操作系统实验三
- 格式:doc
- 大小:648.50 KB
- 文档页数:14
集美大学计算机工程学院实验报告课程名称:操作系统指导教师:王丰实验成绩:实验编号:实验三实验名称:进程同步班级:计算12姓名:学号:上机实践日期:2015.5上机实践时间:2学时一、实验目的1、掌握用Linux信号灯集机制实现两个进程间的同步问题。
2、共享函数库的创建二、实验环境Ubuntu-VMware、Linux三、实验内容⏹需要的信号灯: System V信号灯实现☐用于控制司机是否可以启动车辆的的信号灯 S1=0☐用于控制售票员是否可以开门的信号灯 S2=0System V信号灯实现说明□ System V的信号灯机制属于信号灯集的形式, 一次可以申请多个信号灯.□同样利用ftok()生成一个key: semkey=ftok(path,45);□利用key申请一个包含有两个信号灯的信号灯集, 获得该集的idsemid=semget(semkey,2,IPC_CREAT | 0666);□定义一个联合的数据类型union semun{int val;struct semid_ds *buf;ushort *array;};□利用semctl()函数对信号灯初始化,参数有:信号灯集的id: semid要初始化的信号灯的编号:sn要设定的初始值:valvoid seminit(int semid, int val,int sn){union semun arg;arg.val=val;semctl(semid,sn,SETVAL,arg);}利用初始化函数,初始化信号灯:seminit(semid,0,0);//用来司机启动汽车的同步seminit(semid,0,1);//用来售票员开门的同步控制□利用semop()函数, 对信号灯实现V操作:sembuf是一个在头部文件中的预定义结构、semid—信号灯集id, sn—要操作的信号灯编号void semdown(int semid,int sn){/* define P operating*/struct sembuf op;op.sem_num=sn;op.sem_op=-1;//P操作为-1op.sem_flg=0;semop(semid,&op,1);}2、Linux的静态和共享函数库·Linux生成目标代码: gcc -c 源程序文件名(将生成一个与源程序同名的.o目标代码文件。
向kernel/printk.c中添加日志打印功能,将以下代码添加到原文件中:
在kernel/fork.c、kernel/sched.c和kernel/exit.c中,找到正确的状态转换点,并添加合适的状态信息,把它输出到log文件之中。
fork.c的修改如下:
exit.c的修改如下:
sched.c的修改如下:
在虚拟机上运行ls -l /var”或“ll /var”查看process.log是否建立,及它的属性和长度;
修改时间片
include/linux/sched.h宏INIT_TASK中定义的:
0,15,15, 分别对应state、counter和priority,将priority值修改,即可实现对时间片大小的调整。
0,15,15, 分别对应state、counter和priority,
priority值修改,即可实现对时间片大小的调整。
在修改时间片将priority由15改为150后,Process 9~20 中Turnaround, Waiting, CPU Burst, I/O Burst变化不大,原因可能是程序中I/O操作占用的时间对于总时间影响的权重过大,导致处理时间体现的并不明显。
或者变化不大的原因是,子进程连续占用cpu的时间要比时间片大很多。
电大操作系统实验报告3_ 进程管理实验电大操作系统实验报告 3 进程管理实验一、实验目的进程管理是操作系统的核心功能之一,本次实验的目的是通过实际操作和观察,深入理解进程的概念、状态转换、进程调度以及进程间的通信机制,掌握操作系统中进程管理的基本原理和方法,提高对操作系统的整体认识和实践能力。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C 语言,开发工具为 Visual Studio 2019。
三、实验内容及步骤(一)进程的创建与终止1、编写一个 C 程序,使用系统调用创建一个子进程。
2、在父进程和子进程中分别输出各自的进程 ID 和父进程 ID。
3、子进程执行一段简单的计算任务,父进程等待子进程结束后输出结束信息。
以下是实现上述功能的 C 程序代码:```cinclude <stdioh>include <stdlibh>include <unistdh>int main(){pid_t pid;pid = fork();if (pid < 0) {printf("创建子进程失败\n");return 1;} else if (pid == 0) {printf("子进程:我的进程 ID 是%d,父进程 ID 是%d\n",getpid(), getppid());int result = 2 + 3;printf("子进程计算结果:2 + 3 =%d\n", result);exit(0);} else {printf("父进程:我的进程 ID 是%d,子进程 ID 是%d\n",getpid(), pid);wait(NULL);printf("子进程已结束\n");}return 0;}```编译并运行上述程序,可以观察到父进程和子进程的输出信息,验证了进程的创建和终止过程。
