当前位置:文档之家› 第三篇第一章 厌氧发酵机制

第三篇第一章 厌氧发酵机制

第三篇第一章 厌氧发酵机制
第三篇第一章 厌氧发酵机制

第四章糖嫌气性发酵产物积累机制

一、发酵作用

☆概念:在生物氧化中发酵是指无氧条件下,底物脱氢后所产生的还原力不经过呼吸链传递而直接交给一内源氧化性中间代谢产物

的一类低效产能反应。在发酵工业上,发酵是指任何利用厌氧或好

氧微生物来生产有用代谢产物的一类生产方式。

二、发酵的途径

葡萄糖在厌氧条件下分解葡萄糖的产能途径主

要有:

?糖的酵解途径——EMP途径

?HMP途径(磷酸戊糖途径)

?ED 途径等

1.糖的酵解途径——EMP途径

丙酮酸还原:乳酸发酵

脱羧,生成乙醛,乙醛还原在有氧的条件下,在厌氧的条件下:生成乙醇

2.TCA循环

丙酮酸在有氧的条件下,在丙酮酸氧化脱羧酶系(脱氢酶)的作用下,

-CO-SCoA,进入TCA循环,彻底氧化成CO2氧化脱羧生成乙酰辅酶A,CH

3

和H2O。

反应式如下:TCA一圈,即每分子乙

酰辅酶A氧化,有:

C6H12O6 = 6CO2 + 6H2O +38A TP+ 3 NAD(P)H 3A TP*3=9A TP

1 FADH 2.5 A TP

1 GTP

3.HMP途径(磷酸戊糖途径)

?为核苷酸和核酸的生物合成提供戊糖-磷酸。

?产生大量NADPH2,一方面为脂肪酸、固醇等物质的合成提供还原力,另方面可通过呼吸链产生大量的能量。

?与EMP途径在果糖-1,6-二磷酸和甘油醛-3-磷酸处连接,可以调剂戊糖供需关系。

?途径中的赤藓糖、景天庚酮糖等可用于芳香族氨基酸合成、碱基合成、及多糖合成。

?途径中存在3~7碳的糖,使具有该途径微生物的所能利用利用的碳源谱更为更为广泛。

?通过该途径可产生许多种重要的发酵产物。如核苷酸、若干氨基酸、辅酶和乳酸(异型乳酸发酵)等。

?HMP途径在总的能量代谢中占一定比例,且与细胞代谢活动对其中间产物的需要量相关。

4.ED 途径

常见的是细菌的ED途径,发酵生产乙醇。

应式:C6H12O6= 2丙酮酸+2TP + NADPH + NADH 上述这些代谢途径在许多微生物体内可以同时存在,只有极少数的细菌是以HMP为唯一的有氧氧化途径(醋酸细菌、工业醋酸细菌等)。当EMP 、HMP、TCA、ED中的任意两条途径同时存在于同一种微生物体内时,其比例因不同的菌株、同一菌株也因不同的生长和环境条件不同而异。

例如:在谷氨酸发酵中,菌体生长期:EMP / EMP =38%

GA 合成期,EMP / EMP =26%

三、发酵类型

丙酮酸的发酵产物

?辅酶之均衡--------丙酮酸的去路不同

?在上述途径中均有还原型氢供体——NADH+H+和NADPH+H+产生,

?但产生的量并不多,如不及时使它们氧化再生,糖的分解产能将会中断

?微生物就以葡萄糖分解过程中形成的各种中间产物为氢(电子)受体来接受NADH+H+和NADPH+H+的氢(电子),于是产生了各种

各样的发酵产物。

?根据发酵产物的种类有乙醇发酵、乳酸发酵、丙酸发酵、丁酸发酵、混合酸发酵、丁二醇发酵、及乙酸发酵等。

①酵母型酒精发酵

②同型乳酸发酵

③丙酸发酵

④混合酸发酵

⑤2,3—丁二醇发酵

⑥丁酸发酵

乙醇发酵

① 酵母菌的乙醇发酵:

调节点主要在三个激酶,即己糖激酶、磷酸果糖激酶和丙酮酸激酶。它们是糖酵解途径中的关键酶,是糖酵解途径的三个不可逆步骤 1)乙醇生成机制

2)巴斯德效应(The Pasteur effect ) 现象:通风对酵母代谢的影响

概念:有氧条件下,发酵作用受抑制的现象(或氧对发酵的抑制现象)。

意义:合理利用能源

巴斯德效应(Pasteur effect )机理

巴斯德在研究酵母的酒精发酵时发现:厌氧条件下酵母菌进行酒精发酵,葡萄糖的消耗速度很快;而在有氧条件下,酵母菌进行呼吸作用,糖的消耗速度较低,酒精产量也降低。 呼吸抑制发酵作用的的现象 巴斯德效应的本质是能荷调节。

能荷(Energy charge ) 三磷酸腺苷(A TP)是为许多反应提供能量的高能磷酸化物 ,细胞中的A TP 、ADP 和AMP 含量处于相对平衡的状态——细胞中的能量状态

能荷(Energy charge )来表示细胞中的能量状态。能荷(EC )可用下式来表示:

系统中只有A

时,EC 值等于0。 细胞能荷可调节酶活性

能荷不仅能调节分解代谢形成A TP 的酶活性,也能调节合成代谢利用A TP 的酶活性。

高能荷的抑制高能荷的抑制异柠檬酸脱氢酶和磷酸果糖激酶等 有氧条件下,大量合成A TP ,细胞能荷增加

异柠檬酸脱氢酶受到A TP 抑制,导致柠檬酸的积累 柠檬酸和A TP 都是磷酸果糖激酶活性的抑制剂,从而限制了葡萄糖的利用速度。

在厌氧条件下,酵母菌无法通过呼吸链产生A TP ,细胞能荷较低。 ADP 和AMP 激活磷酸果糖激酶,使利用葡萄糖生产酒精的速度加快。

注意:NAD+和NADH 对糖酵解的影响:

? 糖酵解与NADH 周转有关

? 3-磷酸甘油脱氢时, NAD+还原为NADH 乙醛还原乙醇时,NADH 氧化为NAD+

? 有氧时糖酵解产生的NADH 进入呼吸链生成水 ? 有氧时, NAD+和NADH 不能周转,发酵受抑

?无氧时,NAD+和NADH周转较快,糖酵解加速,耗糖多

通过4-磷酸葡萄糖的综合效应(见书)

②酵母菌的甘油发酵

1.行业简介

?甘油是重要的工业原料,推动甘油行业快速发展的却是战争,炸药的生产。

?添加亚硫酸盐的甘油发酵法是德国第一次世界大战中研究生产的,随后各国分别采用了许多先进的生产设备,但是甘油发酵的基

本原理是相同的都是采用厌氧发酵法。

?目前,甘油的用途主要有:

?在化工领域:环氧氯丙烷,改性醇酸树脂、酚醛树脂等

?医药工业:添加剂,润滑剂等

?食品工业:甜味剂、保湿剂,对风味也有独特的影响

?在造纸、皮革、玻璃、化妆品等行业:约1700多种产品需要。

2.甘油合成机制

酵母细胞内葡萄糖的降解如下:

(1)在厌氧的条件下

厌氧甘油发酵的缺点:

? a.菌体死亡率较高,碱性条件;无能量产生;

? b.转化率较低,成本较高。

按照上述能量平衡计算,糖与甘油的转化率不可能超过50%,加上酵母增殖需要消耗一部分糖,发酵液中残留一部分糖,实际转化率远低于50%。

好氧甘油发酵

?在适当(或者说有限的好氧)好氧的条件下,酵母细胞进行有限的好氧呼吸,糖酵解产生的丙酮酸可以通过TCA循环来增加其产能

水平.

