七年级数学思维探究(22)角(含答案)
- 格式:doc
- 大小:473.24 KB
- 文档页数:10
七年级数学思维探究数与代数刘徽(生于公元250年左右),是中国数学史上伟大的数学家,在世界数学史上也占有杰出的地位,他的杰作《九章算术注》和《海岛算经》是我国最宝贵的数学遗产.刘徽钻研学术严谨、求实,讲究“析理以辞,解体用图”,他善于启发,主张“告往而知来,举一隅而三隅反”. 1.数形结合话数轴 解读课标1.数形结合话数轴数学是研究“数”和“形”的一门学科,从古希腊时期起,人们就已试图把它们统一起来.在日常生活中我们通常对有形的东西认识比较快,而对抽象的东西认识比较慢,这正是现阶段数学学习的特点,以形助数是数学学习的一个重要方法. 运用数形结合思想解题的关键是建立数与形之间的联系,现阶段数轴是数形联系的有力工具,主要反映在: 1.利用数轴形象地表示有理数; 2.利用数轴直观地解释相反数;3.利用数轴解决与绝对值有关的问题; 4.利用数轴比较有理数的大小. 问题例1(1)已知a 、b 为有理数,且0a >,0b <,0a b +<,将四个数a 、b 、a -、b -按由小到大的顺序排列是_________.(2)已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么点B 对应的数是__________. 试一试 对于(1),赋值或借助数轴比较大小;对于(2)确定A 、B 两点在数轴上的位置,充分考虑A 、B 两点的多种位置关系.例2 如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且210d a -=,那么数轴的原点应是( ) A .A 点 B .B 点 C .C 点 D .D 点试一试从寻找d 与a 的另一关系式入手.例3 已知两数a 、b ,如果a 比b 大,试判断a 与b 的大小.试一试 因a 、b 符号未定,故a 比b 大有多种情形,借助数轴可直观全面比较a 与b 的大小.例4 电子跳蚤落在数轴上的某点0K ,第一步从0K 向左跳1个单位到1K ,第一步由1K 向右跳2个单位到2K ,第三步由2K 向左跳3个单位到3K ,第四步由3K 向右跳4个单位到4K ,……,按以上规律跳了100步时,电子跳蚤落在数轴上的点100K 所表示的数恰是19.94,试求电子跳蚤的初始位置0K 点所表示的数.DCBA试一试 设0K 点表示的数为x ,把1K 、2K 、…、100K 点所表示的数用x 的式子表示.例5 已知数轴上的点A 和点B 之间的距离为28个单位长度,点A 在原点的左边,距离原点8个单位长度,点B 在原点的右边. (1)求A 、B 两点所对应的数.(2)数轴上点A 以每秒1个单位长度出发向左运动,同时点B 以每秒3个单位长度的速度向左运动,在点C 处追上了点A ,求C 点对应的数.(3)已知在数轴上点M 从点A 出发向右运动,速度为每秒1个单位长度,同时点N 从点B 出发向右运动,速度为每秒2个单位长度,设线段NO 的中点为P (O 为原点),在运动的过程中线段PO AM -的值是否变化?若不变,求其值;若变化,请说明理由. 分析与解 对于(3),设M 点运动时间为t 秒,把PO AM -用t 的式子表示. (1)A 、B 两点所对应的数分别为8-,20; (2)C 点对应的数为22-; (3)AM t =,202102tOP t +==+(为什么?),则1010PO AM t t -=+-=,即PO AM -的值不变. 生活启示例6 李老师从油条的制作中受到启发,设计了一个数学问题.如图,在数轴上截取从原点到1的对应点的线段AB ,对折后(点A 与点B 重合),固定左端向右均匀地拉成1个单位长度的线段,这一过程称为一次操作(例如,在第一次操作后,原线段AB 上的14,34均变成12;12变成1;等等).那么在线段AB上(除点A 、点B 外)的点中,在第二次操作后,求恰好被拉到与1重合的点所对应的数字之和.分析 捕捉问题所蕴含的信息,阅读理解“一次操作”的意义:将线段沿中点翻折,中点左侧的点不动,中点右侧的点翻折到左侧的对应位置上,由原来的一个等分点变为两个等分点.解:原图B A 78348123814181BA对折后拉长后对折后拉长后故在第二次操作后,恰好被拉到与1重合的点所对应的数字之和是13144+=. 数学冲浪 知识技能广场1.数轴上有A 、B 两点,若点A 对应的数是2-,且A 、B 两点的距离为3,则点B 对应的数是______.2.电影《哈利·波特》中,小哈利·波特穿墙进入“394站台”的镜头(如示意图中的M 站台),构思奇妙,能给观众留下深刻的印象,若A 、B 站台分别位于2-,1-处,2AN NB =,则N 站台用类似电影中的方法可称为“_________站台”.3.已知点A 、B 、P 在数轴上,点B 表示的数为6,8AB =,5AP =,那么点P 表示的数是_______.4.如图所示,按下列方法将数轴的正半轴绕在一个圆(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0、1、2)上:先让原点与圆周上数字0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1、2、3、4、…所对应的点分别与圆周上1、2、0、1所对应的点重合.这样,正半轴上的整数就与圆周上的数字建立了一种对应关系. (1)圆周上的数字a 与数轴上的数5对应,则a =________;(2)数轴上的一个整数点刚刚绕过圆周n 圈(n 为正整数)后,并落在圆周123858()1434()1878()0(1)38418121878()1434()3858()0(1)34121120141434()1878,38,58()01,12()1401201,12()1878,38,58()1434()121M109-1-2上数字1所对应的位置,这个整数是________(用含n 的代数式表示).5.有理数a 、b 在数轴上的位置如图所示:,则下列各式正确的是()A .0a b +>B .0ab >C .0a b +<D .0a b ->6.文具店、书店、玩具店依次坐落在一条东西走向的大街上,文具店在书店西20米,玩具店位于书店东100米处,小明以书店沿街向东走了40米,接着又向东走了60-米,此时小明的位置在( )A .文具店B .玩具店C .文具店西边40米D .玩具店东60-米 7.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”、“15cm ”分别对应数轴上的 3.6-和x ,则( )A .910x <<B .1011x <<C .1112x <<D .1213x <<8.在数轴上任取一条长度为119999的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A . 1998B .1999C .2000D .20019.一个跳蚤在一条直线上,从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位……依此规律跳下去,当它跳第100次落下时,求落点处离O 点的距离(用单位表示). 10.已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,求所有满足条件的点B 与原点O 的距离的和. 思维方法天地11.在数轴上,点A 、B 分别表示13-和15,则线段AB 的中点所表示的数是______. 12.在数轴上,表示数22a ⎛⎫+ ⎪⎝⎭的点M 与表示数33a ⎛⎫+ ⎪⎝⎭的点N 关于原点对称,则a 的值为_______. 13.数形相伴 (1)如图所示,点A 、B 所代表的数分别为1-,2,在数轴上画出与A 、B 两点的距离和为5的点(并标上字母).1ba 210-1-2x-3.6A B 043215-3-2-1(2)若数轴上点A 、B 所代表的数分别为a 、b ,则A 、B 两点之间的距离可表示为AB a b =-,那么,当127x x ++-=时,x =________;当125x x ++->时,数x 所对应的点在数轴上的位置是在________.14.点A 、B 分别是数3-、12-在数轴上对应的点,使线段AB 沿数轴向右移动为''A B ,且线段''A B 的中点对应的数是3,则点'A 对应的数是_______,点A 移动的距离是________.15.点1A 、2A 、3A 、…、n A (n 为正整数)都在数轴上,点1A 在原点O 的左边,且11AO =,点2A 在点1A 的右边,且212A A =;点3A 在点2A 的左边,且323A A =,点4A 在点3A 的右边,且434A A =,……,依照上述规律,点2008A 、2009A 所表示的数分别为( )A .2008,2009-B .2008-,2009C .1004,1005-D .1004,1004- 16.