七年级数学北京市西城区2019—2020学年度第一学期期末试卷 (含答案)
- 格式:docx
- 大小:7.45 MB
- 文档页数:11
2019-2020学年北京市海淀区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.如图所示,匕2和匕1是对顶侣的是(B.±2A.+16 C. -2 D.23.己知a<b,下列不等式中,变形正确的是()A・a—3>b—3B・?>: C.—3a>—3b D.3a-l>3b-l4.在平而直角坐标系中,如果点P(—1,-2+m)在第三象限,那么m的取值范困为()A.m<2B.m<2C. m<0D.mVO5.下列调查方式,你认为最合适的是()A.旅客上飞机前的安检,采用抽样调查方式B. 了解某地区饮用水矿物质含量:的情况,采用抽样调查方式C.调查某种品牌笔芯的使用寿命,采用全面调查方式D.调查浙江卫视傍跑吧.兄弟口步目的收视率.采用全而调查方式6.如图,将含30。
角的直角三角板的直角顶点放任直尺的一边上,己知匕1=35气则£2的度数是()A.55°B.45°C.35°7.下列命题中,是假命题的是()A.在同一平而内.过一点有且只有一条直线与己知直线垂直B同旁内角互补,两直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平•行D.两条直线被第三条直线所截,同位角相等8.如图,。
为直线A8上一点,0E平分ZBOC.ODLOE于点若匕BOC=80。
,则40D的度数是()CA. 70°B. 50。
C. 40°9・象棋在中国有着三千多年的历史•由于用具简单•趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“焉”和“卓”的点的坐标分别 为(4,3), (-2,1),则表示棋子“炮”的点的坐标为()汉界B. (0,3)C・(3,2)A. (-3,3)10.如图,任平面直角坐标系xOy^.如果一个点的坐标D・(13)J,可以用来表示关于心y 的二元一次方程组:写就二:的解,那么这个点是()二、填空题(本大题共6小题,共13.0分)11. 列不等式表示:X 与2的差小于一 1.12. 把无理数M7, MT ,西,-归表示在数轴匕在这四个无理数中,被墨迹(如图所13. 若(a-3)2 + v f hT2 = 0> 则a+b=・14. 写出二元一次方程2x + y = 5的一个非负整数解15. 如图,写出能判定AB//CD 的一对角的数量关系:A816.在平而直角坐标系中,对于点P (x,y ).如果点Q (x,<)的纵坐标满足V =(X -y^X >y^)那么称点Q 为点尸的“关联点,,.请写出点(3,5)的“关联点 ly —x (? lx Vy 时)的坐标:如果点P (x,y )的关联点。
北京市西城区2019-2020学年度第一学期期末试卷八年级数学试卷满分:100分,考试时间:100分钟一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.下列各式中,最简二次根式是( ).A .5.0B .12C .2xD . 12+x 2.下列汽车标志中,不是..轴对称图形的是( ).3.下列因式分解结果正确的是( ).A .3221055(2)a a a a a +=+B .249(43)(43)x x x -=+-C .2221(1)a a a --=-D .256(6)(1)x x x x --=-+ 4.下列各式中,正确的是( ). A .212+=+a b a b B . 22112236d cd cd cd ++= C . a b a b c c-++=- D . 22)2(422--=-+a a a a 5.如图,将三角形纸片ABC 沿直线DE 折叠后,使得点B 与点A重合,折痕分别交BC ,AB 于点D ,E .如果AC =5cm ,△ADC 的周长为17cm ,那么BC 的长为( ).A .7cmB .10cmC .12cmD .22cm6.某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x 棵,那么下面所列方程中,正确的是( ). A .x x 45050600=- B .x x 45050600=+ C .50450600+=x x D .50450600-=x x 7.如果132x y x +=,那么x y的值为( ).A .21 B .32C .31D . 528.如图1,将长方形纸片先沿虚线AB 向右..对折,接着将对折后的纸片沿虚线CD 向下..对折,然后剪下一个小三角形,再将纸片打开,那么打开后的展开图是( ).二、填空题(本题共24分,每小题3分)9.如果分式32x x -+的值为0,那么x 的值为_________. 10.如果12-x 在实数范围内有意义,那么x 的取值范围是_________. 11.下列运算中,正确的是_______.(填写所有..正确式子的序号) ①2612a a a ⋅=;②329()x x =;③33(2)8a a =;④22242(5)255a b a b ab -=--. 12.如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知1∠的度数为 . 13.计算:1111x x --+= .14.计算:432(68)(2)x x x -÷-= . 15.如图,∠AOB=60︒,OC 平分∠AOB ,如果射线OA 上的点E 满足△OCE 是等腰三角形,那么∠OEC 的度数为.16.如图,动点P 从(0,3)出发,沿所示的方向运动,每当碰到长方形的边时反弹,反弹时反射角等于 1(3,0)P .入射角,第一次碰到长方形的边时的位置为(1)画出点P 从第一次到第四次碰到长方形的边的全过程中,运动的路径;(2)当点P 第2014次碰到长方形的边时,点P 的坐标为 .三、解答题(本题共35分,第17、19题各10分,其余每题5分)17.(1)先化简,再求当2a =,1b =时,代数式(3)()(2)a b a b a a b +-+-的值. 解:(2)计算:1(83)642+⨯-. 解:18.已知:如图,AB= AC ,∠DAC=∠EAB ,∠B=∠C .求证:BD = CE . 证明:19.(1)因式分解:232448m m -+. 解:(2)计算:422222222a a b a ab b a ab b b a-+÷⋅-+.解:20.解分式方程:31122xx x+=--.解:21.尺规作图:已知:如图,线段a和h.求作等腰三角形ABC,使底边BC=a,底边上的高AD=h.(保留作图痕迹并写出相应的作法.)作法:四、解答题(本题6分)22.(1)阅读理解:我们知道,只用直尺和圆规不能解决的三个经典的希腊问题之一是三等分任意角,但是这个任务可以借助如图所示的一边上有刻度的勾尺完成,勾尺的直角顶点为P,“宽臂”的宽度..=PQ=QR=RS.........,(这个条件很重要哦!)勾尺的一边MN满足M,N,Q三点共线(所以PQ⊥MN).下面以三等分ABC∠为例说明利用勾尺三等分锐角的过程:第一步:画直线DE使DE∥BC,且这两条平行线的距离等于PQ;第二步:移动勾尺到合适位置,使其顶点P落在DE上,使勾尺的MN边经过点B,同时让点R落在ABC ∠的BA 边上;第三步:标记此时点Q 和点P 所在位置,作射线BQ 和射线BP . 请完成第三步操作,图中ABC ∠的三等分线是射线 、 . (2)在(1)的条件下补全三等分...ABC ∠的主要证明过程: ∵ ,BQ ⊥PR ,∴ BP=BR .(线段垂直平分线上的点与这条线段两个端点的距离相等) ∴ ∠ =∠ . ∵ PQ ⊥MN ,PT ⊥BC ,PT =PQ , ∴ ∠ =∠ .(角的内部到角的两边距离相等的点在角的平分线上) ∴ ∠ =∠ =∠ .(3)在(1)的条件下探究:13ABS ABC ∠=∠是否成立?如果成立,请说明理由;如果不成立,请在下图中ABC ∠的外部..画出13ABV ABC ∠=∠(无需写画法,保留画图痕迹即可).解:五、解答题(本题共11分,第23题5分,第24题6分) 23.已知:如图,在平面直角坐标系xOy 中,(2,0)A -,(0,4)B ,点C 在第四象限,AC ⊥AB , AC=AB .考试结束后,请尝试自制一把“勾尺”实践一下!(1)求点C 的坐标及∠COA 的度数;(2)若直线BC 与x 轴的交点为M ,点P 在经过点C 与 x 轴平行的直线上,直接写出BOM POM S S ∆∆+的值.解:(1)(2)BOM POM S S ∆∆+的值为 .24.已知:如图,Rt△ABC 中,∠BAC=90︒.(1)按要求作图:(保留作图痕迹) ①延长BC 到点D ,使CD=BC ; ②延长CA 到点E ,使AE=2CA ;③连接AD ,BE 并猜想线段 AD 与BE 的大小关系; (2)证明(1)中你对线段AD 与BE 大小关系的猜想. 解:(1)AD 与BE 的大小关系是 . (2)证明:八年级数学附加题试卷满分:20分一、阅读与思考(本题6分)我们规定:用[]x 表示实数x 的整数部分,如[]3.143=,82⎡⎤=⎣⎦,在此规定下解决下列问题:(1)填空:1236⎡⎤⎡⎤⎡⎤⎡⎤++++⎣⎦⎣⎦⎣⎦⎣⎦L = ;(2)求1234+49⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤++++⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦L 的值. 解:二、操作与探究(本题6分)取一张正方形纸片ABCD 进行折叠,具体操作过程如下:第一步:先把纸片分别对折,使对边分别重合,再展开, 记折痕MN ,PQ 的交点为O ;再次对折纸片使AB 与PQ 重合, 展开后得到折痕EF ,如图1;第二步:折叠纸片使点N 落在线段EF 上,同时使折痕GH 经过点O ,记点N 在EF 上的对应点为N ',如图2.解决问题:(1)请在图2中画出(补全)纸片展平后的四边形CHGD 及相应MN ,PQ 的对应位置;(2)利用所画出的图形探究∠POG 的度数并证明你的结论.解:(1)补全图形. (2)∠POG = °. 证明:三、解答题(本题8分)已知:如图,∠MAN 为锐角,AD 平分∠MAN ,点B ,点C 分别在射线AM 和AN 上,AB =AC .图1图2(1)若点E 在线段CA 上,线段EC 的垂直平分线交直线AD 于点F ,直线BE 交直线AD 于点G ,求证:∠EBF =∠CAG ;(2)若(1)中的点E 运动到线段CA 的延长线上,(1)中的其它条件不变,猜想 ∠EBF 与∠CAG 的数量关系并证明你的结论. (1)证明: (2)备用图1备用图2。