?优点:

?一方面减少3—磷酸甘油醛向乙醛方向进行,增加底物向产物转化的比例;

?另一方面,增加了细胞能量水平,减少了细胞的死亡率,有利于提高发酵的速率,缩短发酵周期。

?缺点:

?副产物多:

?这种有限的好氧发酵,使得丙酮酸进行TCA循环的同时,也增加了TCA循环过程中的许多中间性产物的产生,这对于甘油的提取

带来了不利的影响。

?目前,甘油的总提取率大约在87%左右,要降低发酵甘油的生产成本,提高甘油的提取率具有很大的潜力。提高甘油的提取率,改善

发酵液的组成,降低发酵液中残糖浓度,减少发酵液中副产物的含

量,是非常重要的。

利用Z.mobilis等细菌生产酒精

优点:代谢速率高;产物转化率高;菌体生成少

代谢副产物少;发酵温度高;

缺点:pH5较易染菌;耐乙醇力较酵母低

☆酵母菌(在pH3.5-4.5时)的乙醇发酵

~脱羧酶~脱氢酶

丙酮酸乙醛乙醇通过EMP途径产生乙醇,总反应式为:

C6H12O6+2ADP+2Pi 2C2H5OH+2CO2+2A TP

☆细菌(Zymomonas mobilis)的乙醇发酵

通过ED途径产生乙醇,总反应如下:

葡萄糖+ADP+Pi 2乙醇+2CO2+A TP

?☆细菌(Leuconostoc mesenteroides)的乙醇发酵

通过HMP途径产生乙醇、乳酸等,总反应如下:

葡萄糖+ADP+Pi 乳酸+乙醇+CO2+A TP

同型乙醇发酵:产物中仅有乙醇一种有机物分子的酒精发酵

异型乙醇发酵:除主产物乙醇外,还存在有其它有机物分子的发酵乳酸发酵

乳酸细菌能利用葡萄糖及其他相应的可发酵的糖产生乳酸,称为乳酸发酵。由于菌种不同,代谢途径不同,生成的产物有所不同,将乳酸发酵又分为

同型乳酸发酵、异型乳酸发酵和双歧杆菌发酵。

同型乳酸发酵:(经EMP途径)

异型乳酸发酵:(经HMP途径)

双歧杆菌发酵: (经HK途径—磷酸己糖解酮酶途径)同型乳酸发酵

异型乳酸发酵:

几种沼气厌氧发酵工艺比较剖析

塞流式工艺 塞流式工艺细分有两种,一种是普通的塞流式反应器(PFR),另一种是改进的高浓度塞流式工艺(HCF)。 1.塞流式反应器(PFR) 图1 (1)原理 PFR也称推流式反应器,是一种长方形的非完全混合式反应器。高浓度悬浮固体发酵原料从一端进入,呈活塞式推移状态从另一端排出。消化器内沼气的产生可以为料液提供垂直的搅拌作用,料液在沼气池内无纵向混合,发酵后的料液借助于新鲜料液的推动作用而排走。进料端呈现较强的水解酸化作用,甲烷的产生随着向出料方向的流动而增强。由于该体系进料端缺乏接种物,所以要进行固体的回流。为减少微生物的冲出,在消化器内应设置挡板以有利于运行的稳定。PFR反应原理及结构见图1。这种工艺能较好地保证原料在沼气池内的滞留时间。许多大中型

畜禽粪污沼气工程采用这种发酵工艺。 (2)特点 优点:适用于高SS废水的处理,尤其适用于牛粪的厌氧消化,固体含量可以提高到12%;用于农场有较好的经济效益;不需要搅拌;池形结构简单,运行方便,故障少,稳定性高。 缺点:固体物容易沉淀池底,影响反应器的有效体积,使HRT和SRT降低,效率较低;需要固体和微生物的回流作为接种物;因该反应器占地面积或体积比较大,反应器内难以保持一致的温度;易产生厚的结壳。 2. 高浓度塞流式工艺(HCF) (1)原理 HCF是一种塞流、混合及高浓度相结合的发酵装置。厌氧罐内设机械搅拌,以塞流方式向池后端不断推动,HCF厌氧反应器的一端顶部有一个带格栅并与消化池气室相隔离的进料口,在厌氧反应器的另一端,料液以溢液和沉渣形式排出。 (2)特点 进料浓度高,干物质含量可达8%;能耗低,不仅加热能耗少,而且装机容量小,耗电量低;与PFR相比,原料利用率高;解决了浮渣问题;工艺流程简单;设施少,工程投资省;操作管理简便,运行费用低;原料适应性强(畜禽粪便、碎秸秆和有机垃圾均可);没有预处理,原料可以直接入池;卧式单池容积偏小,便于组合。

厌氧发酵过程三阶段理论之欧阳家百创编

厌氧发酵过程三阶段理论: 欧阳家百(2021.03.07) 一、有机物水解和发酵细菌作用下,使碳水化合物、蛋白质与脂 肪转化为单糖氨基酸、脂肪酸、甘油、CO2、H等 二、把第一阶段产物转化为H、CO2和CH3COOH 三、通过两组生理物质上不同产CH4菌作用,将H和CO2转化为 CH4,对CH3脱羧产生CH4。 厌氧消化原理:有机物厌氧消化过程主要包括产酸和产甲烷两个阶段。而对于不溶性有机物(有机垃圾),一般可认为在上述两个阶段之前多一个“水解 阶段”,水解阶段起作用的细菌包括纤维素分解菌、脂肪分解菌和蛋白质水解菌; 在水解酶作用下,转化产生单糖、酞和氨基酸、脂肪酸和甘油。 产酸阶段起作用 细菌是发酵性细菌,产氢产乙酸和耗氢产乙酸菌在胞内酶作用下,转化产生挥发 性脂肪酸、醇类、氢和二氧化碳;产甲烷阶段是产甲烷菌利用H2、CO2、乙酸、 甲醇等化合物为基质,将其转化成甲烷,其中H2、CO2和乙酸是主要基质。 名词: VFA: Volatileacid 挥发酸

COD: Chemical oxygen demand 化学需氧量 BOD: Biochemical oxygen demand 生物需氧量 TOD: Total oxygen demand 总需氧量 TOC: Table of content 总有机碳 TS: Total solid 总固体 SS: Suspend solid 悬浮固体 VS: Volatile solid 挥发固体 HRT: 水利滞留时间=消化器有效容积/每天进料量 SRT: 污泥停留时间:单位生物量在处理系统中的平均停留时间 SVT: 污泥体积系数:单位体积水样在静置30min后,污泥体积数 MRT: 微生物滞留时间 PFR:塞流式反应器(Plug flow reactor)高浓度悬浮固体发酵原料一段进 入,从另一段排除。 USR:生流式固体反应器(Upflow solid reactor)原料从底部进入消化器, 上清从消化器上部溢出 UASB:生流式厌氧污泥床(Upflow anaerobic sludge bed)自下而上流动污 水通过膨胀的颗粒状污泥床消化分解,消化器分为污泥床、污泥层和三相分离器。 UBF:污泥床过滤器。将UASB和厌氧过滤器结合为一体的厌氧

