高阶变系数线性微分方程的解
- 格式:pdf
- 大小:128.07 KB
- 文档页数:4
微分方程的求解公式_高阶变系数线性偏微分方程的分离变量解高阶变系数线性偏微分方程的求解方法之一是分离变量法。
我们以二阶变系数线性偏微分方程为例进行说明。
设二阶变系数线性偏微分方程为:\[ a(x,y)\frac{{\partial^2 u}}{{\partial x^2}} +2b(x,y)\frac{{\partial^2 u}}{{\partial x\partial y}} +c(x,y)\frac{{\partial^2 u}}{{\partial y^2}} = f(x,y) \]其中,\(a(x,y)\),\(b(x,y)\),\(c(x,y)\)为已知函数,\(f(x,y)\)为已知的具有连续二阶偏导数的函数。
设\(u(x,y)\)是该方程的解,根据分离变量法的思想,我们假设可以通过分别定义两个函数\(X(x)\)和\(Y(y)\)来求解该方程,即:\(u(x,y)=X(x)Y(y)\)。
将\(u(x,y)=X(x)Y(y)\)代入原方程,得到\[ a(x,y)\frac{{\partial^2 (XY)}}{{\partial x^2}} +2b(x,y)\frac{{\partial^2 (XY)}}{{\partial x\partial y}} +c(x,y)\frac{{\partial^2 (XY)}}{{\partial y^2}} = f(x,y) \]将上式展开,得到\[a(x,y)X''(x)Y(y)+2b(x,y)X'(x)Y'(y)+c(x,y)X(x)Y''(y)=f(x,y) \]再将上式变形,得到\[ \frac{{a(x,y)X''(x)}}{{X(x)}} +2\frac{{b(x,y)X'(x)}}{{X(x)}}\frac{{Y'(y)}}{{Y(y)}} +\frac{{c(x,y)Y''(y)}}{{Y(y)}} = \frac{{f(x,y)}}{{X(x)Y(y)}} \]观察上式,可以发现等式左边的第一项和第三项只与\(x\)有关,而第二项只与\(y\)有关。
高阶线性微分方程高阶线性微分方程是微积分中的重要概念,它在各个领域都有广泛的应用。
本文将对高阶线性微分方程的定义、解法以及应用进行探讨。
一、高阶线性微分方程的定义高阶线性微分方程是指形如 $y^{(n)}+a_{n-1}y^{(n-1)}+\cdots+a_1y'+a_0y=f(x)$ 的微分方程,其中 $y^{(n)}$ 表示 $y$ 的$n$ 阶导数,$a_i(i=0,1,\cdots,n-1)$ 为常数项,$f(x)$ 为已知函数。
二、高阶线性微分方程的解法1. 齐次线性微分方程的解法对于齐次线性微分方程 $y^{(n)}+a_{n-1}y^{(n-1)}+\cdots+a_1y'+a_0y=0$,我们可以先求其特征方程 $r^n+a_{n-1}r^{n-1}+\cdots+a_1r+a_0=0$ 的根 $r_1,r_2,\cdots,r_n$,然后根据根的性质得到通解 $y=C_1e^{r_1x}+C_2e^{r_2x}+\cdots+C_ne^{r_nx}$,其中 $C_1,C_2,\cdots,C_n$ 为待定常数。
2. 非齐次线性微分方程的解法对于非齐次线性微分方程 $y^{(n)}+a_{n-1}y^{(n-1)}+\cdots+a_1y'+a_0y=f(x)$,我们首先求其对应的齐次线性微分方程的通解 $y=C_1e^{r_1x}+C_2e^{r_2x}+\cdots+C_ne^{r_nx}$。
然后,我们需要根据待定系数法,假设特解形式为 $y^*=P(x)e^{mx}$,其中$P(x)$ 为多项式,$m$ 为特征方程的根的重数。
将特解 $y^*$ 代入原方程,确定多项式的系数,进而求得特解。
最后,将齐次解和非齐次解相加,即得到原方程的通解。
三、高阶线性微分方程的应用高阶线性微分方程在物理学、工程学等领域有着广泛的应用。
举例来说,振动系统可以通过高阶线性微分方程进行建模。
高阶线性微分方程的解法实变量复值函数——预备知识常系数线性方程的解法求变系数齐线性方程特解的幂级数法要存在注意极限 ,) sin (cos )(t i t e e t t i b b a b a ±=± , )(21 t i t i e e t b b b -+=. )(21 sin t i t i e e t b b b --=; )()(lim 00t z t z t t =®)()()(t i t t z y j +=; )(lim )(lim )(lim 000t i t t z t t t t t t y j ®®®+=连续,若在0)(t t z 实变量复值函数——预备知识导数定义:; )()(lim )()(0000000dtt d i dt t d t t t z t z dt t dz t z t t )(+)(=--=º¢®y j,)()()]()([2121dt t dz dt t dz t z t z +=+,)()](dt t dz c t cz =.)