2019-2020学年北京市丰台区七年级第二学期期末数学试卷一、选择题(共10小题).1.(3分)4的平方根是()A.±4B.±2C.2D.﹣22.(3分)不等式x﹣1<0的解集在数轴上表示正确的是()A.B.C.D.3.(3分)二元一次方程组的解是()A.B.C.D.4.(3分)适宜表示一组数据的变化趋势的统计图是()A.条形图B.扇形图C.折线图D.直方图5.(3分)下列实数中的无理数是()A.B.0.C.D.06.(3分)如图,由AB∥DC可以得到()A.∠1=∠2B.∠1=∠3C.∠2=∠3D.∠2=∠4 7.(3分)如图,数轴上与对应的点是()A.点A B.点B C.点C D.点D8.(3分)下列命题正确的是()A.两个相等的角一定是对顶角B.两条直线被第三条直线所截,同旁内角互补C.两个锐角的和是锐角D.连接直线外一点与直线上各点的所有线段中,垂线段最短9.(3分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y轴的正方向建立平面直角坐标系,当表示地安门的点的坐标为(0,4),表示广安门的点的坐标为(﹣6,﹣3)时,那么表示左安门的点的坐标为()A.(﹣5,﹣6)B.(5,﹣6)C.(6,﹣5)D.(﹣5,6)10.(3分)小明统计了同学们5月份平均每天观看北京市“空中课堂”的时间,并绘制了统计图,如图所示.下面有四个推断:①此次调查中,小明一共调查了100名学生②此次调查中,平均每天观看时间不足30分钟的人数占总人数的10%③此次调查中,平均每天观看时间超过60分钟的人数超过调查总人数的一半④此次调查中,平均每天观看时间不足60分钟的人数少于平均每天观看时间在60﹣90分钟的人数所有合理推断的序号是()A.①②B.①④C.③④D.②③④二、填空题(共8小题).11.(3分)写出方程x﹣2y=1的一个解:.12.(3分)如果x3=27,那么x=.13.(3分)在平面直角坐标系中,已知点A(1,3),点B(1,5),那么AB=.14.(3分)如图,天平左盘中物体A的质量为a克,天平右盘中每个砝码的质量都是5克,那么a的取值范围为.15.(3分)如图,木工师傅可以用角尺画平行线,能解释这一实际应用的数学知识是.16.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为.17.(3分)一副三角尺按如图所示的位置摆放,那么∠α=.18.(3分)如图,在平面直角坐标系xOy中,三角形CDE可以看作是三角形ABO经过平移得到的,写出一种由三角形ABO得到三角形CDE的过程:.三、解答题(本题共46分,第19-22题,每小题5分,第23,24题,每小题5分,第25,26题,每小题5分)解答应写出文字说明、演算步骤或证明过程.19.(5分)计算:﹣(1﹣)+|1﹣|.20.(5分)解方程组.21.(5分)解不等式组,并写出它的所有正整数解.22.(5分)画一条线段的垂线,就是画它所在直线的垂线.如图,请你过点P画出线段AB,CD的垂线,垂足分别为点M,N.23.(6分)完成下面的证明.如图,三角形ABC,D是边BC延长线上一点,过点C作射线CE,∠1=∠A.求证:∠A+∠B+∠ACB=180°.证明:∵∠l=∠A,∴∥(),∴∠2=().∵∠ACB++=180°,∴∠A+∠B+∠ACB=180°.24.(6分)列方程或方程组解应用题:病毒无情,人间有爱.全国医务人员在党中央的号召下,面对疫情,主动请缨,前往湖北支援.北京市属医院首批援助队伍除领队外共135名医务人员,负贵5个针对普通感染者的病区和1个针对危重感染者的病区.如果知道针对普通感染者的每个病区和针对危重感染者的每个病区配备医务人员的比例为1:4.请你计算北京市属医院首批援助队伍中负责普通感染者病区和负责危重感染者病区的医务人员各有多少人.25.(7分)某校七~九年级共有400名学生,学校团委准备调查他们对垃圾分类的了解程度.(1)下面有三种选取调查对象的方式:①调查七~九年级部分女生②调查七年级某个班的学生③随机调查七~九年级每个班一定数量的学生你认为最合理的一种方式是(直接填写序号);(2)学校团委采用了最合理的调查方式,并用收集到的数据绘制出两幅统计图.(如图①、图②所示),请你根据图中信息,将两个统计图补充完整;(3)根据此次调查结果,估计该校七~九年级约有名学生对垃圾分类比较了解;(4)根据此次调查结果,请你为学校团委开展垃圾分类主题教育活动提出合理化建议.26.(7分)在平面直角坐标系xOy中,对于任意一点P(x,y),定义点P的“差距离”d(P)为:d(P)=|x﹣y|.例如:已知点P(4,3),则d(P)=|4﹣3|=1.解决下列问题:(1)已知点A(0,4),则d(A)=;(2)如图,点M(0,2),N(3,2),Q是线段MN上的一动点,①若d(Q)=1,求点Q的坐标;②线段MN向右平移m个单位(m>0),点Q的对应点为Q′,如果d(Q′)=2,求m的取值范围;③线段MN向右平移a个单位(a>0),向上平移b个单位(b>0)后得到线段M′N′.若线段M'N'上“差距离”为1的点恰有两个,直接写出a﹣b的取值范围.参考答案一、选择题(共10小题).1.(3分)4的平方根是()A.±4B.±2C.2D.﹣2解:∵(±2)2=4,∴4的平方根是±2.故选:B.2.(3分)不等式x﹣1<0的解集在数轴上表示正确的是()A.B.C.D.解:x﹣1<0,x<1,故选:D.3.(3分)二元一次方程组的解是()A.B.C.D.解:,①﹣②得:x=1,把x=1代入②得:y=﹣1,所以方程组的解为:,故选:A.4.(3分)适宜表示一组数据的变化趋势的统计图是()A.条形图B.扇形图C.折线图D.直方图解:能直观反映数据增减变化和变化趋势的是折线统计图,故选:C.5.(3分)下列实数中的无理数是()A.B.0.C.D.0解:A.是无理数,故本选项符合题意;B.是循环小数,属于有理数;C.是分数,属于有理数;D.0是整数,属于有理数.故选:A.6.(3分)如图,由AB∥DC可以得到()A.∠1=∠2B.∠1=∠3C.∠2=∠3D.∠2=∠4解:由AB∥DC,可得到∠2=∠4.理由是:两直线平行,内错角相等.故选:D.7.(3分)如图,数轴上与对应的点是()A.点A B.点B C.点C D.点D 解:∵<<,即6<<7,∴由数轴知,与对应的点距离最近的是点C.故选:C.8.(3分)下列命题正确的是()A.两个相等的角一定是对顶角B.两条直线被第三条直线所截,同旁内角互补C.两个锐角的和是锐角D.连接直线外一点与直线上各点的所有线段中,垂线段最短解:A、两个相等的角不一定是对顶角,原命题是假命题;B、两条平行线被第三条直线所截,同旁内角互补,原命题是假命题;C、两个锐角的和不一定是锐角,原命题是假命题;D、连接直线外一点与直线上各点的所有线段中,垂线段最短,是真命题;故选:D.9.(3分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y轴的正方向建立平面直角坐标系,当表示地安门的点的坐标为(0,4),表示广安门的点的坐标为(﹣6,﹣3)时,那么表示左安门的点的坐标为()A.(﹣5,﹣6)B.(5,﹣6)C.(6,﹣5)D.(﹣5,6)解:当表示地安门的点的坐标为(0,4),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),故选:B.10.(3分)小明统计了同学们5月份平均每天观看北京市“空中课堂”的时间,并绘制了统计图,如图所示.下面有四个推断:①此次调查中,小明一共调查了100名学生②此次调查中,平均每天观看时间不足30分钟的人数占总人数的10%③此次调查中,平均每天观看时间超过60分钟的人数超过调查总人数的一半④此次调查中,平均每天观看时间不足60分钟的人数少于平均每天观看时间在60﹣90分钟的人数所有合理推断的序号是()A.①②B.①④C.③④D.②③④解:①此次调查中,小明一共调查了10+30+60+20=120名学生,此推断错误;②此次调查中,平均每天观看时间不足30分钟的人数占总人数的×100%≈8.33%,此推断错误;③此次调查中,平均每天观看时间超过60分钟的人数有60+20=80(人),超过调查总人数的一半,此推断正确;④此次调查中,平均每天观看时间不足60分钟的人数为10+30=40(人),平均每天观看时间在60﹣90分钟的人数为60人,此推断正确;所以合理推断的序号是③④,故选:C.二、填空题(本题共24分,每小题3分)11.(3分)写出方程x﹣2y=1的一个解:.解:x﹣2y=1的一个解为,故答案为:12.(3分)如果x3=27,那么x=3.解:∵x3=27,∴x=3.故答案为:3.13.(3分)在平面直角坐标系中,已知点A(1,3),点B(1,5),那么AB=2.解:∵点A(1,3),点B(1,5),∴AB∥y轴,∴AB=5﹣3=2.故答案为:2.14.(3分)如图,天平左盘中物体A的质量为a克,天平右盘中每个砝码的质量都是5克,那么a的取值范围为5<a<10.解:根据题意得,解得:5<a<10.故答案为:5<a<10.15.(3分)如图,木工师傅可以用角尺画平行线,能解释这一实际应用的数学知识是在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行.解:在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行,故答案为:在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行.16.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为.解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意得:,故答案为.17.(3分)一副三角尺按如图所示的位置摆放,那么∠α=60°.解:由图可知,∠B=30°,∠FDB=90°,故∠α=90°﹣∠B=90°﹣30°=60°,故答案为:60°.18.(3分)如图,在平面直角坐标系xOy中,三角形CDE可以看作是三角形ABO经过平移得到的,写出一种由三角形ABO得到三角形CDE的过程:向右平移3个单位,再向上平移1个单位得到△CDE.解:将△ABO向右平移3个单位,再向上平移1个单位得到△CDE;故答案为:向右平移3个单位,再向上平移1个单位得到△CDE.三、解答题(本题共46分,第19-22题,每小题5分,第23,24题,每小题5分,第25,26题,每小题5分)解答应写出文字说明、演算步骤或证明过程.19.(5分)计算:﹣(1﹣)+|1﹣|.解:原式=﹣2﹣1+3+﹣1=﹣1.20.(5分)解方程组.解:,①+②得:4x=8,即x=2,将x=2代入①得:y=,则方程组的解为.21.(5分)解不等式组,并写出它的所有正整数解.解:解①得:x≥1,解②得:x<4,不等式组的解集为:1≤x<4,则它的所有正整数解为3,2,1.22.(5分)画一条线段的垂线,就是画它所在直线的垂线.如图,请你过点P画出线段AB,CD的垂线,垂足分别为点M,N.解:如图,PM、PN即为所求.23.(6分)完成下面的证明.