CSTR厌氧发酵罐工作原理上课讲义

CSTR厌氧发酵罐工作原理 一、概述厌氧生物处理技术在水处理行业中一直都受到环保工作者们的青睐,由于其具有良好的去除效果,更高的反应速率和对毒性物质更好的适应,更重要的是由于其相对好氧生物处理废水来说不需要为氧的传递提供大量的能耗,使得厌氧生物处理在水处理行业中应用十分广泛。 但由于总体反应式基于莫诺方程的厌氧处理受到低浓度废水Ks的限制,所以厌氧在处理低浓度废水方面没有太大的空间,可最近的一些报道和试验表明,厌氧如果提供合适的外部条件,在处理低浓度废水方面仍然有非常高的处理效果。 我们可以根据厌氧反应的原理加以动力学方程推导出厌氧生物处理低浓度 废水尤其在处理生活污水方面的合适条件。 二、厌氧反应四个阶段 一般来说,废水中复杂有机物物料比较多,通过厌氧分解分四个阶段加以降解: (1)水解阶段:高分子有机物由于其大分子体积,不能直接通过厌氧菌的细胞壁,需要在微生物体外通过胞外酶加以分解成小分子。废水中典型的有机物质比如纤维素被纤维素酶分解成纤维二糖和葡萄糖,淀粉被分解成麦芽糖和葡萄糖,蛋白质被分解成短肽和氨基酸。分解后的这些小分子能够通过细胞壁进入到细胞的体内进行下一步的分解。 (2)酸化阶段:上述的小分子有机物进入到细胞体内转化成更为简单的化合物并被分配到细胞外,这一阶段的主要产物为挥发性脂肪酸(VFA),同时还有部分的醇类、乳酸、二氧化碳、氢气、氨、硫化氢等产物产生。 (3)产乙酸阶段:在此阶段,上一步的产物进一步被转化成乙酸、碳酸、氢气以及新的细胞物质。 (4)产甲烷阶段:在这一阶段,乙酸、氢气、碳酸、甲酸和甲醇都被转化成甲烷、二氧化碳和新的细胞物质。这一阶段也是整个厌氧过程最为重要的阶段和整个厌氧反应过程的限速阶段。

厌氧发酵罐操作说明(供参考)

一、电控箱面板上按钮和指示灯说明 电控柜面板图 在电控箱面板上有以下按钮和指示灯:进料阀开、进料阀关、排料阀开,排料阀关,系统运行和系统停止以及急停。具体的使用说明如下: 1、进料阀开/关:当按下进料阀开按钮时,进料电动阀打开,当阀门全部打开后, 进料阀开的按钮上的绿色指示灯亮,同时进料泵自动启动,当按下进料阀关时,进料阀关闭,同时进料泵停,当进料阀完全关闭后,进料阀关的按钮上的红色指示灯亮。 2、排料阀开/关:当按下排料阀开按钮时,排料电动阀打开,当阀门全部打开后, 排料阀开的按钮上的绿色指示灯亮;当按下排料阀关时,排料阀关闭,当排料阀完全关闭后,排料阀关的按钮上的红色指示灯亮。

3、排料阀开/关:当按下系统运行按钮后,整个系统按照设定的参数自动运行, 同时系统运行指示灯亮;当按系统停止按钮后,系统停止运行,同时系统停止运行指示灯亮。 4、急停按钮:出现紧急情况时可以按下急停按钮,使整个系统停机。 二、触摸屏上相应的参数设定说明 主画面 1、系统上电后,触摸屏自动进入主画面,此画面中显示发酵罐内 当前的温度,压力以及搅拌的转速和热水罐的温度以及液位状态;进出料状态也在此画面中显示。按下参数设定键进入参数设定画面。

参数设定一 2、在此画面中设定热水罐和发酵罐的工作参数,说明如下:(参数 都在系统运行时生效) 1)热水罐加热器启动/停止温度:当热水管内温度低于启动温度时,并且热水罐内的水位超过了中液位时,电加热器自动启动,加热到设定的停止温度后,电加热器自动停止运行。注意:停 止温度应大于启动温度。 2)发酵罐加热泵启动/停止温度:当发酵罐内的温度低于启动温度时,并且热水罐内的水位超过了中液位时,加热泵启动循环, 给发酵罐加热,当温度到停止温度时,加热泵停止。注意:停 止温度应大于启动温度。 3)发酵罐排气阀开/关压力:当发酵罐内的压力大于开阀压力时,排气电磁阀自动打开,当发酵罐内压力降到关阀压力时,排气 电磁阀自动关闭。注意:开阀压力应大于关阀压力。 4)搅拌器转速设定:通过此参数来设定变频器的频率。从而设定发酵罐搅拌器的转速。 按下一页进入参数设定二画面,按返回,回到主画面。

厌氧发酵工艺

环化系环测1001 李园方 厌氧发酵 1前言 餐厨垃圾是城市生活垃圾中有机相的主要来源。餐厨垃圾以蛋白质、淀粉类、食物纤维类、动物脂肪类等有机物质为主要成分, 是能源和肥料潜在的资源。餐厨垃圾含水率高达75% ~ 90%, 渗沥液易通过渗透作用污染地下水, 产生出大肠杆菌等病原微生物, 直接危害人体健康[ 1] 。另外, 餐厨垃圾处理过程中也会产生大量的高浓度有机废水, 如果处理不当, 将造成巨大的环境污染和资源浪费。宁波市于2009 年6月建成了一座餐厨垃圾废水厌氧 发酵工程, 经过2个月的调试运转, 于2009年8月开始正式运行。现将该工程情况介绍如下。 2废水概况 餐厨垃圾经提油处理和加工成饲料的处理后会产生大量有机废水, 该工程废水处理量约为110m3 d- 1, 其水质pH 为3. 5 ~ 4. 0, CODC r 80 ~ 1602废水概况餐厨垃圾经提油处理和加工成饲料的处理后会产生大量有机废水, 该工程废水处理量约为110m3 d- 1, 其水质pH 为3. 5 ~ 4. 0, CODC r 80 ~ 1603工艺流程根据工艺流程, 餐厨垃圾废水制沼气及发电主 要为以下三个步骤。 3-1厌氧发酵调试阶段 活性污泥的培养及驯化对反应器的正常运行至关重要。本项目的

接种污泥取自宁波骆驼沼气站(该沼气站以猪粪为原料)。 ( 1)污泥驯化初期(时间10天)。投入一定量的接种污泥, 再加入稀释后的废水( CODCr < 10 g L- 1 )一起投入改进型升流式厌氧污泥床反应器( UASB )中, 调节pH 至中性, 使污泥恢复活性。 ( 2)污泥驯化中期(时间30天)。投入一定量的接种污泥, 餐厨垃圾废水稀释为50% ( CODC r 40~ 80 g L- 1 ) , 出水水质良好。污泥性质基本稳定,上清液澄清透明。这表明, 活性污泥开始驯化, 适应餐厨垃圾废水。 ( 3)污泥驯化后期(时间20天)。餐厨垃圾废水提高到进料COD 浓度80~ 120 g L- 1, 保持一个 水力停留期。随着餐厨垃圾废水投加量的增加, 出水COD有所提高, 但仍能保持较高的COD 去除率。较长时间稳定的去除率表明, 污泥已基本适应餐厨垃圾废水的特性, 活性污泥驯化完成。 3-2厌氧发酵阶段 该工程采用2000m3 的改进型升流式厌氧污泥床反应器进行厌 氧发酵制沼气, 发酵装置外观见图1。该反应器处理效率高, 耐负荷能力强, 出水水质相对较好, 沼泥生成量小, 具有防堵防爆的特点, 其 结构、运行操作维护管理相对简单, 造价也相对较低。具有良好的沉淀性能和聚凝性能的污泥在下部形成污泥层, 运行一段时间后, 出水悬浮物增加, 需要按时排泥。 该工程设计为连续投料的工业化生产工艺路线。厌氧发酵启动后,