()()()()]()(212121dt t dz t z t z dt t dz t z t ××=×+,t k t k e =,)(2121t k t k t k k e e e ×=+,)3( t k tk ke .)( )4( tk n t k n n e k e dt d =的性质)( b i a k t k +=.(4.2)中所有系数都是),,2,1( )(n i t a i L =)()()( t i t t z x y j +==是它的复值解,则.)2.4( )( )(的解都是方程和共轭复值函数t z t y 非齐线性微分方程有复值解)( )(][ t V i t U x L +=、及解中的和这里)( )()(),,2,1( )(t u t 、V t U n i t a i L =分别是方程和虚部的实部都是实值函数,则该解)()( t v t u 的实)(t z , ))(][t U x L =)(][t V x L =和的解.变换法. 求常系数齐线性方程通解的特征根法(4.19)0][1111 =++++º---x a dtdx a dt x d a dt x d x n n n n n n L .,,2为实常数n a L 由希望它有指数函数形式的解,t e x l =, 0)( )(][111=º++++º--t t n n n n t e F ea a a e L l l l l l l l L 数方程(4.20) 0)(111 =++++º--n n n n a a a F l l l l L . 这个方程称为(4.19)对应的特征根.特征方程,它的根称为特征根是单根的情形.个解有 (4.19)n 个彼此不相等的的是特征方程 (4.20) ,,,21 n n l l L ,,,, 21t t t n e e e l l l L 无关的,从而组成方程的基本解组. 这时,若的通解为均为实根,方程(4.19)),,2,1(n i L =; 2121tn t t n e c e c e c x l l l +++=L 复也一定是特征根,则( b a l b a l i i -=+=),它们对应方程(4.19)的两个实值解.sin ,cos t e t e t t b b a a 特征根有重根的情形.111(4.19)(4.20) k k 的重根,则它对应的是特征方程设 l 线性无关的解;,,,,1111112t k t t t e t e t te e l l l l -L;,,, ,,,3232m m k k k L L 的重数依次为l l l 则当 , )( , ),,,2,1 21j i n k k k n j i m ¹¹=+++l l L L 还有解;,,,,2222212t k t t t e te t te e l l l l -L .,,,,12tk t t t m m m m m e t e t te e l l l l -L L L L L n 个解, 是线性无关的, 构成了(4.19)的基本解组.b a l b a l l i i k -=+=则重复根是某个特征根,我们将用以下的2k 个实值解来替代:,cos ,,cos ,cos ,cos 12t e tt e t t te t e t k t t t b b b b a a a a -L . sin ,,sin ,sin ,sin 12 t e t t e t t te t e tk t t t b b b b a a a a -L. 0 44的通解=-x dtx d ,014=-l ., , 1, 14321i i -==-==l l l l .sin, cos , , t t e e t t -了4 个线性无关的解,故通解为.sin cos 4321t c t c e c e c x t t +++=-. 012167223的通解=-+x dtdx dt x d 出特征方程, 01216723=+--l l l,0)1(2222246=+=++l l l l l , 0)2)(3(2=--l l ,2, 3321===l l l .)(23231t t e t c c e c x ++=. 02 224466的通解=++dt x d dt x d dt x d ., ,0654321i i -======l l l l l l 通解为.sin )(cos )(654321t t c c t t c c t c c x ++++=+(4.32) )(]1111t f x a dtdx a dt x d a dt x d n n n n n n =++++º---L 最广泛而常见的右端函数是,]sin )(cos )([)( t t B t t A e t f t b b a +=次的实系数多项式,最高是t t B t A )(),(代数方程(4.20)仍然称为(4.32)对应的特征,)( )()(1110 m m m m t t b t b t b t b e t A e t f ++++==--L a a 时,即0=b 1.