如图,三角形ABC,D是边BC延长线上一点,过点C作射线CE,∠1=∠A.求证:∠A+∠B+∠ACB=180°.证明:∵∠l=∠A,∴AB∥CE(内错角相等,两直线平行),∴∠2=∠B(两直线平行,同位角相等,).∵∠ACB+∠1+∠2=180°,∴∠A+∠B+∠ACB=180°.【解答】证明:∵∠l=∠A,∴AB∥CE(内错角相等,两直线平行),∴∠2=∠B(两直线平行,同位角相等).∵∠ACB+∠1+∠2=180°,∴∠A+∠B+∠ACB=180°,故答案为:AB,CE,内错角相等,两直线平行,∠B,两直线平行,同位角相等,∠1,∠2.24.(6分)列方程或方程组解应用题:病毒无情,人间有爱.全国医务人员在党中央的号召下,面对疫情,主动请缨,前往湖北支援.北京市属医院首批援助队伍除领队外共135名医务人员,负贵5个针对普通感染者的病区和1个针对危重感染者的病区.如果知道针对普通感染者的每个病区和针对危重感染者的每个病区配备医务人员的比例为1:4.请你计算北京市属医院首批援助队伍中负责普通感染者病区和负责危重感染者病区的医务人员各有多少人.解:设负责普通感染者病区医务人员有x人,负责危重感染者病区的医务人员有y人.依题意,得:,解得:.答:北京市属医院首批援助队伍中负责普通感染者病区医务人员有75人,负责危重感染者病区的医务人员有60人.25.(7分)某校七~九年级共有400名学生,学校团委准备调查他们对垃圾分类的了解程度.(1)下面有三种选取调查对象的方式:①调查七~九年级部分女生②调查七年级某个班的学生③随机调查七~九年级每个班一定数量的学生你认为最合理的一种方式是③(直接填写序号);(2)学校团委采用了最合理的调查方式,并用收集到的数据绘制出两幅统计图.(如图①、图②所示),请你根据图中信息,将两个统计图补充完整;(3)根据此次调查结果,估计该校七~九年级约有240名学生对垃圾分类比较了解;(4)根据此次调查结果,请你为学校团委开展垃圾分类主题教育活动提出合理化建议.解:(1)根据选择“样本”的多代表性、可操作性可得,最合理的调查方式是③,故答案为:③;(2)6÷10%=60(人),60﹣6﹣18=36(人),36÷60=60%,18÷60=30%,补全统计图如图所示;(3)400×60%=240(人),故答案为:240;(4)“了解一点”所占的比为60%,应该加强宣传和培训,增强对垃圾分类的了解程度.26.(7分)在平面直角坐标系xOy中,对于任意一点P(x,y),定义点P的“差距离”d(P)为:d(P)=|x﹣y|.例如:已知点P(4,3),则d(P)=|4﹣3|=1.解决下列问题:(1)已知点A(0,4),则d(A)=4;(2)如图,点M(0,2),N(3,2),Q是线段MN上的一动点,①若d(Q)=1,求点Q的坐标;②线段MN向右平移m个单位(m>0),点Q的对应点为Q′,如果d(Q′)=2,求m的取值范围;③线段MN向右平移a个单位(a>0),向上平移b个单位(b>0)后得到线段M′N′.若线段M'N'上“差距离”为1的点恰有两个,直接写出a﹣b的取值范围.解:(1)∵点A(0,4),∴d(A)=|0﹣4|=4,故答案为:4;(2)①∵点M(0,2),N(3,2),Q是线段MN上的一动点,∴设点Q(z,2),(0≤z≤3),∵d(Q)=1,∴|z﹣2|=1,∴z1=3,z2=1,∴点Q坐标为(1,2)或(3,2);②∵线段MN向右平移m个单位(m>0),∴点Q'(z+m,2),∵d(Q′)=2,∴|z+m﹣2|=2∴z+m=4或z+m=0,又∵0≤z≤3,m>0,∴z+m=0不可能,∴z+m=4,又∵0≤z≤3,∴1≤m≤4;③设线段M'N'点Q''的坐标为(x,2+b),(a≤x≤a+3),∵“差距离”为1,∴|x﹣(2+b)|=1,∴x=3+b或x=1+b,∵线段M'N'上“差距离”为1的点恰有两个,∴,∴0≤a﹣b≤1.。
北京市西城区2017— 2018学年度第二学期期末试卷七年级数学 2018.7试卷满分:100分,考试时间:100分钟一、选择题(本题30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 8的立方根等于( ).A. -2B. 2C. -4D. 4 2. 已知a b <,下列不等式中,正确的的是( ). A .44a b +>+ B .33->-b a C .b a 2121< D .22a b -<- 3. 下列计算中,正确的是( ).A. 246m m m +=B. 248m m m ⋅=C. 22(3)3m m = D. 42222m m m ÷=4. 如图,直线a ∥b ,三角板的直角顶点放在直线b 上, 两直角边与直线a 相交,如果∠1=60°,那么∠2等于( ). A. 30° B .40° C .50° D .60°5. 如果点P (5,y )在第四象限,那么y 的取值范围是( ).A. y ≤0B. y ≥0C. y <0D. y >06. 为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游; 方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客; 方案四:在上述四个景区各随机调查400名游客. 在这四种调查方案中,最合理的是( ).A. 方案一B. 方案二C. 方案三D. 方案四 7. 下列运算中,正确的是( ).A. 222()a b a b +=+B. 2211()24a a a -=-+C. 222()2a b a ab b -=+-D. 222(2)22a b a ab b +=++ 8. 下列命题中,是假命题的是( ).A. 在同一平面内,过一点有且只有一条直线与已知直线垂直B. 同旁内角互补,两直线平行C. 两条直线被第三条直线所截,同位角相等D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行9. 某品牌电脑的成本为2 400元,售价为2 800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x 折销售,则下列不等式中能正确表示该商店的促销 方式的是( ). A.280024005%x ≥⨯ B .2800240024005%x -≥⨯C .280024005%10x ⨯≥⨯ D .2800240024005%10x⨯-≥⨯ 10.为倡导绿色发展,避免浪费能源,某市准备对居民用电量采用阶梯收费的方法,计划实施三档的阶梯电价:第一档、第二档和第三档的电价分别覆盖全市居民家庭的80%,15%和5%.为了合理确定各档之间的界限,相关部门在该市随机调查了20 000户居民6月份的用电量(单位:kw .h ),并将收集的样本数据进行排序整理(排序样本),绘制了如下频数分布直方图(每段用电量均含最小值,不含最大值).根据以上信息,下面有四个推断:① 抽样调查6月份的用电量,是因为6月份的用电量在一年12个月的用电量中处于中等偏上水平② 在调查的20 000户居民中,6月份的用电量的最大值与最小值的差小于500③ 月用电量小于160kw .h 的该市居民家庭按第一档电价交费,月用电量不小于310kw .h 的该市居民家庭按第三档电价交费④ 该市居民家庭月用电量的中间水平(50%的用户)为110kw .h 其中合理的是( ).A. ①②③ B .①②④ C .①③④ D .②③④二、填空题(本题共18分,第11~16题每小题2分,第17,18题每小题3分)11. 不等式组1,2xx>-⎧⎨<⎩的解集是___________.12.如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段P A,PB,PC,PD,PE中,最短的一条线段是_______,理由是.13. 右图中的四边形均为长方形,根据图形,写出一个正确的等式:_________________________________.14. 如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于点D.BE⊥AD于点E,若∠CAB=50°,则∠DBE=_________°.15.如图,AB∥CD,CE交AB于F,∠C=55°,∠AEC=15°,则∠A=°.16.七巧板又称智慧板,是中国民间流传的智力玩具,它由七块板组成(如图1),用这七块板可拼出许多图形(1600种以上). 例如:三角形、平行四边形以及不规则的多边形,它还可以拼出各种人物、动物、建筑等. 请你用七巧板中标号为①②③的三块板(如图2)经过平移、旋转拼出下列图形(相邻两块板之间无空隙,无重叠;示意图的顶点画在小方格顶点上):(1)拼成长方形,在图3中画出示意图;(2)拼成等腰直角三角形,在图4中画出示意图.17. 如图,在平面直角坐标系xOy 中,平行四边形ABCD 的四个顶点 A ,B ,C ,D 是整点(横、纵坐标都是整数),则四边形ABCD 的面积是 .18. 若一个整数能表示成22a b +(a ,b 是整数)的形式,则称这个数为“完美数”.例如,因为22521=+,所以5是一个“完美数”.(1)请你再写一个大于10且小于20的“完美数” ;(2)已知M 是一个“完美数”,且224512M x xy y y k =++-+(x ,y 是两个任意整数,k 是常数),则k 的值为 .三、解答题(本题共17分,第19题5分,第20,21题每小题6分) 19.计算:035(523)23(3)π-++-+- 解:20.解不等式:2231132x x ++->,并把解集表示在数轴上. 解:21.先化简,再求值:22(2)(2)(4)ab ab a b ab ab +-++÷,其中10a =,15b =. 解:四、解答题(本题共27分,第24题6分,其余每小题7分)22. 在平面直角坐标系xOy 中,△ABC 的三个顶点分别是A (-2,0),B (0,3),C (3,0).(1)在所给的图中,画出这个平面直角坐标系;(2)点A 经过平移后对应点为D (3,-3),将△ABC 作同样的平移得到△DEF ,画出平移后的△DEF ;(3)在(2)的条件下,点M 在直线CD 上,若2CM DM =,直接写出点M 的坐标.解:(3)M 点的坐标为 .23. 如图,点O 在直线AB 上,OC ⊥OD ,∠EDO 与∠1互余. (1)求证:ED//AB ;(2)OF 平分∠COD 交DE 于点F ,若∠OFD =70︒,补全图形,并求∠1的度数. (1)证明:(2)解:1DC ABE24.某地需要将一段长为180米的河道进行整修,整修任务由A ,B 两个工程队先、后接力完成.已知A 工程队每天整修12米,B 工程队每天整修8米,共用时20天.问A ,B 两个工程队整修河道分别工作了多少天? (1)以下是甲同学的做法:设A 工程队整修河道工作了x 天,B 工程队整修河道工作了y 天.根据题意,得方程组: . 