UNIT 2 厌氧发酵和氧化

厌氧发酵和氧化 厌氧发酵和氧化过程主要被用来污泥处理(图2.1)和高强度有机污染物。然而,稀释污水的应用也已被证明,并且越来越普遍。由于低生物量产量和在形成甲烷过程中能量可以由有机物基质的生物转化恢复,使得厌氧发酵进程占有优势。尽管很多的发酵进程在中温(30到35℃)进行,任然有越来越的人对单独高温发酵或预中温发酵感兴趣。后者被定义为两相厌氧消化(TPAD),它被典型设定为先是污泥停留时间3到7天,温度50到60℃的高温相,最后是7到15天的中温相。高温厌氧发酵消化进程被用来杀死病原菌以生产能够无线重复利用的A级生物固体。 在处理高强度工业污水时,由于在节约能量,增加营养物和反应器容量方面的原因,厌氧发酵展现出比好氧进程更高效的选择性。由于出水水质不如好氧处理,厌氧处理通常作为污水进入市政收集系统前的预处理步骤,或者在好氧进程前面。 过程描述 污水厌氧氧化涉及三个基础步骤:(i)水解,(ii)发酵(也被称为产酸),(iii)产甲烷。三个步骤以图表的形式在图表2.2中阐述。特殊应用的流程图起点取决于被处理污水的性质。 水解 对于大多数发酵过程的第一步中,特殊物质被转化为可溶性化合物,然后被进一步水解为被细菌用来完成发酵的简单单体物质,这叫做水解。对于一些工业污水。发酵可能是厌氧过程的第一步。

发酵 第二步是发酵(也叫产酸)。在发酵过程中,氨基酸,糖类和脂肪酸被降解,如图2.2.有机基质同时充当电子供体和受体。发酵的主要产物是醋酸盐,氢,二氧化碳,丙酸盐和丁酸盐。丙酸盐和丁酸盐进一步发酵同样产生氢,二氧化碳和醋酸盐。因此,发酵的最终产物(醋酸盐,氢,二氧化碳)是甲烷形成(产甲烷)的前提。自由能的改变与丙酸盐和丁酸盐的转化有关,要求系统中氢在低浓度(H2<10-4atm),否则反应无法进行。 产甲烷 第三步,产甲烷,由一组统称为产甲烷菌的生物。甲烷的产生包含两组产甲烷生物。一组称为分解乙酸的产甲烷菌,能把醋酸盐分解为甲烷和二氧化碳。第二组称为利用氢的产甲烷菌,用氢作为电子供体,二氧化碳作为电子受体来生成甲烷。厌氧过程中的细菌叫做产乙酸菌,同样能够利用二氧化碳来氧化氢并且形成乙酸。然而,乙酸将被转化为甲烷,所以这个反应的影响是微小的。如图表2.3所示,厌氧消化产生的甲烷中72%由醋酸盐形成。 微生物学 用来水解和发酵的不产甲烷微生物由兼性和专性厌氧菌组成。厌氧消化分离的生物体包括……和大肠杆菌。其他生理学上的种群目前包含这些生产的蛋白酶,脂类酶,尿素酶,或纤维素酶。 产甲烷的微生物被分类为古生菌,严格专性厌氧。许多厌氧消化中的产甲烷菌类似于这些在反刍动物的胃或在湖河有机沉积物中发

厌氧发酵原理及其工艺

1.4 实验研究目的,技术路线 我国目前的农作物发酵制沼气技术与发达国家相比,起步较晚,大型项目的运行经验相对较少。由于我国幅员辽阔,不同地域的农作物资源种类不同,其物理和化学性质也有较大的差别,加之我国不同地区年平均气温差别较大,使我国农作物厌氧发酵制备沼气的大型项目难有统一的设计参数标准。对于不同的大型沼气项目,必须结合项目实际的农作物种类和物性、气候条件、供热条件、沼液和沼渔的消纳和后续处理工艺、农作物的价格和最大运输半径、原料的储存和供料方式、发电机组的选型等因素进行综合考虑,才能使项目实施后获得最佳的经济和社会效益。 根据我国农作物制备沼气技术的应用现状,结合本文研究的农作物制备沼气项目实际案例,本文的研究目的为:;研究发酵原料的物理化学性质和产气率,提出合理估算农作物(主要是黄瓜藤)和粒径的方法,为项目实例提供工艺选择、系统设计和经济性计算提供可靠依据。 为了实现上述目的,本文研究内容主要集中如下几个方面: (1)研究农作物破碎预处理的特点,为合理计算破碎预处理能耗提供计算方法。 (2)研究了黄瓜藤的鲜活度对发酵产气量和产气速率等因素的影响。 (3)不同投配率对发酵产气量和产气速率等因素的影响;为了厌氧发酵反应的持续反应,同时还研究不同投配率对于pH值的影响。 1.5 论文章节安排 本论文共包括六章内容。 第一章介绍课题的研究背景,国内能源消费和可再生能源利用现状,以及课题的主要研究内容和意义。 第二章厌氧发酵反应制备沼气的基本原理和影响参数。

第三章阐述农作物的破碎原理,从中说明粒度与能耗间的关系,并且从能耗的角度分析不同粒度的颗粒的耗能情况。 第四章针对需要采用实验方法对各个因素进行研究,确定实验的数据测量的方法以及实验进行过程中需要的注意事项,防止实验失败。 第五章实验采用定制CSTR厌氧反应器对黄瓜藤在中温条件下进行厌氧消化反应实验,研究系统的稳定性能和产气性能。 第六章作出对课题的总结和展望,总结本课题的研究成果,并提出不足之处和以后还需进一步研究的方向。