是单根的根时它的重数是特征方程a l a (0)(=F 是待定常数,将上是特征根m B B B k ,,, );0 10L =t 的同次项系数来确定.,]sin )(cos )([~ t k e t t Q t t P t x a b b +=),( ;0)(t P F i 的根时它的重数 是特征方程=+l b a .次实系数待定多项式. 13322的通解+=--t x dtdx dt 应的特征方程是, 0)1)(3( 0322=+-=--l l l l 或有形如下式的特解时,方程(4.32)0有如下形式的特解,)(~ 110t m m m k e B t B t B t x a +++=-L,0 13)( =+=b ,对应一般形式中的t t f ,故特解形式为不是特征根,因此00==k a .~Bt A x +=,13332+º---t Bt A B 系数,得îíì=--=-,132, 33A B B 特解为 ; 1 , 31-==B , 31~t x -=原方程通解为.31231+-+=-t e c e c x t t 的通解是因此对应的齐线性方程.1,321-==l l .231t t e c e c x -+=. 32 2的通解t e x dtdt -=--对应一,这里特征方程,特征根同上 ,)( t e t f -=确定正是单根,所以而, 11 , 1 , 0=-=-==k a a b .~ t Ate x -=一步,其余略.. )5(332233的通解-=+++-t e x dtdx dt x d dt x d t 特征方程为,0)1(133323=+=+++l l l l 形正是这三重根,故特解三重根 1; 1321-=-===a l l l ,)(~3 t e Bt A t x -+=其余步骤略.. 2cos 44 2的通解+t x dtdt =+一特征方程为,0)2(4422=+=++l l l ,对应一般形右端函数 t t f 2cos )( , 2 21=-==l l 而; 0)(, 1)( , 2 ,ºº=t B t A b ii 2=+b a .故特解形式为2sin 2cos ~t B t A x +=化简得2sin 82cos 8t A t B º-从而特解是 同类项系数,得. 81,0==B A , 2sin 81~t x =.2sin 81)(221t e t c c x t ++=-二因为右端函数)Re(2cos )(2it e t t f ==的结论,先求方程itex dt dx dt x d 22244 =++再取其实部,就是原方程的解.不是特征根,故对应的右端函数i e it 22=a ,~2it Ae x =,得方程并消去因子 it e 2 , 8 18iA iA -==或为. 2sin 812cos 88~2t t i e i x it +-=-=原方程的实特解为{}, 2sin 81~Re t x =. 2sin 81)(221t e t c c x t ++=-。
高阶线性偏微分方程及变系数偏微分方程高阶线性偏微分方程是微分方程中的一类重要方程。
在许多科学和工程领域中,高阶线性偏微分方程广泛应用于模拟现实问题、描述自然现象以及解析和数值解决科学问题等。
本文将介绍高阶线性偏微分方程的基本概念、解法和一些实际应用。
1. 高阶线性偏微分方程的基本概念高阶线性偏微分方程是指方程中含有高阶偏导数的线性微分方程。
一般形式为:$$A(x,y,u,u_{x},...,u_{n})u_{xx}+B(x,y,u,u_{x},...,u_{n})u_{xy}+C(x,y,u,u_{x},...,u_{n})u_{yy}+...+F(x,y,u,u_{x},...,u_{n})=0$$其中,$u_{xx}$, $u_{xy}$, $u_{yy}$分别表示对$u$进行两阶x偏导、一阶x偏导和两阶y偏导,$A(x,y,u,u_{x},...,u_{n})$等为给定的函数。
2. 高阶线性偏微分方程的一些常见解法高阶线性偏微分方程的解法可以分为分离变量法、常系数特殊方程法、特征线法等。
(1) 分离变量法分离变量法是指将方程中的变量分离,然后分别对各个变量进行积分。
通过适当选择变量的分离形式,可以将高阶线性偏微分方程转化为一系列常微分方程。
(2) 常系数特殊方程法常系数特殊方程法是指通过假设方程的解具有某种特殊形式,如指数函数、正弦函数、余弦函数等,然后代入原方程进行求解。
由于高阶线性偏微分方程的解具有叠加性,可以通过线性组合得到通解。
(3) 特征线法特征线法是指通过引入新的变量,将方程转化为特征线上的常微分方程,从而求得高阶线性偏微分方程的通解。
这种方法常见于一维波动方程、一维热传导方程等。
3. 变系数偏微分方程的基本概念及解法变系数偏微分方程是指方程中的系数随自变量而变的偏微分方程。
这类方程在实际问题中很常见,如非线性传热方程、变系数波动方程等。
变系数偏微分方程的解法相对较复杂,常见的解法有分组展开法、变系数的特殊解法等。
高阶线性微分方程的解法和常系数法在微积分学中,微分方程是一种重要的数学工具,而高阶线性微分方程则是其中的一个重要类别。
在解决许多实际问题中,很多时候需要高阶线性微分方程的解法。
