草本类生物质与烟煤混烧特性及其影响因素分析
- 格式:pdf
- 大小:1.30 MB
- 文档页数:8
生物质与煤复合燃烧技术及其理论研究根据现有的研究,生物质与煤复合燃烧技术是可持续发展的一种解决方案。
该技术通过组合不同物质的燃料,可实现不同物质的高效燃烧。
由于该技术可有效提高燃料的热值,减少对传统煤燃料的依赖,并有效减少二氧化碳和其他气体排放,因此越来越广泛地应用于各类电站及工业锅炉,成为绿色环保的新能源。
生物质与煤复合燃烧技术主要包括:一是生物质燃料的处理方法。
首先,考虑到生物质燃料的特点,应采取合理的对生物质燃料的分类和处理技术,以有效提高复合燃料燃烧效率。
其次,针对生物质燃料的不同性质,应采取合理的储运技术,使燃料能够尽快进入用户端,以实现节能降耗。
二是能源转化技术。
这包括燃料喷注、气化、蒸发、热分解,这些技术能有效改变原料燃料的物理和化学性质,使之达到最佳燃料效能。
同时,生物质与煤复合燃烧技术应当考虑经济性,贯彻节能减排的方向,提高利用效率,降低生产成本。
在生物质燃料处理技术方面,可采取自动化技术,减少人工操作,加快完成工作效率;同时采用绿色包装技术,减少对环境的污染;对于燃料运输方式,可采用节能节水技术,减少燃料浪费。
生物质与煤复合燃烧技术应当充分考虑技术经济理论,贯彻节能减排和经济效益的方向。
煤和生物质燃料涡轮流体机的理论研究表明,该技术通过组合不同燃料的能量,可有效提高设备的热效率,达到节能减排的目的。
在动力自控方面,可运用智能控制、自适应控制等技术,使机组发电时能自动调整燃烧比例,以维持机组运行的稳定性。
另外,关于燃料合成技术,可考虑采用混合盐等新技术,以有效降低污染物的排放。
综上所述,生物质与煤复合燃烧技术是一种技术趋势,其兼具技术经济效益和节能减排的功能。
针对这项技术的理论研究,应注重技术经济性的实现,有效的提高利用效率,并根据燃料的特性和不同环境的要求,研发适用的燃烧技术,实现节能减排的功能。
生物质的特性对其与煤共气化过程的影响生物质是一种可再生资源,与煤相比,具有以下几个特点:首先,生物质的含氧量高于煤。
生物质通常含有大量的碳氢化合物,以及氧、氮、硫等元素。
这些元素与煤的主要成分相比,会产生显著的影响。
生物质中富含的氧原子有效地增加了气化反应的速率,但同时也影响了气化产物的组成。
生物质所含的含氧化合物会引起CO2的生成,而且由于生物质的含氧量高,也会使得气化反应的过程中生成的CO2增多。
此外,同时存在的氮和硫元素也会影响气化产物的组成和燃气品质。
其次,生物质的灰分含量相对较高。
生物质中的灰分主要由无机盐组成,包括钾(K)、钠(Na)、钙(Ca)、镁(Mg)等元素。
这些无机盐会在气化过程中发生解离和变化,并影响反应物质的转化率和产物的组成。
同时,高灰分含量也会导致催化剂的积碳和催化剂的失活,影响气化反应的稳定性和效果。
第三,生物质的挥发分含量较高。
生物质中的挥发分主要包括纤维素、半纤维素和木质素等有机物。
这些有机物在气化过程中会析出大量的挥发性气体和液体产物,如甲烷(CH4)、一氧化碳(CO)、二氧化碳(CO2)、乙烯(C2H4)、苯(C6H6)等。
此外,生物质的挥发分中还常含有大量的水分,这些水分在气化反应中也会起到溶剂的作用,促进气化反应的进行。
最后,生物质的纤维结构影响了气化过程的反应速率和产物分布。
生物质中的纤维素和半纤维素等有机物,由于其复杂的结构,不容易被气化反应所迅速分解。
因此,需要适当的温度和时间来实现其有效转化。
另外,生物质中的木质素比较耐高温,需要较高的温度才能进行气化反应。
这些特性会影响气化过程中的反应动力学和产物组成,对共气化过程的效果产生重要影响。
总结起来,生物质的特性对其与煤共气化过程产生多方面的影响。
其中,含氧量高、灰分含量高、挥发分含量高以及纤维结构复杂等特性,都会对气化过程的反应速率、产物组成、气化效果等方面产生重要影响。
为了最大程度地利用生物质的特性,提高气化产率和产物的质量,需要选择合适的反应条件和催化剂,以及优化反应系统的设计和操作。