如图:,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且29b a -=,那么数轴的原点对应点是( )A .A 点B .B 点C .C 点D .D 点17.有理数a 、b 、c 在数轴上的位置如图,式子a b a b b c ++++-化简结果为( )A .23a b c +-B .3b c -C .b c +D .c b -18.不相等的有理数a 、b 、c 在数轴上对应点分别为A 、B 、C ,若a b b c a c -+-=-,那么点B ( )A .在A 、C 点右边B .在A 、C 点左边 C .在A 、C 点之间D .以上均有可能19.在数轴上,N 点与O 点的距离是N 点与30所对应点之间的距离的4倍,那么N 点表示的数是多少?20.已知数轴上有A 、B 、C 三点,分别代表24-、10-、10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位/秒. (1)问多少秒后甲到A 、B 、C 的距离和为40个单位?(2)若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,问甲、乙在数轴上的哪个点相遇? (3)在(1)、(2)的条件下,当甲到A 、B 、C 的距离和为40个单位时,甲调头返回,问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由. 应用探究乐园 21.操作与探究对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的DCBAcb a点向右平移1个单位,得到点P 的对应点'P .点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段''A B ,其中,点A ,B 的对应点分别为'A ,'B .如图所示,若点A 表示的数是3-,则点'A 表示的数是_______;若点'B 表示的数是2,则点B 表示的数是________;已知线段AB 上的点E 经过上述操作后得到的对应点'E 与点E 重合,则点E 表示的数是__________.22.一动点P 从数轴上的原点出发,沿数轴的正方向以每前进5个单位、后退3个单位的程序运动,已知点P 每秒前进或后退1个单位,设n x 表示第n 秒点P 在数轴上的位置所对应的数(如44x =,55x =,64x =),求2011x 所对应的数.B'A -1-2-3-412341.数形结合话数轴 问题解决例1 (1)b a a b <-<<- (2)4或2或2-或4- 例2 B 由图知7d a -=,又210d a -=,得3a =-.例3 当点B 在原点的右边时,0b a <<,则a b >;当点A 在原点的左边时,0b a <<,则a b <;当点A 、B 分别在原点的右、左两侧时,0b a <<,这时无法比较a 与b 的大小关系;当点A 正好在原点位置时,0b a <=,则b a >;当点B 正好在原点位置时,0b a =<,则a b >.例4 30.06- 设0K 点表示的有理数为x ,则1K 、2K 、…、100K 点所表示的有理数分别为1x -,12x -+,123x -+-,…,123499100x -+-+-+,由题意得12349910019.94x -+-+-+=. 数学冲浪1.5-或1 2.113- 3.3或7-4.(1)2;(2)31n + 5.A 6.A 7.C 8.C 9.12349910050-+-++-=-,落点处与O 点距离为50个单位长. 10.12 11.115-AB 中点所表示的数是11123515⎛⎫-+÷=- ⎪⎝⎭12.6-13.(1)如图所示,点C 、D 两点即为所求. (2)3x =-或4;点C 的左边或点D 的右边.14.74;194 AB 长为()15322⎛⎫---= ⎪⎝⎭,'A 对应数为1573224-⨯=,点A 移动的距离为()719344--=. 15.C 16.C 17.C 18.C19. 24与40 20.(1)设x 秒后甲到A 、B 、C 距离和为40 ()102414---= ()101020--=.①当甲在A 、B 之间时 ()()41441442040x x x +-+-+=,得2x =. ②当甲在B 、C 之间时 ()()44142041440x x x +-+-+=,得5x =,即2秒或5秒后. (2)设x 秒后相遇()()461024x +=-- 1034x = 3.4x =.24 3.4410.4-+⨯=-,即在10.4-处相遇.(3)①设甲向C 走2秒后掉头返回x 秒与乙相遇 2442410266x x -+⨯-=+-⨯-,解得7x =. ∴()102661062106944x x -⨯-=-+=-⨯=-.D C B A 4321-1-2-3②设甲向C走5秒后掉头返回y秒与乙相遇2445410566y y-+⨯-=-⨯-,解得8y=-.∴不合题意,舍去.即甲、乙能在44-所表示的点处相遇.21.0;3;32.设E点表示的数为x,则'E点表示的数为113x+,由113x x=+得32x=.22.因201182513=⨯+,22513505⨯+=,故2011x所对应的数为505.。
2018-2019年度美国“大联盟”(Math League)思维探索活动第一阶段(七年级)(活动日期:2018年11月25日,答题时间:90分钟,总分:200分)学生诚信协议:答题期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论,我确定我所填写的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚。
请在装订线内签名表示你同意遵守以上规定。
考前注意事项:1. 本试卷是七年级试卷,请确保和你的参赛年级一致;2. 本试卷共4页(正反面都有试题),请检查是否有空白页,页数是否齐全;3. 请确保你已经拿到以下材料:本试卷(共4页,正反面都有试题)、答题卡、答题卡使用说明、英文词汇手册、草稿纸。
试卷、答题卡、答题卡使用说明、草稿纸均不能带走,请留在原地。
4. 本试卷题目很多也很难,期待一名学生所有题目全部答对是不现实的,能够答对一半题目的学生就应该受到表扬和鼓励。
选择题:每小题5分,答对加5分,答错不扣分,共200分,答案请填涂在答题卡上。
1.(4 × 6 × 8 × 10) ÷ (6 × 8 × 10) =A) 3 B) 4 C) 12 D) 3 × 6 × 8 × 102.(2 ÷ 3) rounded to the nearest hundredth isA) 0.33 B) 0.66 C) 0.67 D) 0.703.Baby Amy is one day older than Baby Barry. The product of theirages measured in days could beA) 33 B) 132 C) 245 D) 2464.(The largest even divisor of 200) ÷ (the largest odd divisor of 200) =A) 4 B) 8 C) 20 D) 2005.An equilateral triangle with integer side-lengths has a perimeter that is numerically equalto the area of a square. Which of the following could be the length of a side of the square?A)12 B)10 C) 8 D) 46.I have only nickels, dimes, and quarters to pay for my dinner, which costs $12.60. Thesmallest number of coins I can use to pay isA) 51 B) 52 C) 54 D) 557.The smallest prime factor of 2019 isA) 1 B) 3 C) 19 D) 6738.The product of four consecutive integers must be divisible by each of the following exceptA) 4 B) 6 C) 10 D) 