(二)进程的状态转换1、编写一个 C 程序,创建一个子进程,子进程进入睡眠状态一段时间,然后被唤醒并输出状态转换信息。
操作系统实验3进程的创建控制实验实验三的目标是通过实现一个进程控制程序,来加深我们对进程创建和控制机制的理解,并通过实践来熟悉和掌握相关的编程技巧。
在进行实验之前,我们需要先了解进程的一些基本概念和相关知识。
首先,进程的创建是通过操作系统中的系统调用来完成的。
在Linux系统中,常用的创建进程的系统调用有fork(和exec(。
fork(系统调用可以创建一个新的进程,该进程与调用fork(的进程几乎完全相同;而exec(系统调用则在新创建的进程中执行一个新的程序。
另外,进程的控制机制主要是通过进程的状态来实现的。
进程可以处于就绪状态、运行状态和阻塞状态。
就绪状态的进程可以被调度器选择后立即运行,而阻塞状态的进程则需要等待一些条件满足后才能被唤醒并变为就绪状态。
实验三的具体内容包括:1. 编写一个程序,通过调用fork(创建多个子进程。
子进程和父进程可以并行执行,共享程序的代码和数据段。
2. 子进程通过调用exec(系统调用执行不同的程序。
可以通过调用不同的exec(函数或者传入不同的参数来执行不同的程序。
3. 子进程执行的程序可能会产生不同的结果,比如输出不同的字符串或者产生不同的返回值。
我们可以通过wait(系统调用等待子进程退出,并获取子进程的返回值。
4. 父进程可以通过调用waitpid(系统调用来选择等待一些特定的子进程,以及获取特定子进程的返回值。
通过实验三的实践,我将更加深入地了解进程的创建和控制机制。
实验三的实验结果将让我熟悉和掌握相关的编程技巧,为我今后更加熟练地编写和控制进程打下坚实的基础。
总之,实验三是一个非常有意义的实验,将帮助我更加深入地理解进程的创建和控制机制,并通过实践获得相关的编程技巧。
这将对我今后的学习和实践有很大的帮助。
操作系统实验第三次实验进程同步实验指导老师:***学号:********姓名:***操作系统第三次实验进程同步实验指导老师:谭朋柳学生:16207318邓嘉4.1 实验目的加深对并发协作进程同步与互斥概念的理解,观察和体验并发进程同步与互斥操作的效果,分析与研究经典进程同步与互斥问题的实际解决方案。
了解Linux 系统中IPC 进程同步工具的用法,练习并发协作进程的同步与互斥操作的编程与调试技术。
4.2 实验说明在linux 系统中可以利用进程间通信(interprocess communication )IPC 中的3 个对象:共享内存、信号灯数组、消息队列,来解决协作并发进程间的同步与互斥的问题。
1)共享内存是OS 内核为并发进程间交换数据而提供的一块内存区(段)。
如果段的权限设置恰当,每个要访问该段内存的进程都可以把它映射到自己私有的地址空间中。
如果一进程更新了段中数据,那么其他进程立即会看到这一更新。
进程创建的段也可由另一进程读写。
linux 中可用命令ipcs -m 观察共享内存情况。
$ ipcs -m------ Shared Memory Segments --------key shmid owner perms bytes nattch status 0x00000000 327682 student 600 393216 2 dest0x00000000 360451 student 600 196608 2 dest 0x00000000 393220 student 600 196608 2 destkey 共享内存关键值shmid 共享内存标识owner 共享内存所由者(本例为student)perm 共享内存使用权限(本例为student 可读可写)byte 共享内存字节数nattch 共享内存使用计数status 共享内存状态上例说明系统当前已由student 建立了一些共享内存,每个都有两个进程在共享。
实验三实验报告实验源码:#include "stdio.h"#include <iostream.h>#include <stdlib.h>#define DataMax 100 // 常量DataMax#define BlockNum 10 // 常量BlockNumint DataShow[BlockNum][DataMax]; // 用于存储要显示的数组bool DataShowEnable[BlockNum][DataMax]; // 用于存储数组中的数据是否需要显示int Data[DataMax]; // 保存数据int Block[BlockNum]; // 物理块int count[BlockNum]; // 计数器int N; // 页面个数int M; // 最小物理块数int ChangeTimes; // 缺页次数void DataInput(); // 输入数据的函数void DataOutput(); // 输出数据的函数void FIFO(); // FIFO 函数void Optimal(); // Optimal函数void LRU(); // LRU函数int main(int argc, char* argv[]){DataInput();int menu;while(true){printf("\n* 菜单选择*\n");printf("*******************************************************\n");printf("* 1-Optimal *\n");printf("* 2-FIFO *\n");printf("* 3-LRU *\n");printf("* 4-返回上一级*\n");printf("* 0-EXIT *\n");printf("*******************************************************\n");scanf("%d",&menu);switch(menu){case 1:Optimal();break;case 2:FIFO();break;case 3:LRU();break;case 0:exit(0);break;case 4:system("cls");DataInput();break;}if(menu != 1 && menu != 2 && menu != 3 && menu != 0 && menu !