生物质与煤混燃研究分析摘要:通过对生物质与煤混燃的研究方法、优势、燃烧特性以及研究结论的介绍,阐明充分开发生物质资源,进行生物质与煤共燃的研究对解决我国能源问题具有现实意义。
关键词:生物质;煤;混燃作为清洁的可再生能源,生物质能的利用已成为全世界的共识。
我国生物质资源丰富,生物质占一次能源总量的33% ,是仅次于煤的第二大能源。
同时,我国又是一个由于烧煤而引起的污染排放很严重的发展中国家,生物质被喻为即时利用的绿色煤炭,具有挥发分和炭活性高,N和S含量低,灰分低,与煤共燃可以降低其硫氧化物、氮氧化烟尘的含量.同时生物质燃烧过程具有CO2零排放的特点。
这对于缓解日益严重的“温室效应”有着特殊的意义。
因此发展生物质与煤混合燃烧这种既能脱除污染,又能利用再生能源的廉价技术是非常适合中国国情的。
一、共燃的主要方式:(1)直接共燃:即直接将生物质混入煤中进行燃烧或生物质与煤使用不同的预处理装置与燃烧器。
(2)生物质焦炭与煤共燃:通过将生物质在300~400℃下热解,可以将生物质转化为高产率(60%~80%)的生物质焦炭,然后将生物质焦炭与煤共燃。
生物质与煤共燃燃烧性质的研究主要是利用热分析技术所得的TG-DTG曲线进行。
利用TG-DTG曲线可以方便的获取着火温度Th,最大燃烧速(dw/dt)max平均燃烧速度dw/dt)mean,燃尽温度Th等参数。
可以对一种煤和几种生物质以及它们以不同的比例所得的混合试样进行燃烧特性分析。
比如在STA409C型热综合分析仪上对各试样进行燃烧特性试验,工作气氛为N2和O2,流量分别为80ml/min、20ml/min ,升温速率为30℃/min ,温度变化范围为20~1200℃。
每个试样重量约5.0mg。
其数值根据自己的实验需要进行修改。
2 生物质与煤共燃的优势2.1 CO2等温室气体的减排由于生物质在燃烧过程中排放出的CO2与其生长过程中所吸收的一样多,所以生物质燃烧对空气CO2的净排放为零。
生物质与煤层燃气化复合燃烧技术研究随着全球能源需求的不断增长,传统的化石燃料资源逐渐枯竭。
由于煤矿废气排放问题日益凸显以及对环境的污染,生物质逐渐被认为是一种可持续发展的能源替代品。
然而,单独利用生物质燃烧在密封环境中,产生大量的水蒸气和一氧化碳,相对较真空杂质产生粉尘和废渣来说,是一种不理想的选择。
因此,将生物质与煤层燃气化复合燃烧技术研究的重要性越来越重要。
煤炭是一种化石燃料,是地球上最重要的燃料之一、最近多年来,环境保护逐渐引起人们的重视,寻找一种既能满足能源需求,又能减少环境污染的新技术势在必行。
煤层燃气化是一种能够将煤的有机质转化为可燃气体的新技术,它具有高效率、无污染、无二氧化碳排放和回收利用等优点。
然而,煤层燃气化过程中产生的气体,如一氧化碳、甲烷、丙烷和二氧化碳,含有大量的杂质,难以直接用于发电和工业燃烧。
为了提高燃烧效率和减少环境污染,必须采取合适的措施对其进行净化和转化。
生物质是指可再生的有机物,包括木材、农作物秸秆、动植物油脂等。
生物质能源是一种绿色低碳的替代能源,不仅能够减少温室气体排放,还能促进农村经济发展和土地可持续利用。
生物质燃烧产生的气体主要是水蒸气和一氧化碳,含有大量的热量。
但是,生物质燃烧过程中会产生大量的灰和颗粒物,进一步加重了环境污染。
因此,将生物质与煤层燃气化相结合,可以充分利用两种能源的优势,实现高效燃烧和减少环境污染。
首先,研究生物质与煤层燃气化的复合工艺,探索最佳的燃烧方式。
生物质与煤层的燃烧特性不同,需要研究不同比例的混合燃烧,确定最佳的混合比例,以实现高效燃烧和减少环境污染的目标。
其次,研究复合燃烧过程中产生的气体净化和转化技术。
由于煤层燃气化产生的气体含有大量的杂质,需要采取合适的方法进行净化和转化,以提高燃烧效率和减少环境污染。
常用的方法包括物理吸附、解吸和化学吸附等。
再次,研究复合燃烧过程中产生的废渣的处理和利用技术。
生物质燃烧产生的废渣含有大量的营养物质,可以作为肥料用于农田,也可以用于制备生物质炭等高附加值产品。
