=-6427, ∠-21027的立方根是-43,即3-21027=-43. (4)解:-5的立方根是3-5.12.0.1 -75 -23 13.C 14.D 15.C 16.D 17.-118.(1)解:8x 3=-125,x 3=-1258,x =-52.(2)解:(x +3)3=-27,x +3=-3, x =-6.6.3 实数1.下列实数中,是有理数的为( )A. 2B.34 C .π D .0 2.下列各数是无理数的是( )A .0B .-1 C. 2 D.373.下列各数中,3.141 59,-38,0.131 131 113…,-π,25,-17,无理数的个数有( )A .1个B .2个C .3个D .4个 4.下列说法:∠有理数都是有限小数;∠有限小数都是有理数;∠无理数都是无限不循环小数;∠无限小数都是无理数,正确的是()A.∠∠ B.∠∠ C.∠∠ D.∠∠5.在下列各数中,选择合适的数填入相应的集合中.-15,39,π2,3.14,-327,0,-5.123 45…,0.25,-32.(1)有理数集合:{ …};(2)无理数集合:{ …};(3)正实数集合:{ …};(4)负实数集合:{ …}.6.和数轴上的点一一对应的是()A.整数B.有理数C.无理数D.实数7.-34的倒数是()A.43 B.34C.-34D.-4385的绝对值是()A.- 5 B. 5 C.15D.-159.下列四个实数中最大的是()A.-5 B.0 C.π D.3 10.2的相反数是____________,绝对值是____________.11.写出下列各数的相反数与绝对值.3.5,-6,π3,2-3.12.计算32-2的值是()A.2 B.3 C. 2 D.2213.计算364+(-16)的结果是()A.4 B.0 C.8 D.1214.计算:(1)33-53; (2)||1-2+||3-2.15.下列各组数中互为相反数的一组是( )A .-|-2|与3-8 B .-4与-(-4)2 C .-32与|3-2| D .-2与1216.下列等式一定成立的是( )A.9-4= 5B.||1-3=3-1C.9=±3 D .-(-9)2=9 17.化简:3(1-3)=____________,7(1-17)=____________. 18.点A 在数轴上和原点相距3个单位,点B 在数轴上和原点相距5个单位,则A ,B 两点之间的距离是__________________________.19.计算:(1)23+32-53-32; (2)|3-2|+|3-1|.参考答案:1.D 2.C 3.B 4.C5.(1)-15,3.14,-327,0,0.25,(2)39,π2,-5.123 45…,-32, (3)39,π2,3.14,0.25,(4)-15,-327,-5.123 45…,-32,6.D7.D8.B9.C10.- 2 211.解:12.D13.B14.(1)解:原式=(3-5)3=-2 3.(2)解:原式=2-1+3-2=3-1.15.C16.B17.3-3 7-118.3+5或3-519.(1)解:原式=(2-5)3+(3-3)2=-3 3.(2)解:原式=2-3+3-1=1.第七章平面直角坐标系7.1.1 有序数对1.用7和8组成一个有序数对,可以写成()A.(7,8) B.(8,7) C.7,8或8,7 D.(7,8)或(8,7) 2.一个有序数对可以()A.确定一个点的位置B.确定两个点的位置C.确定一个或两个点的位置D.不能确定点的位置3.下列关于有序数对的说法正确的是()A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2)与(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置4.下列有污迹的电影票中能让小华准确找到座位的是()5.用有序数对(2,9)表示某住户住2单元9号房,请问(3,11)表示住户住____单元_____号房.6.根据下列表述,能确定位置的是()A.红星电影院第2排B.北京市四环路C.北偏东30° D.东经118°,北纬40°7.电影院里的座位按“×排×号”编排,小明的座位简记为(12,6),小菲的位置简记为(12,12),则小明与小菲坐的位置为()A.同一排B.前后同一条直线上C.中间隔六个人D.