沼气发酵工艺介绍

1.2.2 厌氧处理工艺选择 1、各类厌氧工艺性能概述 (1)完全混合厌氧工艺(CSTR) CSTR是在常规消化器内安装了搅拌装置,使发酵原料和微生物处于完全混合状态,该消化器常采用恒温连续投料或半连续投料运行,适用于高浓度及含有大量悬浮固体原料的处理。在该消化器内,新进入的原料由于搅拌作用很快与发酵期内的发酵液混合,使发酵池底浓度始终保持相对较低的状态。而其排除的料液又与发酵液的底物浓度相等,并且在出料时微生物也一起被排出,所以,出料浓度一般较高。该消化器具有完全混合的状态,其水力停留时间、污泥停留时间、微生物停留时间完全相等,即HRT=SRT=MRT。为了使生长缓慢的产甲烷菌的增殖和冲出速度保持平衡,要求HRT较长,一般要10-15d或更长的时间,进料浓度8%-12%。中温发酵时负荷为3-4kgCOD(m3.d),高温发酵为5-6 kgCOD(m3.d)。 CSTR的优点:1.可以进入高悬浮固体含量的原料;2.消化器内物料的均匀分布,避免了分层状态,增加了底物和微生物接触的机会;3. 消化器内温度分布均匀;4.进入消化器的抑制物质,能够迅速分散,保持较低的浓度水平;5.避免了浮渣、结壳、堵塞、气体逸出不畅和短流现象。 缺点:1.由于消化器无法做到使SRT和MRT在大于HRT的情况下运行,所以需要消化器体积较大;2.要有足够的搅拌,所以能量消耗较高;3.生产用大型消化器难以做到完全混合;4.底物流出该系统时未完全消化,微生物随出料而流失。 (2)厌氧接触工艺反应器 厌氧接触工艺反应器是完全混合式的,是在连续搅拌完全混合式厌氧消化反应器(CSTR)的基础上进行了改进的一种较高效率的厌氧反应器。反应器排出的混合液首先在沉淀池中进行固液分离,污水由沉淀池上部排出,沉淀池下部的污泥被回流至厌氧消化池内。这样的工艺既保证污泥不会流失,又可提高厌氧消化池内的污泥浓度,从而提高了反应器的有机负荷率和处理效率,与普通厌氧消化池相比,可大大缩短水力停留时间。目前,全混合式的厌氧接触反应器已被广泛应用于SS浓度较高的废水处理中。其不足之处在于,厌氧污泥经沉淀池再回流,温度变化较大,影响了厌氧处理效率的提高,同时,厌氧罐内的热能损失也较大。但因受水泵性能的限制,该装置进料的干物质浓度(TS%)为4-6%,故需配兑2.5-3倍于发酵原料重量的配料污水;还需多级“预处理”以去除堵察水泵和管道的秸草等较大固形物。 (3)厌氧滤器(AF) 厌氧滤器是采用填充材料作为微生物载体的一种高速厌氧反应器,厌氧菌在填充材料上附着生长,形成生物膜。生物膜与填充材料一起形成固定的滤床。厌氧滤床可分为上流式厌氧滤床和下流式厌氧滤床二种。污水在流动过程中生长并保持与充满厌氧细菌的填料接触,因为细菌生长在填料上将不随出水流失,在短的水力停留时间下可取得较长的污泥泥龄。厌氧滤器的缺点是填料载体价格较贵,反应器建造费用较高,此外,当污水中SS含量较高时,容易发生短路和堵塞。 (4)上流式厌氧污泥床反应器(UASB) 待处理的废水被引入UASB反应器的底部,向上流过由絮状或颗粒状厌氧污泥的污泥床。随着污水与污泥相接触而发生厌氧反应,产生沼气引起污泥床的扰动。在污泥床产生的沼气有一部分附着在污泥颗粒上,自由气泡和附着在污泥颗粒上的气泡上升至反应器的上部。污泥颗粒上升撞击到三相分离器挡板的下部,这引起附着的气泡释放;脱气的污泥颗粒沉淀回到污泥层的表面。自由状态下的沼气和由污泥颗粒释放的气体被收集在三相分离器锥顶部的集气室内。液体中包含一些剩余的固体物和生物颗粒进入到三相分离器的沉淀区内,剩余固体物和生物颗粒从液体中分离并通过三相分离器的锥板间隙回到污泥层。UASB反应器的特点在于可维持较高的污泥浓度,很长的污泥泥龄(30天以上),较高的进水容积负荷率,

氨氮对厌氧发酵的影响

~ 氨氮对厌氧发酵的影响 厌氧发酵是处理有机废弃物并实现其资源化利用的有效手段,然而厌氧发酵作为生物处理技术一种,必然存在着生化抑制反应。存在的生化抑制反应主要有:pH抑制、氢抑制、挥发性有机酸(VFA)和氨氮的抑制等。高浓度的氨氮就是有机废弃物厌氧生物处理中常遇到的一个难题。 本文阅读大量文献,集中研究氨氮在厌氧发酵过程中的产生机理、抑制浓度等规律,以期待解决或者避免氨氮在产甲烷发酵过程中的抑制反应情况,为今后的厌氧发酵提供理论和技术支持。 1氨氮的产生机理 在有机垃圾厌氧消化的过程中,氮的平衡是非常重要的因素,尽管进入消化系统中的硝酸盐能被还原成氮气,但其仍将存在于系统中。由于厌氧微生物细胞的增殖很少,只有很少的氮转化为细胞,大部分可生物降解的有机氮在厌氧发酵 降解过程中形成水解产物-氨氮,主要以铵离子NH 4+-N和游离氨NH 3 形式存在。 因此消化液中氨氮的浓度都高于进料的氨氮浓度,系统中的总氮是守恒的。 氨态氮主要是通过氨基酸的降解产生,其分解主要通过偶联进行氧化还原脱氮反应,这需要两种氨基酸同时参与,其中一个氨基酸分子进行氧化脱氮,同时产生的质子使另外一个氨基酸的两个分子还原,两个过程同时伴随着氨基酸的去除。如丙氨酸和甘氨酸的降解: CH 3CHNH 2 COOH(丙氨酸)+2H 2 O→CH 3 COOH+CO 2 +NH 3 +4H+ CH 2NH 2 COOH(甘氨酸)+4H+→2CH 3 COOH+2NH 3 ] 两个反应合并即为: CH 3CHNH 2 COOH+2CH 2 NH 2 COOH+2H 2 O→3CH 3 COOH+CO 2 +3NH 3 由于氨基酸的降解的能够产生NH 3 ,因此在这一过程会影响到溶液的pH值。 NH 3的存在对厌氧过程非常重要,一方面,NH 3 是微生物的营养物质,细菌利用氨

集装箱干式厌氧发酵设备简介

集装箱干式厌氧发酵设备简介 集装箱干式厌氧发酵设备是一种全新概念的有机废弃物厌氧发酵装置,它以干式沼气发酵工艺为核心技术,将现有沼气工程系统进行了装备化、产品化,形成了一套具有完整沼气发酵功能的标准设备,是目前中小型沼气发酵行业中一个独创的新产品。 一、产品开发背景 集装箱干式厌氧发酵设备是将干式发酵工艺和集装箱进行了融合,使设备具有了沼气发酵功能的同时实现了整套设备的可移动性,将以往的沼气系统的工程概念创造性的转变为设备概念。 利用干式发酵的工艺特点及集装箱的设备优势。实现了沼气工程设备化后的运输安装的便捷性、处理工艺的高效性、操作的简单、运行的稳定以及占地小投资低等。 二、运行工艺及参数 将工程中绝大部分系统进行设备化,如发酵、搅拌、加热、沼气存储、保温、沼气存储、沼气净化、固液分离、控制等。最后融合为一整体,进而装备化、产品化。基本工艺如下: 集装箱干式发酵设备

设备参数: 三、产品的特点及优势 (1)全套设备由集装箱高度集成,实现全套系统设备可移动,便于运输及搬迁;(2)设备安装简单,工程量大为减少,可实现系统设备的快速安装和启动;(3)集装箱场地布置简单,无需建造大量的土建设施; (4)设备自动化控制,操作简单,可实现单人操作; (5)模块集成,可扩容,可移动、可回收,可租赁,具有极高的残值; 四、项目工程案例 目前集装箱干式厌氧发酵设备目前已在全国多个地方进行了示范与推广,并取得了良好的市场反馈。

项目名称:湖北恩施某养鸡场粪污处理 运行时间:2015年4月 日产沼气:200立方米 沼气用途:发电与供暖 项目名称:广东揭阳某养牛场粪污处理 运行时间:2015年5月 日产沼气:200立方米 沼气用途:发电 上海华库环保科技有限公司 2015-10-27