生物质煤混合燃烧SO2排放特性研究摘要:在自行研制的小型循环流化床试验台上,对生物质与褐煤混合燃烧烟气中SO2排放状况进行了研究。
试验选取四种不同生物质(葵花秸秆、玉米秸秆、沙柳枝条、柳树枝条)与褐煤混合,在不同生物质种类、掺混比例和床温试验条件下测定了燃烧烟气中SO2析出状况;结果表明:掺混不同生物质,SO2析出程度存在明显差异;生物质掺混比例越高,SO2排放量越小;本文所选床温范围内,随着温度的升高,SO2排放量逐渐增大。
我国作为农业大国,生物质资源丰富。
农业生物质资源主要包括农作物秸秆和农业加工业废弃物,常见秸秆包括小麦秸秆、水稻秸秆、玉米秸秆、葵花秸秆等。
由于生物质具有挥发分含量高,着火温度低,含硫量低,成灰量低等特性,是一种清洁的可再生能源。
随着能源利用技术的发展,生物质能的利用途径和方式得到了扩展,例如生物质直燃发电,生物质混煤燃烧发电。
生物质能源的利用,一方面缓解了一次能源的消耗,另一方面减少了大气污染物的排放,是一种利用价值很高的可再生清洁能源[1-2]。
生物质资源化利用中,生物质混煤燃烧具有很高的研究价值。
由于生物质本身硫含量低,并且生物质本身含有一定量的碱金属元素,可以固化一部分燃烧烟气中的SO2,一定程度上减少了污染气体的排放[3-4]。
本文主要研究生物质混煤燃烧的SO2排放特性,为生物质混煤燃烧污染物控制提供一定的理论依据。
1试验1.1试验原料试验所选煤种为褐煤,生物质选择葵花秸秆、玉米秸秆、沙柳枝条、柳树枝条4种内蒙古常见种类,所有原材料均经过研磨筛分,褐煤试验用粒径选择60~80目,4种生物质试验用粒径选择40~60目,试验用混合燃料质量为40g。
1.2试验仪器1.2.1循环流化床燃烧设备燃烧试验设备为自行研制的36kW/h小型循环流化床系统,采用电加热,如图1所示,试验设备包括送风系统、给料系统、引风系统和电加热系统。
炉膛整体高度为250cm,炉膛底部布风板直径为5cm;给料系统包括料斗及电动螺旋给料机,螺旋给料的同时辅以送料风,保证给料的连续充足。
生物质与煤共燃探讨对农林业废弃物、下水道污泥等生物质与煤共燃技术在燃料制备、燃尽特性、热效率、污染物排放、积灰、腐蚀等方面进行了介绍。
这些生物质与煤共燃虽具有较高的积灰和腐蚀性,但其可降低CO2、SO2、NOx的排放,环境效益显著。
大气中CO2浓度的增加,会对全球气候产生一定的负面效应。
减轻CO2排放问题的途径除了节能、提高能源利用效率外,采用可再生能源是一种更有效的方法。
可再生能源利用途径中,燃用农林业废弃物、下水道污泥进行热电生产是其中一种降低CO2净排放的有效方法。
利用生物质和垃圾发电有两种方式,一是作为单一燃料使用小负荷生物质锅炉实现热电联产,二是利用现有煤粉炉实现煤与生物质的共燃。
前者需要建立很多分散的生物质电厂,并且生物质特性差别较大,必须为不同生物质设计不同的锅炉。
此外,生物质生产的季节需要大量的储存空间,导致成本增加。
后者是利用大型电站的煤粉炉、流化床锅炉进行与煤共燃发电,投资和运行成本较低。
在生物质与煤共燃发电站中,生物质的季节性波动和地域性波动、垃圾成分变化引起的影响,可以通过改变煤和生物质的比例进行补偿。
1生物质燃料特性可供利用的生物质燃料包括:(1)农业废弃物的秸秆、稻壳等;(2)林业废弃物的薪柴、树皮、树叶等;(3)快速生长能源植物如芒、象草、芦竹、灌木、乔木等;(4)城市垃圾、有机废水;(5)下水道污泥。
(1)农林废弃物密度一般较低,如麦秆和稻壳的密度分别为(50~120)kg/m3和122kg/m3,而褐煤密度为(560~600)kg/m3,烟煤为(800~900)kg/m3。
这种生物质发热量较低,仅为煤发热量的1/2~1/3。
低密度、低发热量使得生物质废弃物的处理、运输和储存变得复杂。
污泥的性质与低品质煤的性质相似。
(2)生物质燃料工业及元素分析与煤的比较见表1。
生物质燃料挥发分较高,干燥基挥发分一般为60%~80%。