前后隔六排8.小敏的家在学校正南方向150 m,正东方向200 m处,如果以学校位置为原点,以正北、正东为正方向,则小敏家用有序数对(规定:东西方向在前,南北方向在后)表示为()A.(-200,-150) B.(200,150) C.(200,-150) D.(-200,150) 9.如图是某电视塔周围的建筑群平面示意图,这个电视塔的位置用A表示.某人由点B出发到电视塔,他的路径表示错误的是(注:街在前,巷在后)()A.(2,2)→(2,5)→(5,6) B.(2,2)→(2,5)→(6,5)C.(2,2)→(6,2)→(6,5) D.(2,2)→(2,3)→(6,3)→(6,5)10.若图中的有序数对(4,1)对应字母D,有一个英文单词的字母顺序对应图中的有序数对为(1,1),(2,3),(2,3),(5,2),(5,1),则这个英文单词是__________.11.如图所示,围棋盘的左下角呈现的是一局围棋比赛中的几手棋,为记录棋谱方便,横线用数字表示,纵线用英文字母表示,这样,黑棋∠的位置可记为(C,4),白棋∠的位置可记为(E,3),则黑棋∠的位置应记为__________.12.如图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么C的位置是()A.(4,5) B.(5,4) C.(4,2) D.(4,3)13.钓鱼岛及其附属岛屿自古以来就是中国的固有领土,在明代钓鱼岛纳入中国疆域版图.能够准确表示钓鱼岛这个地点的是()A.北纬25°40′~26° B.东经123°~124°34′C.福建的正东方向D.东经123°~124°34′,北纬25°40′~26°14.如图,雷达探测器测得六个目标A,B,C,D,E,F出现,按照规定的目标表示方法,目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法在表示目标A,B,D,E 的位置时,其中表示不正确的是()A.A(5,30°) B.B(2,90°) C.D(4,240°) D.E(3,60°) 15.若将正整数按如图所示的规律排列.若用有序数对(a,b)表示第a排,从左至右第b个数.例如(4,3)表示的数是9,则(7,2)表示的数是__________.16.如图,在国际象棋的棋盘上,左右两边标有数字1至8,上下两边标有字母a至h,如果黑色的国王棋子的位置用(d,3)来表示,白色的马棋子的位置用(g,5)来表示,请你分别写出棋盘中其他三个棋子的位置,分别是______________________.参考答案:1.D2.A3.C。
《新课程课堂同步练习册人教版七年级下册数学》参考答案§5.1.1相交线一、选择题1.C 2.D 3.B 4.D二、填空题1.∠AOD、∠AOC或∠BOD 2.145°3.135°4.35°三、解答题1.解:(图7)因为∠2=30°,所以∠1=30°(对顶角相等)又,所以∠3=2∠1=60°所以∠4=∠3=60°(对顶角相等)2.解:(图8)(1)因为,又(对顶角相等)所以因为所以所以(对顶角相等)(2)设则,由+=180°,可得,解得,所以3.解:(图9)AB、CD相交于O 所以∠AOD与∠BOD互为邻补角所以∠AOD+∠BOD=180°,又OE是∠AOD的平分线,所以∠1=∠AOD,同理∠2=∠BOD所以∠1+∠2=∠AOD+∠BOD=(∠AOD+∠BOD)=×180°=90°即∠EOF的度数为90°§5.1.2垂线一、选择题1.D 2. B 3.C二、填空题1.不对2.40°3.互相垂直4.180°三、解答题1.答:最短路线为线段AB,设计理由:垂线段最短.2.解:由题意可知∠1+∠2=90°,又∠1-∠2=54°所以2∠1=144°所以∠1=72°,所以∠2=90°-∠1=18°3.解:(图7)(1)因为,所以,又,所以,所以,又是的平分线,所以==45°(2)由(1)知==45°,所以=90°所以与互相垂直.§5.1.3同位角、内错角、同旁内角一、选择题1.D 2.B 3.B 4.C二、填空题1.AB内错角2. AB 、CD 、AD 3. DE 、BC 、AB 、同位角4.同位角、内错角、同旁内角三、解答题1.答:∠ABC与∠ADE构成同位角,∠CED与∠ADE构成内错角,∠A、∠AED分别与∠ADE构成同旁内角;∠ACB与∠DEA构成同位角,∠BDE与∠DEA构成内错角,∠A、∠ADE分别与∠DEA构成同旁内角.2.