放大电路的频率响应
- 格式:ppt
- 大小:494.00 KB
- 文档页数:30
第9章放大电路的频率响应1.已知某放大电路电压放大倍数的频率特性表达式为:式中f单位Hz,表明其下限频率为;上限频率为;中频电压增益为dB,输出电压与输入电压中频段的相位差为。
2.幅度失真和相位失真统称为失真,它属于失真,在出现这类失真时,若u i为正弦波,则u o为波,若u i为非正弦波,则u o与u i的频率成分,但不同频率成分的幅度变化。
3.饱和失真,截止失真都属于失真,在出殃这类失真时,若u i为正弦波,则u o为波。
u o与u i的频率成分。
4.多级放大电路的通频带比组成它的各个单级放大电路的通频带。
5.多级放大电路在高频时产生的附加相移比组成它的各个单级放大电路在相同频率产生的附加相移。
6.多级放大电路放大倍数的波特图是各级波特图的。
7.在三级放大电路中,已知|A u1|=50,|A u2|=80,|A u3|=25,则其总电压放大倍数|A u|= ,折合为 dB。
8.在多级放大电路中,后级的输入电阻是前级的,而前级的输出电阻则也可视为后级的;前级对后级而言又是。
9.为了放大从热电偶取得的反映温度变化的微弱信号,放大电路应采用 ______耦合方式。
10.为了使放大电路的信号与负载间有良好的匹配,以使输出功率尽可能加大,放大电路应采用耦合方式。
11.电路图所示:其中V cc=6.7V,R b=300kΩ,R c=2 kΩ,晶体管的β=100,r bb’=300Ω,U BE=0.7V,电容C1=C2=5μF,R L=。
①求中频电压放大倍数A u②求下限频率f L③若信号频率f=10Hz,希望放大倍数 |A u|仍不低于0.7|A um|则应更换哪个元件?其值为多少?12.某放大电路的电压放大倍数复数表达式为:f的单位为Hz①求中频电压放大倍数A um②画出A u幅频特性波特图③求上限截止频率f H和下限截止频率f L13.图示电路中的T1,T2均为硅管,U BE=0.7V,两管间为直接耦合方式,已知β1=β2=50,r bb’1= r bb’2=300Ω,电容器C1、C2、C3、C4的容量足够大。
放大电路频率响应放大电路频率响应是指放大电路对输入信号频率的响应程度。
在实际应用中,我们通常会使用放大电路来放大特定频率范围内的信号。
因此,了解和研究放大电路的频率响应对于电子工程师来说至关重要。
1. 频率响应的定义放大电路的频率响应是指输出信号的幅度和相位与输入信号幅度和相位之间的关系。
频率响应通常以幅频特性和相频特性来描述。
幅频特性表示了放大电路在不同频率下的增益变化情况,而相频特性则表示了输出信号与输入信号之间的相位差随频率变化的情况。
2. 低频放大电路的频率响应低频放大电路通常是指对低频信号进行放大的电路,如音频放大器。
在低频范围内,放大电路的增益通常是比较高的,且相位差变化较小,可以近似认为是线性的。
因此,在低频范围内,放大电路的频率响应一般是比较平坦的。
这也是为什么音频放大器可以将输入信号的音频频率范围放大到可听的范围。
3. 高频放大电路的频率响应高频放大电路通常用于对高频信号进行放大,如射频放大器。
在高频范围内,放大电路的增益会随着频率的增加而下降,并且相位差也会随之变化。
这是因为高频信号的传输特性会受到电感、电容和电阻等因素的影响。
因此,在设计和应用高频放大电路时,需要考虑这些因素,以获得所需的频率响应。
4. 频率响应测量与分析为了准确测量和分析放大电路的频率响应,常用的方法包括频率响应曲线测量和Bode图分析。
在频率响应曲线测量中,会对放大电路输入不同频率的测试信号,然后测量输出信号的幅度和相位差。
通过将这些数据绘制成曲线,可以得到放大电路在不同频率下的频率响应特性。
而Bode图则将频率响应的幅度和相位差以对数坐标的形式绘制出来,更直观地反映了放大电路的频率响应情况。
总结:放大电路的频率响应对于实际应用具有重要意义。
了解放大电路的频率响应可以帮助我们选择适合的放大电路来满足特定的需求。
通过频率响应测量和分析,我们可以更好地研究和设计放大电路,以实现所需的频率响应特性。