立体几何基础题题库一C
- 格式:doc
- 大小:4.51 MB
- 文档页数:68
立几测001试一、选择题:1.a 、b 是两条异面直线,以下结论正确的选项是〔 〕A .过不在a 、b 上的任一点,可作一个平面与a 、b 都平行B .过不在a 、b 上的任一点,可作一条直线与a 、b 都相交C .过不在a 、b 上的任一点,可作一条直线与a 、b 都平行D .过a 可以且只可以作一个平面与b 平行2.空间不共线的四点,可以确定平面的个数为 ( )A.0 B.1 C.1或4 D.无法确定3.在正方体1111ABCD A B C D -中,M 、N 分别为棱1AA 、1BB 的中点,则异面直线CM 和1D N 所成角的正弦值为 ( ) A.19 B.23C.459 D.2594.平面α⊥平面β,m 是α的一直线,n 是β的一直线,且m n ⊥,则:①m β⊥;②n α⊥;③m β⊥或n α⊥;④m β⊥且n α⊥。
这四个结论中,不正确...的三个是 ( )A.①②③B.①②④C.①③④D.②③④5.一个简单多面体的各个面都是三角形,它有6个顶点,则这个简单多面体的面数是( ) A. 4 B.5 C. 6 D. 86. 在北纬45°的纬度圈上有甲、乙两地,两地经度差为90°,则甲、乙两地最短距离为〔设地球半径为R 〕( )A.R π42B.R 3πC.R 2πD.3R7. 直线l ⊥平面α,直线m ⊂平面β,有以下四个命题(1)m l ⊥⇒βα//(2)m l //⇒⊥βα(3)βα⊥⇒m l //(4)βα//⇒⊥m l 其中正确的命题是( )A. (1)与(2)B. (2)与(4)C. (1)与(3)D. (3)与(4)8. 正三棱锥的侧面均为直角三角形,侧面与底面所成角为α,则以下不等式成立的是( ) A.60πα<< B.46παπ<< C.34παπ<< D.23παπ<<9.ABC ∆中,9AB =,15AC =,120BAC ∠=︒,ABC ∆所在平面α外一点P 到点A 、B 、C 的距离都是14,则P 到平面α的距离为( )A.7 B.9 C.11 D.1310.在一个45︒的二面角的一个平面有一条直线与二面角的棱成角45︒,则此直线与二面角的另一个平面所成角的大小为 ( )A.30︒ B.45︒ C.60︒ D.90︒11. 如图,E, F 分别是正方形SD 1DD 2的边D 1D,DD 2的中点, 沿SE,SF,EF 将其折成一个几何体,使D 1,D,D 2重合,记作 D.给出以下位置关系:①SD ⊥面DEF; ②SE ⊥面DEF; ③DF ⊥SE; ④EF ⊥面SED,其中成立的有: ( )A. ①与② B. ①与③ C. ②与③ D. ③与④12. *地球仪的北纬60度圈的周长为6πcm,则地球仪的外表积为( )A. 24πcm 2B. 48πcm 2C.144πcm 2D. 288πcm 2二、填空题〔本大题共4小题,每题4分,共16分〕13. 直二面角α—MN —β中,等腰直角三角形ABC 的斜边BC ⊂α,一直角边AC ⊂β,BC 与β所成角的正弦值是46,则AB 与β所成角大小为__________。
高一数学立体几何初步试题答案及解析1.以下命题正确的是A.两个平面可以只有一个交点B.一条直线与一个平面最多有一个公共点C.两个平面有一个公共点,它们可能相交D.两个平面有三个公共点,它们一定重合【答案】C【解析】两个平面只要有一个公共点,就有一条通过该点的公共直线,故A错一条直线若在平面内,其上的所有点都在平面内,故B错两个平面有一个公共点,它们可能相交也可能是同一个平面,故C对,选C。
【考点】本题主要考查平面的基本性质及推论。
点评:基础题,分析选项利用“排除法”。
2.如图所示,点S在平面ABC外,SB⊥AC,SB=AC=2, E、F分别是SC和AB的中点,则EF的长是()A.1B.C.D.【答案】B【解析】取BC的中点D,连接ED与FD∵E、F分别是SC和AB的中点,点D为BC的中点∴ED∥SB,FD∥AC而SB⊥AC,SB=AC=2则三角形EDF为等腰直角三角形则ED=FD=1即EF=,故选B。
【考点】本题主要考查点、线、面间的距离计算。
点评:本题主要考查了中位线定理,以及异面直线所成角的应用,同时考查了转化与化归的思想,属于基础题。
3.已知ABCD是空间四边形形,E、F、G、H分别是AB、BC、CD、DA的中点,如果对角线AC=4,BD=2,那么EG2+HF2的值等于A.10 B.15 C.20 D.25【答案】A【解析】因为,所以是平行四边形,,,又因为两式相加得,故选A。
【考点】本题主要考查空间四边形的性质、余弦定理的应用。
点评:利用空间四边形的性质,可以得到若干平行关系,利用余弦定理得出EG2,HF2,两式相加“消去”了未知量。
4.说出下列三视图表示的几何体是A.正六棱柱B.正六棱锥C.正六棱台D.正六边形【答案】A【解析】结合简单几何体的特征,对照选项知A。
【考点】本题主要考查简单几何体的特征及三视图。
点评:简单题,理解好三视图的意义。
5.平行投影与中心投影之间的区别是_____________;【答案】平行投影的投影线互相平行,而中心投影的投影线相交于一点;【解析】平行投影与中心投影之间的区别是平行投影的投影线互相平行,而中心投影的投影线相交于一点。
立体几何试题及答案一、选择题1. 一个正方体的棱长为a,其表面积为:A. 3a²B. 4a²C. 6a²D. 8a²答案:C2. 一个长方体的长、宽、高分别为l、w、h,其体积为:A. lwhB. 2(lwh)C. l²wD. lw²答案:A3. 圆柱的底面半径为r,高为h,其体积为:A. πr²hB. 2πr²hC. πrhD. πr²答案:A二、填空题1. 一个球的体积公式为:_________________。
答案:\( V = \frac{4}{3}πr^3 \)2. 圆锥的体积公式为:_________________。
答案:\( V = \frac{1}{3}πr^2h \)3. 若一个棱锥的底面积为S,高为h,则其体积为:_________________。
答案:\( V = \frac{1}{3}Sh \)三、计算题1. 已知一个正四面体的棱长为a,求其表面积和体积。
解:正四面体的表面积为:\( S_{表} = 4 \times \frac{\sqrt{3}}{4}a^2 = \sqrt{3}a^2 \)正四面体的体积为:\( V = \frac{1}{3} \times \frac{\sqrt{3}}{4}a^2 \times\frac{\sqrt{2}}{2}a = \frac{\sqrt{2}}{12}a^3 \)2. 已知一个圆柱的底面半径为r,高为h,求其表面积和体积。
解:圆柱的表面积为:\( S_{表} = 2πr^2 + 2πrh \)圆柱的体积为:\( V = πr^2h \)四、证明题1. 证明:在一个球面上,任意两个大圆的弦所成的角都是直角。
证明:设球面上的两个大圆为O₁O₂和O₃O₄,弦AB和CD分别位于这两个大圆上,连接O₁A、O₁B、O₂A、O₂B、O₃C、O₃D、O₄C、O₄D。