答:图中共有5对同旁内角,它们分别是:∠ABC 与∠BAC、∠ABC与∠BAD、∠ACB与∠BAC 、∠ACB与∠CAE、∠ABC与∠ACB3.答:∠1与∠2是直线AC截直线AE、BD形成的同位角;∠2与∠3是直线BD截直线AC、DE形成的内错角;∠3与∠4是直线BD截直线AC、DE形成的同旁内角.§5.2.1平行线一、选择题1.D 2.C 3.A 4..A二、填空题1.2.相交3.经过直线外一点,有且只有一条直线与这条直线平行.三、解答题1.略2.(1)略(2)a//c§5.2.2平行线的判定(一)一、选择题1.B 2.C 3..C 4.A二、填空题1.∠4,同位角相等,两直线平行;∠3,内错角相等,两直线平行.2.∠1,∠BED 3.答案不唯一,合理就行4.70°三、解答题1.答:,因为∠1=50°,所以∠2=130°(邻补角定义),又∠3=130°,所以∠2=∠3,所以(内错角相等,两直线平行)2.(图1)答:AB∥CD,因为∠1=∠2,且∠1+∠2=90°,所以∠1=∠2=45°,因为∠3=45°,所以∠2=∠3,所以AB∥CD§5.2.2平行线的判定(二)一、选择题1.C 2.A 3.A 4.D二、填空题1.∠2 内错角相等,两直线平行;∠4 同旁内角互补,两直线平行2.BC//AD;BC//AD;∠BAD;∠BCD(或∠3+∠4);3. AB//CD 同位角相等,两直线平行;∠C,内错角相等,两直线平行;∠BFE,同旁内角互补,两直线平行.三、解答题1.答:AB//CD AD//BC,因为∠A+∠B=180°所以AD//BC (同旁内角互补,两直线平行),又∠A=∠C,所以∠C +∠B=180°,所以AB//CD(同旁内角互补,两直线平行)2.解:AB//CD,∵∠APC=90°∴∠1+∠2=90°,∵AP、CP分别是∠BAC和∠ACD的平分线,∴∠BAC=2∠1,∠ACD=2∠2,∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2)=180°∴AB//CD(同旁内角互补,两直线平行)§5.3.1 平行线的性质(一)一、选择题1.C 2.C 3.C二、填空题1. 50° 2. 25° 3. 60三、解答题1.已知;垂直的性质;等量代换,同位角相等,两直线平行;两直线平行,同位角相等;已知;等量代换;内错角相等,两直线平行.2.解:延长BA交CE于点F,因为AB//CD,∠C=52°,所以∠EFB=∠C=52°(两直线平行,同位角相等),又∠E=28°,所以∠FAE=180°―∠E―∠C =100°所以∠EAB=80°(邻补角定义)§5.3.1 平行线的性质(二)一、选择题1.D 2.A 3.B 4.D二、填空题1. 80° 2. 65° 3. 90°三、解答题1.解:延长梯形玉片图形的两腰及下底,构造出玉片原图如图8所示,∵AD//BC,∴∠1+∠A=180°∠2+∠D=180°(两直线平行,同旁内角互补)又∠A=115°,∠D=100°,∴∠1 =180°-∠A=65°∠2 =180°-∠D=80°即梯形玉片另外两个角的度数分别是65°、80°.2.解:∵∠END=50°(已知)又AB//CD,(已知)∴∠BMF+∠END =180°(两直线平行,同旁内角互补),又∵MG平分∠BMF(已知)∴,而AB//CD(已知)∴∠1=∠BMG=65°(两直线平行,内错角相等)§5.3.2 命题、定理一、选择题1.A 2.D 3.C二、填空题1.如果两个角是对顶角,那么它们相等;2.“题设:一个三角形是直角三角形,结论:它的两个锐角互余.”3.如∠A=50°∠B=60°则∠A+∠B>90°(答案不唯一,只要写出两个角,它们的和大于或等于均可;但不写∠A+∠B≥90°.)4.①③④三、解答题1. (1) 答:在同一个平面内,如果两条直线都和第三条直线垂直,那么这两条直线互相平行.这个命题是真命题.(2) 答:如果两个角是同旁内角,那么这两个角互补.这个命题是假命题. (3) 答:如果几个角相等,那么它们的余角相等;或者,如果几个角是等角的余角,那么这几个角相等.这个命题是真命题.2.(1)答:是命题,题设是:两直线平行线被第三条直线所截;结论是:内错角相等.(2)答:不是命题.(3)答:不是命题.