129.There are ? hours in 4 weeks.A) 48 B) 96 C) 336 D) 67210.If I divide my favorite number by its reciprocal, the quotient is 10 times as large as myfavorite number. My favorite number isA)110B)15C)12D) 1011.The height of the smoke from my barbecue is 100 000 cm, which is thesame as ? km.A) 1 B) 10C) 100 D) 100012.If the degree measures of the angles of a triangle are in a 4:5:6 ratio, whatis the difference between the measures of the largest and the smallest angles?A) 12°B) 24°C) 30°D) 36°13.The population of a town started at 1000, then went up 10%, then down 20%, then backup 10%. The population of the town ended atA) 968 B) 972 C) 1000 D) 102414.In my orchard, there are 60 more apples than oranges, and 5times as many apples as oranges. How many apples are there?A) 50 B) 75 C) 100 D) 12515.A polygon in which every pair of angles is supplementary must be aA) triangle B) squareC) rectangle D) hexagon16.Which of the following is smallest in value?A) 2600B) 3500C) 4400D) 530017.(2100 × 450) ÷ 2 =A) 275B) 2100C) 2149D) 219918.What is the remainder when 3333 is divided by 10?A) 1 B) 3 C) 7 D) 919.On a series of tests, Gus got 100 once, 90 twice, and 80 five times. What was his averagescore for all of the tests?A) 80 B) 85 C) 90 D) 9220.The product of the thousands and tenths digits of 1234.5678 isA) 5 B) 10 C) 35 D) 40第1页,共4页第2页,共4页21. The probability of heads then tails then heads on 3 tosses of a coin isA) 0.125B) 0.25C) 0.375D) 0.522. On January 1 last year, Rui got a jar of jellybeans. On each day he ate the same number ofjellybeans. He counted 560 on January 31 before eating any and he counted 380 on March 17 before eating any. There were ? jellybeans in the jar when Rui got it.A) 600 B) 650 C) 680D) 74023. Jake used 120 boxes of tissues in 3 days! There are 144 tissues per box. That’s ? tissues per minute!A) 2B) 3C) 4D) 524. The number 5184 has ? positive odd divisors.A) 1B) 2C) 4D) 525. The sum of 5 consecutive even integers could beA) 120B) 125C) 164D) 21226. Jacques, who paints only smiley faces, signs and numbers each of his paintings. If he started with Smiley #1 and has painted through Smiley #111, how many times has he used the digit 1 in his numbering?A) 12B) 22C) 24D) 3627. How many whole numbers have squares that are between 2 and 200?A) 12B) 13C) 24D) 2628. A baker cuts circular cookies out of a flat rectangle of cookie dough. If the rectangle is2 m by 1 m, and the cookies have radius 10 cm, at most how many cookies can the baker cut from the sheet of dough?A) 50B) 63C) 64D) 20029. 0.02% of 20% of ? = 200% of 2000A) 1000 B) 100 000 C) 1 000 000D) 100 000 00030. A miner combines 1200 kg of ore that is on average 3% gold with 2400 kg of ore that is on average 6% gold. If the 100 kg containing the most gold of the 3600 kg is 40% gold, the remaining ore will be ? gold.A) 2%B) 3%C) 4%D) 5%31. Including face diagonals, the total number of diagonals of a cube isA) 12B) 14C) 16D) 2432. How many odd 3-digit integers greater than 500 are composed of 3 different non-zero digits?A) 154B) 175C) 185D) 20033. If I square all whole-number factors of 36 and multiply the resulting numbers, the product will be equal toA) 362B) 364C) 368D) 36934. When the four members of the Beaverton family carry a log, each has a 0.02 probability of tripping, and each probability is independent of the others. What is theprobability that they will carry the log without any of them tripping?A) 1 – (0.02)4 B) (0.98)4 C) (0.02)4D) 1 – (0.98)435. What is the largest prime factor of the product of all even numbers from 2 through 200?A) 47B) 97C) 199D) 201936. What is the sum of the solutions to |10 – 4x | = 5?A) 1.25 B) 3.75C) 5 D) 1037. If 2x × 42x × 83x = 2y , then y =A) 2x 3B) 6xC) 6x 3D) 