立体几何考察试题及答案一、选择题1. 若直线l与平面α垂直,则直线l与平面α内任意直线的关系是()。
A. 相交B. 平行C. 异面D. 垂直答案:D2. 已知一个正四面体的棱长为a,求其体积。
A. \( \frac{a^3 \sqrt{2}}{12} \)B. \( \frac{a^3 \sqrt{2}}{6} \)C. \( \frac{a^3 \sqrt{3}}{12} \)D. \( \frac{a^3 \sqrt{3}}{6} \)答案:C二、填空题1. 已知一个长方体的长、宽、高分别为a、b、c,则其对角线的长度为 \( \sqrt{a^2 + b^2 + c^2} \)。
2. 一个球的半径为r,则其表面积为 \( 4\pi r^2 \)。
三、解答题1. 已知一个圆锥的底面半径为r,高为h,求其体积。
解:圆锥的体积公式为 \( V = \frac{1}{3}\pi r^2 h \)。
答:圆锥的体积为 \( \frac{1}{3}\pi r^2 h \)。
2. 已知一个圆柱的底面半径为r,高为h,求其侧面积。
解:圆柱的侧面积公式为 \( A = 2\pi rh \)。
答:圆柱的侧面积为 \( 2\pi rh \)。
四、证明题1. 证明:若直线l与平面α内的两条直线m和n都垂直,则直线l与平面α垂直。
证明:设直线m和n在平面α内的交点为O,由于直线l与m、n都垂直,根据直线与平面垂直的判定定理,直线l与平面α垂直。
答:直线l与平面α垂直。
2. 证明:若两个平面α和β的交线为l,直线m在平面α内且与l平行,直线n在平面β内且与l平行,则直线m与直线n平行。
证明:设直线m与直线n的交点为P,由于m在平面α内且与l平行,n在平面β内且与l平行,根据平面与平面平行的性质,直线m与直线n平行。
答:直线m与直线n平行。
立体几何试题一、选择题: 1.下列命题中正确命题的个数是( )⑴ 三点确定一个平面 ⑵ 若点P 不在平面α内,A 、B 、C 三点都在平面α内,则P 、A 、B 、C 四点不在同一平面内⑶ 两两相交的三条直线在同一平面内 ⑷ 两组对边分别相等的四边形是平行四边形A.0B.1C.2 D 。
3 答案:A 2.已知异面直线a 和b 所成的角为︒50,P 为空间一定点,则过点P 且与a 、b 所成的角都是︒30的直线条数有且仅有 ( ) A 。
1条 B 。
2条 C 。
3条 D 。
4条 答案:B 3.已知直线⊥l 平面α,直线⊂m 平面β,下列四个命题中正确的是 ( ) (1) 若βα//,则m l ⊥ (2) 若βα⊥,则m l //(3) 若m l //,则βα⊥ (4) 若m l ⊥,则βα//A.(3)与(4)B.(1)与(3)C.(2)与(4)D.(1)与(2) 答案:B 4.已知m 、n 为异面直线,⊂m 平面α,⊂n 平面β,l =βα ,则l ( )A.与m 、n 都相交B.与m 、n 中至少一条相交C.与m 、n 都不相交D.至多与m 、n 中的一条相交答案:B5.设集合A={直线},B={平面},B A C =,若A a ∈,B b ∈,C c ∈,则下列命题中的真命题是( ) A. c a b a b c ⊥⇒⎭⎬⎫⊥// B.c a c b b a //⇒⎭⎬⎫⊥⊥C. c a b c b a //////⇒⎭⎬⎫ D 。
c a b c b a ⊥⇒⎭⎬⎫⊥//答案:A6.已知a 、b 为异面直线,点A 、B 在直线a 上,点C 、D 在直线b 上,且AC=AD,BC=BD,则直线a 、b所成的角为 ( ) A 。
︒90 B 。
︒60 C 。
︒45 D 。
︒30 答案:A7.下列四个命题中正确命题的个数是( )有四个相邻侧面互相垂直的棱柱是直棱柱各侧面都是正方形的四棱柱是正方体底面是正三角形,各侧面都是等腰三角形的三棱锥是正三棱锥A.1个B.2个C.3个D 。
立体几何专题训练一、选择题(每题5分,共60分)1.在一个几何体的三视图中,正视图和俯视图如右图,则相应的侧视图可以为( )2.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为( )3.(2011年高考湖南卷文科4)设图1是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+ C.9122π+ D.9182π+4.某几何体的三视图如图所示,则它的体积是( )(A )283π-(B )83π- (C )82π- (D )23π5.一个正三棱柱的侧棱长和底面边长相等,体积为的三视图中的俯视图如右图所示.左视图是一个矩形.则这个矩形的面积是( )(A)4 (B)6.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( )(A )1223,l l l l ⊥⊥⇒1l //2l (B )12l l ⊥,1l //3l ⇒32l l ⊥ (C )1l //2l //3l ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面7.若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 ( )B.2C.D.68.在空间,下列命题正确的是( ) A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行正视图侧视图俯视图 图19.一个几何体的三视图如图,该几何体的表面积是()(A)372 (B)360(C)292 (D)28010.设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为( ) (A)3πa2 (B)6πa2(C)12πa2 (D)24πa211.设球的体积为V1,它的内接正方体的体积为V2,下列说法中最合适的是( )A. V1比V2大约多一半B. V1比V2大约多两倍半C. V1比V2大约多一倍D. V1比V2大约多一倍半12.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是( )(A)3 (B)2 (C)1 (D)0二、填空题(每题4分,共16分)13.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于_____________.14.一个几何体的三视图如图所示,则这个几何体的体积为.15.已知四棱椎P ABCD-的底面是边长为6 的正方形,侧棱PA⊥底面ABCD,且8PA=,则该四棱椎的体积是。
高中立体几何试题及答案一、选择题(每题3分,共15分)1. 空间中,如果直线a与平面α平行,那么直线a与平面α内的任意直线b的位置关系是:A. 平行B. 异面C. 相交D. 垂直2. 一个正方体的棱长为a,那么它的对角线长度为:A. a√2B. a√3C. 2aD. 3a3. 已知一个圆锥的底面半径为r,高为h,圆锥的体积是:A. πr²hB. 1/3πr²hC. 2πr²hD. 3πr²h4. 一个球的半径为R,那么它的表面积是:A. 4πR²B. 2πR²C. πR²D. R²5. 空间中,如果两个平面α和β相交于直线l,那么直线l与平面α和平面β的位置关系是:A. 平行B. 垂直C. 相交D. 包含二、填空题(每题2分,共10分)6. 空间直角坐标系中,点A(2,3,4)到原点O的距离是________。