(4)答:是命题,题设是:两个角互为邻补角;结论是:这两个角的平分线互相垂直.或者,题设是:两条射线是两个互为邻补角的角的平分线;结论是:这两条角平分线互相垂直.3.答:这个说法是正确的,根据题意作出右图,如图所示.则有AB//CD,EP是∠BEF的平分线,FP是∠DFE的平分线.∵AB//CD∴∠BEF+∠DFE=180°(两直线平行,同旁内角互补)又∵EP与FP分别是∠BEF与∠DFE的平分线,∴∠BEF=2∠2∠DFE=2∠1,∴2∠2 +2∠1=180°,∴∠1 +∠2=90°,∴∠P=90°∴EP⊥FP,即“两条平行线被第三条直线所截,则同旁内角的角平分线互相垂直.”说法正确.§5.4平移 (一)一、选择题1.D 2.A 3.A二、填空题1. 5cm 2.2 3.形状与大小相等4.70°、 50°、 60°、60°三、解答题1.图略2.(如图5),相等的线段:,,;相等的角:,,;平行的线段:,,3.答:线段AB平移成线段EF、HG与CD;线段AE可以由线段BF、CG或DH平移得到;FG不能由AE或EF平移得到.§5.4平移 (二)一、选择题1.D 2.B 3.D 4.C二、填空题1.60°、8cm 2.一只小鸟 3.36平方单位 4.16cm三、解答题1.图略2.解:由楼梯侧面可以知道,可将楼梯水平方向的线段向下平移到线段AC上,将楼梯竖直方向的线段向右平移到线段BC上则所需地毯总长度刚好等于线段AC加上线段BC 的长,即6+2.8=8.8米,其面积为8.8×2=17.6 m2,所以购买地毯至少需要17.6×50=880元.3.解:当AB在线段CD上向上或向下平移时, S1·S4 =S2 ·S3因为S1 =AP·PC,S4 =DP·BP;S2=DP·AP,S3=BP·PCS1·S4=AP·PC·DP·BP, S2 ·S3=DP·AP·BP·PC所以S1 ·S4 =S2·S第6章平面直角坐标系§6.1.1有序数对一、选择题1. D2. C3. A4. A二、填空题1.两2.(5,6)2.组4号3. (9,12) ,不同4.(19,110)三、解答题 1.(1).B(4,0) C(6,0) D(7,2) E(6,3)(2).8 2.3个格.3.解:如图所示的是最短路线的6种走法.一、选择题1.D2.B3.B4.C二、填空题1.二三y轴上2. 有序数对横坐标纵坐标3.负数负数正数4. 72三、解答题1.略 2.图略 3.略§6.1. 2平面直角坐标系(二)一、选择题1.A2.B3.A4.C二、填空题 1.二三(-1,-2)2. 三四(1,-2)3.(0,0)纵横 4. 72三、解答题1.略 2. 解:因为a2+1 0,-1-b2 0,所以点A在第四象限. 3.(1) a=1,b=3(2) a= - 3, b=1§6.2.1用坐标表示地理位置一、选择题1.B2.D3.C二、填空题1.∠BOA ∠COA2.110 3.正北三、解答题1. 正北,两家距离100米.2.图略.小玲家(-150,100),小敏家(200,300),小凡家(-300,150).3.解:李哲在湖心亭,丁琳在望春亭,张瑞在游乐园.图略.他们三人到望春亭集合,三人所行路程之和最短.§6.2.2用坐标表示平移一、选择题1.B2.D3.A4.D二、填空题1.(5,-3)(3,-6)2.(0,0)3.不变4.(-1,-2)三、解答题 1.A′(2,3),B′(1,0),C′(5,1).2.(1)略(2)四边形ABCD的面积为6.5.第七章三角形§7.1.1 三角形的边一、选择题1、C 2 、B 3、 B二、填空题1、8 4 △BOC 、△BEC、△BDC 、△ABC 2、 5cm,7cm或6cm,6cm3、24、否因为任意两线段之和都大于第三条,这三条线段围成一个三角形.三、解答题1、不相信.这位同学的身高约1.65米,腿长大约不超过1米,根据三角形两边之和大于第三边,步子的长不可能有2米远.2、若小明家,小华家,学校位置在同一条直线上,S=1m 或5m;若三者不在同一直线上,根据三角形三边关系知1 S 5;所以S的范围为1m≤S ≤5m.3、因为a、b、c为△ABC的三边,所以a+b-c ≥0,b-c-a≤0 ,c-a-b≤0.