厌氧发酵工艺

厌氧发酵处理工艺 有机垃圾的厌氧发酵处理正成为有机垃圾处理的一种新趋势,具有巨大的经济效益和环境效益。若技术应用于日处理有机垃圾 800 吨左右的厌氧发酵系统,每日可以产生100000m3左右生物气体,其中氢气含量 20%以上,发电 160000 度;处理后的沼渣不仅可以生产出 100 吨左右的优质有机肥,而且不对周围环境产生影响,相反,处理了大量的废物,可以大大降低固体废物对环境的危害。厌氧发酵工艺是一种产能又环保的生物处理工艺,已经广泛应用于废水的处理,在有机固体垃圾处理方面应用。有机垃圾主要包括城市生活垃圾中的有机成份、各类农作物的秸秆、禽兽的排泄物以及常见的餐饮垃圾等。统计显示,我国城市生活垃圾的清运量约 1.5 亿吨/年,并以接近 10%的速度迅猛增加;我国作为农业大国,农作物秸秆资源丰富,总产量约为 7 亿吨/年,并且以每年 6%的速度增加;禽兽养殖粪便每年产量超过 20 亿吨;我国餐饮垃圾总量约合 2000 吨/天,目前,处理这些有机垃圾的方法主要有卫生填埋、焚烧、堆肥(好氧发酵)以及厌氧发酵方法。卫生填埋的优点是填埋量大且成本较低,不足是浪费大量的土地资源,对于城市而言,可供填埋的土地越来越少;焚烧的优点是短时间内减量幅度大(达80%~90%),同时可以回收部分能源,但是其初投资和运行成本较高,而且对环境污染严重;堆肥的资源化程度较高,但减量较少且堆肥过程中容易产生恶臭,影响空气质量,在发达国家受到严格限制。厌氧发酵方法处理有机垃圾是通过厌氧微生物的作用,将有机垃圾降解为甲烷、氢气和二氧化碳的生化过程,该方法最终产物恶臭味减小,并且产生的甲烷气体可以作为能源回收,同时达到减少垃圾容积,达到“减量化、资源化、无害化”的目的,具有巨大的经济效益和环境效益,是未来处理有机垃圾的重要发展方向之一。 厌氧发酵工艺: 厌氧发酵处理工艺的分类方法诸多,根据不同的分类方法,厌氧发酵方法被分成不同的发酵工艺。根据发酵阶段所处的反应器的不同进行分类,可以分为两相发酵工艺和单相发酵工艺。按照反应器的操作条件不同(如固含率、发酵温度)等可分为三类:按固含率分湿式、干式工艺;按运行温度可以分为高温发酵、中温发酵和常温发酵三类。 按进料方式可分为间歇式、连续式。

厌氧发酵过程三阶段理论

厌氧发酵过程三阶段理论: 一、有机物水解和发酵细菌作用下,使碳水化合物、蛋白质与脂肪转化为单糖氨 基酸、脂肪酸、甘油、CO2、H等 二、把第一阶段产物转化为H、CO2和CH3COOH 三、通过两组生理物质上不同产CH4菌作用,将H和CO2转化为CH4,对CH3脱 羧产生CH4。 厌氧消化原理:有机物厌氧消化过程主要包括产酸和产甲烷两个阶段。而对于不溶性有机物(有机垃圾),一般可认为在上述两个阶段之前多一个“水解 阶段”,水解阶段起作用的细菌包括纤维素分解菌、脂肪分解菌和蛋白质水解菌;在水解酶作用下,转化产生单糖、酞和氨基酸、脂肪酸和甘油。产酸阶段起作用细菌是发酵性细菌,产氢产乙酸和耗氢产乙酸菌在胞内酶作用下,转化产生挥发性脂肪酸、醇类、氢和二氧化碳;产甲烷阶段是产甲烷菌利用H2、CO2、乙酸、甲醇等化合物为基质,将其转化成甲烷,其中H2、CO2和乙酸是主要基质。 名词: VFA: Volatile acid 挥发酸

COD: Chemical oxygen demand 化学需氧量 BOD: Biochemical oxygen demand 生物需氧量 TOD: Total oxygen demand 总需氧量 TOC: Table of content 总有机碳 TS: Total solid 总固体 SS: Suspend solid 悬浮固体 VS: Volatile solid 挥发固体 HRT: 水利滞留时间=消化器有效容积/每天进料量 SRT: 污泥停留时间:单位生物量在处理系统中的平均停留时间 SVT: 污泥体积系数:单位体积水样在静置30min后,污泥体积数 MRT: 微生物滞留时间 PFR:塞流式反应器(Plug flow reactor)高浓度悬浮固体发酵原料一段进入,从另一段排除。 USR:生流式固体反应器(Upflow solid reactor)原料从底部进入消化器,上清从消化器上部溢出 UASB:生流式厌氧污泥床(Upflow anaerobic sludge bed)自下而上流动污水通过膨胀的颗粒状污泥床消化分解,消化器分为污泥床、污泥层和三相分离器。 UBF:污泥床过滤器。将UASB和厌氧过滤器结合为一体的厌氧消化器,下部为污泥床,上部设置纤维填料。 EGSB:膨胀颗粒污泥床(Expanded granular sludge bed)与UASB反应器有相似之处,可分为进水配水系统、反应区、三相分离区和出水渠系统,EGSB没有专门的出水回流系统。 ABR:厌氧折板反应器(Anaerobic baffled reactor) SBR:间歇曝气方式运行活性污泥水处理技术,又称序批式活性污泥发(Sequencing batch reactor actirated sludge process) USSB:(Upflow staged sludge bed)

好氧堆肥和厌氧发酵

好氧堆肥工艺:污泥与垃圾堆肥处理技术得应用 甘肃省××市污水处理厂日处理污水3、0×104米3,污泥产量约18吨/日,含水率75%,运往垃圾处理厂进行混合堆肥生产.垃圾处理厂规模为200吨/日,混合堆肥生产规模50吨/日,每天收集得垃圾一部分用于堆肥。 1.工艺流程图 2、工艺说明 污泥与垃圾得混合物料,可通过前处理、好氧高温发酵、厌氧中温发酵、后处理等过程,获得熟化混合堆肥,用做化肥。 2、1垃圾与污泥得前处理 (1)混合物料中污泥与垃圾数量得确定 按照污泥与垃圾得重量比3:7,处理18吨污泥需要得垃圾量为41吨,则混合物料总重为59吨。在堆肥得过程中,由于温度升高,水分蒸发等因素得影响,重量减少率在20~30%之间,故要达到混合堆肥50吨/日,物料总重约为65吨(污泥量18吨、含水率75%;垃圾量47吨、含水率35%),混合物料含水率46%。 (2)污泥与垃圾前处理主要设备