7. 一个正四面体的每个顶点都与其它三个顶点相连,那么它的边长与高之比为________。
8. 已知一个长方体的长、宽、高分别为l、w、h,那么它的体积是________。
9. 空间中,如果一个点到平面的距离是d,那么这个点到平面上任意一点的距离的最大值是________。
10. 一个圆柱的底面半径为r,高为h,它的侧面积是________。
三、解答题(共75分)11. (15分)已知空间直角坐标系中,点A(1,2,3),B(4,5,6),点C 在平面ABC内,且AC=BC=2,求点C的坐标。
12. (20分)一个圆锥的底面半径为3,高为4,求圆锥的全面积和表面积。
13. (20分)一个长方体的长、宽、高分别为5、3、2,求其外接球的半径。
14. (20分)已知一个球的表面积为4π,求该球的体积。
答案:一、选择题1. A2. B3. B4. A5. C二、填空题6. √(1²+2²+3²)=√147. √3:18. lwh9. d+R10. 2πrh三、解答题11. 点C的坐标可以通过向量运算求得,设C(x,y,z),则向量AC=向量BC,即(1-x,2-y,3-z)=(x-4,5-y,6-z),解得x=3,y=4,z=5,所以点C的坐标为(3,4,5)。
立体几何(必修2第一、二章)水平测试题(C )时间:120分钟 满分:150分一、选择题(每小题5分,共50分)1.已知三点A(-1,0,1),B(2,4,3),C(5,8,5),则( )A .三点构成等腰三角形B .三点构成直角三角形C .三点构成等腰直角三角形D .三点构不成三角形2.下列命题中:①一条直线和两条平行线都相交,那么这三条直线共面; ②任两条都相交,但不共点的四条直线一定共面; ③两条相交直线上的三个点确定一个平面;④空间四点不共面,则其中任意三点不共线.其中正确命题的个数是( ) A .1 B .2 C .3 D .43.下图是一个空间几何体的三视图,根据图中尺寸(单位:cm)可知几何体的表面积是( )A .(18+23)cm 2 B.2132cm 2C .(18+3) cm 2D .(6+23) cm 24.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是( )A.62B. 3C.32D.635.如图,▱ABCD 中,AB ⊥BD ,沿BD 将△ABD 折起,使平面ABD ⊥平面BCD ,连结AC ,则在四面体ABCD 的四个面中,互相垂直的平面有( )A .1对B .2对C .3对D .4对6.一个正方体内接于一个球,过球心作截面,其截面图形可能是( )A .①④B .②③C .①②③D .②③④7.已知S ,A ,B ,C 是球O 表面上的点,SA ⊥平面ABC ,AB ⊥BC ,SA =AB =1,BC =2,则球O 的表面积等于( )A .4πB .3πC .2πD .π8.一个正方体的展开图如图所示,B ,C ,D 为原正方体的顶点,A 为原正方体一条棱的中点.在原来的正方体中,CD 与AB 所成角的余弦值为( )A.510B.105C.55D.10109.已知平面α∥平面β,直线m ⊂α,直线n ⊂β,点A ∈m ,点B ∈n ,记点A ,B 之间的距离为a ,点A 到直线n 的距离为b ,直线m 和n 的距离为c ,则( )A .b ≤c ≤aB .a ≤c ≤bC .c ≤a ≤bD .c ≤b ≤a10.如图所示,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为( )A. 3B.22C.23D.55二、填空题(每小题4分,共28分)11.如图,已知长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,BC =3,M 为AC 1与CA 1的交点,则M 点的坐标为________.12.给出以下命题,其中正确的是________.①各侧面都是正方形的棱柱一定是正棱柱 ②由五个平面围成的多面体只能是四棱锥 ③多面体至少由四个面围成 ④在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线 ⑤圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线13.在正四面体A -BCD 中,棱长为4,M 是BC 的中点,P 在线段AM 上运动(P 不与A ,M 重合),过点P 作直线l ⊥平面ABC ,l 与平面BCD 交于点Q ,给出下列命题:①BC ⊥面AMD ;②Q 点一定在直线DM 上;③V C -AMD =4 2. 其中正确的是________.14.设平面α,β,直线a ,b ,集合A ={与α垂直的平面},B ={与β垂直的平面},M ={与α垂直的直线},N ={与b 垂直的直线},给出下列命题:①若A ∩B ≠∅,则α∥β ②若α∥β,则A =B ③若a ,b 为异面直线,则M ∩N =∅ ④若a ,b 相交,则M =N其中不正确命题的序号是________.15.如图所示,一个广告气球被一束入射角为45°的平行光线照射,其投影是一个最长弦为5米的椭圆,则这个气球的直径是________.16.如图所示,ABCD -A 1B 1C 1D 1是棱长为a 的正方体,M ,N 分别是下底面的棱A 1B 1,B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.17.如图,矩形ABCD 的边AB =a ,BC =2,PA ⊥平面ABCD ,PA =2,现有数据:①a =12;②a =1;③a =3;④a =4,当BC 边上存在点Q ,使PQ ⊥QD 时,可以取________(填上正确的序号).三、解答题(72分)18.(14分)如图,BC=4,原点O是BC的中点,点A(32,12,0),点D在平面yOz上,且∠BDC=90°,∠DCB=30°,求AD的长.19.(14分)已知某几何体的俯视图是如图所示的矩形,主视图是一个底边长为8,高为4的等腰三角形,左视图是一个底边长为6,高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.20.(14分)如图所示,在棱长为a的正方体ABCD-A1B1C1D1中,M,N分别为AA1,C1D1的中点,过D,M,N三点的平面与正方体的下底面相交于直线l.(1)画出直线l;(2)设l∩A1B1=P,求线段PB1的长.21.(15分)如图所示,四边形ABCD为矩形,BC⊥平面ABE,F为CE上的点,且BF⊥平面ACE.(1)设点M为线段AB的中点,点N为线段CE的中点.求证:MN∥平面DAE;(2)求证:AE⊥BE.22.(15分)如图所示,P为△ABC所在平面外一点,PA⊥平面ABC,∠ABC=90°,AE⊥PB于E,AF⊥PC于F.