解得x y =⎧⎨=⎩请将甲同学的上述做法补充完整;(2)乙同学说:本题还有另外一种解法,他列出了不完整的方程组如下:⎪⎩⎪⎨⎧=+=+812y x y x①在乙同学的做法中,x 表示 ,8y表示 ; ②请将乙同学所列方程组补充完整.25.阅读下列材料:2017年,我国全年水资源总量为28675亿m3.2016年,我国全年水资源总量为32466.4亿m3. 2015年,我国全年水资源总量为27962.6亿m3,全年平均降水量为660.8mm.我国水资源的消费结构包含工业用水、农业用水、生态用水、生活用水四类. 2017年全国用水总量6040亿m3,其中工业用水占用水总量的22%,农业用水占用水总量的62%,生态用水占用水总量的2%,生活用水844.5亿m3.根据上述材料,解答下列问题:(1)根据材料画适当的统计图,直观地表示2015~2017年我国全年水资源总量情况;(2)2017年全国生活用水占用水总量的%,并补全扇形统计图;(3)2012~2017年全国生活用水情况统计如下图所示,根据统计图中提供的信息,①请你估计2018年全国生活用水量为亿m3,你的预估理由是.②谈谈节约用水如何从我做起?.五、解答题(本题共8分)26.如图,在直角三角形ABC 中,∠ACB=90°.(1)如图1,点M 在线段CB 上,在线段BC 的延长线上取一点N ,使得∠NAC=∠MAC . 过点B作BD ⊥AM ,交AM 延长线于点D ,过点N 作NE ∥BD ,交AB 于点E ,交AM 于点F .判断∠ENB 与∠NAC 有怎样的数量关系,写出你的结论,并加以证明;(2)如图2,点M 在线段CB 的延长线上,在线段BC 的延长线上取一点N ,使得∠NAC=∠MAC .过点B 作BD ⊥AM 于点D ,过点N 作NE ∥BD ,交BA 延长线于点E ,交MA 延长线于点F . ①依题意补全图形;②若∠CAB =45°,求证:∠NEA =∠NAE .图1 图2N北京市西城区2017— 2018学年度第二学期期末试卷七年级数学附加题2018.7试卷满分:20分一、填空题(本题共8分)1. 分别观察下列三组图形,并填写表格:如图1所示,在由一些三角形组成的图形中,每条边上都排列了一些点,其中每个图形中所有点的总.数.记为S n,S n叫做第n个“三角形数”(n为整数,且n>1). 类似的也可以用点排出一些“四边形数”,“五边形数”,如图2,图3所示.第n个多边形数n=2 n=3 n=4 n=5 n=6 n=7 …n=k 类型三角形数 3 6 10 15 28 … a四边形数 4 9 16 25 49 … b五边形数 5 12 22 35 70 …(1)请你将第6个“三角形数”,第6个“四边形数”,第6个“五边形数”,填写在上面的表格中;(2)若第k个“三角形数”a,第k个“四边形数”为b,请用含a,b的代数式表示第k个“五边形数”,并填入表格中.二、解答题(本题共12分,每小题6分)2. 食品中的维生素含量以及食品加工问题维生素又名维他命,通俗来讲,即维持生命的物质,是保持人体健康的重要活性物质,一般由食物中取得. 现阶段发现的维生素有几十种,如维生素A、维生素B、维生素C等.食品加工是一种专业技术,就是把原料经过人为处理形成一种新形式的可直接食用的产品,这个过程就是食品加工. 比如用小麦经过碾磨,筛选,加料搅拌,成型烘干,成为饼干,就是属于食品加工的过程.下表给出了甲、乙、丙三种原料中的维生素A,B的含量(单位:单位/kg).将甲、乙、丙三种原料共100kg混合制成一种新食品,其中原料甲x kg,原料乙y kg,(1)这种新食品中:原料丙含有kg,维生素B的含量是单位;(用含x,y的式子表示)(2)若这种新食品中,维生素A的含量至少为44000单位,维生素B的含量至少为48000单位,请你证明:x+y ≥ 50.(1)解:原料丙有kg,维生素B的含量是单位.(2)证明:3.在平面直角坐标系xOy错误!未指定书签。
北京⼗⼆中2019-2020学年度第⼀学期期中考试初⼀数学试卷-含答案北京⼗⼆中2019-2020学年第⼀学期期中考试试题初⼀数学2019.11⾛班班级: 姓名: 学号: 考场号:座位号:满分:100分;时间:120分钟⼀、选择题(每题2分,共30.0分)1.2018年9⽉14⽇,北京新机场名称确定为“北京⼤兴国际机场”,2019年建成的新机场⼀期将满⾜年旅客吞吐量45000000⼈次的需求,将45000000科学记数法表⽰应为()A. 0.45×108B. 45×106C. 4.5×107D. 4.5×1062.绝对值为2的数是()A. 2B. ?2C. ±2D. ?123.下列数或式:(-2)3,(-13)6,-52,0,m2+1,在数轴上所对应的点⼀定在原点右边的个数是()A. 1B. 2C. 3D. 44.设x为有理数,若|x|>x,则()A. x为正数B. x为负数C. x为⾮正数D. x为⾮负数5.以下代数式中不是单项式的是()πC. 2x?3y5D. 06.下列计算正确的是()A. b?5b=?4B. 2m+n=2mnC. 2a4+4a2=6a6D. ?2a2b+5a2b=3a2b7.计算6a2-5a+3与5a2+2a-1的差,结果正确的是()A. a2?3a+4B. a2?3a+2C. a2?7a+2D. a2?7a+48.在多项式-3x3-5x2y2+xy中,次数最⾼的项的系数为()A. 3B. 5C. ?5D. 19.下列各式中是⼀元⼀次⽅程的是()A. x2+1=5B. 4x =3 C. x60x70=1 D. x?510.若x=a是关于x的⽅程2x+3a=15的解,则a的值为()A. 5B. 3C. 2D. 1311.若2x2m y3与-5xy2n是同类项,则|m-n|的值是()C. 7D. ?112.下列解⽅程的步骤正确的是()A. 由2x+4=3x+1,得2x+3x=1+4B. 由0.5x?0.7x=5?1.3x,得5x?7=5?13xC. 由3(x?2)=2(x+3),得3x?6=2x+6D. 由x?12?x+26=2,得2x?2?x+2=1213.若x=2时x4+mx2-n的值为6,则当x=-2时x4+mx2-n的值为()A. ?6B. 0C. 6D. 2614.数轴上点A,M,B分别表⽰数a,a+b,b,那么下列运算结果⼀定是正数的是()A. a+bB. a?bC. abD. |a|?b15.定义⼀种对正整数n的“C运算”:①当n为奇数时,结果为3n+1;②当n为偶数时,结果为n2k (其中k是使n2k为奇数的正整数),并且运算重复进⾏.例如,n=66时,其“C运算”如下若n=26,则第2019次“C运算”的结果是()A. 40B. 5⼆、填空题(16-23每题2分,24题4分,共20.0分)16.⽐较下列两组有理数的⼤⼩,⽤>、<或=填空.34______ +23,-3.14 ______ -π17.若|m+2|与(n-3)2互为相反数,则mn= ..18.如图是⼀位同学数学笔记可见的⼀部分.若要补充⽂中这个不完整的代数式,你补充的内容是:______.19.下⾯的框图表⽰了解这个⽅程的流程在上述五个步骤中依据等式的性质2的步骤有______.(只填序号)20.若代数式(3x2-2x)-(bx+1)中不存在含x的⼀次项,则b的值为______.21.已知a与b互为相反数,c、d互为倒数,x的绝对值是2,y不能作除数,+y2010的值等于_________。
北京市西城区2019-2020学年度第一学期期末试卷九年级数学一、选择题(本题共16分,每小题2分)1. 如图,在Rt △ABC 中,∠ACB =90°,如果AC =3,AB =5,那么sin B 等于( ).A .35B . 45C . 34D . 432.点1(1,)A y ,2(3,)B y 是反比例函数6y x=-图象上的两点,那么1y ,2y 的大小关系是( ).A .12y y >B .12y y =C .12y y <D .不能确定3.抛物线2(4)5y x =--的顶点坐标和开口方向分别是( ). A .(4,5)-,开口向上 B .(4,5)-,开口向下 C .(4,5)--,开口向上 D .(4,5)--,开口向下4.圆心角为60︒,且半径为12的扇形的面积等于( ).A .48πB .24πC .4πD .2π5.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,如果∠ACD =34°,那么∠BAD 等于( ). A .34° B .46° C .56° D .66°6.如果函数24y x x m =+-的图象与x 轴有公共点,那么m 的取值范围是( ).A .m ≤4B .<4mC . m ≥4-D .>4m - 7.如图,点P 在△ABC 的边AC 上,如果添加一个条件后可以得到△ABP ∽△ACB ,那么以下添加的条件中,不.正确的是( ). A .∠ABP =∠C B .∠APB =∠ABCC .2AB AP AC =⋅D .AB ACBP CB=8.如图,抛物线32++=bx ax y (a ≠0)的对称轴为直线1x =,如果关于x 的方程082=-+bx ax (a ≠0)的一个根为4,那么 该方程的另一个根为( ).A .4-B .2-C .1D . 3二、填空题(本题共16分,每小题2分)9. 抛物线23y x =+与y 轴的交点坐标为 .10. 如图,在△ABC 中,D ,E 两点分别在AB ,AC 边上,DE ∥BC , 如果3=AD ,AC =10,那么EC = .xOy 中,第一象限内的点(,)P x y与点(2,2)A 在同一个反比例函数的图象上,PC ⊥y 轴于点C ,PD ⊥x 轴于点D ,那么矩形ODPC 的面积等于 .12.如图,直线1y kx n =+(k ≠0)与抛物22y ax bx c =++(a ≠0)分别交于(1,0)A -,(2,3)B -两点,那么当12y y >时,x 的 取值范围是 .13. 如图,⊙O 的半径等于4,如果弦AB 所对的圆心角等于120︒,那么圆心O 到弦AB 的距离等于 .14.2019-20209月热播的专题片《辉煌中国——圆梦工程》展示的中国桥、中国路等超级工程展现了中国现代化进程中的伟大成就,大家纷纷点赞“厉害了,我的国!”片中提到我国已成为拥有斜拉桥最多的国家,世界前十座斜拉桥中,中国占七座,其中苏通长江大桥(如图1所示)主桥的主跨长度在世界斜拉桥中排在前列.在图2的主桥示意图中,两座索塔及索塔两侧的斜拉索对称分布,大桥主跨BD 的中点为E ,最长的斜拉索CE 长577 m ,记CE 与大桥主梁所夹的锐角CED ∠为α,那么用CE 的长和α的三角函数表示主跨BD 长的表达式应为BD = (m) .15.如图,抛物线2(0)y ax bx c a =++≠与y 轴交于点C ,与x 轴交于A ,B 两点,其中点B 的坐标为(4,0)B ,抛物线的对称轴交 x 轴于点D ,CE ∥AB ,并与抛物线的对称轴交于点E .现有下列结论: ①0a >;②0b >;③420a b c ++<;④4AD CE +=.其中所有正确结论的序号是 .16. 