收集到垃圾处理厂得城市垃圾先堆放在干化场风干1~2天(如果垃圾含水率在30~35%左右时,也可取消这一过程),由机械铲车将干化后得垃圾堆放到垃圾斗,通过板式给料机(一台、规格10T/h、功率5、0千瓦),连续均匀地输送到磁选机(一台、功率4、0千瓦),分选出得废金属回收,经磁选后得垃圾由皮带输送机(一台、规格10T/h、功率5、0千瓦)送到垃圾滚筒筛(一台、规格10T/h、功率7、5千瓦),将大颗粒物料(≥¢50mm)选出,经消毒后卫生填埋。小于¢50mm得颗粒垃圾用皮带输送机(一台、规格10T/h、功率5、0 千瓦)送到破碎机(一台、规格10T/h、功率15千瓦),破碎后得垃圾颗粒直径为10~15mm,再由皮带输送机(一台、规格10T/h、功率5、0千瓦)送到滚筒混合机(一台、规格15T/h、功率10、0千瓦)。城市污水处理厂运来得污泥堆放到污泥斗,由板式给料机(一台、规格5T/h、功率5、0千瓦)输送到滚筒混合机,与垃圾混合均匀。 2、2好氧高温发酵 混合均匀得物料用皮带输送机(一台、规格10T/h、功率5、0千瓦)送到达诺(Dano)式滚筒(三台、规格:¢1800mm、长度36米、功率45、0千瓦),连续运行72~96小时后,送往堆场。达诺式滚筒内物料得充满度为80%,配离心式鼓风机(二台、一用一备、风量20m3/min,风压350Kpa)供氧与通风,供氧量以5、0m3空气/m3堆肥h计算。 2、3厌氧中温发酵 经达诺式滚筒发酵后得物料用皮带输送机(一台、规格10T/h、功率5、0千瓦)送到堆场,进行厌氧中温发酵,周期25天。每天一堆,其尺寸为:长×宽×高=7、0×7、0×1、5m3,堆场总面积约1600m2,长宽各取40m。2?、4混合堆肥得后处理 后处理得目得就是对堆肥进一步加工,使之成为粒状产品,以供市场得需要. 主要设备:皮带输送机(一台、规格10T/h、功率5、0千瓦)、滚筒筛(一台、规格10T /h、功率7、5千瓦)、造粒机(一台、规格10T/h、功率22、0千瓦)、烘干机(一台、规格10T/h、功率18、0千瓦)、冷却机(一台、规格10T/h、功率15、0千瓦)、自动包装机(ZCS50?1型) 3、发酵设备 达诺(Dano)式滚筒,主体设备为一个倾斜式得回转窑(滚筒)。加入料斗得物料经过料斗底部得板式给料机与一号皮带输送机送到磁选机去除金属物质,由给料机供给低速旋转得发酵仓,在发酵仓内,物料随转筒得连续旋转而不断被提升,而后又借助自重下落,如此反

厌氧发酵工艺

以农业废弃物和农产品加工废水及废渣等各种有机物为原料,在厌氧条件下利用微生物的话动,生产沼气并使有机物得到处理的过程称为沼气发酵工艺。由于发酵原料和发酵条件的不同,所采用的发酵工艺也多种多样,目前应用或研究较多的工艺类型有塞流式反应器、完全混合厌氧消化工艺、上流式厌氧污泥床反应器、升流式固体反应器等。 1.塞流式反应器(Plug Flow Reactor,简称PFR) 塞流式反应器也称推流式反应器,是一种长方形的非完全混合式反应器。高浓度悬浮固体发酵原料从一端进入,从另一端排出,它是一种结构简单、应用广泛的工艺类型。该反应器没有搅拌装置,原料在反应器内呈自然沉淀状态,一般分为四层,从上到下依次为浮渣层、上清掖、活性层和沉渣层,其中厌氧微生物活动较为旺盛的场所只局限于活性层内,因而效率较低,多于常温条件下运转。我国农村应用最多的水压式沼气池和印度的哥巴式沼气池均属PFR。近年来经过研究和改进,一些新的农村家用沼气池得到应用,如曲流布料池,集气罩式池、塞流式池,北京-Ⅰ型池等。这些沼气池的性能有所提高,产气率都达到0.5 m3/(m3·d)以上。 2.完全混合厌氧消化工艺(continual stir Tank Reactor,简称CSTR) 完全混合厌氧消化工艺即工艺是世界上使用最多、适用范围最广的一种反应器。CSTR反应器内设有搅拌装置,使发酵原料与微生物处于完全混合状态,使活性区遍布整个反应器,其效率比常规反应器有明显提高。该反应器常采用恒温连续投料或半连续投料运转。CSTR反应器应用于含有大量悬浮固体的有机废物和废水,如酒精费醪、禽畜粪便等。在CSTR反应器内,进入的原料由于搅拌作用很快与反应器内发酵液混合,其排出的料液又与发酵液的浓度相等,并且在出料时发酵微生物也一起排出,所以出料浓度一般较高,停留时间要求较长,一般需15天或更长一些时间。CSTR反应器一般负荷,中温为3-4 kg COD/(m3·d),高温为5-6 kg COD/(m3·d)。为了提高反应器效率,在应用过程常加以改进,通过延长固体停留时间(SRT)来提高产气率。该工艺的优点是处理量大,产沼气多,易启动,便于管理,投资费用低,但是水力停留时间(HRT)和SRT要求较长。 3.上流式厌氧污泥床反应器: 上流式厌氧污泥床反应器,Upflow Anaerobic Sludge Bed Reactor,简称UASB 反应器。该工艺装置的特点为在反应器上部安装有气、液、固三相分离器,反应器内所产生的气体在分离器下被收集起来,污泥和污水升流进入沉淀区,由于该区不再有气体上升的搅拌作用,悬浮于污水中的污泥则发生絮凝和沉降,它们沿着分离器斜壁滑回反应器内,使反应器内积累起大量活性污泥。在反应器的底部是浓度很高并具有良好沉降性能的絮状或颗粒状活性污泥,形成污泥床。有机污

厌氧发酵设备

4.6 厌氧发酵设备 一、酒精发酵罐 厌氧发酵设备的特点是在发酵过程中不需通入氧气或空气,有时需通入二氧化碳或氮气等惰性气体以保持罐内正压,防止染菌,以及提高厌氧控制和提高醪液循环。酒精发酵罐和啤酒发酵罐是最常见的厌氧发酵设备。 (一)酒精发酵罐的形式及构造 酒精厂所用的酒精发酵罐通常可分为密闭式和开放式两种。密闭式酒精发酵罐的优点是:可以防止杂菌感染,便于保温冷却及控制发酵温度,酒精产量多,损失少,可回收CO2,发酵率高;缺点是结构较复杂,造价较贵。目前大多数厂都采用密闭式发酵罐。密闭式酒精发酵罐有锥底和斜底之分,如图4-48所示。酒精发酵罐罐身一般为圆柱形,罐顶采用锥形或碟形。锥底酒精发酵罐如图4-49所示。在大型酒精发酵罐内安装有冷却蛇管或纵横交错的直管,在罐顶外壁有一圈喷水冷却管,以利于维持发酵温度。小型发酵罐通常只采用表面冷却。酒精发酵罐的上部有顶盖及视镜,可观察发酵罐的表面现象。进料管一般安装在罐的顶部,放料管安装在底部,二氧化碳排出管安装在罐顶部。 图4-48 酒精发酵罐罐底形式