求证:(1)BC⊥平面PAB;(2)AE⊥平面PBC;(3)PC⊥EF.答案解析1、解析:∵|AB|=29,|AC|=229,|BC|=29, ∴|AB|+|BC|=|AC|.∴A ,B ,C 三点共线,构不成三角形,故选D 项. 答案:D2、解析:①两条平行直线确定一个平面,结合基本性质1知三条直线共面,①正确;②先由两条相交直线确定一个平面,再由平面基本性质1知四条直线共面,故②正确;若取两条直线的交点和一条直线上的另外两点,则三点共线,经过三点的平面不确定,故③不正确;④假设有三点共线,则一定有四点共面,故④正确.综上可知,应选C 项.答案:C3、解析:根据三视图还原为直观图可知此几何体为底面边长为2,侧棱长为3的正三棱柱,故其表面积为S 表面积=2×12×3×2+3×2×3=(23+18)(cm 2).答案:A4、解析:设该点坐标为(x ,y ,z),依题意有x 2+y 2=1,x 2+z 2=1,y 2+z 2=1,于是x 2+y 2+z 2=32,∴该点到原点的距离为x 2+y 2+z 2=32=62.答案:A5、解析:由AB ⊥BD ,平面ABD ⊥平面BCD ,知AB ⊥平面BCD. ∴平面ABC ⊥平面BCD.又CD ⊥BD ,∴CD ⊥平面ABD.∴平面ABD ⊥平面ACD.故选C 项. 答案:C6、解析:画出一个正方体内接于球的直观图,逐一考查可得. 答案:C7、解析:将三棱锥S -ABC 补成长方体,长方体的长、宽、高分别为1,1,2,长方体的体对角线长为球O 的直径2R ,即2R =12+12+(2)2,∴R =1,S 球=4π,故选A 项.答案:A8、解析:还原为正方体如图所示,BE ∥CD ,则∠EBA 就是异面直线CD 与AB 所成的角或所成角的补角.设正方体棱长为2,则BE =22,BA =5,AE =3.所以在△ABE 中,由余弦定理得cos ∠EBA =8+5-9410=1010, 选D 项. 答案:D9、解析:如图:α∥β,考虑m ,n 异面时,m 和n 的距离等于α,β间的距离,点A 到n 的距离可以如下作出:过A 作AO ⊥面β于O ,过O 作OC ⊥n 于C ,则AC 为A 点到直线n 的距离,显然,此时c<b<a.当m ,n 共面时有c =b =a.综合上述,则有c ≤b ≤a.故选D 项. 答案:D10、解析:由题意知A 1B 1∥平面D 1EF ,所以G 到面D 1EF 的距离,即A 1到面D 1EF 的距离.∵平面A 1D 1E ⊥平面D 1EF ,∴A 1到D 1E 的距离即为A 1到面D 1EF 的距离,1×121+(12)2=55.故选D 项. 答案:D11、解析:依题意知M 为AC 1的中点,又A(0,0,0),C 1(2,3,2). ∴M(1,32,1).答案:(1,32,1)12、解析:各侧面都是正方形的棱柱的底面可能是菱形,这样的棱柱不是正棱柱,①错误;三棱柱也是由五个平面围成的,因此②错误;三棱锥是最简单的多面体,由四个面围成,③正确;在圆柱的上下底面的圆周上所取两点连线与旋转轴不平行时,则不是圆柱的母线,④错误;由圆锥的定义知⑤正确. 答案:③⑤13、解析:∵A -BCD 是正四面体,M 为BC 中点, ∴AM ⊥BC ,DM ⊥BC ,且AM ∩DM =M , ∴BC ⊥面AMD.∴面ABC ⊥面AMD.又∵l ⊥面ABC ,l 与面BCD 交于Q ,∴Q 点必在直线DM 上.故①②正确.V C -AMD =13S AMD ·CM(∵BC ⊥面AMD ,∴CM 为四面体C -AMD 的高).如图在△AMD 中,AM =DM =AB 2-BM 2=42-22=23,MN =AM 2-AN 2=12-22=22,∴S △AMD =12AD·MN =12×4×22=42,∴V C -AMD =13×42×2=823,故③不正确.答案:①②14、解析:A ∩B ≠∅说明存在平面,同时与α,β都垂直,如底面是直角三角形的直三棱柱,故①不成立;若α∥β,则γ⊥α⇔γ⊥β,故②成立;因为存在无数条同时垂直于两条异面直线的直线,故③不成立;若a ,b 相交显然存在无数条只与a 垂直但不垂直于b 的直线,故④不成立.故应填①③④. 答案:①③④15、解析:由题意,气球的直径为球的两平行切线间的距离,计算得直径为5·sin45°=522米. 16、解析:∵平面ABCD ∥平面A 1B 1C 1D 1, ∴MN ∥PQ.∵M ,N 分别是A 1B 1,B 1C 1的中点,AP =a 3,∴CQ =a 3,从而DP =DQ =2a3,∴PQ =223a.答案:223a17、解析:∵PA ⊥平面ABCD , ∴PA ⊥DQ.连结AQ.由PQ ⊥QD 得AQ ⊥QD ,∴Rt △ABQ ∽Rt △QCD ,令BQ =x , 则a 2-x =x a,即x 2-2x +a 2=0,又方程有正根,∴0<a ≤1. 答案:①② 18、解:由于D 在平面yOz 上,所以D 点的横坐标为0,又因为BC =4,原点O 是BC 的中点, ∠BDC =90°,∠DCB =30°, 所以竖坐标为z =4·sin30°·sin60°=3, 纵坐标为y =-(2-4·sin30°·cos60°)=-1,所以D(0,-1,3), 故AD 的长度为 6.19、解:由已知可得该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥V -ABCD ,如图.(1)V =13×(8×6)×4=64.(2)该四棱锥有两个侧面V AD 、VBC 是全等的等腰三角形,且BC 边上的高为h 1=42+(82)2=42,另两个侧面V AB 、VCD 也是全等的等腰三角形,AB 边上的高为h 2=42+(62)2=5,因此S =2(12×6×42+12×8×5)=40+24 2.20、解:(1)延长DM 交D 1A 1的延长线于点E , 连结NE 交A 1B 1于点P , 直线NE 即为所求的直线l. (2)∵点M 为AA 1的中点,且AD ∥ED 1,∴AD =A 1E =A 1D 1=a ,又∵A 1P ∥D 1N ,且D 1N =12a ,∴A 1P =12D 1N =14a ,∴PB 1=A 1B 1-A 1P =a -14a =34a.21、证明:(1)取DE 的中点P ,连结PA ,PN , 因为点N 为线段CE 的中点,所以PN ∥DC ,且PN =12DC ,又四边形ABCD 是矩形,点M 的线段AB 的中点, 所以AM ∥DC ,且AM =12DC ,所以PN ∥AM ,且PN =AM , 故四边形AMNP 是平行四边形, 所以MN ∥AP.而AP ⊂平面DAE ,MN ⊄平面DAE , 所以MN ∥平面DAE.(2)因为BC ⊥平面ABE ,AE ⊂平面ABE ,所以AE ⊥BC , 又BF ⊥平面ACE ,AE ⊂平面ACE , 所以AE ⊥BF ,又BF ∩BC =B ,所以AE ⊥平面BCE. 又BE ⊂平面BCE , 所以AE ⊥BE.22、证明:(1)∵PA ⊥平面ABC , BC ⊂平面ABC , ∴PA ⊥BC.∵AB ⊥BC ,AB ∩PA =A , ∴BC ⊥平面PAB.(2)∵BC ⊥平面PAB ,AE ⊂平面PAB , ∴BC ⊥AE.∵PB ⊥AE ,BC ∩PB =B , ∴AE ⊥平面PBC.(3)∵AE ⊥平面PBC ,PC ⊂平面PBC , ∴AE ⊥PC ,∵AF ⊥PC ,AE ∩AF =A ,∴PC ⊥平面AEF.而EF ⊂平面AEF , ∴PC ⊥EF.。