14x38. Each time Alan falls asleep, he sleeps for exactly 8m minutes and then is awake for the next 4m minutes. If he falls asleep for the 1st time at 11 P.M. and wakes from his 6th time asleep at 4:06 A.M., then m = A) 4.25 B) 4.5 C) 5.125D) 6.37539. If x is a positive integer, the remainder when 2018x is divided by 10 could NOT beA) 4B) 6C) 8D) 040. If a + b = 8 and114a b+=, then ab = A) 2 B) 6 C) 12 D) 32第3页,共4页 第4页,共4页2018-2019年度美国“大联盟”(Math League)思维探索活动第一阶段(八、九年级)(活动日期:2018年11月25日,答题时间:90分钟,总分:200分)学生诚信协议:答题期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论, 我确定我所填写的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚。
新人教版七年级数学上册专题训练:角的计算(含答案)专题训练角的计算类型1 利用角度的和、差关系要求求解的角与已知角之间有和、差关系,可以利用角度和、差来计算。
1.如图,已知 $\angle AOC=\angle BOD=75°$,$\angle BOC=30°$,求 $\angle AOD$ 的度数。
解:因为 $\angle AOC=75°$,$\angle BOC=30°$,所以$\angle AOB=\angle AOC-\angle BOC=75°-30°=45°$。
又因为$\angle BOD=75°$,所以 $\angle AOD=\angle AOB+\angle BOD=45°+75°=120°$。
2.将一副三角板的两个顶点重叠放在一起(两个三角板中的锐角分别为45°、45°和30°、60°)。
1) 如图1所示,在此种情形下,当 $\angle DAC=4\angle BAD$ 时,求 $\angle CAE$ 的度数。
2) 如图2所示,在此种情形下,当 $\angle ACE=3\angle BCD$ 时,求 $\angle ACD$ 的度数。
解:(1) 因为 $\angle BAD+\angle DAC=90°$,$\angle DAC=4\angle BAD$,所以 $5\angle BAD=90°$,即 $\angle BAD=18°$。
所以 $\angle DAC=4\times18°=72°$。
因为 $\angle DAE=90°$,所以 $\angle CAE=\angle DAE-\angle DAC=18°$。
2) 因为 $\angle BCE=\angle DCE-\angle BCD=60°-\angle BCD$,$\angle ACE=3\angle BCD$,所以 $\angle ACB=\angle ACE+\angle BCE=3\angle BCD+60°-\angle BCD=90°$。
七年级数学下思维探究-绝对值与方程(含答案)商高是公元前世纪的中国数学家,当时中国正在处于奴隶制社会的西周时期,数学研究还处于非常初级的阶段.商高最大的成就是在世界上第一个提出了勾股定理,在我国最早的一部数学著作《周髀算经》中记录着商高和周公的一段对话.商高:“故折矩,勾广三,股修四,经隅五.”即当直角三角形的两直角边分别为和时,直角三角形的斜边就是,勾股定理在西方被叫做毕达哥拉斯定理,是古希腊数学家毕达哥拉斯在公元前世纪发现的.9.绝对值与方程解读标绝对值是数学中活性较高的一个概念,当这一概念与其他概念结合就生成许多新的问题,如绝对值方程、绝对值不等式、绝对值函数等.绝对值符号中含有未知数的方程叫绝对值方程,解绝对值方程的基本方法是:去掉绝对值符号,把绝对值方程转化为一般的方程求解.其基本类型有:1.最简绝对值方程形如是最简单的绝对值方程,可化为两个一元一次方程与.2.含多重或多个绝对值符号的复杂绝对值方程这类方程常通过分类讨论法、绝对值几何意义转化为最简绝对值方程和一般方程而求解.问题解决例1 方程的解是________.试一试原方程变形为,再把此方程化为一般方程求解.例2 若关于的方程无解,只有一个解,有两个解,则,,的大小关系为().A.B..D.试一试从方程有解的条入手.例3 解下列方程:(1);(2);(3).试一试对于(1),从内向外,运用绝对值定义、性质简化方程;对于(2)、(3)运用零点分段讨论法去掉绝对值方程;需要注意的是,方程(3)利用绝对值几何意义可获得简解.例 4 如图,数轴上有、两点,分别对应的数为、,已知与互为相反数.点为数轴上一动点,其对应的数为.(1)若点到点、点的距离相等,求点对应的数.(2)数轴上是否存在点,使点到点、点的距离之和为?若存在,请求出的值;若不存在,说明理由;(3)当点以每分钟个单位长度的速度从点向左运动时,点以每分钟个单位长度的速度向左运动,点以每分钟个单位长度的速度向左运动,问几分钟时点到点、点的距离相等?试一试由绝对值的几何意义建立关于的绝对值方程.例讨论关于的方程的解的情况.分析与解与方程中常数、有依存关系,这种关系决定了方程解的情况.故寻求这种关系是解本例的关键,利用分类讨论法或借助数轴是寻求这种关系的重要方法与工具.数轴上表示数的点到数轴上表示数和的点的距离和的最小值为,由此可得原方程的解的情况是:(1)当时,原方程有两解;(2)当时,原方程有无数解;(3)当时,原方程无解.数学冲浪知识技能广场1.若是方程的解,则_______;又若当时,则方程的解是_____.2.方程的解是_______;_______是方程的解;解方程,得_______.3.如果,那么的值为________.4.已知关于的方程的解满足,则的值为().A.或B.或.或D.或.若,则等于().A.或B.或.或D.或6.方程的解的个数为()A.个B.个.无数个D.不确定7.解下列方程(1);(2);(3);(4).8.求关于的方程的所有解的和.9.解方程.10.已知、、、都是整数,且,则_______.11.若、都满足条,且,则的取值范围是_______.12.满足方程的所有的和为________.13.若关于的方程有三个整数解,则的值为()A.B..D.14.方程的整数解的个数有()A.B..D.1.若是方程的解,则等于()A.B..D.16.解下列方程(1);(2).17.当满足什么条时,关于的方程有一解?有无数多个解?无解?应用探究乐园18.如图,若点在数轴上对应的数为,点在数轴上对应的数为,且,满足.(l)求线段的长;(2)点在数轴上对应的数为,且是方程的解,在数轴上是否存在点,使得?若存在,求出点对应的数;若不存在,说明理由;(3)在(1)、(2)的条下,点,,开始在数轴上运动,若点以每秒个单位长度的速度向左运动,同时,点和点分剐以每秒个单位长度和个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为.请问:的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其常数值.19.已知,求的最大值和最小值.微探究从三阶幻方谈起相传大禹在治洛水的时候,洛水神龟献给大禹一本洛书,书中有如图所示的一幅奇怪的图,这幅图用今天的数学符号翻译出,就是一个阶幻方,也就是在的方阵中填入,其中每行、每列和两条对角线上数字和都相等.现在人们已给出一般三阶幻方的定义:在的方阵图中,每行、每列、每条对角线上个数的和都相等,就称它为三阶幻方.可以证明三阶幻方以下基本性质:(1)在的方格中填入个不同的数,使得各行各列及两条对角线上个数的和都相等,且为,若最中间数为,则.(2)在三阶幻方中,每个数都加上一个相同的数,仍是一个三阶幻方.(3)在三阶幻方中,每个数都乘以一个相同的数,仍是一个三阶幻方.解三阶幻方问题,常需恰当引元,运用三阶幻方定义、性质,整体核算等方法求解.例1 如图①,有个方格,要求在每个方格填入不同的数,使得每行、每列、每条对角线上三个数之和都相等.问:图中左上角的数是多少?试一试虽然问题要求的只是左上角的数,但是问题的条还与其他的数相关.故为充分运用已知条,需引入不同的字母表示数(如图②).例2 如图,在的方格表中填入九个不同的正整数:,,,,,,,和.使得各行、各列所填的三个数的和都相等,请确定的值,并给出一种填数法.