如图,⊙O 的半径为3,A ,P 两点在⊙O 上,点B 在⊙O 内,4tan 3APB ∠=,AB AP ⊥.如果OB ⊥OP ,那么OB 的长为 .三、解答题(本题共68分,第17-20题每小题5分,第21、22题每小题6分,第23、24题每小题5分,第25、26题每小题6分,第27、28题每小题7分) 17.计算:22sin30cos 45tan60︒+︒-︒.18.如图,AB ∥CD ,AC 与BD 的交点为E ,∠ABE=∠ACB .(1)求证:△ABE ∽△ACB ;(2)如果AB=6,AE=4,求AC ,CD 的长.19.在平面直角坐标系xOy 中,抛物线1C :22y x x =-+.(1(21212 回答:抛物线2C 与x 轴的两交点之间的距离是抛物线1C 与x 轴的两交点之间距离的多少倍.20.在△ABC 中,AB=AC=2,45BAC ∠=︒.将△ABC 绕点A 逆时针旋转α度(0<α<180)得到△ADE ,B ,C 两点的对应点分别为点D ,E ,BD ,CE 所在直线交于点F . (1)当△ABC 旋转到图1位置时,∠CAD = (用α的代数式表示),BFC ∠的 度数为 ︒;(2)当α=45时,在图2中画出△ADE ,并求此时点A 到直线BE 的距离.21.运动员将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度h (m )与它的飞行时间t (s )满足二次函数关系,t 与h 的几组对应值如下表所示.t (s )0 h (m )0 8.75 (1)求h 与t 之间的函数关系式(不要求写(2)求小球飞行3 s 时的高度;(3)问:小球的飞行高度能否达到22 m ?请说明理由.22.如图,在平面直角坐标系xOy 中,双曲线ky x=(k ≠0)与直线12y x =的交点为(,1)A a -,(2,)B b 两点,双曲线上一点P 的横坐标为1,直线P A ,PB与x 轴的交点分别为点M ,N ,连接AN . (1)直接写出a ,k 的值;(2)求证:PM=PN ,PM PN ⊥.23.如图,线段BC 长为13,以C 为顶点,CB 为一边的α∠满足5cos 13α=.锐角△ABC 的顶点A 落在α∠的另一边l 上,且满足4sin 5A =.求△ABC 的高BD 及AB 边的长,并结合你的计算过程画出高BD 及AB 边.(图中提供的单位长度供补全图 形使用)24.如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上,=DCE B ∠∠. (1)求证:CE 是半圆的切线;(2)若CD=10,2tan 3B =,求半圆的半径.25.已知抛物线G :221y x ax a =-+-(a 为常数).(1)当3a =时,用配方法求抛物线G 的顶点坐标; (2)若记抛物线G 的顶点坐标为(,)P p q .①分别用含a 的代数式表示p ,q ;②请在①的基础上继续用含p 的代数式表示q ;③由①②可得,顶点P 的位置会随着a 的取值变化而变化,但点P 总落在 的图象上. A .一次函数 B .反比例函数 C .二次函数(3)小明想进一步对(2)中的问题进行如下改编:将(2)中的抛物线G 改为抛物线H :22y x ax N =-+(a 为常数),其中N 为含a 的代数式,从而使这个 新抛物线H 满足:无论a 取何值,它的顶点总落在某个一次函数的图象上.请按照小明的改编思路,写出一个符合以上要求的新抛物线H 的函数表达式: (用含a 的代数式表示),它的顶点所在的一次函数图象的表达式y kx b =+(k ,b 为常数,k ≠0)中,k= ,b= .26.在平面直角坐标系xOy 中,抛物线M :2(0)y ax bx c a =++≠经过(1,0)A -,且顶点坐标为(0,1)B .(1)求抛物线M 的函数表达式; (2)设(,0)F t 为x 轴正半轴...上一点,将抛物线M 绕点F 旋转180°得到抛物线1M . ①抛物线1M 的顶点1B 的坐标为 ;②当抛物线1M 与线段AB 有公共点时,结合函数的图象,求t 的取值范围.27.如图1,在Rt △AOB 中,∠AOB =90°,∠OAB =30°,点C 在线段OB 上,OC =2BC ,AO 边上的一点D 满足∠OCD =30°.将△OCD 绕点O 逆时针旋转α度(90°<α<180°)得到△OC D '',C ,D 两点的对应点分别为点C ',D ',连接AC ',BD ',取AC '的中点M ,连接OM . (1)如图2,当C D ''∥AB 时,α= °,此时OM 和BD '之间的位置关系为 ; (2)画图探究线段OM 和BD '之间的位置关系和数量关系,并加以证明.28.在平面直角坐标系xOy 中,A ,B 两点的坐标分别为(2,2)A ,(2,2)B -.对于给定的线段 AB 及点P ,Q ,给出如下定义:若点Q 关于AB 所在直线的对称点Q '落在△ABP 的内部(不含边界),则称点Q 是点P 关于线段AB 的内称点.(1)已知点(4,1)P -.①在1(1,1)Q -,2(1,1)Q 两点中,是点P 关于线段AB 的内称点的是____________;②若点M 在直线1y x =-上,且点M 是点P 关于线段AB 的内称点,求点M 的横坐标M x 的取值范围;(2)已知点(3,3)C ,⊙C 的半径为r ,点(4,0)D ,若点E 是点D 关于线段AB 的内称点,且满足直线DE 与⊙C 相切,求半径r 的取值范围.11。
西城区2017-2018学年度第二学期期末试卷七年级数学2018.7试卷满分:100分,考试时间:100分钟一、选择题(本题30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1. 8的立方根等于().2 B.2 4 D.42.已知a<b,下列不等式中,正确的是().A. 4>4 3>3 C. 12a<12b D. -2a<-2 b3.下列计算中,正确的是()246B. m2·m48 C.(3m) 2=3m2 D. 2m4÷m2=2 m24.如图,直线,三角板的直角顶点放在直线b上,两直角边与直线a相交,如果∠1=600,那么∠2等于().A. 300B. 400C. 500D. 6005.如果点P(5, y)在第四象限,那么y的取值范围是(). ≤0 ≥0 <0 >06.为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是( ).A .方案一B .方案二C .方案三D .方案四7.下列运算中,正确的是( ).A. ()222B.(12)22+14C. () 22+22D.(2) 2=2a 2+228.下列命题中,是假命题的是( )A.在同一平面内,过一点有且只有一条直线与已知直线垂直B.同旁内角互补,两直线平行C.两条直线被第三条直线所截,同位角相等D.如果两条直线都与第三条直线平行,那么这两条直线也互相平行9.某品牌电脑的成本为2400元,售价为2 800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x 折销售,则下列不等式中能正确表示该商店的促销方式的是( ).A. 2 800x ≥2400x5%B.2800x 一2400≥2400 x 5%C. 2 800 10x ⨯≥2400 x 5%D. 2 800 10x ⨯一2400≥2400x 5% 1010.为倡导绿色发展,避免浪费能源,某市准备对居民用电量采用阶梯收费的方法,计划实施三档的阶梯电价:第一档、第二档和第三档的电价分别覆盖全市居民家庭的80% , 15%和 5%.为了合理确定各档之间的界限,相关部门在该市随机调查了20000户居民6月份的用电量(单位:・ h),并将收集的样本数据进行排序整理(排序样本),绘制了如下频数分布直方图(每段用电量均含最小值,不含最大值).根据统计数据,下面有四个推断:①抽样调查6月份的用电量,是因为6月份的用电量在一年12个月的用电量中处于中等偏上水平②在调查的20000户居民中,6月份的用电量的最大值与最小值的差小于500③月用电量小于160 ・h的该市居民家庭按第一档电价交费,月用电量不小于310 ・h 的该市居民家庭按第三档电价交费④该市居民家庭月用电量的中间水平(50%的用户)为110 ・h 其中合理的是().A.①②③B.①②④C.①③④D.②③④二、填空题(本题共18分,第11-16题每小题2分,第17,18题每小题3分)11.不等式组12x x -⎧⎨⎩f p的解集是 . 12.如图,点在直线l 上,点P 在直线l 外,⊥l 于点C ,在线段 中,最短的一条线段是 ,理由是13.右图中的四边形均为长方形,根据图形,写出一个正确的等式:14.如图,在∆中,∠900 平分∠ 交于点D, 上于点E .若∠500,则∠15.如图,, 交于点F, ∠550, ∠150 则∠16.七巧板又称智慧板,是中国民间流传的智力玩具,它由七块板组成(如图1),用这七块板可拼出许多图形(1 600种以上).例如:三角形、平行四边形以及不规则的多边形,它还可以拼出各种人物、动物、建筑等.请你用七巧板中标号为①②③的三块板(如图2)经过平移、旋转拼出下列图形(相邻两块板之间无空隙,无重叠;示意图的顶点画在小方格顶点上):(1)拼成长方形,在图3中画出示意图;(2)拼成等腰直角三角形,在图4中画出示意图.17.如图,在平面直角坐标系中,平行四边形的四个顶点 , D 是整点(横、纵坐标都是整数),则平行四边形的面积是18.若一个整数能表示成a2+b2 (是整数)的形式,则称这个数为“完美数”.例如,因为5=22+12,所以5是一个“完美数”.(1)请你再写一个大于10且小于20的“完美数” _; (2)已知M是一个“完美数”,且M=x2+45y2-12 k(是两个任意整数,k是常数),则k的值为三、解答题(本题共17分,第19题5分,第20,21题每小题6分)19.计算:035(523)23(3)π-++-+-解:20.解不等式:2231132x x ++-f ,并把解集表示在数轴上.21.先化简,再求值:(2)(2)+(a 2b 2+4) ÷ ,其中10, b =15四、解答题(本题共27分,第24题6分,其余每小题7分)22.在平面直角坐标系中,∆的三个顶点分别是A (-2,0) (0,3) (3,0). (1)在所给的图中,画出这个平面直角坐标系;(2)点A 经过平移后对应点为D(3,-3),将△作同样的平移得到△,画出平移后的△;(3)在(2)的条件下,点M 在直线上,若2,直接写出点M 的坐标.解:(3)点M的坐标为23.如图,点O在直线上,⊥, ∠与∠1互余.(1)求证: ;(2) 平分∠交于点F,若∠700,补全图形,并求∠1的度数.(1)证明:(2)解:24.某地需要将一段长为180米的河道进行整修,整修任务由两个工程队先、后接力完成.已知A 工程队每天整修12米,B 工程队每天整修8米,共用时20天.问两个工程队整修河道分别工作了多少天?