立体几何小题基础练-新高考数学复习分层训练(新高考通用)一、单选题1.(2023·广东·统考一模)已知一个圆锥和圆柱的底面半径和高分别相等,若圆锥的轴截面是等边三角形,则这个圆锥和圆柱的侧面积之比为()A.12B.2C.3D2.(2023·山东济南·一模)已知正三角形边长为2,用斜二测画法画出该三角形的直观图,则所得直观图的面积为()A.4B.4C.D.3.(2023·广东惠州·统考模拟预测)已知互不重合的三个平面α、β、γ,其中a αβ⋂=,b βγ= ,c γα= ,且a b P = ,则下列结论一定成立的是()A .b 与c 是异面直线B .a 与c 没有公共点C .//b cD .b c P= 【答案】D【分析】根据题设条件可得相应的空间图形,从而可得正确的选项.【详解】∵a b P = ,∴P a ∈,P b ∈,∵a αβ= ,b βγ= ,∴P α∈,P β∈,P γ∈,∵c αγ⋂=,∴P c ∈,∴b c P = ,∴a c P ⋂=,如图所示:故A ,B ,C 错误;故选:D .4.(2023·浙江嘉兴·统考模拟预测)《九章算术·商功》中记载:“斜解立方,得两堑堵..”我们可以翻译为:取一长方体,分成两个一模一样的直三棱柱,称为堑堵.再沿堑堵的一顶点与相对的棱剖开,得一个四棱锥和一个三棱锥,这个四棱锥称为阳马,这个三棱锥称为鳖臑.现已知某个鳖臑的体积是1,则原长方体的体积是()A .8B .6C .4D .35.(2023·辽宁阜新·校考模拟预测)已知矩形ABCD 中,AB =8,取AB 、CD 的中点E 、F ,沿直线EF 进行翻折,使得二面角A EF B --的大小为120°,若翻折后A 、B 、C 、D 、E 、F 都在球O 上,且球O 的体积为288π,则AD =()A .B .C .4D .2记三角形CDF 外接圆的圆心为因为二面角A EF B --的大小为且,EF DF EF CF ⊥⊥,所以所以30DCF ∠=o ,由正弦定理可得sin DFDCF∠6.(2023·山东日照·统考一模)红灯笼,起源于中国的西汉时期,两千多年来,每逢春节人们便会挂起象征美好团圆意义的红灯笼,营造一种喜庆的氛围.如图1,某球形灯笼的轮廓由三部分组成,上下两部分是两个相同的圆柱的侧面,中间是球面除去上下两个相同球冠剩下的部分.如图2,球冠是由球面被平面截得的一部分,垂直于截面的直径被截得的部分叫做球冠的高,若球冠所在球面的半径为R,球冠的高为h,则球冠的面积S Rh=.如图1,已知该灯笼的高为58cm,圆柱的高为5cm,圆柱的底面圆直径为14cm,2π则围成该灯笼中间球面部分所需布料的面积为()A.21940πcm B.22400πcm D.22540πcm2350πcm C.27.(2023·山东·烟台二中校考模拟预测)已知圆锥的侧面积为,高为,若圆锥可在某球内自由运动,则该球的体积最小值为()A.B.8πC.9πD.【答案】D【分析】由圆锥侧面积公式及勾股定理可得圆锥半径r与母线l长,求该圆锥的外接球体积即可.【详解】解:设圆锥的底面半径为r,母线长为l,则8.(2023·山东威海·统考一模)已知圆锥的侧面展开图是一个半径为4,弧长为4π的扇形,则该圆锥的表面积为()A .4πB .8πC .12πD .20π9.(2023·山东聊城·统考一模)在正方体1111ABCD A B C D -中,直线m 、n 分别在平面ABCD 和11ABB A ,且m n ⊥,则下列命题中正确的是()A .若m 垂直于AB ,则n 垂直于AB B .若m 垂直于AB ,则n 不垂直于ABC .若m 不垂直于AB ,则n 垂直于ABD .若m 不垂直于AB ,则n 不垂直于AB【答案】C【分析】根据线面垂直的判定定理及直线位置关系来判定选项即可.【详解】如图所示:A 选项,若m 垂直于AB ,则面11ABB A 内的所有直线均与m 垂直,无法证明,AB n 的关系,故A 选项错误,B 选项与A 同理;C 选项,若m 不垂直于AB ,因为1BB m ⊥,所以当m n ⊥时,1//BB n ,又因为1BB AB ⊥,所以n 垂直于AB ;D 选项与C 同理.故选:C10.(2023·江苏徐州·徐州市第七中学校考一模)则三棱锥-P ABC 中,PA ⊥平面π,6,3,6ABC PA BC CAB ==∠=,则三棱锥-P ABC 的外接球半径为()A .3B.C .D .611.(2023·湖北武汉·统考模拟预测)某车间需要对一个圆柱形工件进行加工,该工件底面半径15cm ,高10cm ,加工方法为在底面中心处打一个半径为r cm 且和原工件有相同轴的圆柱形通孔.r 的值应设计为()A .BC .4D .5【答案】D【分析】表示出表面积后,根据二次函数性质可得.【详解】大圆柱表面积为2215π10215π750π⨯+⨯⨯=小圆柱侧面积为102πr ⨯,上下底面积为22πr 所以加工后物件的表面积为2750π20π2πr r +-,当=5r 时表面积最大.故选:D12.(2023·湖北·统考模拟预测)截角四面体是一种半正八面体,可由四面体经过适当的截角而得到.如图,将棱长为6的正四面体沿棱的三等分点作平行于底面的截面截角得到所有棱长均为2的截角四面体,则该截角四面体的体积为()A.B .2023C D .13.(2023·湖北·荆州中学校联考二模)甲、乙两个圆锥的底面积相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲、S 乙,体积分别为V 甲、V 乙,若2S S =甲乙,则V V 甲乙等于()A B .5C .5D14.(2023·湖南湘潭·统考二模)已知,,A B C为球O球面上的三个点,若3AB BC AC===,球O的表面积为36π,则三棱锥O ABC-的体积为()A B.4C.4D.415.(2023·湖南·湖南师大附中校联考模拟预测)如图所示,一个球内接圆台,已知圆台上、下底面的半径分别为3和4,球的表面积为100π,则该圆台的体积为()A.175π3B.75πC.238π3D.259π3因为圆台上、下底面的半径分别为所以4OB OA ==,1O B 所以2211OO OB O B =-所以127O O =,16.(2023·广东茂名·统考一模)蒙古包是蒙古族牧民居住的一种房子,建造和搬迁都很方便,适于牧业生产和游牧生活,蒙古包下半部分近似一个圆柱,高为2m ;上半部分近似一个与下半部分同底的圆锥,其母线长为,轴截面(过圆锥旋转轴的截面)是面积为2的等腰钝角三角形,则该蒙古包的体积约为()A .321πmB .318πm C .(318πm+D .(320πm+【答案】C因为其轴截面(过圆锥旋转轴的截面)是腰长为()2211sin 23sin 3l αα=⨯⨯=17.