第10章 湍流边界层

  • 格式:doc
  • 大小:458.00 KB
  • 文档页数:26

下载文档原格式

  / 26
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10章 湍流边界层

10.1 壁面湍流特性和速度分布规律

当边界层内流体及管内流体处于层流流动状态时,流体受到壁面的限制仅仅表现在粘性切应力作用下,进行粘性旋涡的扩散;而当处于湍流流动状态时,流体受到壁面的限制则是在粘性切应力和湍流附加切应力的同时作用下,进行旋涡的扩散。 由于湍动旋涡的扩散速度远大于粘性旋涡扩散的速度,因此,在相同条件下,湍流速度边界层的厚度要比层流速度边界层厚。 但在高雷诺数的条件下,湍流速度边界层仍是贴近壁面的薄层,因此,建立湍流边界层方程的前提条件与层流时相同。

但是,由于两种切应力的作用,湍流速度边界层的结构要比层流速度边界层复杂得多。 因此,一定要先了解壁面湍流的分层结构和时均速度分布规律。

10.1.1 壁面湍流分层结构及其特性

在壁面湍流中,随着壁面距离的变化,粘性切应力和湍流附加切应力各自对流动的影响也发生变化。 以y 表示离开壁面的垂直距离,随着y 的增加,粘性切应力的影响逐渐减小,而湍流附加切应力的影响开始不断增大,而后逐渐减小。 这就形成了具有不同流动特征的区域。 壁面湍流速度边界层可以分为内层(壁面区),包括粘性底层、过度层(重叠层)和对数律层(完全湍流层);外层,包括尾迹律层和粘性顶层(间歇湍流层)。 定义

()ρ

τw

x v v =

=** (10.1.1) 因为*v 具有速度的量纲,故称为壁面切应力速度,它在湍流中是一个重要的特征速度。 以下对各层的划分做详细说明。

粘性底层:所在厚度约为*

5

0v y ν

≤≤,其内粘性切应力起主要作用,湍流附加切应力可以忽

略,流动接近于层流状态,因此在早期研究中称之为层流底层。 由于近期的实验研究,观察到该层内有微小旋涡及湍流猝发起源的现象,因此称为粘性底层。

过渡层:所在厚度约为*

*

30

5

v

y v

ν

ν

≤≤,其内粘性切应力和湍流附加切应力为同一数量级,流

动状态极为复杂。 由于其厚度不大,在工程计算中,有时将其并入对数律层的区域中。

对数律层:所在厚度约为()δν

ν

2.01030

*

3

*

≈≤≤v y v ,其内流体受到的湍流附加切应力大于粘

性切应力,因而流动处于完全湍流状态。

由这三层组成的内层,称为三层结构模式,若将过度层归入对数律层,则称为两层结构模式。 外层中的尾迹律层和粘性顶层所在厚度分别约为δν

4.010*

3

≤≤y v

和δδ≤≤y 4.0。 对于尾迹

律层,层内流体受到的湍流附加切应力远远大于粘性切应力,流动处于完全湍流状态,但与对数律层相比,湍流强度已明显减弱;对于粘性顶层,由于湍流的随机性和不稳定性,外部非湍流流体不断进入边界层内而发生相互掺混,使湍流强度显著减弱,同时,边界层内的湍流流体也不断进入临近的非湍流区,因此,湍流和非湍流的界面是瞬息变化的,具有波浪的形状。 因此,所谓湍流速度边界层厚度δ是平均意义上的厚度。 实际上,湍流峰可能伸到δ之外,而外流的势流也可以深入到δ之内。 这就是导致粘性顶层内的流动呈现间歇性的湍流,即在空间固定点上的流动有时是湍流,有时是非湍流。

10.1.2 光滑壁面内层的时均速度分布

这个区域一般假设为常应力区域。 若用ν

*

yv y =+

表示无量纲离壁面距离,则对于光滑壁面,

存在如下无量纲函数关系:

()

+

=y f v

v x * (10.1.2) 其中 x v 表示湍流的时均速度。

1.粘性底层(*

5

0v y ν

≤≤)

这一层紧贴壁面,在早期的研究中一度认为该层流态是层流,直到最近才在研究中发现这一层的流动中有小涡存在,湍流的猝发大都起始于该层。 该层中,湍流的附加切应力很小,通常可以忽略不记。 根据Prandtl 的混合长度理论,有:

d d x w t

v y

τμ= (10.1.3)

对上式进行积分,考虑到当y=0时,0=x v ,可以得到时均速度的分布式为:

y y v w w x ρν

τ

μτ==

(10.1.4) 注意到无量纲速度和无量纲离壁面距离:

*v

v v x

=+

, ν*yv y =+

所以有 ++=y v x

可见,速度分布是线性的。 因此,粘性底层又称为线性底层。

2.过渡层(*

*

30

5

v

y v

ν

ν

≤≤)

由于在该层中,两种切应力为同一数量级,流动现象极为复杂,分析起来也极为困难,因此,通常由实验来确定时均速度的分布:

***151ln 3.055ln 5x

v v y v y v νν⎡⎤⎛⎫⎛⎫=+=-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣

⎦ (10.1.5)

3.对数律层(()δν

ν

2.01030

*

3

*

≈≤≤v

y v

该层处于内层的外部区域。 由理论和实验研究表明,该层中,湍流附加切应力远远大于粘性切应力,粘性切应力可以略去不计。 有:

y

v

y v x m x t

w ∂∂=∂∂=ρεμτ (10.1.6) 对于内层,通常假设y kv m *=ε,代入上式,并且考虑到()ρ

τw

x v v =

=**,整理可得: y

v ky

v x

∂∂=* (10.1.7) 转换成相应的无量纲形式得

d 1

d x v y ky

++

+=

(10.1.8) 积分上式,得

C y k

v x +=

++ln 1

(10.1.9) 通常根据实验取k=0.4,C=5.5(或5),于是对数律层的速度分布为

5.5ln 5.2+=++y v x (10.1.10)

如果采用不计过度层的两层结构模式,可以认为粘性底层与对数律层的分界面在8.10=+y 处,由于该处也属于粘性底层,因此有

8.10==++y v x (10.1.11)

对式(10.1.8)进行积分得

10.810.811

d d x v y x v y k y +

++=⎰⎰ (10.1.12)

8

.10ln 18.10+

+=-y k v x

(10.1.13)

取k=0.41,整理上式,可得

0.5ln 44.2+=++y v x (10.1.14)

可见,上式与式(2)相符合,这说明了内层若按两层划分,只要适当选取粘性底层与对数律层的分界面,所得的对数律层的速度分布与按三层划分的对数律层的分布是一致的。 可以看出对数律层内的时均速度分布是对数形式,虽然这是在某些限定的简化条件下得出的,但是却与实验相符合。

10.1.3 外层时均速度分布

根据实验观察,由于壁面的滞止作用,外层中的时均速度仍然低于边界层外的势流速度V ,但其受壁面的影响比内层要大大减弱,并且比较明显的受到沿壁面在流动方向上压力梯度

d d p

x

的影