试一试如下页图,引入不同字母表示数,表中各行、各列三数的和都是相等的正整数,即为正整数,又,从估计和的最小值入手.整体核算法整体核算法即将问题中的一些对象看作一个整体,观察、分析问题中的题设与结论之间的整体特征和结构,从整体上计算、推理.例3 如图①,、、、、、、、、分别代表,,,,,,,,中某一个数,不同字母代表不同的数,使每个小圆内个数的和都相等,那么的值是多少?分析与解设这个相等的和是,现将这个小圆中个数求和,可得:,故.先从所在的小圆看,至少是,最多只能是,再从所在的小圆看,最多只能是,由于,所以必须,,由此可以求得图②.对照图①与图②中各数的位置,可看到.当然也可以有另一解法.将含、含、含、含、含与含的个小圆内个数求和,可得:,即,所以.练一练1.将到这个自然数填入图中的个圆圈中,每个数只能用一次,且使每一条直线上的三个数的和相同,则中间的圆圈中的数是_______,对应的每一条直线上的个数的和是_______.2.请构造“幻角”,将这个整数填入图中的小三角形内(和已填好),使图中每个大三角形内四数之和都等于.3.请将,,,,,,,,,这个数分别填入图中方阵的个空格,使行、列、条对角线上的个数的和都是.4.如图,、、、、、均为有理数,图中各行各列及两条对角线上的和都相等,求的值..如图是一个的幻方,当空格填上适当的数后,每行、每列以及对角线上的和都是相等的,求的值.6.图中显示的填数“魔方”只填了一部分,将下列个数:,,,,,,,,填入方格中,使得所有行、列及对角线上各数相乘的积相等,求的值.7.幻方第一人幻方,相传最早见于我国的“洛书”,如图①,洛书中行、列以及条对角线上的点数之和都等于,是一种“ 阶幻方”(如图②).我国南宋数学家杨辉是对幻方从数学角度进行系统研究的第一人,他在《续古摘奇算法》一书中给出从阶到阶的幻方,并对一些低阶幻方介绍了构造方法,其中运用了对称思想.例如,用,,,…,构造阶幻方的方法是:先将,,,…,依次排成图③,然后以外四角对换,即与对换,与对换,再以内四角对换……请你在图④中填写用这种“对换”方法得出的阶幻方.8.把数字,,,…,分别填入图中的个圈内,要求三角形和三角形的每条边上三个圈内数字之和都等于.(1)给出一种符合要求的填法;(2)共有多少种不同填法?证明你的结论.微探究商品的利润商品的利润涉及商品进价、售价、利润、利润率、打折销售等名词术语,理解相关概念并熟悉它们之间的关系是解这类问题的基础.(1);(2)利润=售价-进价;(3)售价=进价+利润=进价×(利润率).例1 一家商店将某商品按成本价提高后,标价为元,又以折出售,则售出这商品可获利润_______元.试一试从求出成本价切入.例 2 某商店出售某种商品每可获利元,利润率为.若这种商品的进价提高,而商店将这种商品的售价提高到每仍可获利元,则提价后的利润率为().A.B..D.试一试利用获利不变建立方程.例 3 某房地产开发商开发一套房子的成本随着物价上涨比原增加了,为了赚钱,开发商把售价提高了倍,利润率比原增加了,求开发商原的利润率.试一试因售价=成本×(利润率),故还需设出成本.例4 某超市对顾客实行优惠购物,规定如下:(1)若一次购物少于元,则不予优惠;(2)若一次购物满元,但不超过元,按标价给予九折优惠;(3)若一次购物超过元,其中元部分给予九折优惠,超过元部分给予折优惠.小明两次去该超市购物,分别付款元与元.现在小亮决定一次去购买小明分两次购买的同样多的物品,他需付款多少?分析与解第一次付款元,可能是所购物品的实价,未享受优惠;也可能是按九折优惠后所付的款,故应分两种情况加以讨论.情形l 当元为购物不打折付的钱时,所购物品的原价为元,又,其中元为购物元打九折付的钱,元为购物打八折付的钱,(元).因此,元所购物品的原价为(元),于是购买小明花(元)所购的全部物品,小亮一次性购买应付(元).情形2 当元为购物打九折付的钱时,所购物品的原价为(元).仿情形1的讨论,购(元)物品一次性付款应为(元).练一练1.某商品的进价为元,售价为元,则该商品的利润率可表示为_______.2.某商店老板将一进价为元的商品先提价,再打八折卖出,则卖出这商品所获利润为_______元.3.某商场推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为元的商品,共带省元,则用贵宾卡又享受了_______折优惠.4.某商品的价格标签已丢失,售货员只知道“它的进价为元,打七折售出后,仍可获利”,你认为售货员应标在标签上的价格为________..一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每按原销售价的八折销售,售价为元,则这款羊毛衫每的原销售价为_______元.6.甲用元购买了一些股票,随即他将这些股票转卖给乙,获利.而后乙又将这些股票反卖给甲,但乙损失了,最后甲按乙卖给甲的价格的九折将这些股票卖给了乙.若上述股票交易中的其他费用忽略不计,则甲().A.盈亏平衡B.盈利元.盈利元D.亏损元7.年爆发的世界金融危机,是自世纪年代以世界最严重的一场金融危机,受金融危机的影响,某商品原价为元,连续两次降价后售价为元,下列所列方程正确的是().A.B..D.8.某商店出售某种商品每可获利元,利润率为.若这种商品的进价提高,而商店将这种商品的售价提高到每仍可获利元,则提价后的利润率为().A.B..D.9.某种商品的进价为元,出售标价为元,后由于该商品积压,商店准备打折销售,但要保证利润率不低于,则最多可打().A.新B.折.折D.折10.某商场对顾客实行优惠,规定:①如一次购物不超过元,则不予折扣;②如一次购物超过元但不超过元,按标价给予九折优惠;③如一次购物超过元,则其中元按第②条给予优惠,超过元的部分则给予八折优惠.某人两次去购物,分别付款元和元,如果他只去一次购买同样的商品,则应付款是().A.元B.元.元D.元11.某商场用元购进、两种新型节能台灯共盏,这两种台灯的进价、标价如下表所示:类别价格型型进价(元/盏)标价(元/盏)(1)这两种台灯各购进多少盏?(2)若型台灯按标价的九折出售,型台灯按标价的八折出售,那么这批台灯全部售完后,商场共获利多少元?12.某公司销售、、三种产品,在去年的销售中,高新产品的销售金额占总销售金额的.由于受国际金融危机的影响,今年、两种产品的销售金额都将比去年减少,因而高新产品是今年销售的重点.若要使今年的总销售金额与去年持平,问:今年高新产品的销售金额应比去年增加多少?13.某大型超市元旦假期举行促销活动,规定一次购物不超过元的不给优惠,超过元而不超过元时,按该次购物全额折优惠,超过元的其中元仍按折优惠,超过部分按折优惠.小美两次购物分别用了元和元,现小丽决定一次购买小美分两次购买的同样的物品,那么小丽应该付款多少元?微探究多变的行程问题行程问题按运动方向可分为相遇问题、追及问题;按运动路线可分为直线形问题、环形问题等.相遇问题、追及问题是最基本的类型,它们的特点与常用的等量关系如下:1.相遇问题其特点是:两人(或物)从两地沿同一路线相向而行,而最终相遇.一般地,甲行的路程+乙行的路程=两地之间的距离.2.追及问题其特点是:两人(或物)沿同一路线、同一方向运动,由于位置或者出发时间不同,造成一前一后,又因为速度的差异使得后者最终能追及前者,一般地,快者行的路程-慢者行的路程=两地之间的距离.例1 (1)在公路上,汽车、、分别以、、的速度匀速行驶,从甲站开往乙站,同时,、从乙站开往甲站.在与相遇小时后又与相遇,则甲、乙两站相距_____ .(2)小王沿街匀速行走,他发现每隔从背后驶过一辆路公交车;每隔迎面驶一辆路公交车.假设每辆路公交车行驶速度相同,而且路总站每隔固定时间发一辆车,那么,发车的间隔时间为_______ .试一试对于(2),“背后驶过与迎面驶”,其实质就是追及与相遇,距离是同向行驶的相邻两车的间距.例 2 (1)一艘轮船从港到港顺水航行,需小时,从港到港逆水需小时,若在静水条下,从港到港需()小时.A.B..D.(2)甲、乙两动点分别从正方形的顶点、同时沿正方形的边开始移动.甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的倍,则它们第次相遇在边().A.上B.上.上D.上试一试对于(2),设正方形边长为,甲的速度为,相遇时甲行的路程为,利用“相遇时甲、乙两动点运动时间相等”建立方程,把用的代数式表示.例 3 有甲、乙两辆小汽车模型,在一个环形轨道上匀速行驶,甲的速度大于乙.如果它们从同一点同时出发沿相反方向行驶,那么每隔分钟相遇一次.现在,它们从同一点同时出发,沿相同方向行驶,当甲第一次追上乙时,乙已经行驶了圈,此时它们行驶了多少分钟?试一试当甲追上乙时,甲行驶了多少圈?由此可导出甲、乙的速度之比.