(2023·广东茂名·统考一模)已知菱形ABCD 的各边长为2,=60B ∠︒.将ABC 沿AC 折起,折起后记点B 为P ,连接PD ,得到三棱锥P ACD -,如图所示,当三棱锥P ACD -的表面积最大时,三棱锥P ACD -的外接球体积为()A .π3B .π3C .D .π34+【点睛】结论点睛:若三棱锥有两个面为共斜边的直角三角形,则三棱锥的外接球的球心为该斜边的中点.18.(2023·江苏·统考一模)已知正四面体-P ABC 的棱长为1,点O 为底面ABC 的中心,球О与该正四面体的其余三个面都有且只有一个公共点,且公共点非该正四面体的顶点,则球O 的半径为()A B C .9D .3二、多选题19.(2023·浙江·统考一模)已知三棱柱ABC DEF -的棱长均相等,则()A .AB CF ⊥B .AE BD ⊥C .60ABC ∠=︒D .60ADE ∠=︒【答案】BC【分析】根据题意结合异面直线夹角逐项分析判断.【详解】对A :∵AD CF ,则AB 与CF 的夹角为BAD ∠,不一定是直角,A 错误;对B :由题意:ABED 为菱形,则AE BD ⊥,B 正确;对C :由题意:AB BC CA ==,则60ABC ∠=︒,C 正确;对D :由题意:ABED 为菱形,则()0,πADE ∠∈,即ADE ∠大小无法确定,D 错误.故选:BC.20.(2023·江苏泰州·统考一模)在棱长为2的正方体1111ABCD A B C D -中,AC 与BD 交于点O ,则()A .1AD //平面1BOCB .BD ⊥平面1COC C .1C O 与平面ABCD 所成的角为45 D .三棱锥1C BOC -的体积为23【答案】ABD【分析】根据线面平行判定定理判断A ,利用线面垂直判定定理判断B ,利用线面夹角的定义判断C ,根据等体积法判断D.【详解】∵111//,AD BC AD ⊄平面11,BOC BC ⊂平面1,BOC 1∴AD //平面1BOC ,A 对;21.(2023·辽宁葫芦岛·统考一模)已知a ,b 为空间中两条不同直线,α,β为空间中两个不同的平面,则下列命题一定成立的是()A .αβ∥,a α⊂,b a b β⊥⇒⊥B .αβ∥,a α⊥,b a b β⊥⇒∥C .αβ⊥,a αβ⋂=,b a b β⇒∥∥D .αβ⊥,a α⊥,b a b β⊥⇒⊥22.(2023·江苏南通·统考模拟预测)已知点P 是正方体1111ABCD A B C D -侧面11BB C C (包含边界)上一点,下列说法正确的是()A .存在唯一一点P ,使得DP //1AB B .存在唯一一点P ,使得AP //面11ACD C .存在唯一一点P ,使得1A P ⊥1B D D .存在唯一一点P ,使得1D P ⊥面11AC D 【答案】AD【分析】建立空间直角坐标系,设()1,,1,AD P x z =,写成点的坐标,A 选项,根据向量平行得到方程组,得到0,1x z ==,存在唯一一点P ,使得DP //1AB ,A 正确;B 选项,证明出1BD ⊥ 平面11AC D ,从而得到10AP BD ⋅=,列出方程,解得:x z =,得到P 点轨迹为线段1B C ;C 选项,由向量数量积为0列出方程,得到P 在线段1BC 上,满足条件的P 有无数个;D 选项,在1BD ⊥平面11AC D 的基础上,得到,P B 重合,D 正确.【详解】如图建系,令()1,,1,AD P x z =,则()()()()()()()11111,0,0,1,0,1,0,1,1,0,0,0,1,1,0,0,0,1,1,1,1A A C D B D B ,对于A ,()()1,1,,0,1,1DP x z AB == ,若1//DP AB ,则01x z λλλ=⋅⎧⎪=⎨⎪=⎩,解得:0,1x z ==故()0,1,1P 满足要求,与1C 重合,存在唯一一点P ,使得DP //1AB ,A 对.对于B ,因为()()1111,1,11,1,0110B AC D ⋅=--⋅-=-= ,()()111,1,11,0,1110BD A D ⋅=--⋅--=-=,因为1111A C A D A ⋂=,111,A C A D ⊂平面11AC D ,所以1BD ⊥ 平面11AC D ,又AP //平面11AC D ,则10AP BD ⋅=,()()1,1,11,1,110x z x z --⋅-=--+=,解得:x z =,故P 点轨迹为线段1B C ,满足条件的P 有无数个,B 错,对于C ,()()11111,1,1,1,1,1,11110A P x z DB A P DB x z x z =--=⋅=-++-=+-= ,P 在线段1BC 上,满足条件的P 有无数个,C 错.对于D ,由B 选项可知:1BD ⊥ 平面11AC D ,而1D P ⊥面11AC D ,又1D P 与1BD共线,故,P B 重合,D 对.故选:AD.23.(2023·山东青岛·统考一模)下列说法正确的是()A .若直线a 不平行于平面α,a α⊄,则α内不存在与a 平行的直线B .若一个平面α内两条不平行的直线都平行于另一个平面β,则αβ∥C .设l ,m ,n 为直线,m ,n 在平面α内,则“l α⊥”是“l m ⊥且l n ⊥”的充要条件D .若平面α⊥平面1α,平面β⊥平面1β,则平面α与平面β所成的二面角和平面1α与平面1β所成的二面角相等或互补24.(2023·湖南常德·统考一模)已知平面α,β,直线l ,m ,则下列命题正确的是()A .若αβ⊥,,,m l m l αβα⋂=⊥⊂,则l β⊥B .若l αβα⊂∥,,m β⊂,则//l mC .若m α⊂,则“l α⊥”是“l m ⊥”的充分不必要条件D .若m α⊂,l α⊄,则“l α∥”是“l m ”的必要不充分条件【答案】ACD【分析】根据面面垂直的性质定理可判断A,根据线面平行的判断以及性质可判断BD,根据线面垂直的性质可判断C.【详解】由面面垂直的性质定理可知A 正确,对于B,若l αβα⊂∥,,m β⊂,则//l m ,或者,l m 异面,故B 错误,对于C,若m α⊂,l α⊥则l m ⊥,故充分性成立,但是l m ⊥,m α⊂,不能得到l α⊥,故C 正确,对于D,若m α⊂,l α⊄,l α∥,不能得到l m ,因为,l m 有可能异面,但是l m ,m α⊂,l α⊄,则l α∥,故D 正确,故选:ACD25.(2023·广东茂名·统考一模)已知空间中三条不同的直线a 、b 、c ,三个不同的平面αβγ、、,则下列说法中正确的是()A .若a b ∥,a α⊥,则b α⊥B .若a αβ⋂=,b βγ= ,c αγ⋂=,则a b c ∥∥C .若αβ⊥,a α⊄,a β⊥,则a αP D .若c β⊥,c γ⊥,则βγ∥如图,正方体两两相交的三个平面平面ABCD ⋂平面11ABB A =平面11ABB A 平面11ADD A =对于C ,若αβ⊥,a β⊥,则αP三、填空题26.