而且水分含量高,范围从小于10%到大于50%,受天气和处理过程等的影响较大。
煤粉大比例掺混不同生物质的混燃特性研究摘要:可再生能源生物质清洁低碳、易于获取、利于着火,含硫、氮量少且属于碳中性物质,但其能量密度低。
在煤粉中大比例掺混生物质(生物质/煤粉质量比大于5∶5)可有效改善煤粉着火特性,碳排放水平接近燃烧天然气,且污染物排放显著降低,进而达到节能减排目的。
目前研究主要集中在低掺混比例(小于5∶5)下生物质与煤粉的混燃特性,针对北方常见的玉米秸秆、稻杆和玉米芯等生物质与煤粉在大掺混比例下的燃烧特性,尚有待深入。
笔者利用热重分析技术分别研究了煤粉与不同生物质种类(玉米秸秆、稻杆及玉米芯)在不同掺混比例下(5∶5、6∶4、7∶3和8∶2)的混燃特性,分析生物质种类和掺混比例对混合燃料的着火温度、燃尽温度、交互反应以及燃烧特性指数等的影响,确定了不同生物质的最佳掺混比例。
结果表明:掺混比例对混合样品失重曲线的影响从大到小依次为玉米秸秆、玉米芯和稻杆。
随掺混比例增加,第1阶段最大质量变化速率逐渐增大且燃烧进程前移,第2阶段则逐渐减小,这是由于挥发分相对增加且焦炭相对减少的原因。
混合样品的着火温度和燃尽温度比纯煤粉分别下降约100和60℃。
随掺混比例的增加,玉米芯着火温度逐渐减小,玉米秸秆和稻杆则先减小后增大,且均在7∶3时达到最小;燃尽温度均呈现下降趋势,下降幅度由大到小分别为玉米芯、稻杆和玉米秸秆。
玉米秸秆和稻杆在8∶2时燃尽性能较差。
混合样品发生不同程度的交互作用,该交互作用正是生物质的促进和抑制的协同作用,使3种生物质均在5∶5时对煤粉燃烧抑制作用大;玉米秸秆和稻杆在7∶3时、玉米芯在6∶4、8∶2时促进作用大。
同时,3种生物质的燃烧特性指数远大于煤粉,随掺混比例的增大,玉米芯的燃烧特性指数变化最大并在8∶2时达到最大值,6∶4和7∶3时几乎相同;稻杆的变化最小且在7∶3时达到最大值;玉米秸秆在7∶3和8∶2时几乎相同并达到最大值。
小范围改变掺混比例时,燃烧特性指数变化不大。
生物质与煤复合燃烧技术及其理论研究本文旨在探讨生物质与煤复合燃烧技术及其理论研究。
近年来,随着煤炭能源储量减少,化石能源环境污染严重,生物质取代化石能源的运动和研究日益增多。
在这种背景下,将生物质联合煤炭发电成为能源替代中的一种重要技术。
生物质与煤复合燃烧技术通过将生物质燃料与煤炭燃料混合燃烧,将双燃料的互补性和更佳的热效率联系起来,使燃烧更加全面,同时降低污染物排放量,提高经济效益。
首先,本文将从燃料混合和燃烧机理入手,分析生物质与煤复合燃烧技术的可行性和优点。
双燃料加速燃烧,煤炭本身的低温燃烧反应使燃烧室的温度上升,改善了燃烧的完善性,对污染物的排放标准也有显著的改善。
此外,煤炭与生物质燃料相混合使煤炭燃料更加完整,提高了热效率。
其次,本文将结合试验研究和技术研究,介绍生物质与煤复合燃烧技术的操作条件。
操作条件对生物质与煤炭复合燃烧燃烧性能起着重要作用,对技术的成功开展具有实质性影响。
首先,放热量、着火温度、燃烧反应速率、煤炭比例、细度比例等燃烧参数的选择是操作条件的重要要素,根据不同燃料的特性,综合考虑燃烧参数,以最大化热效率、最小化烟气排放量。
此外,本文还将探讨传统燃烧与复合燃烧燃烧温度套利原理,其中生物质燃料与煤炭燃料在不同温度下的反应速率有着较大的差异,低温燃烧可以提高煤炭燃烧的温度,减缓高温燃烧过程中的燃烧反应速率,从而改善燃料的燃烧性能,同时降低污染物的排放量。
最后,本文将就发电厂燃烧反应器的燃烧室设计和燃烧方式的选择提出研究建议。
内燃机结构和燃烧方式选择对生物质与煤复合燃烧燃烧性能具有重要影响,可以考虑设计一种多口燃烧室,分别采用火焰栅和空气助燃燃烧的方式,改进空气传输方式,提高燃烧效率,改善燃烧性能,减少环境污染。
总之,生物质与煤复合燃烧技术和理论研究是目前能源替代中一个重要技术,其燃烧室设计、燃烧方式选择、操作条件等均有关系,应当加强研究,针对不同燃料结构和特性,减少污染物排放,最大化热效率,进一步推动绿色能源发展。