原式=a+b-c-(b-c-a)+(c-a-b)= a+b-c -b+c+a+c-a-b= a-b+c§7.1.2三角形的高、中线与角平分线一、选择题1 、B 2、 C 3、D二、填空题1、ADBE 2、6 cm 40° 3、钝角 4、AD BC ∠ADB ∠ADC三、解答题1、解:△ABD 的周长=AB+AD+BD,△ACD 的周长=AC+AD+CD因为AD是△ABC的中线,所以 BD=CD,△ABD与△ACD 的周长之差= AB -AC=8-5=3(cm)2、如右图:3、解:AD=2CE.因为,而 AB=2BC所以AD=2CE§7.1.3 三角形的稳定性一、选择题1、A 2、 A 3 A二、填空题1、三角形具有稳定性2、三角形具有稳定性3、三角形具有稳定4、三角形具有稳定三、简答题1、答案不唯一.2、答案不唯一.3、答案不唯一.§7.2.1三角形的内角一、选择题1、D 2 、C 3 、 A二、填空题1、20°60° 100° 2、60°3、40°或100°4、40°三、简答题1、解:设∠A=x°,则∠B=15°+ x°,∠C=15°+ x°+ 45°=60°+ x°因为∠A+∠B +∠C=180°,所以x°+15°+ x°+60°+ x°=180°,解得x=35,∠C=95°2 、解:因为∠C+∠1+∠2=180°, ∠C+∠B+∠A=180°所以∠1+∠2=60°+50°=110°3解:在△ABC中,∠BAC=180°-∠B-∠C=180°-65°-45°=70°,因为AE是∠BAC的角平分线,所以∠BAE=∠BAC=×70°=35°.因为AD⊥BC,所以∠ADB=90°. 在△ABD中, ∠BAD=180°-65°-90°=25°所以∠DAE=∠BAE -∠BAD=35°-25°=10°§7.2.2三角形的外角一、选择题1、A 2D 3 B二、填空题1、105° 2、 85°3、 80° 4、165三、简答题1、如图,根据三角形的一个外角等于与它不相邻的两个内角的和,知:∠1=∠B+∠D,∠2=∠A+∠C,而∠1+ ∠2+∠E=180°,所以∠A+∠B+∠C+∠D+∠E=180°2、因为DF⊥AB,所以∠BFD =90°在△BFD中,∠B=180°-∠D-∠BFD =180°-45°-90°=45°,在△ABC中, ∠BCA=180°-∠A-∠B=180°-40°-45°=95°3、∠AEB>∠CED.理由:根据三角形的一个外角大于与它不相邻的任何一个内角,知∠AEB >∠ACB ,∠ACB >∠CED,所以∠AEB >∠CED.§7.3.1 多边形一、选择题1 、A. 2 、B 3、B二、填空题1、(n-3)(n-2);2、120°; 3、8 ;4、 433三、简答题1、图略2、180°×3=540°3、因为360°÷30°=12,所以他一共左转了12次,12×10=120,一共走了120米.§7.3.2 多边形的内角和一、选择题1 、C 2、 D 3、D二、填空题1、900 ; 2、8; 3、135 ;4、 90°、90°、120°、60°三、简答题1、因为多边形的外角和等于360 o,360o ÷72o=5,所以该多边形的边数为5;五边形内角和为(5-2)×180°=540°.2、设该正多边形的一个外角为x,则每一个内角为(x +60°),相邻的内角与外角互补,所以(x+60°)+x=180°,解得x=60°,即每个外角为60°,因为多边形的外角和等于360°,360°÷60°=6,所以这个多边形的边数为6.3、因为多边形的内角和都是180°的倍数,且每个外角的范围是大于0°小于180°,1340°=180°×7﹢80°,所以这个多边形的边数为7﹢2=9,这个外角的度数为80°§7.4课题学习镶嵌一、选择题1 、C 2、A 3、A二、填空题1、3 ; 2、3 3、4或5 4、12三、解答题1、不能.因为正十边形的内角和为(0-2)180°=1440°,1440°÷10=144°,144°的整数倍得不到360°所以用正十边形不能铺满地面.2、能,需要6个;也能,需要4个.3、正方形和正八边形组合能镶嵌成平面图案.因为正方形的每个内角为90°,正八边形的每个内角为135°,90°+2×135°=360°,所以正方形和正八边形组合能镶嵌成平面图案;用正方形和正六边形不能镶嵌成平面图案.因为找不到正整数m、n,使得,所以不能.第8章二元一次方程组§8.1二元一次方程组一、选择题 1.B2.B3.A二、填空题1.2.2,-13. 无数,无数;4.三、解答题 1.解:设小华买了x千克香蕉,y千克苹果,依题意可得2.解:设这个学校有x个班,这批图书有y本,依题意可得3.解:设甲原来有羊x只,乙原来有羊y只,依题意可得§8.2消元——二元一次方程组的解法(一)一、选择题1.C 2.B 3.A二、填空题1.-1 2. , 3. 1,4 4.7,2三、解答题1.(1)(2)(3)(4)2. 这个学生有中国邮票216张,外国邮票109张.§8.2消元——二元一次方程组的解法(二)一、选择题1.C 2.D 3.B二、填空题1.2.3. 4,-14.-16三、解答题1.(1)(2)(3)(4)。