(2023·江苏南通·校联考模拟预测)中国某些地方举行婚礼时要在吉利方位放一张桌子,桌子上放一个装满粮食的升斗,斗面用红纸糊住,斗内再插一杆秤、一把尺子,寓意粮食满园、称心如意、十全十美,下图为一种婚庆升斗的规格,该升斗外形是一个正四棱台,上、下底边边长分别为20cm ,10cm ,侧棱长为10cm ,忽略其壁厚,则该升斗的容积为_________3cm .【详解】上下底面对角线的长度分别为:202,10上底面的面积2120400S ==()2cm ,下底面的面积四棱台的体积27.(2023·江苏宿迁·江苏省沭阳高级中学校考模拟预测)在直角梯形ABCD 中,//AB CD ,AD AB ⊥,22AB DC ==,E 为AD 的中点.将EAB 和ECD 分别沿,EB EC 折起,使得点A ,D 重合于点F ,构成四面体FBCE .若四面体FBCE 的四个面均为直角三角形,则其外接球的半径为_________.故答案为:324.28.(2023·山东·烟台二中校联考模拟预测)已知在正方体1111ABCD A B C D -中,12AM AD =,平面11A BC ⋂平面1CC M l =,则直线l 与1D M 所成角的余弦值为__________.【答案】3030【分析】作出辅助线,找到1C G 即为直线l ,建立空间直角坐标系,设出点的坐标,利用异面直线夹角余弦公式求出答案.【详解】作出图形,如图所示.延长DC 至E ,使得DC CE =,则1A AB △≌1C CE △,111D A C≌CBE △,故11A B C E =,11A C BE =,故四边形11A C EB 为平行四边形,连接BE ,延长MC ,BE 交于点G ,连接1C G ,则1C G 即为直线l .以D 为坐标原点,DA ,DC ,1DD 分别为x ,y ,z 轴建立如图所示的空间直角坐标系,设2AD =,过点G 作GN ⊥y 轴于点N ,则MDC △∽GNC △,且相似比为1:2,故24CN CD ==,22GN DM ==,则()10,2,2C ,()2,6,0G -,()1,0,0M ,()10,0,2D ,29.(2023·湖北·校联考模拟预测)葫芦是一种爬藤植物,在我国传统文化中,其枝密集繁茂,象征着儿孙满堂、同气连枝;其音近于“福禄”,寓意着长寿多福、事业发达;其果口小肚大,代表着心胸开阔、和谐美满.如图,一个葫芦的果实可以近似看做两球相交所得的几何体Ω,其中Ω的下半部分是半径为1O 的一部分,Ω的上半部分是半径为3的球2O 的一部分,且126O O =,则过直线12O O 的平面截Ω所得截面的面积为__________.30.(2023·湖北武汉·华中师大一附中校联考模拟预测)已知圆台的侧面积与轴截面的面积之比为23π3,若上、下底面的半径分别为1和2,则母线长为__________.【答案】2【分析】设圆台的母线长为l .解得2故答案为:2.。
立体几何题库100题1. 一个正方体的棱长扩大到原来的3 倍,它的体积扩大到原来的()倍。
A. 3B. 9C. 27D. 812. 长方体的长、宽、高分别是6cm、4cm、5cm,它的棱长总和是()cm。
A. 60B. 48C. 30D. 153. 一个圆柱的底面半径是2 厘米,高是5 厘米,它的侧面积是()平方厘米。
A. 62.8B. 31.4C. 12.56D. 25.124. 一个圆锥的底面直径是6 分米,高是3 分米,它的体积是()立方分米。
A. 28.26B. 84.78C. 169.56D. 56.525. 用同样大小的正方体摆成的物体,从正面和左面看到的图形都是,那么从上面看到的图形是()。
A. B. C. D.6. 一个圆柱和一个圆锥等底等高,它们的体积之和是48 立方分米,圆锥的体积是()立方分米。
A. 12B. 16C. 32D. 367. 把一个棱长为6 分米的正方体木块削成一个最大的圆柱,这个圆柱的体积是()立方分米。
A. 169.56B. 113.04C. 216D. 56.528. 一个长方体的长、宽、高分别是a 米、b 米、h 米,如果高增加3 米,体积增加()立方米。
A. 3abB. 3abhC. ab(h + 3)D. 3h9. 一个圆锥的底面半径扩大到原来的2 倍,高不变,它的体积扩大到原来的()倍。
A. 2B. 4C. 8D. 1610. 一个圆柱的侧面展开图是一个正方形,这个圆柱的底面直径与高的比是()。
A. 1 : πB. 1 : 2πC. π: 1D. 2π: 111. 有一个长方体容器,从里面量长5 分米,宽4 分米,高6 分米,里面注有水,水深3 分米。
如果把一块边长 2 分米的正方体铁块浸入水中,水面上升()分米。
A. 0.4B. 0.8C. 1.6D. 3.212. 一个圆柱的底面周长是12.56 分米,高是5 分米,它的表面积是()平方分米。
立体几何基础题题库一C(有详细答案) 201. 已知过球面上A、B、C三点的截面和球心的距离等于球半径的一半,且AB=BC=AC=2,求球的体积。 解析:过A、B、C三点截面的小圆的半径就是正△ABC的外接圆的半径332, 它是Rt△中060所对的边,其斜边为34,即球的半径为34,∴81256V; 202. 正四面体棱长为a,求其内切球与外接球的表面积。 解析:设正四面体的面BCD和面ACD的中心分别为21,OO ,连结2AO与1BO并延长,必交于CD的中点E,又aBE23,aEO632,连接2BO,在Rt△EBO2中,,362BO连结1AO与2BO交于3O,由Rt△32OAO
Rt△21OBO,∴BOAOOOOO331332,,同理可证3333,OAODOCO到另二面的距离也等13OO,
∴3O为四面体外接球与内接球的球心,由△31OBO∽△EBO2,∴aOO12631, ∴2261,126,23,46aSaraSaR内内外外 203. 在RtΔABC中,AB=BC,E、F分别是AC和AB的中点,以EF为棱把它折成大小为β的二面角A—EF—B后,设∠AEC=α,
求证:2cosα-cosβ=-1. 解析:∠AFB=β.可证:BC⊥AB,然后利用AC2=BC2+AB2即可证得. 204. 如图:D、E是是等腰直角三角形ABC中斜边BC的两个三等分点,沿AD和AE将△ABD和△ACE折起,使AB和AC重合,求证:平面ABD⊥平面ABE.
解析:过D作DF⊥AB交AB于F,连结EF,计算DF、EF的长,又DE为已知,三边长满足勾股定理,∴∠DFE=090; 205. 已知正三棱柱ABC—111CBA的底面边长为8,侧棱长为6,D为AC中点, (1)求证:AB1∥平面C1DB;(2)求异面直线AB1与BC1所成角的余弦值. (1) 解析:连B1C交BC1于E,连结ED,则AB1∥DE,由线面平行定理得AB1∥平面BDC1;(2)∵AB1∥DE,∴DE与BC1所成锐角就是异面直线AB1与BC1所成的角,又BD⊥DC,在Rt△BDC1中,
E D B
A E D C B A 易知BE=21BC1=5,DE=5,BD=34,在△BDE中,cos∠BED=251,∴异面直线AB1与BC1所成角的余弦值为251 206. 已知(如图):三棱锥P—ABC中,异面直线PA与BC所成的角为090,二面角P—BC—A为060,△PBC和△ABC的面积分别为16和10,BC=4.