图4-49 锥底酒精发酵罐 罐内常装有供加热杀菌用的直接蒸汽管。大型酒精发酵罐的下部都开有人孔,以便工人进入罐内清洁及修理。此外,在罐体的上、下段装有温度计及取样器,伸入罐内。酒精发酵罐工作时,罐内不同高度的发酵液中CO2含量有所不同,发酵液中形成一个CO2含量的梯度,一般罐底CO2气泡密集程度较高,醪液相对密度小,罐上部液层CO2气泡密集程度较低,醪液相对密度大,于是相对密度小的底部发酵液就具有上浮的提升力,同时,上升的二氧化碳气泡对周围的液体也具有一种拖曳力,这拖曳力和液体上浮的提升力结合就构成气体搅拌作用,使罐内发酵液不断循环混合和热交换。因此,酒精发酵罐一般不用配置机械搅拌器。但当发酵罐体积较大,罐内产生的CO2气量较少时酒精发酵罐可配置侧向搅拌器,如图4-50所示。 酒精发酵罐的洗涤,过去均由人工操作,不仅劳动强度大,而且二氧化碳气体一旦未彻底排除,工人入罐清洗就会发生中毒事故。近年来,酒精发酵罐已逐步采用水力喷射洗涤装置,如图4-51所示,从而改善了工人的劳动强度和提高了操作效率。水力洗涤装置是由一根两头装有喷嘴的洒水管组成,两头喷水管弯有一定的弧度,喷水管上均匀地钻有一定数量 的小孔,喷水管安装时呈水平,喷水管借活络接头和固定供水管连接。

50L通用式厌氧发酵罐的设计

目录 目录..................................................................... I 摘要................................................................... III Abstract................................................................. IV 第一章前言 (1) 1 引言 (1) 2餐厨垃圾处理处置现状 (1) 2.1 粉碎直排 (1) 2.2 肥料化处理 (2) 2.3 饲料化处理 (2) 2.4 生物发酵制氢技术 (2) 2.5 厌氧发酵技术 (3) 3 厨余垃圾厌氧发酵技术详探 (4) 第二章:工艺计算 (6) 2.1初始设计参数 (6) 2.2 设计计算参数 (6) 2.3反应器的传热计算 (7) 2.4确定夹套里水的质量流量 (8) 第三章发酵罐的结构设计 (9) 3.1 发酵罐尺寸的初选 (9) 3.2 发酵罐搅拌器的选型 (10) 3.3 发酵罐传热元件的设计 (11) 3.3.1 传热元件的选取 (11) 3.3.2 夹套的尺寸及连接型式 (12) 3.4 发酵罐的具体尺寸的设计计算 (13) 3.4.1 发酵罐筒体厚度设计计算 (13) 3.4.2 封头厚度计算 (14) 3.4.3夹套的壁厚计算 (16) 3.5 发酵罐搅拌功率计算及电机的选型 (16) 3.5.1搅拌功率计算 (16) 3.5.2 电机的选型 (16) 3.6 传动装置及选型 (17) 3.6.1减速器的选取 (17) 3.6.2 联轴器的选择 (17) 3.6.3 搅拌轴的设计 (18) 3.6.3.1 搅拌轴强度预算 (18) 3.6.3.2 按扭矩和弯矩合成计算轴强度 (19) 3.6.3.3 搅拌轴临界转速的校核 (21) 3.6.4 凸缘法兰的选型 (23) 3.6.5 安装底盖的选型 (24) 3.6.6螺栓强度的校核 (25) 3.7 水压试验 (26)

常见的几种厌氧发酵工艺分类汇总

常见的几种厌氧发酵工艺分类汇总 厌氧发酵工艺是一种产能又环保的生物处理工艺,已经广泛应用于禽畜粪污、废水、有机固体垃圾处理等领域。厌氧发酵工艺类型较多,从不同的角度可以将厌氧发酵工艺分为以下几类:根据发酵温度的不同可分为常温、中温和高温发酵;按照投料运转方式可分为连续和序批式发酵;按照发酵物料中固含量的多少可分为湿式和干式厌氧发酵;按照反应是否在同一反应器进行分为单相和两相厌氧发酵。 一、常温、中温和高温发酵 温度主要是通过影响对厌氧微生物细胞内某些酶的活性而影响微生物的生长速率和微生物对基质的代谢速率,从而影响厌氧生物处理工艺中污泥的产量,有机物的去除速率,反应器所能达至的处理负荷,有机物在生化反应中的流向,某些中间产物的形成,各种物质在水中的溶解度,及沼气的产量和成分等。 常温发酵一般是物料不经过外界加热直接在自然温度下进行消化处理,发酵温度会随着季节气候昼夜变化有所波动。常温发酵工艺简单造价低廉,但是其缺点是处理效果和产气量不稳定。 中温发酵温度在30℃~40℃之间,中温发酵加热量少,发酵容器散热较少,反应和性能较为稳定,可靠性高,如果物料有较好的预处理,会提高反应速度和气体发生量;受毒性抑制物阻害作用较小,受抑制后恢复快,会有浮渣、泡沫、沉砂淤积等问题,对浮渣、泡沫、沉砂的处理是工艺难点,其诸多优点使其得到广泛的应用并有很多的成功案例。 高温发酵温度在50℃~60℃之间,需要外界持续提供较多的热量,高温厌氧消化工艺代谢速率、

有机质去除率和致病细菌的杀灭率均比中温厌氧消化工艺要高,但是高温发酵受毒性抑制物阻害作用大,受抑制后很难恢复正常,可靠性低;高温厌氧产气率比中温厌氧稍有提高,提高的是杂质气体的量,但沼气中有效成分甲烷的含量并没有提高,限制的高温厌氧的应用;高温发酵罐体及管路需要耐高温耐腐蚀性能好的材料,运行复杂,技术含量高。 二、连续发酵和序批式发酵 连续发酵是从投加物料启动以后,经过一段时间发酵稳定以后,每天连续定量的向发酵罐内添加新物料和排出沼渣沼液。序批式发酵就是一次性投加物料发酵,发酵过程中不添加新物料,当发酵结束以后,排出残余物再重新投加新物料发酵,一般进料固体浓度在15%~40%之间。 研究表明,对于处理高木质素和纤维素的物料,若在动力学速率低、存在水解限制时,序批式反应器比全混式连续反应器处理效率高。且序批式发酵水解程度更高,甲烷产量更大,投资连续式进料系统减少约40%。虽然序批式进料处理系统占地面积比连续进料处理系统大,但由于其设计简单、易于控制、对粗大的杂质适应能力强,投资少,适合于在发展中国家推广应用。 三、湿式发酵和干式发酵 湿式发酵是以固体有机废物(固含率为10%~15%)为原料的沼气发酵工艺。干式发酵是以固体有机废物(固含率为20%~30%)为原料,没有或几乎没有自由流动的条件下进行的沼气发酵工艺,是一种新生的废物循环利用方法。 湿式发酵系统与废水处理中污泥厌氧稳定化处理技术相似,但在实际设计中有很多问题需要考虑,特别是对于城市生活垃圾,分选去除粗糙的硬垃圾,及将垃圾调成充分连续的浆状的预处理过程等。为达到既去除杂质,又保证有机垃圾正常处理,需要采用过滤、粉碎、筛分等复杂的处理。这些预处理过程会导致15%~25%的挥发性固体损失。浆状垃圾不能保持均匀的连续性,因为在消化过程中重物质沉降,轻物质形成浮渣层,导致反应器中形成两种明显不同密度的物质层,重物质在反应器底部聚集可能破坏搅拌器,必须通过特殊设计的水力旋流分离器或者粉碎机去除。 干式发酵系统的难点在于: 其一,生物反应在高固含率条件下进行; 其二,输送、搅拌; 其三,反应启动条件苛刻,在运行中存在着很高的不稳定性。 但是在法国、德国己经证明对于机械分选的城市生活有机垃圾的发酵采用干式系统是可靠的。且与湿式发酵相比,又有明显的优势:

相关主题
文本预览
相关文档 最新文档