七年级数学(下)第五章《相交线与平行线——垂线》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.过一条线段外一点,作这条线段的垂线,垂足在A.这条线段上B.这条线段的端点处C.这条线段的延长线上D.以上都有可能【答案】D2.过点P向线段AB所在直线引垂线,正确的是.A.B.C.D.【答案】C【解析】过点P向线段AB所在直线引垂线,根据画一条线段或射线的垂线,就是画它们所在直线的垂线,符合要求的只有选项C,故选C.3.如图所示,已知ON⊥l,OM⊥l,所以OM与ON重合,其理由是A.过两点有且只有一条直线B.过一点只能作一条直线C.在同一平面内,经过一点有且只有一条直线与已知直线垂直D.垂线段最短【答案】C【解析】已知ON⊥l,OM⊥l,所以OM与ON重合,理由是在同一平面内,经过一点有且只有一条直线与已知直线垂直,故选C.二、填空题:请将答案填在题中横线上.4.如图所示,直线AB与直线CD的位置关系是__________,记作__________,此时,∠AOD=∠__________ =∠__________=∠__________=90°.【答案】垂直,AB⊥CD,DOB,BOC,COA5.如图,BO⊥AO,∠BOC与∠BOA的度数之比为1∶5,那么∠COA=__________,∠BOC的补角为__________度.【答案】72°,162【解析】∵BO⊥AO,∴∠AOB=90°,∵∠BOC与∠BOA的度数之比为1∶5,∴∠BOC=18°,∴∠COA=∠BOA–∠BOC=90°–18°=72°.∠BOC的补角为180°–18°=162°.三、解答题:解答应写出文字说明、证明过程或演算步骤.6.如图,已知钝角∠AOB,点D在射线OB上.(1)作直线DE⊥OB;(2)作直线DF⊥OA,垂足为F. 【解析】根据垂直的定义作图即可.如图所示:7.如图所示,O是直线AB上一点,∠AOC=13∠BOC,OC是∠AOD的平分线.(1)求∠COD的度数.(2)判断OD与AB的位置关系,并说出理由.。
人教版七年级下册数学第五章相交线与平行线 5.1.2 垂线习题练习(附答案)1、在直线AB上任取一点O,过点O作射线OC,OD,使OC⊥OD,当∠AOC=30°时,∠BOD等于( )A. 60°B. 120°C. 60°或90°D. 60°或120°2、如图,已知直线AB和CD相交于点O,OE⊥AB,OF平分∠DOB.若∠EOF=107.5°,则∠1的度数为( )A. 70°B. 65°C. 55°D. 45°3、如图,在平面内作已知直线m的垂线,可作垂线的条数有()A. 0条B. 1条C. 2条D. 无数条4、如图,直线l是一条河,P、Q两地相距8千米,P、Q两地到l的距离分别为2千米,5千米,欲在l上的某点M处修建一个水泵站,向P、Q两地供水.现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是()A. B.C. D.5、下列说法中,正确的是( )A. 有公共顶点,且方向相反的两个角是对顶角B. 有公共点,且又相等的角是对顶角C. 两条直线相交所成的角是对顶角D. 角的两边互为反向延长线的两个角是对顶角6、如图,直线AB,CD相交于O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于( )A. 20°B. 30°C. 35°D. 40°7、直线AB上有一点O,OM⊥AB于O,另有直角∠COD在平角∠AOB内绕O点左右摆动(OC与OA、OD与OB不重合),在摆动时,始终与∠MOD保持相等的角是()A. ∠BODB. ∠AOCC. ∠COMD. 没有8、如图,AB、CD相交于点O,EO⊥AB于O,则图中∠1与∠2的关系是()A. 