求:(1)PA的长;(2)三棱柱P—ABC的体积ABCPV
解析: (1)作AD⊥BC于D,连PD,由已知PA⊥BC,∴BC⊥面PAD,∴BC⊥PD,∴∠PDA为二面角的平面角,∴∠PDF=060,
可算出PD=8,AD=5,∴PA=7;(2)V=3340 207. 如图2-33:线段PQ分别交两个平行平面α、β于A、B两点,线段PD分别交α、β于C、D两点,线段QF分别交α、β于F、E两点,若PA=9,AB=12,BQ=12,ACF的面积为72,求BDE的面积。
解析: 求BDE的面积,看起来似乎与本节内容无关,事实上,已知ACF的面积,若BDE与ACF的对应边有联系的话,可以利用ACF的面积求出BDE的面积。
(提示:①ABC的两条邻边分别长为a、b,夹角为θ,则ABC的面积S=21absinθ,②sinα=sin(180°-α)
解答:∵平面QAF∩α=AF,平面QAF∩β=BE,又∵α∥β,∴AF∥BE 同理可证:AC//BD,∴∠FAC与∠EBD相等或互补,即sin∠FAC= sin∠EBD.
由 AF∥BE,得212412QAQBAFBE,∴BE=21AF
由BD//AC,得:73219PBPABDAC,∴BD=37AC 又∵ACF的面积为72,即21AF·AC·sin∠FAC=72,
∴DBES=21 BE·BD·sin∠EBD =21·21 AF·37AC·sin∠FAC =67·21 AF·AC·sin∠FAC=67×72=84 ∴BDE的面积为84平方单位。 208. a、b、c为三条不重合的直线,α、β、γ为三个不重合平面,现给出六个命题, ①b//ac//bc//a ② b//a//b//a ③//c//c//
④////// ⑤ a//c//ac// ⑥ a//////a 其中正确的命题是( ) A. ①②③ B. ①④⑤ C. ①④ D. ①④⑤⑥
P C B A
P C A F
D B E
Q β
α
图2-33 解析: 首先要判断每个命题的真假,错误的命题只需给出一个反例。 解答: ①三线平行公理, ②两直线同时平行于一平面,这二直线可相交,平行或异面 ③二平面同时平行于一直线这两个平面相交或平行
④面面平行传递性, ⑤一直线和一平面同时平行于另一直线,这条直线和平面可平行或直线在平面内, ⑥一直线和一平面同时平行于另一平面,这直线和平面可平行也可能直线在平面内, 故①④正确 ∴应选C。
209. 长方体ABCD-A1B1C1D1中,AB1与A1D所成的角为α,AC与BC1所成的角为β,A1C1与CD1所成的角为γ。 求证:α+β+γ=π
解析:作如图的辅助线 则∠AB1C为AB1与A1D所成的角∠AB1C=α
∵AB//A1B1//C1D1
∴BC1//AD1,故∠D1AC为AC与BC1所成的角∠D1AC=β
∵AA1//DD1//CC1,∴A1C1//AC ∴∠D1CA即为A1C1与CD1所成的角∠D1CA=γ 在△ACD1和△ACB1中,AB1=CD1,B1C=D1A,AC=CA ∴△ACD1≌△CAB1,故∠AB1C=∠AD1C,故∠AD1C=α 在△AD1C中,∠AD1C+∠D1CA+∠D1AC=π 即:α+β+γ=π
210. 如果两个平面分别平行于第三个平面,那么这两个平面互相平行。 (已知α∥β,γ∥β,求证:α∥γ。) 解析:如图2- ,作两个相交平面分别与α、β、γ交于a、c、e和b、d、f
//////////////////////
bfbaea
fdecdb
ca
211. 下列说法中正确的是( ): A. 直线l平行于平面α内的无数条直线,则l//α B. 若直线a在平面α外,则a//α C. 若直线a//b,直线bα,则a//α D. 若直线a//b,bα,那么a就平行于平面α内的无数条直线
解析:画出图形,根据直线与平面平行的定义和判定定理进行分析。 解答: 由直线l 虽与平面α内无数条直线平行,但l有可能在平面α内,知l不一定平行于α,从而排除A 直线a在平面α外,包括两种情况:a//α或a与α相交,故a与α不一定平行,从而排除B 直线a//b ,bα只能说明a和b无公共点,但a可能在平面α内,故a不一定平行于α,从而排除C a//b,bα,那么aα或a//α,故a可能与平面α内的无数条直线平行,从而选择D
点评: 判定直线与平面平行时,要注意直线与平面平行的判定定理中的三个条件,缺一不
A D
C B A1
D
1
C1
B
1
图2- e c α
β γ
a b
d f
D A F
G N M
B
C
E
图2-20 可。 。 212.如图2-20,两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB,且AM=FN,求证:MN//平面BCE。
解析: 要证MN//平面BCE,就是要在平面BCE上找一条直线,证明它与MN平行即可。 证明: 连结AN并延长,交BE延长张于G,连结CG。 由AF//BG,知MCAMNBFNNGAN,故MN//CG,MN平面BCE,CG平面BCE,于是MN//平面BCE。
点评:证线面平行,通常转化为证线线平行,关键是在平面内找到所需的线。 213. 如图2-21,正方体ABCD-A1B1C1D1的棱长为2,E为DD1的中点, (1)判断BD1和过A、C、E三点的平面的位置关系, 并证明你的结论。 (2)求ACE的面积。 证明(1):连结BD,令BD∩AC=F。 ∵BD1和过A、C、E三点的平面平行, 则F是DB的中点,又E是DD1的中点, ∴EF∥BD1 又EF平面ACE,BD1平面ACE, ∴BD1∥平面ACE
(2)在正方形ABCD中,AB=2,AC=22,∴AF=2 在直角△ADE中,AD=2,DE=1,∴AE=5
在Rt△EAF中,EF=22AFEA=25=3 ∴632221ACEs
214. 直线a//直线b,直线a与平面α相交,判定直线b与平面α的位置关系,并证明你的结论 证明:假设直线b与α不相交,则bα或b//α (1)若bα,由a//b,bα,aαa//α,与a与平面α相交矛盾,故bα不可能。 (2)若b//α,又a// b,a,b可以确定平面β,设α∩β=c,由cα,知b与c没有公共点,又b、c同在平面β内,故b//c,又a//b,故a//c,cα,aαa//α,这与a与平面α相交矛盾。故b不平行α。 综上所述,b与α必相交。
215. 如图2-22:在长方体AC1中, (1)求证:BC1//平行平面AB1D1 (2)若E、F分别是D1C,BD的中点,则EF//ADD1A1
解析:(1)∵D1C1//DC//AB
∴ABC1D1是平行四边形 BC1//AD1 又BC1平面AB1D1,又AD1平面AB1D1
BC1//平面AB1D1 (2)证明:连结AF、CF、AD1, ∵ABCD是正方形,且F是BD的中点,知A、F、C三点共线, 且F是AC的中点,又E是CD1的中点 ∴EF//AD,又EF平面ADD1A1,AD平面ADD1A1, ∴EF//平面ADD1A1
216.在正方体木块ABCD-A1B1C1D1的表面上有一动点P由顶点A出发按下列规则向点C1移动; ⑴点P只能沿着正方体木块的棱或表面对角线移动; ⑵点P每一变化位置,都使P点到C1点的距离缩短。
C B A D
A1 D1 C1
B1 E
∥
C B A D
A1 D1 C1
B1 E
图2- F
C B A
D
F
E A1
D1 C1
图2-22 B1