本文将详细介绍高阶线性微分方程的解法和常系数法。
一、高阶线性微分方程的定义首先,我们需要明确什么是高阶线性微分方程。
高阶线性微分方程的一般形式可以表示为:$$A_n(x)\frac{d^ny}{dx^n}+A_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}}+...+A_2(x)\frac{d^2y}{dx^2}+A_1(x)\frac{dy}{dx}+A_0(x)y=f( x)$$其中,$n$为该微分方程的阶数,$A_n(x),A_{n-1}(x),...,A_1(x),A_0(x)$是已知的函数。
$f(x)$是已知的函数或常数。
二、常系数法针对高阶线性微分方程的解法,最常用的方法是常系数法。
常系数法是指假设方程中系数$A_n(x),A_{n-1}(x),...,A_1(x),A_0(x)$都是常数,从而采用特定的方法求解其通解。
对于高阶线性微分方程:$$a_n\frac{d^ny}{dx^n}+a_{n-1}\frac{d^{n-1}y}{dx^{n-1}}+...+a_2\frac{d^2y}{dx^2}+a_1\frac{dy}{dx}+a_0y=f(x)$$其中,$a_0,a_1,...,a_n$为常数,我们可以进行如下的步骤:1. 假设通解为:$$y=Ae^{rx}$$其中,$A$和$r$是待定常数。
2. 带入上式得到:$$a_ne^{rx}r^n+A_{n-1}e^{rx}r^{n-1}+...+a_2e^{rx}r^2+a_1e^{rx}r+a_0e^{rx}=f(x)$$3. 对于每个$r$,将上式变形得到关于$r$的方程:$$a_nr^n+A_{n-1}r^{n-1}+...+a_2r^2+a_1r+a_0=0$$4. 解出该方程的所有根$r_1,r_2,...,r_n$。
高阶线性微分方程常用解法简介关键词:高阶线性微分方程 求解方法在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。
下面对高阶线性微分方程解法做一些简单介绍.讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dtdt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程.1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。
形如111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n阶常系数齐次线性微分方程。
111111111111[]()()()n t n t tt tn n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dta a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式.()F λ为特征方程,它的根为特征根.1.1特征根是单根的情形设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,nc c c 为任意常数.如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根对应的,方程(3)有两个复值解()(cos sin ),i t t t t e e i αβαββ+=+()(cos sin ).i t t t t e e i αβαββ-=-对应于特征方程的一对共轭复根,i λαβ=±我们可求得方程(3)的两个实值解cos ,sin .t t t t e e αβαβ1.2特征根有重根的情形设特征方程有k 重根1,λλ=则易知知'(1)()1111()()()0,()0.k k F F F F λλλλ-====≠1.2.1先设10,λ=即特征方程有因子k λ,于是110,n n n k a a a --+====也就是特征根方程的形状为110.n n k n k a a λλλ--+++=而对应的方程(3)变为 1110,n n k n k n n k d x d x d x a a dt dt dt ---+++=易见它有k 个解211,,,k t t t -,且线性无关.特征方程的k 重零根就对应于方程(3)的k 个线性无关解211,,,k t t t -. 1.2.2当1k 重根10,λ≠对应于特征方程(4)的1k 重根1λ,方程(3)有1k 个解 1111112,,,,.t t t k t e te t e t e λλλλ-同样假设特征方程(4)的其他根2λ3,,λm λ的重数依次为2k 3k m k ;1i k ≥,且1k +2k ++m k =n,j i λλ≠(当i ≠j),对应方程(3)的解有2222212,,,,.t t t k t e te t e t e λλλλ-12,,,,m m m m m t t t k t e te t e t e λλλλ-。