=4) { system("cls");printf("\n请输入0 - 4之间的整数!\n");continue;}}return 0;}void DataInput(){int i,choice;printf("请输入最小物理块数:");scanf("%d",&M);// 输入最小物理块数大于数据个数while(M > BlockNum){printf("物理块数超过预定值,请重新输入:");scanf("%d",&M);}printf("请输入页面的个数:");scanf("%d",&N);// 输入页面的个数大于数据个数while(N > DataMax){printf("页面个数超过预定值,请重新输入:");scanf("%d",&N);}printf("请选择产生页面访问序列的方式(1.随机2.输入):");scanf("%d",&choice);switch(choice){case 1:// 产生随机访问序列for(i = 0;i < N;i++){Data[i] = (int)(((float) rand() / 32767) * 10); // 随机数大小在0 - 9之间}system("cls");// 显示随机产生的访问序列printf("\n随机产生的访问序列为:");for(i = 0;i < N;i++){printf("%d ",Data[i]);}printf("\n");break;case 2:// 输入访问序列printf("请输入页面访问序列:\n");for(i = 0;i < N;i++)scanf("%d",&Data[i]);system("cls");// 显示输入的访问序列printf("\n输入的访问序列为:");for(i = 0;i < N;i++){printf("%d ",Data[i]);}printf("\n");break;default:while(choice != 1 && choice != 2){printf("请输入1或2选择相应方式:");scanf("%d",&choice);}break;}}void DataOutput(){int i,j;// 对所有数据操作for(i = 0;i < N;i++){printf("%d ",Data[i]);}printf("\n");for(j = 0;j < M;j++){// 对所有数据操作for(i = 0;i < N;i++){if( DataShowEnable[j][i] )printf("%d ",DataShow[j][i]);elseprintf(" ");}printf("\n");}printf("缺页次数: %d\n",ChangeTimes);printf("缺页率: %d %%\n",ChangeTimes * 100 / N); }// 最佳置换算法void Optimal(){int i,j,k;bool find;int point;int temp; // 临时变量,比较离的最远的时候用int m = 1,n;ChangeTimes = 0;for(j = 0;j < M;j++){for(i=0;i < N;i++){DataShowEnable[j][i] = false; // 初始化为false,表示没有要显示的数据}}for(i = 0;i < M;i++){count[i] = 0 ; // 初始化计数器}// 确定当前页面是否在物理块中,在继续,不在置换/////////////////////////////////////////////////////////////////////////////////// Block[0] = Data[0];for(i = 1;m < M;i++){int flag = 1;for(n = 0; n < m;n++){if(Data[i] == Block[n]) flag = 0;}if(flag == 0) continue;Block[m] = Data[i];m++;}//////////////////////////////////////////////////////////////////////////////////// 对所有数据进行操作for(i=0;i < N;i++){// 表示块中有没有该数据find = false;for(j = 0;j < M;j++){if( Block[j] == Data[i] ){find = true;}}if( find ) continue; // 块中有该数据,判断下一个数据// 块中没有该数据,最优算法ChangeTimes++; // 缺页次数++for(j = 0;j < M;j++){// 找到下一个值的位置find = false;for( k = i;k < N;k++){if( Block[j] == Data[k] ){find = true;count[j] = k;break;}}if( !find ) count[j] = N;}// 因为i是从0开始记,而BlockNum指的是个数,从1开始,所以i+1if( (i + 1) > M ){//获得要替换的块指针temp = 0;for(j = 0;j < M;j++){if( temp < count[j] ){temp = count[j];point = j; // 获得离的最远的指针}}}else point = i;// 替换Block[point] = Data[i];// 保存要显示的数据for(j = 0;j < M;j++){DataShow[j][i] = Block[j];DataShowEnable[i < M ? (j <= i ? j : i) : j][i] = true; // 设置显示数据}}// 输出信息printf("\nOptimal => \n");DataOutput();}// 先进先出置换算法void FIFO(){bool find;int point;int temp; // 临时变量int m = 1,n;ChangeTimes = 0;for(j = 0;j < M;j++){for(i = 0;i < N;i++){DataShowEnable[j][i] = false; // 初始化为false,表示没有要显示的数据}}for(i = 0;i < M;i++){count[i] = 0; // 大于等于BlockNum,表示块中没有数据,或需被替换掉// 所以经这样初始化(3 2 1),每次替换>=3的块,替换后计数值置1,// 同时其它的块计数值加1 ,成了(1 3 2 ),见下面先进先出程序段}// 确定当前页面是否在物理块中,在继续,不在置换/////////////////////////////////////////////////////////////////////////////////// Block[0] = Data[0];for(i = 1;m < M;i++){int flag = 1;for(n = 0; n < m;n++){if(Data[i] == Block[n]) flag = 0;}if(flag == 0) continue;Block[m] = Data[i];m++;}//////////////////////////////////////////////////////////////////////////////////// 对有所数据操作for(i = 0;i < N;i++){// 增加countfor(j = 0;j < M;j++){count[j]++;find = false; // 表示块中有没有该数据for(j = 0;j < M;j++){if( Block[j] == Data[i] ){find = true;}}// 块中有该数据,判断下一个数据if( find ) continue;// 块中没有该数据ChangeTimes++; // 缺页次数++// 因为i是从0开始记,而M指的是个数,从1开始,所以i+1if( (i + 1) > M ){//获得要替换的块指针temp = 0;for(j = 0;j < M;j++){if( temp < count[j] ){temp = count[j];point = j; // 获得离的最远的指针}}}else point = i;// 替换Block[point] = Data[i];count[point] = 0; // 更新计数值// 保存要显示的数据for(j = 0;j < M;j++){DataShow[j][i] = Block[j];DataShowEnable[i < M ? (j <= i ? j : i) : j][i] = true; // 设置显示数据}}// 输出信息printf("\nFIFO => \n");DataOutput();}// 最近最久未使用置换算法void LRU(){int i,j;bool find;int point;int temp; // 临时变量int m = 1,n;ChangeTimes = 0;for(j = 0;j < M;j++){for(i = 0;i < N;i++){DataShowEnable[j][i] = false; // 初始化为false,表示没有要显示的数据}}for(i = 0;i < M;i++){count[i] = 0 ; // 初始化计数器}// 确定当前页面是否在物理块中,在继续,不在置换///////////////////////////////////////////////////////////////////////////////////Block[0] = Data[0];for(i = 1;m < M;i++){int flag = 1;for(n = 0; n < m;n++){if(Data[i] == Block[n]) flag = 0;}if(flag == 0) continue;Block[m] = Data[i];m++;}//////////////////////////////////////////////////////////////////////////////////// 对有所数据操作for(i = 0;i < N;i++){// 增加countfor(j = 0;j < M;j++){count[j]++;}find = false; // 表示块中有没有该数据for(j = 0;j < M;j++){if( Block[j] == Data[i] ){count[j] = 0;find = true;}}// 块中有该数据,判断下一个数据if( find ) continue;// 块中没有该数据ChangeTimes++;// 因为i是从0开始记,而BlockNum指的是个数,从1开始,所以i+1 if( (i + 1) > M ){//获得要替换的块指针temp = 0;for(j = 0;j < M;j++){if( temp < count[j] ){temp = count[j];point = j; // 获得离的最远的指针}}}else point = i;// 替换Block[point] = Data[i];count[point] = 0;// 保存要显示的数据for(j=0;j<M;j++){DataShow[j][i] = Block[j];DataShowEnable[i < M ?(j <= i ? j : i) : j][i] = true; // 设置显示数据}}// 输出信息printf("\nLRU => \n");DataOutput();}实验结果截图:程序运行:输入相应数据:选择相应算法:最佳置换算法:先进先出算法:最近最久未使用算法:。
实验报告一、实验一:图书馆管理系统三、实验目的:掌握shell编程的一般方法,能运用常用的shell命令编写一个简单的shell程序,并能在Linux系统所提供的/bin/sh或/bin/bash下正确的运行。
四、实验原理:UNIX五、实验内容:编写一个菜单驱动的Linux图书馆管理程序(LLIB),该程序能够对书库中的图书执行增加一条记录、删除一条记录、显示一条记录、更新一条记录状态和打印报表等功能。
六、实验器材(设备、元器件):电脑七、实验步骤:1.增加一本书的函数需要依次读取用户的输入,每次先写出提示输入语句,然后读取输入。
CATEGORY可以使用简写,因此使用一个case语句进行变量的替换和规范化。
2.删除一本书要用户先输入书名或者作者名,然后找到一条记录,询问用户是否删除。
其中要输出这条记录的详细想信息,如果书已经借出去了,那么还要输出借出去的人和时间。
删除这条记录通过将除了这条记录之外的记录输出到一个临时文件中,然后用临时文件覆盖当前的数据文件即可。
3.显示书的详细信息和删除书的部分一致,只是最后不进行删除。
4.更新书也和删除书一致,只是当库存书改为借出状态时,需要用户额外输入信息。
并且多3个变量存储新的状态、借阅者姓名、日期。
5.REPORTS为输出所有书的信息,首先根据不同的选择,将ULIB_FILE排序后输出到temp,然后调用report函数输出temp中的值。
report函数使用一个while read 循环读取temp 中的每一行,然后格式化后输出到ttemp中。
最后使用more对于ttemp进行显示,在显示后还需要 read A,使得bash等待用户输入,不会显示完就进入菜单的循环。
八、实验数据及结果分析:1.初始界面2.主菜单3.编辑菜单4.添加书5.更新书6.显示书7.删除书8.显示菜单9.根据书名排序10.根据作者排序11.根据种类排序九、总结、改进建议及心得体会:学习了Shell编程。
广州大学学生实验报告开课学院及实验室:计算机学院,电子信息楼416A室 2014年 11 月 20日一、实验目的通过模拟实现请求页式存储管理的几种基本页面置换算法,了解虚拟存储技术的特点,掌握虚拟存储请求页式存储管理中几种基本页面置换算法的基本思想和实现过程,并比较它们的效率。
了解linux环境下如何实现内存的分配与回收。
二、实验内容(一)内存管理实验1:常用页面置换算法模拟实验设计一个虚拟存储区和内存工作区,并使用下述算法计算访问命中率。
1、最佳淘汰算法(OPT)2、先进先出的算法(FIFO)3、最近最久未使用算法(LRU)4、最不经常使用算法(LFU)5、最近未使用算法(NUR)命中率=1-页面失效次数/页地址流长度(二)内存管理实验2:Linux下的内存分配与回收的管理在Linux环境下利用下列系统调用malloc(),free()编写一段程序实现内存分配与回收的管理。
要求:返回已分配给变量的内存地址;返回释放后的内存地址;释放已分配的内存空间后,返回释放内存后未使用内存的大小。
三、实验设备安装带Linux操作系统的电脑一台。
四、实验程序实现及结果分析(一)内存管理实验1:常用页面置换算法模拟实验实验程序如下:#define TRUE 1#define FALSE 0#define INV ALID -1#define NULL 0#define total_instruction 320 /*指令流长*/#define total_vp 32 /*虚页长*/#define clear_period 50 /*清0周期*/typedef struct /*页面结构*/{int pn,pfn,counter,time;}pl_type;pl_type pl[total_vp]; /*页面结构数组*/struct pfc_struct{ /*页面控制结构*/int pn,pfn;struct pfc_struct *next;};typedef struct pfc_struct pfc_type;pfc_type pfc[total_vp],*freepf_head,*busypf_head,*busypf_tail;int diseffect, a[total_instruction];int