例4 甲、乙二人分别从、两地同时出发,在距离地千米处相遇,相遇后两人又继续按原方向、原速度前进,当他们分别到达地、地后,又在距地千米处相遇,求、两地相距多少千米?解法一第一次相遇时,甲、乙两人所走的路程之和,正是、两地相距的路程,即当甲、乙合走完、间的全部路程时,乙走了千米,第二次相遇时,两人合走的路程恰为两地间距离的倍(如图,图中实线表示甲所走路程,虚线表示乙所走路线),因此,这时乙走的路程应为(千米).考虑到乙从地走到后又返回了千米,所以、两地间的距离为(千米).解法二甲、乙两人同时动身,相向而行,到相遇时两人所走时间相等,又因为两人都做匀速运动,应有:两人速度之比等于他们所走路程之比,且相同时间走过的路程亦成正比例.到第一次相遇,甲走了(全程)千米,乙走了千米;到第二次相遇,甲走了(全程)千米,乙走了(全程)千米.设全程为,易得到下列方程,解得,(舍去),所以、两地相距千米.解法三设全程为千米,甲、乙两人速度分别为,.则,①÷②得,解得或(舍去).乘车方案例老师带着两名学生到离学校千米远的博物馆参观,老师乘一辆摩托车,速度为千米/时,这辆摩托车后座可带乘一名学生,带人速度为千米/时,学生步行的速度为千米/时,请你设计一种方案,使师生三人同时出发后到达博物馆的时间都不超过个小时.分析若能使人车同时到达目的地,则时间最短,而要实现“同时到达”,必须“机会均等”,即两名同学平等享受交通工具,各自乘车的路程相等,步行的路程也相等,这是设计方案的关键.解要使师生三人都到达博物馆的时间尽可能短,可设计如下方案:设学生为甲、乙二人.乙先步行!,老师带甲乘摩托车行驶一定路程后,让甲步行,老师返回接乙,然后老师搭乘乙,与步行的甲同时到达博物馆.如图,设老师带甲乘摩托车行驶了千米,用了小时,比乙多行了(千米).这时老师让甲步行前进,而自己返、回接已,遇到乙时,用了(小时).乙遇到老师时,已经步行了(千米),离博物馆还有(千米).要使师生三人能同时到达博物馆,甲、乙二人搭乘摩托车的路程应相同,则有,解得.即甲先乘摩托车千米,用时小时,再步行千米,用时小时,共计小时.因此,上述方案可使师生三人同时出发后都到达博物馆的时间不超过个小时.另解:设乙先步行的时间为小时,步行的路程为,则(千米),此时老师带甲走的路程为(千米),老师返回接乙走的路程为.故有,解得,甲乘车的时间为(小时),故甲从学校到博物馆共用(小时).练一练1.甲、乙两人从两地同时出发,若相向而行,则小时相遇;若同向而行,则小时甲追及乙,那么甲、乙两人的速度之比为_______.2.一轮船从甲地到乙地顺流行驶需小时,从乙地到甲地逆流行驶需小时,有一木筏由甲地漂流至乙地,需_______小时.3.甲、乙两列客车的长分别为和,它们相向行驶在平行的轨道上.已知甲车上某乘客测得乙车在他窗口外经过的时间为秒,那么,乙车上的乘客看见甲车在他窗口外经过的时间是______.4.甲、乙分别自、两地同时相向步行,小时后中途相遇,相遇后,甲、乙步行速度都提高了千米/时,当甲到达地后立刻按原路向地返行,当乙到达地后也立刻按原路向地返行.甲、乙两人在第一次相遇后小时分又再次相遇,则、两地的距离是_______千米..甲、乙两人沿同一路线骑车(匀速)从到,甲需要分钟,乙需要分钟.如果乙比甲早出发分钟,则甲出发后经______分钟可以追上乙.6.甲、乙、丙三人一起进行百米赛跑(假定三人均为匀速直线运动),如果当甲到达终点时,乙距终点还有米,丙距终点还有米,那么当乙到达终点时,丙距终点还有______米.7.小李骑自行车从地到地,小明骑自行车从地到地,两人都匀速前进.已知两人在上午时同时出发,到上午时,两人还相距千米,到中午时,两人又相距千米,求、两地间的路程.8.目前自驾游已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟出发,上高速公路途经舟跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了小时;返回时平均速度提高了千米/时,比去时少用了半小时回到舟.(1)求舟与嘉兴两地间的高速公路路程;(2)两座跨海大桥的长度及过桥费见下表:大桥名称舟跨海大桥杭州湾跨海大桥大桥长度千米千米过桥费元元据浙江省交通部门规定:轿车的高速公路通行费(元)的计算方法为:,其中(元/千米)为高速公路里程费,(千米)为高速公路里程(不包括跨海大桥长),(元)为跨海大桥过桥费,若林老师从舟到嘉兴所花的高速公路通行费为元,求轿车的高速公路里程费.9.铁路旁的一条平行小路上有一行人与一骑车人同时向东行进,行人速度为千米/时,骑车人的速度为千米/时,如果有一列火车从他们背后开过,它通过行人用了秒,通过骑车人用了秒.问这列火车的车身长为多少米?10.如图,甲、乙两人分别在、两地同时相向而行,于处相遇后,甲继续向地行走,乙则休息了分钟,再继续向地行走.甲和乙到达和后立即折返,仍在处相遇.已知甲每分钟行走米,乙每分钟行走米,则和两地相距多少米?11.某单位有人要到千米外的某地参观,因为步行时速只有千米,为了使他们上午到达,配备了一辆最多载人名、时速千米的大客车.于是早晨时整出发,若人员上下车的时间不计,试拟一个运行方案,说明步车如何安排,才能使全体人员在最短时间内全部到达目的地,并求该地的时刻,画出汽车往返的运行图.12.、、三辆车在同一条直路上同向行驶,某一时刻,在前,在后,在、正中间.分钟后,追上;又过了分钟,追上.问再过多少分钟,追上?̳9.绝对值与方程问题解决例1 由,得或,所以或.经检验知时,方程左右两边不等,故舍去.从而原方程的解为.例2 A ,,,由题意得,,,从而,.例3 (1)或.原方程化为或,即或.(2)当时,原方程化为,得.当时,原方程化为,得.当时,原方程化为,得.综上知原方程的解为,,.(3)由绝对值的几何意义得原方程的解为.例4 (1);(2)存在,或(3)或数学冲浪1.;或2.或;;或3.4.A .D 6.7.(1)或;(2);(3)或;(4)或.8.,,,得,,,,故.9.当,原方程无解;当时,原方程有两解:或;当时,原方程化为,此时原方程有四解:;当时,原方程化为,此时原方程有三解:或或;当时,原方程有两解:.10.或,又、都是整数,得,,.当,则,即矛盾;若,令,满足题意;若,令,满足题意.11.12.13.14.B 由数轴知,且为偶数1.D16.(1)或可以得到;(2).17.由绝对值几何意义知:当时,方程有一解;当时,方程有无穷多个解,当或时,方程无解.18.(1),,;(2)存在点,点对应的数为或;(3),为常数.19.,同理,,得.当且仅当,,时,上面各式等号成立.又,由得①+②③,,因此,的最大值为,最小值为.从三阶幻方谈起(微探究)例l 由已知条得:,这样前面两个式子之和等于后面的两个式子之和,即,,得.例 2 与的最小值是,所以,即.而为整数,且是不同于,,,,,,,的正整数,故.练一练1.,,;,,设中间的圆圈中的数是,同一直线上的个数的和是,则,.2.如图3.如图:4.由条得:,,.上述三式相加有,故..如图,由及,得,,从而(注:这个幻方是可以完成的,如第行为,,;第行为,,;第行为,,).6.这个数的积为,所以每行、每列、每条对角线上三个数字积为,得,,,、、、分别为、、、中的某个数,推得.。
七年级数学上册第四章基本平面图形角培优专题训练考点一:角的定义及表示方法1.下列说法正确的是( )A.平角是一条直线 B.角的边越长,角越大C.大于直角的角叫做钝角D.把线段AB向两端无限延伸可得到直线AB 2.如图,以O为顶点且小于平角的角共有 _____个,分别___ .3.张师傅透过放大5倍的放大镜从正上方看30°的角,则通过放大镜他看到的角等于()A.30°B.90°C.150°D.180°考点二:与钟表有关的角度1.时钟的时针1小时旋转30度,1分钟旋转0.5度;2.时钟的分针1分钟转了_6____度,1小时转了_360____度;3.下列时刻中,时针与分针之间的夹角为30°的是()A.早晨6点B.下午1点C.中午12点D.上午9点4. 甲、乙、丙、丁四位同学在判断时钟的时针和分针互相垂直的时刻,他们每个人都说两个时刻,其中说对的是( )A.甲说3时整和3时30分 B.乙说6时15分和6时45分C.丙说9时整和12时15分D.丁说3时整和9时整5.早上8时的时针、分针的所成的角的度数是( )A.60° B.80°C.120° D.150°考点三:角的度量及换算1.22.5°= 22 度30分;12°24′= 12.4度。