互余的两角B. 互补的两角C. 对顶角D. 一对相等的角9、如图,点O为直线AB上一点,OC⊥OD,如果∠1=35∘,那么∠2的度数是()A. 35°B. 45°C. 55°D. 65°10、已知,AD⊥BD,AE⊥BE且AD=3,BE=4,CD=2,BC=5,则点B到AC的距离为,点A到BC的距离为,点B到AD的距离为.11、如图,当∠1和∠2满足(只需填一个条件)时,OA⊥OB.12、如图所示,AC⊥l1,AB⊥l2,垂足分别为A,B,则A点到直线l2的距离是线段的长,线段AC的长是点到直线的距离.13、如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB的方位角是.14、∠α与∠β的两边互相垂直,且∠α=50o,则∠β的度数为.15、随意画一个锐角∠MON和一个钝角∠M'O'N',分别画出∠MON 的平分线OP和∠M'O'N'的平分线O'P',如图.(1)在OP上任取一点A,画AB⊥OM,AC⊥ON,垂足分别为B,C;(2)在O'P'上任取一点A',画A'B'⊥O'M',A'C'⊥O'N',垂足分别为B',C';(3)通过度量线段AB,AC,A'B',A'C'的长度,发现ABAC,A'B'A'C'.(填“=”或“≠”)(4)通过上面的画图和度量,和同学们交流一下,你有什么猜想?请用一句话表示出来.16、如图,P是直线AB上一点,∠APC= 1∠BPC,∠CPD=2∠APC.5(1)求∠CPD的度数;(2)判断PD与AB的位置关系,并说明理由.17、如图,AB是一条河流,要铺设管道将河水引到C,D两个用水点,现有两种铺设管道的方案.方案一:分别过点C,D作AB的垂线,垂足分别为点E,F,沿CE,DF铺设管道;方案二:连接CD交AB于点P,沿PC,PD铺设管道.这两种铺设管道的方案哪一种更节省材料?为什么?18、如图,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,求∠DOG的度数.19、如图所示,射线OM与直线交于点O,OM平分∠AOB,求∠AOM 度数,并用符号表示OM与AB的位置关系.试卷答案1、D由图知有两种情况,在图①中,∠AOC+∠COD+∠BOD=180°. 因为∠AOC=30°,∠COD=90°,所以∠BOD=60°.在图②中,因为∠AOC=30°,∠COD=90°,所以∠AOD=60°.又因为∠AOD+∠BOD=180°,所以∠BOD=120°.2、C3、D解:在平面内,与已知直线垂直的直线有无数条,所以作已知直线的垂线,可作无数条.故选:D.4、A先分别计算出四个选项中铺设的管道的长度,再比较即可.A、PQ+QM=8+2=10km;B、∵QM+PM=PQ′2=82-(5-2)2+(5+2)2=104,∴PQ′=2√26km>10km;C、PM+QR=5+√82−(5−2)2>10;D、PM+QM=5+√32+82−(5−2)2>10.综上所述,A选项铺设的管道最短.故选A.此题为数学知识的应用,考查知识点为两点之间线段最短.5、D如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,根据对顶角的定义进行求解.因为一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,A选项,有公共顶点,且方向相反的两个角是对顶角,与对顶角定义不符,B选项,有公共点,且又相等的角是对顶角,与对顶角定义不符,C选项,两条直线相交所成的角是对顶角,与对顶角定义不符,D选项,角的两边互为反向延长线的两个角是对顶角,符合定义,故选D.本题主要考查对顶角的定义,解决本题的关键是要熟练掌握对顶角的定义. 6、C先根据OA平分∠COE,∠COE=70°,可得∠AOE=∠AOC=35°,再根据∠AOC 和∠BOD对顶角,可得∠AOC=∠BOD,即∠BOD=35°.因为OA平分∠COE,∠COE=70°,所以∠AOE=∠AOC=35°,又因为∠AOC和∠BOD对顶角,所以∠AOC=∠BOD,即∠BOD=35°.故选C.本题主要考查角平分线的定义和对顶角的性质,解决本题的关键是要熟练掌握角平分线的定义和对顶角的性质.7、B【分析】根据垂直的定义,得∠AOM=∠BOM=90°,再结合图形和同角的余角相等可得始终与∠MOD保持相等的角.