page[total_instruction], offset[total_instruction];int initialize(int);int FIFO(int);int LRU(int);int LFU(int);int NUR(int);int OPT(int);int main( ){int s,i,j;srand(10*getpid()); /*由于每次运行时进程号不同,故可用来作为初始化随机数队列的“种子”*/s=(float)319*rand( )/32767/32767/2+1; //for(i=0;i<total_instruction;i+=4) /*产生指令队列*/{if(s<0||s>319){printf("When i==%d,Error,s==%d\n",i,s);exit(0);}a[i]=s; /*任选一指令访问点m*/a[i+1]=a[i]+1; /*顺序执行一条指令*/a[i+2]=(float)a[i]*rand( )/32767/32767/2; /*执行前地址指令m' */a[i+3]=a[i+2]+1; /*顺序执行一条指令*/s=(float)(318-a[i+2])*rand( )/32767/32767/2+a[i+2]+2;if((a[i+2]>318)||(s>319))printf("a[%d+2],a number which is :%d and s==%d\n",i,a[i+2],s);}for (i=0;i<total_instruction;i++) /*将指令序列变换成页地址流*/{page[i]=a[i]/10;offset[i]=a[i]%10;}for(i=4;i<=32;i++) /*用户内存工作区从4个页面到32个页面*/{printf("---%2d page frames---\n",i);FIFO(i);LRU(i);LFU(i);NUR(i);OPT(i);}return 0;}int initialize(total_pf) /*初始化相关数据结构*/int total_pf; /*用户进程的内存页面数*/{int i;diseffect=0;for(i=0;i<total_vp;i++){pl[i].pn=i;pl[i].pfn=INV ALID; /*置页面控制结构中的页号,页面为空*/pl[i].counter=0;pl[i].time=-1; /*页面控制结构中的访问次数为0,时间为-1*/ }for(i=0;i<total_pf-1;i++){pfc[i].next=&pfc[i+1];pfc[i].pfn=i;} /*建立pfc[i-1]和pfc[i]之间的链接*/pfc[total_pf-1].next=NULL;pfc[total_pf-1].pfn=total_pf-1;freepf_head=&pfc[0]; /*空页面队列的头指针为pfc[0]*/return 0;}int FIFO(total_pf) /*先进先出算法*/int total_pf; /*用户进程的内存页面数*/{int i,j;pfc_type *p;initialize(total_pf); /*初始化相关页面控制用数据结构*/busypf_head=busypf_tail=NULL; /*忙页面队列头,队列尾链接*/for(i=0;i<total_instruction;i++){if(pl[page[i]].pfn==INV ALID) /*页面失效*/{diseffect+=1; /*失效次数*/if(freepf_head==NULL) /*无空闲页面*/{p=busypf_head->next;pl[busypf_head->pn].pfn=INV ALID;freepf_head=busypf_head; /*释放忙页面队列的第一个页面*/freepf_head->next=NULL;busypf_head=p;}p=freepf_head->next; /*按FIFO方式调新页面入内存页面*/freepf_head->next=NULL;freepf_head->pn=page[i];pl[page[i]].pfn=freepf_head->pfn;if(busypf_tail==NULL)busypf_head=busypf_tail=freepf_head;else{busypf_tail->next=freepf_head; /*free页面减少一个*/busypf_tail=freepf_head;}freepf_head=p;}}printf("FIFO:%6.4f\n",1-(float)diseffect/320);return 0;}int LRU (total_pf) /*最近最久未使用算法*/int total_pf;{int min,minj,i,j,present_time;initialize(total_pf);present_time=0;for(i=0;i<total_instruction;i++){if(pl[page[i]].pfn==INV ALID) /*页面失效*/{diseffect++;if(freepf_head==NULL) /*无空闲页面*/{min=32767;for(j=0;j<total_vp;j++) /*找出time的最小值*/if(min>pl[j].time&&pl[j].pfn!