(1)以下是甲同学的做法:设A 工程队整修河道工作了x 天,B 工程队整修河道工作了y 天. 根据题意,得方程组:解得x y =⎧⎨=⎩X X请将甲同学的上述做法补充完整;(2)乙同学说:本题还有另外一种解法,他列出了不完整的方程组如下:128x y x y +=⎧⎪⎨+=⎪⎩X X①在乙同学的做法中,x 表示 ,8y表示 ;②请将乙同学所列方程组补充完整.25.阅读下列材料:2017年,我国全年水资源总量为28675亿m 3..2016年,我国全年水资源总量为32466.4亿 m3. 2015年,我国全年水资源总量为27 962. 6亿 m3,全年平均降水量为660. 8 .我国水资源的消费结构包含工业用水、农业用水、生态用水、生活用水四类.2017年全国用水总量为6 040亿 m3,其中工业用水占用水总量的22%,农业用水占用水总量的62%,生态用水占用水总量的2%,生活用水844.5亿 m3.根据上述材料,解答下列问题:(1)根据材料画适当的统计图,直观地表示2015一2017年我国全年水资源总量情况;(2) 2017年全国生活用水占用水总量的%,并补全扇形统计图(3) 2012一2017年全国生活用水情况统计如下图所示,根据统计图中提供的信息①请你估计2018年全国生活用水量为亿 m3,你的预估理由是;②谈谈节约用水如何从我做起?五、解答题(本题共8分)26.如图,在直角三角形中,∠90".(1)如图1,点M在线段上,在线段的延长线上取一点N,使得∠ = ∠.过点B作⊥,交延长线于点D,过点N作,交于点E,交于点F.判断∠与∠之间的数量关系,写出你的结论,并加以证明;(2)如图2,点M在线段的延长线上,在线段的延长线上取一点N,使得∠=∠.过点B作⊥于点D,过点N作,交延长线于点E,交延长线于点F.①依题意补全图形;②若∠450,求证:∠∠.11 / 11。
北京市西城区2019-2020学年度第一学期期末试卷 七年级英语 2020.1听力理解(共20分)一、听下面四段对话。
每段对话后有两道小题, 从每题所给的A,B,C 三个选项中选出最佳选项。
每段对话你将听两遍。
(共12分, 每小题1.5分)请听一段对话, 完成第1至第2小题。
1. What is the girl doing?A. Teaching English.B. Reading a letter.C. Visiting a school.2. Where is the girl's aunt now?A. In China.B. In America.C. In England.请听一段对话, 完成第3至第4小题。
3- What is the boy's favourite sport?A. Football.B. Swimming.C. Tennis.4. How often does the boy do it?A. Every day.B. Once a week.C. Every month.请听一段对话, 完成第5至第6小题。
5. When does the girl need to meet Julie?A. On Saturday morning.B. On Saturday afternoon.C. On Saturday evening.6. What do the two speakers want to do at last?A. See a movie.B. Clean the house.C. Make dinner.请听一段对话, 完成第7至第8小题。
7. What can we know from the conversation (对话)?A. It's easy for the girl to make all kinds of paper cuts.B. The girl is putting the paper cut on her door.C. The boy is interested in paper cutting.8. Where are the two speakers going next?A. To the girl's home.B. To the boy's home.C. To a paper cut shop.二、听独白,记录关键信息。
北京市西城区2011—2012学年度第一学期期末试卷(南区)九年级数学 2012.1考生须知1.本试卷共6页,共五道大题,25道小题,满分120分。
考试时间120分钟。
2.试题答案一律填涂或书写在答题纸上,在试卷上作答无效。
3.在答题纸上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.抛物线2(1)1y x =-+的顶点坐标为A .(1,1)B .(1,1)-C .(1,1)-D .(1,1)--2.若相交两圆的半径分别为4和7,则它们的圆心距可能是A .2B .3C . 6D .113.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5tan A 的值为A 5B 25C .12D .24. 如图,在⊙O 中,直径AB ⊥弦CD 于E ,连接BD ,若∠D =30°, BD =2,则AE 的长为 A .2 B .3 C .4 D .55.下列图形中,中心对称图形有A .4个B .3个C .2个D .1个6.抛掷一枚质地均匀的正方体骰子,出现大于3点的概率为 A .21 B .31 C .41 D .617.如图,抛物线2y ax bx c =++经过点(-1,0),对称轴为x =1,则下列结论中正确的是A .0>aB .当1>x 时,y 随x 的增大而增大C .0<cD .3x =是一元二次方程20ax bx c ++=的一个根8.如图,在平面直角坐标系xOy 中,(2,0)A ,(0,2)B ,⊙C 的圆心为点(1,0)C -,半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于E 点,则△ABE 面积的最大值是 A .2 B . 83C .2+D . 2-二、填空题(本题共16分,每小题4分)9.如图,⊙O 是△ABC 的外接圆,若∠OCB =40°,则∠A= °.10.将抛物线2y x =先向下平移1个单位长度后,再向右平移1个单位长度,所得抛物线的解析式是 .11.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AB =4.以斜边AB 的中点D 为旋转中心,把△ABC 按逆时针方向旋转 α角(0120α︒<<︒),当点A 的对应点与点C 重合时,B ,C 两点的对应点分别记为E ,F ,EF 与AB 的交点为G ,此时 α等于 ° ,△DEG 的面积为 .12.已知二次函数212y x x =-+,(1)它的最大值为 ;(2)若存在实数m , n 使得当自变量x 的取值范围是m ≤x ≤n 时,函数值y 的取值范围恰好是3m ≤y ≤3n ,则m= ,n= .13.计算:2cos30602sin 45︒+︒-︒.14.如图,网格中每个小正方形的边长均为1,且点A ,B ,C ,P 均为格点.(1) 在网格中作图:以点P 为位似中心,将△ABC 的各边长放大为原来的两倍,A ,B ,C 的对应点分别为A 1 ,B 1 ,C 1;(2) 若点A 的坐标为(1,1),点B 的坐标为(3,2),则(1)中点C 1的坐标为 .15.已知抛物线245y x x =+-.(1)直接写出它与x 轴、y 轴的交点的坐标;(2)用配方法将245y x x =+-化成2()y a x h k =-+的形式.16.如图,三角形纸片ABC 中,∠BCA =90°,∠A =30°,AB =6, 在AC 上取一点 E ,沿BE 将该纸片折叠,使AB 的一部分 与BC 重合,点A 与BC 延长线上的点D 重合,求DE 的长.17.学校要围一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为36米的篱笆恰好围成(如图所示). 设矩形的一边AB 的长为x 米(要求AB <AD ),矩形 ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式,并直接写出自变量x 的取值范围; (2)要想使花圃的面积最大,AB 边的长应为多少米?18.如图,在Rt △ABC 中,90C ∠=︒,AB 的垂直平分线与BC ,AB 的交点分别为D ,E . (1)若AD =10,4sin 5ADC ∠=,求AC 的长和tan B 的值;(2)若AD=1,ADC ∠=α,参考(1)的计算过程直接写 出tan 2α的值(用sin α和cos α的值表示).19.如图所示,在平面直角坐标系xOy 中,正方形PABC 的边长为1,将其沿x 轴的正方向连续滚动,即先以顶点A 为旋转中心将正方形PABC 顺时针旋转90°得到第二个正方形,再以顶点D 为旋转中心将第二个正方形顺时针旋转90°得到第三个正方形,依此方法继续滚动下去得到第四个正方形,…,第n 个正方形.设滚动过程中的点P 的坐标为(,)x y .(1)画出第三个和第四个正方形的位置,并直接写出第三个正方形中的点P 的坐标; (2)画出点(,)P x y 运动的曲线(0≤x ≤4),并直接写出该曲线与x 轴所围成区域的面积.20.已知函数2y x bx c =++(x ≥ 0),满足当x =1时,1y =-,且当x = 0与x =4时的函数值相等. (1) 求函数2y x bx c =++(x ≥ 0)的解析式并 画出它的图象(不要求列表);(2)若()f x 表示自变量x 相对应的函数值,且2 (0),() 2 (0),x bx c x f x x ⎧++≥=⎨-<⎩ 又已知关于x 的 方程()f x x k =+有三个不相等的实数根,请利用图象直接写出实数k 的取值范围.21.已知:如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线与⊙O 的交点为D ,DE ⊥AC ,与AC 的延长线交于 点E .(1)求证:直线DE 是⊙O 的切线; (2)若OE 与AD 交于点F ,4cos 5BAC ∠=,求DF AF 的值.22.阅读下列材料:题目:已知实数a ,x 满足a >2且x >2,试判断ax 与a x +的大小关系,并加以说明. 思路:可用“求差法”比较两个数的大小,列出ax 与a x +的差()y ax a x =-+再说明y 的符号即可.现给出如下利用函数解决问题的方法:简解:可将y 的代数式整理成(1)y a x a =--,要判断y 的符号可借助函数(1)y a x a =--的图象和性质解决.参考以上解题思路解决以下问题:已知a ,b ,c 都是非负数,a <5,且 2220a a b c ---=,2230a b c +-+=. (1)分别用含a 的代数式表示4b ,4c ; (2)说明a ,b ,c 之间的大小关系.