2.下列计算错误的是( )A.0.25°=900″ B.1.5°=90′C.1 000″=(518)° D.125.45°=1 254.5′考点四:方位角1.如图,OA是北偏东30°方向的一条射线,若∠AOB=90°,则OB的方位角是( )A.西偏北60° B.北偏西60°C.北偏东60° D.东偏北60°(1题) (2题)2.A,B 两地的位置如图所示,则A 在B 的( )A.东偏南60°B.西偏北30°C.北偏西60°D.南偏东30°3.若点A 在点B 的南偏东50°,则点B 在点A 的( )A.东偏南50°B.西偏北40°C.南偏东40°D. 北偏西50°4.已知A.B.C 三点,B 在A 的北偏西30°方向,C 在A 的南偏东25°方向,则 ∠BAC= 175°考点五:角平分线与角度的计算1.如图,若∠AOC=∠BOD,则∠AOD 与∠BOC 的关系是( )A .∠AOD>∠BOCB .∠AOD<∠BOCC .∠AOD =∠BOC D .无法确定(1) (2)2. 如图,OC 是∠AOB 的平分线,OD 平分∠AOC,若∠COD=25°,则∠AOB 的度数为( )A .100°B .80°C .70°D .60°3.将一个圆分成四个扇形,它们的圆心角的度数比为4∶4∶5∶7,则这四个扇形中,圆心角最大的是( )A .54°B .72°C .90°D .126°4.下列各角能用三角板直接画出的有( )个(1)15°;(2)75°;(3)80°;(4)120°;(5)135°;(6)160°;(7)165°A.4B. 5C. 6D. 75.如图,已知∠1∶∠3∶∠4=1∶2∶4,∠2=80°,求∠1、∠3、∠4的度数。
七年级数学下思维探究-情境应用题(带答案)8.情境应用题徐光启( - ),字子先.少时聪敏好学,活泼娇键,据传“章句、帖括、声律、书法均臻佳妙”.徐光启融会中西文化,在天文、数学、农学、军事等方面有突出成就.年徐光启与意大利传教士利玛窦共同翻译《几何原本》,引入欧几里得几何学,这是徐光启在数学方面的最大贡献.他在翻译中创造的点、线、面、平行线、直角、锐角等名词一直沿用至今.解读课标情境应用题是以一段生活实际情形、一个故事或一场趣味游戏,寓数学问题、数学思想和方法于情境中的应用题.趣味性、益智性是情境应用题的显著特点,情境应用题以其生动有趣的情节吸引人们,使人们产生强烈的探索和研究欲望.信息的冗余性和开放性是情境应用题的另一特点,了解相关常识、理解相关词语的含义、熟悉基本关系式是解这类问题的基础;解这类问题的关键是:在阅读理解的基础上,根据需要取舍信息,从不同的思维角度提出问题、分析问题,恰当地应用和理解数学知识,历经重要的有价值的数学思维活动过程.问题解决例1 小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图所示.若小明把个纸杯整齐叠放在一起时,它的高度约是_____________.试一试个纸杯整齐叠放在一起时的高度与哪些量相关?例2 甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局,已知甲、乙各比赛了局,丙当了次裁判.问第二局的输者是() A.甲 B.乙 C.丙 D.不能确定试一试从求出总共赛的局数入手.例3 有一个只允许单向通过的窄道口(如图),通常情况下,每分钟可以通过人,一天,王老师到达道口时,发现由于拥挤,每分钟只能个人通过道口,此时,自己前面还有人等待通过(假定先到的先过,王老师过道口的时间忽略不计),通过道口后,还需分钟到达学校.(1)此时,若绕道而行,要分钟到达学校,从节省时间考虑,王老师应选择绕道去学校,还是选择通过拥挤的道口去学校?(2)若在王老师等人维持秩序下,几分钟后,秩序恢复正常(维持秩序期间,每分钟仍有人通过道口),结果王老师比拥挤的情况下提前了分钟通过道口,问维持秩序的时间是多少?试一试对于(2)有不同的解法,可利用王老师通过道口的时间比较建立方程,亦可应用王老师前面的人数是个常量来布列方程.例4 某商店月日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的折优惠;方案二:若不购买会员卡,则购买商店内任何商品一律按商品价格的折优惠,已知小敏月日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?试一试对于(2),先求出两种方案付款相等时的价格.物尽其用例5 自行车轮胎,安装在后轮上,只能行驶就要报废,安装在前轮上,则行驶才报废.为使一对轮胎能在行驶尽可能多的路后才报废,在自行车行驶一定路程后,就将前后轮胎调整,这样安装在自行车上的一对轮胎最多可行驶多少千米?解法一:列方程求解设自行车行驶了后,互换前、后轮胎再行驶,致使两只轮胎同时报废.因此,前轮胎还可行驶,后轮胎还可行驶.当前后轮胎互换后,还可行驶,并有.解此方程,有,解得.这就是说,当自行车行使了后,互换前后轮胎,这样还可行驶,所以最多可行驶.解法二类似工程问题解法设安装在自行车上的一对轮胎最多可行驶,根据题意,自行车每行驶,前轮胎将磨损,后轮胎将磨损,当两个轮胎磨损之和为单位“ ”时,前后轮胎互换,当两个轮胎磨损之和为单位“ ”时,两个轮胎同时报废,即行驶路最多.由此可得方程:,解得.即自行车最多可行驶.例6 十一届全国人大常委会第二十次会议审议的《个人所得税法修正案草案》(简称《个税法草案》),拟将现行个人所得税的起征点由每月元提高到元,并将级超额累进税率修改为级,两种征税方法的~级税率情况见下表:税级现行征税方法草案征税方法月应纳税额税率速算扣除数月应纳税额税率速算扣除数注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额.“速算扣除数”是为了快捷简便计算个人所得税而设定的一个数.例如:按现行个人所得税法的规定,某人今年月的应纳税额为元,他应缴税款可以用下面两种方法之一来计算:方法一:按 ~ 级超额累进税率计算,即(元);方法二:用“月应纳税额适用税率速算扣除数”计算,即(元).(1)请把表中空缺的“速算扣除数”填写完整.(2)甲今年月缴了个人所得税元,若按“个税法草案”计算,则他应缴税款多少元?(3)乙今年月缴了个人所得税三千多元,若按“个税法草案”计算,他应缴纳的税款恰好不变,那么,乙今年月所缴税款的具体数额为多少元?分析与解在读懂材料并理解题意的基础上,先分别求出甲、乙两人的月应纳税所得额.(1);(2)设甲的月应纳税所得额为元,由,得.若按《个税法草案》计算,则他应缴税款为(元).(3)设乙的月应纳税所得额为元,由,得,乙今年月所缴税款为(元).数学冲浪知识技能广场1.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的,两根铁棒长度之和为,此时木桶中水的深度是__________ . 2.王会计在结账时发现现金少了元,查账后得知是一笔支出款的小数点看错了一位,王会计查出这笔看错了的支出款实际是___________元. 3.乌鸦喝水新编请根据图中信息,列出求大量筒水高的方程__________________. 4.有一旅客携带千克行李从某机场乘飞机返回绵阳,按民航规定:旅客最多可免费携带千克行李,超重部分每千克按飞机票价格的购行李票,已知该旅客现已购行李票元,则他的飞机票价为(). A.元 B.元 C.元 D.元 5.如果将甲杯中水量的倒入乙杯(未满)后,甲杯中水量比乙杯中水量少,那么倒水前甲杯中水量() A.比乙杯中水量多 B.比乙杯中水量多C.与乙杯中水量相等 D.可能少于乙杯中水量 6.有一列数,,,,…,,,其中,,,,,…,当时,的值等于() A. B. C. D. 7.七年级(2)班的一个综合实践活动小组去、两个超市调查年和年“五一”节期间的销售情况,下图是调查后小敏与其他两位同学交流的情况.根据他们的对话,请你分别求出、两个超市今年“五一”节期间的销售额. 8.足球比赛的记分规则为:胜一场得分,平一场得分,输一场得分,一支足球队在某个赛季中共需比赛场,现已比赛了场,输了场,得分.请问:(1)前场比赛中,这支球队共胜了多少场?(2)这支球队打满场比赛,最高能得多少分?(3)通过对比赛情况的分析,这支球队打满场比赛,得分不低于分,就可达到预期的目标,请你分析一下,在后面的场比赛中,这支球队至少要胜几场,才能达到预期目标? 9.小华写信给老家的爷爷,问候“八一”建军节.折叠长方形信纸装入标准信封时发现:若将信纸如图①连续两次对折后,沿着信封口边线装入时,宽绰有;若将信纸如图②三等分折叠后,同样方法装入时;宽绰.试求信纸的纸长和信封的口宽.思维方法天地10.今年月日起,国家实施了中央财政补贴条例,支持高效节能电器的推广使用,某款定速空调在条例实施后,每购买一台,客户可获财政补贴元,若同样用万元所购买的此款空调台数.条例实施后比实施前多,则条例实施前此款空调的售价为____________元. 11.甲、乙两个打字员,甲每页打字,乙每页打字,已知甲完成页,乙恰能完成页,若甲打完页后,乙开始打字,则当甲、乙打的字数相等时,乙打了_________页. 12.