=INV ALID){min=pl[j].time;minj=j;}freepf_head=&pfc[pl[minj].pfn]; //腾出一个单元pl[minj].pfn=INV ALID;pl[minj].time=-1;freepf_head->next=NULL;}pl[page[i]].pfn=freepf_head->pfn; //有空闲页面,改为有效pl[page[i]].time=present_time;freepf_head=freepf_head->next; //减少一个free 页面}elsepl[page[i]].time=present_time; //命中则增加该单元的访问次数present_time++;}printf("LRU:%6.4f\n",1-(float)diseffect/320);return 0;}int NUR(total_pf) /*最近未使用算法*/int total_pf;{ int i,j,dp,cont_flag,old_dp;pfc_type *t;initialize(total_pf);dp=0;for(i=0;i<total_instruction;i++){ if (pl[page[i]].pfn==INV ALID) /*页面失效*/{diseffect++;if(freepf_head==NULL) /*无空闲页面*/{ cont_flag=TRUE;old_dp=dp;while(cont_flag)if(pl[dp].counter==0&&pl[dp].pfn!=INV ALID)cont_flag=FALSE;else{dp++;if(dp==total_vp)dp=0;if(dp==old_dp)for(j=0;j<total_vp;j++)pl[j].counter=0;}freepf_head=&pfc[pl[dp].pfn];pl[dp].pfn=INV ALID;freepf_head->next=NULL;}pl[page[i]].pfn=freepf_head->pfn;freepf_head=freepf_head->next;}elsepl[page[i]].counter=1;if(i%clear_period==0)for(j=0;j<total_vp;j++)pl[j].counter=0;}printf("NUR:%6.4f\n",1-(float)diseffect/320);return 0;}int OPT(total_pf) /*最佳置换算法*/int total_pf;{int i,j, max,maxpage,d,dist[total_vp];pfc_type *t;initialize(total_pf);for(i=0;i<total_instruction;i++){ //printf("In OPT for 1,i=%d\n",i); //i=86;i=176;206;250;220,221;192,193,194;258;274,275,276,277,278;if(pl[page[i]].pfn==INV ALID) /*页面失效*/{diseffect++;if(freepf_head==NULL) /*无空闲页面*/{for(j=0;j<total_vp;j++)if(pl[j].pfn!=INV ALID) dist[j]=32767; /* 最大"距离" */else dist[j]=0;d=1;for(j=i+1;j<total_instruction;j++){if(pl[page[j]].pfn!=INV ALID)dist[page[j]]=d;d++;}max=-1;for(j=0;j<total_vp;j++)if(max<dist[j]){max=dist[j];maxpage=j;}freepf_head=&pfc[pl[maxpage].pfn];freepf_head->next=NULL;pl[maxpage].pfn=INV ALID;}pl[page[i]].pfn=freepf_head->pfn;freepf_head=freepf_head->next;}}printf("OPT:%6.4f\n",1-(float)diseffect/320);return 0;}int LFU(total_pf) /*最不经常使用置换法*/int total_pf;{int i,j,min,minpage;pfc_type *t;initialize(total_pf);for(i=0;i<total_instruction;i++){ if(pl[page[i]].pfn==INV ALID) /*页面失效*/{ diseffect++;if(freepf_head==NULL) /*无空闲页面*/{ min=32767;for(j=0;j<total_vp;j++){if(min>pl[j].counter&&pl[j].pfn!=INV ALID){min=pl[j].counter;minpage=j;}pl[j].counter=0;}freepf_head=&pfc[pl[minpage].pfn];pl[minpage].pfn=INV ALID;freepf_head->next=NULL;}pl[page[i]].pfn=freepf_head->pfn; //有空闲页面,改为有效pl[page[i]].counter++;freepf_head=freepf_head->next; //减少一个free 页面}elsepl[page[i]].counter++;}printf("LFU:%6.4f\n",1-(float)diseffect/320);return 0;}实验结果如图1-图3所示。