第 章 材料的疲劳强度
- 格式:ppt
- 大小:1.17 MB
- 文档页数:43
1.写出下列力学性能符号所代表的力学性能指标的名称和含义。
σe、σs、σ r 0.2、σb、δ、ψ、a k 、σ-1、HRA、HRB、HRC、HBS(HBW)。
σe是弹性极限,是材料产生完全弹性变形时所承受的最大应力值;σs是屈服强度,是材料产生屈服现象时的最小应力值;σ r 0.2是以试样的塑性变形量为试样标距长度的0.2%时的应力作为屈服强度;σb是抗拉强度,是材料断裂前所能承受的最大应力值;δ是伸长率,试样拉断后标距长度的伸长量与原始标距长度的百分比;ψ是断面收缩率,是试样拉断后,缩颈处横截面积的缩减量与原始横截面积的百分比;a k是冲击吸收功,摆锤冲击试验中摆锤冲断试样所消耗的能量称为冲击吸收功;σ-1是材料经受无数次应力循环而不被破坏的最大应力;HRA、HRB、HRC是洛氏硬度由于不同的压头和载荷组成的几种不同的洛氏硬度标尺而产生的三种表示方法;HBS(HBW)是布氏硬度,用淬火钢球做压头测得的硬度用符号HBS表示,用硬质合金做压头测得的硬度用符号HBW表示。
2.低碳钢试样在受到静拉力作用直至拉断时经过怎样的变形过程?由最初受力时的弹性变形到超过屈服极限的塑性变形到最后超过抗拉强度后的断裂。
3.某金属材料的拉伸试样l0=100mm,d0=10mm。
拉伸到产生0.2%塑性变形时作用力(载荷)F0.2=6.5×103N;F b=8.5×103N。
拉断后标距长为l l=120mm,断口处最小直径为d l=6.4mm,试求该材料的σ0.2、σb、δ、ψ。
σ0.2= F0.2/ s0=(6.5×103)/π×(10/2)2=82.8MPaσb= F b/ s0=(8.5×103)/π×(10/2)2=108.28MPaδ=(l l- l0)/ l0×100%=20%ψ=( s0- s1)/ s0=[π×(10/2)2-π×(6.4/2)2]/π×(10/2)2=59.04%4.钢的弹性模量为20.7×104MPa,铝的弹性模量为6.9×104MPa。
第一章金属材料的力学性能机械制造中使用的材料品种很多,为了正确使用材料,并把它加工成合格的工件,必须掌握材料的使用性能和工艺性能。
使用性能,是指为保证工件正常工作材料应具备的性能,包括力学性能、物理和化学性能等。
工艺性能,是指材料在加工过程中所表现出来的性能,包括铸造性能、锻压性能、焊接性能和切削加工性等。
所谓力学性能,是指材料在外力作用下所表现出来的性能,主要有强度、塑性、硬度、冲击韧性、疲劳强度等,是设计机械零件时选材的重要依据。
这些性能指标是通过试验测定的。
第一节刚度、强度、塑性刚度、强度和塑性是根据试验测定出来的。
将材料制成标准试样(图1-1a),然后把试样装在试验机上施加静拉力,随着拉力的增加试样逐渐变形,直到拉断为止(图1-1b)。
将试样从开始到拉断所受的力F 及所对应的伸长量ΔL绘制在F—ΔL坐标上,得出力一伸长曲线。
低碳钢的力一伸长曲线如图1—2所示。
从图1—2可知,在OE 阶段,试样的伸长量随拉力成比例增加,若去除拉力后试样恢复原状,这种变形称为弹性变形。
超过E 点后,若去除拉力试样不能完全恢复原状,尚有一部分伸长量保留下来,这部分保留下来的变形称为塑性变形。
当拉力增加到F s 时,力一伸长曲线在S 点呈现水平台阶,即表示外力不再增加而试样继续伸长,这种现象称为屈服,该水平台阶称为屈服台阶。
屈服以后,试样又随拉力增加而逐渐均匀伸长。
达到B 点,试样的某一局部开始变细,出现缩颈现象。
由于在缩颈部分试样横截面积迅速减小,因此使试样继续伸长所需的拉力也就相应减小。
当达到K 点时,试样在缩颈处断裂。
低碳钢在拉伸过程中经历了弹性变形、弹一塑性变形和断裂三个阶段。
F —ΔL 曲线与试样尺寸有关。
为了消除试样尺寸的影响,把拉力F 除以试样原始横截面积A0,得出试样横截面积上的应力,同时把伸长量ΔL 除以试样原始标距L 0,得到试样的应变LL ε∆=0F A σ=σ—ε曲线与F —ΔL 曲线形状一样,只是坐标不同。