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知抛物线2(2)2y kx k x =+--(其中0k >).(1)求该抛物线与x 轴的交点及顶点的坐标(可以用含k 的代数式表示); (2)若记该抛物线顶点的坐标为(,)P m n ,直接写出n 的最小值; (3)将该抛物线先向右平移12个单位长度,再向上平移1k个单位长度,随着k 的变化,平移后的抛物线的顶点都在某个新函数的图象上,求新函数的解析式(不要求写自变量的取值范围).24.已知:⊙O 是△ABC 的外接圆,点M 为⊙O 上一点.(1)如图,若△ABC 为等边三角形,BM =1,CM =2, 求AM 的长;(2) 若△ABC 为等腰直角三角形,∠BAC =90︒,BM a =,CM b =(其中b a >),直接写出AM 的长(用含有a ,b 的代数式表示).25. 已知:在如图1所示的平面直角坐标系xOy 中,A ,C 两点的坐标分别为(2,3)A ,(,3)C n -(其中n >0),点B 在x 轴的正半轴上.动点P 从点O 出发,在四边形OABC 的边上依次沿O —A —B —C 的顺序向点C 移动,当点P 与点C 重合时停止运动.设点P 移动的路径的长为l ,△POC 的面积为S ,S 与l 的函数关系的图象如图2所示,其中四边形ODEF 是等腰梯形.(1)结合以上信息及图2填空:图2中的m = ; (2)求B ,C 两点的坐标及图2中OF 的长;(3)在图1中,当动点P 恰为经过O ,B 两点的抛物线W 的顶点时, ① 求此抛物线W 的解析式;② 若点Q 在直线1y =-上方的抛物线W 上,坐标平面内另有一点R ,满足以B ,P ,Q ,R 四点为顶点的四边形是菱形,求点Q 的坐标.北京市西城区2011 — 2012学年度第一学期期末试卷(南区)九年级数学参考答案及评分标准2012.1 一、选择题(本题共32分,每小题4分)阅卷说明:第10题写成2(1)1y x=--不扣分;第11题每空各2分;第12题第(1)问2分, 第(2)问每空各1分.三、解答题(本题共30分,每小题5分)13.解:原式= 222⨯…………………………………………………3分= 22+.……………………………………………………………………5分14.解:(1)…………………………………………3分(2)点C1的坐标为(2,8). ……………………………………………………5分图115.解:(1)抛物线与x 轴的交点的坐标为(5,0) (1,0)-和. …………………………2分抛物线与y 轴的交点的坐标为(05)-,. …………………………………3分 (2)245y x x =+-2(44)9x x =++-…………………………………………………………4分2(2)9x =+-. …………………………………………………………5分 16.解: 在RtΔACB 中,∠ACB =90°,AB =6, ∠A =30°,(如图2) ∴ 362121=⨯==AB BC . ………………………1分 ∵ 沿BE 将ΔABC 折叠后,点A 与BC 延长线上的点D∴ BD=AB=6,∠D =∠A =30°.……………………3分∴CD=BD -BC =6-3=3. ……………………………4分在RtΔDCE 中,∠DCE =90°,CD =3, ∠D =30°,∴3223330cos ===CD DE . ………………………………………………5分17.解:(1)∵ 四边形ABCD 是矩形,AB 的长为x 米, ∴ CD=AB=x (米).∵ 矩形除AD 边外的三边总长为36米,∴ 362BC x =-(米).………………………………………………………1分 ∴ 2(362)236S x x x x =-=-+. ……………………………………………3分 自变量x 的取值范围是012x <<. …………………………………………4分 ( 说明:由0<x <36-2x 可得012x <<.)(2)∵222362(9)162S x x x =-+=--+,且9x =在012x <<的范围内 ,∴ 当9x =时,S 取最大值.即AB 边的长为9米时,花圃的面积最大.…………………………………5分18.解:(1)在Rt △ACD 中,90C ∠=︒, AD =10,4sin 5ADC ∠=,(如图3) ∴ 4sin 1085AC AD ADC =⋅∠=⨯=.……1分3cos 1065CD AD ADC =⋅∠=⨯=. ∵ DE 垂直平分AB ,∴ 10BD AD ==.……………………………2分 ∴ 16BC CD BD =+=. ……………………3分 在Rt △ABC 中,90C ∠=︒,∴ 81tan 162AC B BC ===.……………………………………………………4分 (2)sin tan 21cos ααα=+.(写成1cos sin αα-也可) ……………………………………5分四、解答题(本题共20分,每小题5分) 19.解:(1)第三个和第四个正方形的位置 如图4所示.……………………2分 第三个正方形中的点P 的坐标为 (3,1). …………………………3分(2)点(,)P x y 运动的曲线(0≤x ≤4)如图4所示. …………………………4分它与x 轴所围成区域的面积等于1π+. ……………………………………5分20.解:(1)∵ 函数2y x bx c =++(x ≥0)满足当x =1时,1y =-, 且当x = 0与x =4时的函数值相等,∴ 11,2.2b c b ++=-⎧⎪⎨-=⎪⎩解得 4b =-,2c =.…………………………………………………………2分 ∴ 所求的函数解析式为242y x x =-+(x ≥0). …………………………3分 它的函数图象如图5所示.……………………………………………………4分(2)k 的取值范围是22k -<≤.(如图6)……………………………………………5分 21.(1)证明:连接OD .(如图7) ∵ AD 平分∠BAC ,∴ ∠1=∠2.…………………………………………………………………1分 ∵ OA =OD , ∴ ∠1=∠3. ∴ ∠2=∠3.∴ OD ∥AE .∵ DE ⊥AC , ∴ ∠AED =90°.∴ 18090ODE AED ∠=︒-∠=︒.∴ DE ⊥OD . ……………………………2分 ∵ OD 是⊙O 的半径,∴ 直线DE 是⊙O 的切线. ………………………………………………3分(2)解:作OG ⊥AE 于点G .(如图7) ∴ ∠OGE =90°.∴ ∠ODE =∠DEG =∠OGE =90°. ∴ 四边形OGED 是矩形.∴ OD =GE .……………………………………………………………………4分 在Rt △OAG 中, ∠OGA =90°,4cos 5BAC ∠=,设AG =4k ,则OA =5k . ∴ GE =OD =5k . ∴ AE =AG +GE =9k . ∵ OD ∥GE , ∴ △ODF ∽△EAF . ∴59DF OD AF AE ==.……………………………………………………………5分 22.解:(1)∵ 2220a a b c ---=,2230a b c +-+=,∴ ⎪⎩⎪⎨⎧+=--=+.322,222a b c a a c b消去b 并整理,得243c a =+.………………………1分消去c 并整理,得2423b a a =--. ………………2分(2)∵ ()()()411332422--=+-=--=a a a a a b , 将4b 看成a 的函数,由函数24(1)4b a =--的性质结合它的图象(如图8所示),以及a ,b 均为非负数得a ≥3.又 ∵ a <5,∴ 3≤a <5.……………………………………………………………………3分∵ 224()63(3)12b a a a a -=--=--,将4()b a -看成a 的函数,由函数24()(3)12b a a -=--的性质结合它的图象(如图9所示)可知,当3≤a <5时,4()0b a -<.∴ b <a . ……………………………………………4分∵ 24()43(1)(3)c a a a a a -=-+=--,a ≥3,∴ 4()c a -≥0.∴ c ≥a .∴ b <a ≤c . ………………………………………5分阅卷说明:“b <a ,b <c ,a ≤c ”三者中,先得出其中任何一个结论即可得到第4分,全写对得到5分.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)令0y =,得方程 2(2)20kx k x +--=.整理,得 (1)(2)0x kx +-=.解得 11x =-,22x k= . ∴ 该抛物线与x 轴的交点坐标为(1,0)-,2(,0)k. ………………………2分 抛物线2(2)2y kx k x =+--的顶点坐标为2244(,)24k k k k k-++-. ………3分 (2)|n |的最小值为 2 . …………………………………………………………4分 (3)平移后抛物线的顶点坐标为214(,)4k k k k+-.…………………………………5分由1,14x k k y ⎧=⎪⎪⎨⎪=--⎪⎩可得 114y x =-- . ∴ 所求新函数的解析式为114y x=--. …………………………………7分 24.解:(1)因AB =AC 且∠BAC=60°,故将△ABM 绕点A 逆时针旋转60︒得△ACN ,则△ABM ≌△ACN ,(如图10)………………………………………………1分∴ ∠BAM =∠CAN ,∠ABM =∠ACN ,AM =AN ,BM =CN .∵ 四边形ABMC 内接于⊙O ,∴ ∠ABM +∠ACM =180︒.∴ ∠ACN +∠ACM =180︒.∴ M ,C ,N 三点共线.……………………2分∵ ∠BAM =∠CAN ,∴ ∠BAM +∠MAC =∠CAN +∠MAC =60︒, 即∠MAN =60︒. ………………………………………………………………3分∵ AM =AN ,∴ △AMN 是等边三角形.……………………………………………………4分 ∴ AM =MN =MC +CN =MC +BM =2+1=3. ……………………………………5分(2)AM)b a -)b a +.……………………………………………7分 25.解:(1)图2中的m1分(2)∵ 图11(原题图2)中四边形ODEF 是等腰梯形,点D 的坐标为(,12)D m ,∴ 12E D y y ==,此时原题图1中的点P 运动到与点B 重合,∴ 1131222BOC C S OB y OB ∆=⨯⨯=⨯⨯=. 解得 8OB =,点B 的坐标为(8,0). ……………………………………2分此时作AM ⊥OB 于点M ,CN ⊥OB 于点N .(如图12).∵ 点C 的坐标为(,3)C n -,∴ 点C 在直线3y =-上.