【详解】∵OM⊥AB,∴∠AOM=∠BOM=90°.∴∠AOC+∠MOC=90°.∵∠COD是直角∴∠DOM+∠MOC=90°.∴∠DOM=∠AOC.故选:B【点睛】本题利用垂直的定义和同角的余角相等,要注意领会由垂直得直角这一要点.8、A【分析】由EO⊥AB于O,得∠AOE=90〬,由平角性质得∠1+∠2=180〬-90〬=90〬,故∠1与∠2互余.【详解】因为,EO⊥AB于O,所以,∠AOE=90〬所以,∠1+∠2=180〬-90〬=90〬,即∠1与∠2互余.故选:A【点睛】本题考核知识点:余角的定义,垂直定义. 解题关键点:理解余角的定义.9、C首先根据垂直的定义可知: ∠OCD=90∘,从而可得到∠1+∠2=90°,由∠1=35°,即可得出结果.∵OC⊥OD,∴∠OCD=90∘,∴∠1+∠2=90°,∵ ∠1=35∘,∴∠2=180∘−90∘−35∘=55∘;故选C.本题考查了垂直的定义和平角的定义,解题的关键是利用垂直的定义得到∠1+∠2=90°.10、 (1). 4 (2). 3 (3). 7根据点到直线的距离的定义判断即可.解:点B到AC的距离为BE,故是4;点A到BC的距离为CD,故是3;点B到AD的距离为BD,故是CD+BC=2+5=7;故答案为:4,3,7.本题考查了点到直线的距离,点到直线的距离是直线外的点与垂足之间线段的长.11、∠1+∠2=90°根据余角、补角的定义计算.解:∵∠1+∠2+∠AOB=180°,∴当∠1+∠2=90°时,∠AOB=90°,即OA⊥OB,故答案为:∠1+∠2=90°.本题利用了平角是180°求解.12、 (1). AB (2). C (3). l1找表示A点到直线L2距离的线段,要看准点A和直线L2再过A点作直线L2垂线,垂足应在直线L2上,线段AC的长要看垂足在l1上可得到答案.解:连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。
∴AB⊥l2,垂足为B;∴线段AB的长是A点到直线l2的距离;∴AC⊥l1,垂足为A,∴线段AC的长是C点到直线l1的距离.故答案为AB、C、l1、此题主要考查了点到直线的距离,正确把握定义是解题关键.13、北偏西60°根据垂直,可得∠AOB的度数,根据角的和差,可得答案.解:∵射线OB 与射线OA垂直,∴∠AOB=90°,∴∠1=90°-30°=60°,故射线OB的方向角是北偏西60°.本题考查的是方向角的概念,正确画出方位图、理解垂直的定义以及互余两角的关系是解题的关键.14、130°或50°【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.【详解】如图∵β的两边与α的两边分别垂直,∴α+β=180°故β=130°,在上述情况下,若反向延长∠β的一边,那么∠β的补角的两边也与∠α的两边互相垂直,故此时∠β=50;综上可知:∠β=50°或130°,故正确答案为:【点睛】本题考核知识点:四边形内角和. 解题关键点:根据题意画出图形,分析边垂直的2种可能情况.15、解: (1)如图.(2)如图.(3)= ; =(4)角平分线上的点到角两边的距离相等.16、∠BPC,解 :(1)因为平角∠APB=180°,∠APC= 15所以∠APC=180°÷6=30°.所以∠CPD=2∠APC=60°.(2)PD⊥AB.理由:∠APD=∠APC+∠CPD=30°+60°=90°,即∠APD是直角,因此PD⊥A B.17、解 :按方案一铺设管道更节省材料.理由如下:因为CE⊥AB,DF⊥AB,而AB与CD不垂直,由“垂线段最短”的性质,可知CE<CP,DF<DP,则CE+DF<CP+DP.故沿CE,DF铺设管道更节省材料.18、解 :因为CD⊥EF,所以∠COE=∠DOF=90°.因为∠AOE=70°,所以∠AOC=90°-70°=20°,∠BOD=∠AOC=20°.所以∠BOF =90°-∠BOD =90°-20°=70°. 因为OG 平分∠BOF ,所以∠BOG = 12×70°=35°.所以∠DOG =35°+20°=55°.19、90°.试题分析:根据角平分线定义得出∠AOM=12∠AOB ,代入求出∠AOM=90°,根据垂直定义得出即可.试题解析:∵∠AOB=180°,OM 平分∠AOB , ∴∠AOM=12∠AOB=12×180°=90°,∴OM ⊥AB .。