又由图11(原题图2)中四边形ODEF 是等腰梯形可知图12中的点C 在过点O 与AB 平行的直线l 上,∴ 点C 是直线3y =-与直线l 的交点,且ABM CON ∠=∠.又∵ 3A C y y ==,即AM= CN ,可得△ABM ≌△CON .∴ ON=BM=6,点C 的坐标为(6,3)C -.……………………………………3分 ∵ 图12中AB ==∴ 图11中DE =,2D OF x DE =+= …………………4分(3)①当点P 恰为经过O ,B 两点的抛物线W 的顶点时,作PG ⊥OB 于点G .(如图13)∵ O ,B 两点的坐标分别为(0,0)O ,(8,0)B ,∴ 由抛物线的对称性可知P 点的横坐标为4,即OG=BG=4.由3tan 6AM PG ABM BM BG∠===可得PG=2. ∴ 点P 的坐标为(4,2)P .………………5分设抛物线W 的解析式为(8)y ax x =-(a ≠0).∵ 抛物线过点(4,2)P ,∴ 4(48)2a -=. 解得 18a =-. ∴ 抛物线W 的解析式为218y x x =-+.…………………………………6分 ②如图14.i )当BP 为以B ,P ,Q ,R 四点为顶点的菱形的边时,∵ 点Q 在直线1y =-上方的抛物线W 上, 点P 为抛物线W 的顶点,结合抛物线的对称性可知点Q 只有一种情况,点Q 与原点重合,其坐标为1(0,0)Q .……………………………………………………………………7分 ii )当BP 为以B ,P ,Q ,R 四点为顶点的菱形的对角线时,可知BP 的中点的坐标为(6,1),BP 的中垂线的解析式为211y x =-.∴ 2Q 点的横坐标是方程212118x x x -+=-的解.将该方程整理得28880x x +-=.解得4x =-± 由点Q 在直线1y =-上方的抛物线W 上,结合图14可知2Q 点的横坐标为4.∴ 点2Q 的坐标是219)Q . …………………………8分综上所述,符合题意的点Q 的坐标是1(0,0)Q ,219)Q .。
第1页(共7页) 北京市西城区2019—2020学年度第一学期期末试卷 七年级数学 2020.1
一、选择题(本题共30分,每小题3分) 第1—10题均有四个选项,符合题意的选项只有一个. 1.4的倒数是
A.14 B.14 C.4 D.4
2.在国庆70周年的联欢活动中,参与表演的3290名群众演员,每人手持一个长和宽都为80厘米的光影屏,每一块光影屏上都有1024颗灯珠,约3369000颗灯珠共同构成流光溢彩的巨幅光影图案,给观众带来了震撼的视觉效果.将3369000用科学记数法表示应为 A.0.3369×107 B.3.369×106 C.3.369×105 D.3369×103 3.下列计算中正确的是 A.5611abab B.98aa C.2334aaa D.347ababab 4.如图,点A,B在直线l上,点C是直线l外一点, 可知CA+CB>AB,其依据是 A.两点之间,线段最短 B.两点确定一条直线 C.两点之间,直线最短 D.直线比线段长 5.下列解方程的步骤中正确的是 A.由57x,可得75x B.由
82(31)xx
,可得862xx
C.由
116x,可得16x D.由1324xx,可得
2(1)3xx
6.已知
231aa,则代数式2
625aa的值为
A.3 B.4 C.5 D.7 7.有理数a,b,c在数轴上的对应点的位置如图所示,
有如下四个结论: ①3a;②0ab;③0bc;④0ba. 上述结论中,所有正确结论的序号是 A.①② B.②③ C.②④ D.③④ 第2页(共7页)
8.下列说法中正确的是 A.如果7x,那么
x一定是7 B.a
表示的数一定是负数
C.射线AB和射线BA是同一条射线 D.一个锐角的补角比这个角的余角大90° 9.下列图形中,可能是右面正方体的展开图的是
A B C D 10.居民消费价格指数是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.据统计,从2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率如下图所示:
根据上图提供的信息,下列推断中不.合理的是 A.2018年12月的增长率为0.0%,即与2018年11月相比,全国居民消费价格保持不变 B.2018年11月与2018年10月相比,全国居民消费价格降低0.3% C.2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率中最小的是 -0.4% D.2019年1月到2019年8月,全国居民消费价格每月比上个月的增长率一直持续变大
二、填空题(本题共19分,第11~15题每小题2分,第16~18题每小题3分) 11.右图所示的网格是正方形网格,∠ABC ∠DEF. (填“>”,“=”或“<”) 第3页(共7页)
12.用四舍五入法将0.0586精确到千分位,所得到的近似数为 . 13.已知x=3是关于x的一元一次方程ax+b=0的解,请写出一组满足条件的a,b的值:a= ,b= . 14.若2(1)20200xy,则yx= .
15.《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”.《九章算术》大
约成书于公元前200年~公元前50年,是以应用问题解法集成的体例编纂成书的,全书按题目的应用范围与解题方法划分为“方田”、“粟米”、“衰分”等九章. 《九章算术》中有这样一个问题: 今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数、金价各几何? 其译文是:假设合伙买金,每人出400钱,还剩余3400钱;每人出300钱,还剩余100钱.问人数、金价各是多少?如果设有x个人,那么可以列方程为 .
16.我们把 acbd称为二阶行列式,且 acbd=adbc.如:1 21(4)32103 4.
(1)计算: 2 63 5=_________;(2)若4 7 2 m=6,则m的值为__________.
17.已知线段AB如图所示,延长AB至C,使BC=AB,反向延长AB至D,使AD=13BC,点E是线段CD的中点. (1)依题意补全图形; (2)若AB的长为30,则BE的长为__________.
18.一件商品的包装盒是一个长方体(如图1),它的宽和高相等.小明将四个这样的包装盒
放入一个长方体大纸箱中,从上面看所得图形如图2所示,大纸箱底面长方形未被覆盖的部分用阴影表示.接着小明将这四个包装盒又换了一种摆放方式,从上面看所得图形如图3所示,大纸箱底面未被覆盖的部分也用阴影表示. 设图1中商品包装盒的宽为a,则商品包装盒的长为____________,图2中阴影部分的周长与图3中阴影部分的周长的差为________.(都用含a的式子表示)
图1 图2 图3 三、计算题(本题共16分,每小题8分) 19.计算:(1)(5)12(8)21; (2)13(16)(1)45. 第4页(共7页)
20.计算:(1)3778(1)()48127; (2)28[(3)(0.75)19](4)3.
四、解答题(本题共35分,第24题4分,第26题6分,其余每小题5分) 21.先化简,再求值:33364(2)2(3)yxxyyxy,其中2x,3y.
22.解方程:3221153xx.
23.解方程组:436,28.xyxy
24.已知:如图,O是直线AB上一点,OD是∠AOC的平分线,∠COD与∠COE互余. 求证:∠AOE与∠COE互补. 请将下面的证明过程补充完整: 证明:∵O是直线AB上一点, ∴∠AOB=180°. ∵∠COD与∠COE互余, ∴∠COD+∠COE=90°. ∴∠AOD+∠BOE=_______°. ∵OD是∠AOC的平分线, ∴∠AOD=∠_________. (理由:_______________________________________) ∴∠BOE=∠COE. (理由:_______________________________________) ∵∠AOE+∠BOE=180°. ∴∠AOE+∠COE=180°. ∴∠AOE与∠COE互补. 第5页(共7页)
25.某同学模仿二维码的方式为学校设计了一个身份识别图案系统:在4×4的正方形网格中,黑色正方形表示数字1,白色正方形表示数字0.如图1是某个学生的身份识别图案.约
定如下:把第i行,第j列表示的数字记为ija(其中i,j=1,2,3,4),如图1中第2行
第1列的数字210a;对第i行使用公式1234842iiiiiAaaaa进行计算,所得结果1A
表示所在年级,2A表示所在班级,3A表示学号的十位数字,4A表示学号的个位数字.如图1中,第二行280412015A,说明这个学生在5班.
图1 图2 (1)图1代表的学生所在年级是__________年级,他的学号是__________; (2)请仿照图1,在图2中画出八年级4班学号是36的同学的身份识别图案.
26.学校计划在某商店购买秋季运动会的奖品,若买5个篮球和10个足球需花费1150元,若
买9个篮球和6个足球需花费1170元. (1)篮球和足球的单价各是多少元? (2)实际购买时,正逢该商店进行促销,所有体育用品都按原价的八折优惠出售,学校购买了若干个篮球和足球,恰好花费1760元,请直接写出学校购买篮球和足球的个数各是多少.
27.点O为数轴的原点,点A,B在数轴上的位置如图所示,点A表示的数为5,线段AB的
长为线段OA长的1.2倍.点C在数轴上,M为线段OC的中点.
(1)点B表示的数为________; (2)若线段BM的长为4.5,则线段AC的长为__________; (3)若线段AC的长为x,求线段BM的长(用含x的式子表示). 第6页(共7页)
北京市西城区2019—2020学年度第一学期期末试卷 七年级数学附加题 2020.1
一、填空题(本题6分) 1.观察下列等式,探究其中的规律并解答问题: 211,
22343
,
2345675
,
245678910k
,
…… (1)第4个等式中,k=_______; (2)第5个等式为:______________________________________; (3)第n个等式为:_______________________________________(其中 n为正整数).
二、解答题(本题共14分,每小题7分) 2.我们熟知的七巧板,是由宋代黄伯思设计的“燕几图”(“燕几”就是“宴几”,也就是宴请宾客的案几)演变而来.到了明代,严澄将“燕几图”里的方形案几改为三角形,发明了“蝶翅几”.而到了清代初期,在“燕几图”和“蝶翅几”的基础上,兼有三角形、正方形和平行四边形,能拼出更加生动、多样图案的七巧板就问世了(如图1网格中所示).
图1 图2 (1)若正方形网格的边长为1,则图1中七巧板的七块拼板的总面积为_____________; (2)使用图1中的七巧板可以拼出一个轮廓如图2所示的长方形,请在图2中画出拼图方法;(要求:画出各块拼板的轮廓)