水池有两个进水管和及一个排水管.,两管单独将空水池注满水分别需要小时、小时,现在水池中有点儿水,若管单独进水,而管同时排水,则需小时将水池中的水放完;若,两管一起进水,管同时排水,则小时可将水池中的水放完.若不开进水管,只开排水管,则需____分钟可以将水池中的水放完. 13.一个有弹性的球从点落下到地面,弹起后,到点后又落到高厘米的平台上,再弹起到点,然后,又落到地面(如图).每次弹起的高度都是落下高度的,已知点离地面比点离地面高出厘米,那么点离地面的高度是__________厘米. 14.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨吨及以下超过吨但不超过吨的部分超过吨的部分说明:①每户产生的污水量等于该户自来水用水量;②水费自来水费用污水处理费.已知小王家年月份用水吨,交水费元;月份用水吨,交水费元.(1)求,的值;(2)随着夏天的到来,用水量将增加,为了节省开支,小王计划把月份的水费控制在不超过家庭收入的.若小王的月收入为元,则小王家月份最多能用水多少吨? 15.年月日,四川汶川发生了里氏级大地震,给当地人民造成了巨大的损失,“一方有难,八方支援”,我市锦华中学全体师生枳极捐款,其中九年级的个班学生的捐款金额如下表:吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是元;信息二:()班的捐款金额比()班的捐款金额多元;信息三:()班学生平均每人捐款的金额大于元,小于元.请根据以上信息,帮助吴老师解决下列问题:(1)求出()班与()班的捐款金额各是多少元;(2)求出()班的学生人数.应用探究乐园 16.如图,一个的方格网,按如下规律在每个格内都填有一个数:同一行中右格中的数与紧邻其左格中的数的差是定值,同一列中上格中的数与紧邻其下格中的数的差也是定值.请根据图中已填好的数,按这个规律将第三行填满. 17.密码的使用对现代社会是极其重要的.有一种密码的明文(真实文),其中的字母按计算机键盘顺序与个自然数,,,…,,对应(见下表),设明文的任一字母对应的自然数为,通过某种规定的对应运算把转化成对应的自然数,对应的字母为密文,例如,有一种译码方法按照以下变换实现:,其中是被除所得的余数与之和.则时,,即明文译为密文;时,,即明文译为密文.现有某种变换,将明文字母对应的自然数变换为密文字母相应的自然数,为.被除所得余数与之和(,).已知运用此变换,明文译为密文,则密文(“启”的汉语拼音)的明文是字母_________. 8.情境应用题问题解决例1 设叠放时每增加一个纸杯高度增加,由得,从而.例2 C 提示:设总共赛了局,则有,则,说明甲、乙、丙三人总共赛了局,而丙当了次裁判,说明丙赛了两局,则丙和甲,丙和乙各赛一局,那么甲和乙同时赛了局.甲和乙同赛不可能出现在任何相邻的两局中,则甲、乙两人同时比赛在第、、局中,第局丙当裁判,则第局中丙输了.例3 (1),王老师应选择绕道而行去学校.(2)设维持秩序时间为,则,解得(分).例4 (1)元(2)当所购商品的价格高于时,选方案一更合算.数学冲浪 1. 2. 3. 4.B 5.B 6.D 7.设去年超市销售额为万元,则超市销售万元,由题意得:,解得,.则今年超市销售额为万元,超市为万元. 8.(1)设这伞球队胜场,则平了场,由题意得:,解得.(2)打满场比赛最高能得(分).(3)由题意知,以后的场比赛中,只要得分不低于分即可,故胜不少于场,一定能达到预期目标,而胜场、平场,正好达到预期目标,即在以后的比赛中这个球队至少要胜场. 9.; 10.设条例实施前空调的售价为元.则. 11.乙每打页比甲多打字,乙打页相当于甲打页,乙比甲快页,设当甲、乙打的字数相同时,乙打了页,由,得. 12.设水池原来有水,由,得.只开排水管,将水池中的水放完需要的时间为(小时)(分钟). 13.设点离地面,则. 14.(1),(2)最多用水吨 15.(1)元,元(2)人或人 16.设第行第列的数为,并令,则,,,,,得,于是,,,,. 17.由于和对应的数字分别为和,按照明密文变换的规则可知:被除所得余数与之和为,所以,.因此该变换将明文字母对应的自然数变换为密文字母相应的自然数的规则是:为被除所得余数与之和.因为密文对应于,设其明文对应的数字为,则满足被除所得余数为,,对应的字母为.因为密文对应于,设其明文对应的数字为,则满足被除所得余数为,即被整除,得,对应的字母为.因此,密文对应的明文是.。
七年级数学思维探究:有理数的运算(有答案)(数学竞赛)杨辉,中国南宋时期杰出的数学家,大约于13世纪中叶至末叶生活在钱塘(今杭州)一带.他一生著作很多,著名的数学书共5种21卷.大家熟悉的“杨辉三角”数表就在他1261年所著的《详解九章算术》一书里记载着,他在《续古摘奇算法》中介绍了各种形式的“纵横图”及有关的构造方法. 3.有理数的运算有理数及其运算是整个数与代数的基础,有关式的所有运算都是建立在数的运算基础上.深刻理解有理数相关概念,掌握一定的有理数运算技能是数与代数学习的基础.有理数的运算不同于算术数的运算:这是因为有理数的运算每一步要确定符号,有理数的运算很多是字母运算,也就是常说的符号演算.运算能力是运算技能与推理能力的结合.这就要求我们既能正确地算出结果,又善于观察问题的结构特点,选择合理的运算路径,提高运算的速度.有理数运算常用的技巧与方法有: 利用运算律;以符代数;恰当分组;裂项相消;分解相约;错位相减等. 问题解决例1 (1)已知()()21,2,3,1n aa n n ==+,记()1121b a =-,()()212211b a a =--,…,()()()122111n n b a a a =---,则通过计算推测n b 的表达式n b =________.(用含n 的代数式表示)(2)若a 、b 是互为相反数,c 、d 是互为倒数,x 的绝对值等于2,则42x cdx a b +--的值是____. 试一试对于(2),运用相关概念的特征解题.例2 已知整数a 、b 、c 、d 满足25abcd =,且a b c d >>>,那么a b c d +++等于(). A .0 B .10 C .2 D .12试一试解题的关键是把25表示成4个不同整数的积的形式. 例3计算(1)1121231259233444606060⎛⎫⎛⎫⎛⎫++++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)111112123123100+++++++++++;(3)77371217381727111385271739172739⎛⎫⎛⎫+-÷+- ⎪ ⎪⎝⎭⎝⎭. 试一试对于(1),设原式S =,将各括号反序相加;对于(2),若计算每个分母值,则易掩盖问题的实质,不妨先从考察一般情形入手;对于(3),视除数为一整体,从寻找被除数与除数的关系入手,例4在数学活动中,小明为了求2341111122222n+++++的值(结果用n 表示),设计了如图所示的几何图形.图①图②(1)请你用这个几何图形求2341111122222n +++++的值; (2)请你用图②,再设计一个能求2341111122222n+++++的值的几何图形. 试一试求原式的值有不同的解题方法,而剖分图形面积是构造图形的关键. 例5在1,2,…,2002前面任意添上正号和负号,求其非负和的最小值.分析与解首先确定非负代数和的最小值的下限,然后通过构造法证明这个下限可以达到即可.整数的和差仍是整数,而最小的非负整数是0.代数和的最小值能是0吗?能是1吗?由于任意添“+”号或“-”号,形式多样,因此,不可能一一尝试再作解答,从奇数、偶数的性质入手. 因a b +与a b -的奇偶性相同,故所求代数和的奇偶性与()20021200212320012002100120032⨯++++++==⨯的奇偶性相同,即为奇数.因此,所求非负代数和不会小于1.又()()()()()123456789101112131419992000200120021-++--++--++--+++--+=∵,∴所求非负代数和的最小值为1.类比类比是一种推理方法,根据两种事物在某些特征上的相似,作出它们在其他特征上也可能相似的结论.触类旁通,即用类比的方法提出问题及寻求解决问题的途径和方法. 例6观察下面的计算过程111111111111141122334451223344555⎛⎫⎛⎫⎛⎫⎛⎫+++=-+-+-+-=-= ⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭. 问:(1)从上面的解题方法中,你发现了什么?用字母表示这一规律.(2)“学问”,既要学会解答,又要学会发问.爱因斯坦曾说:。
北师大版七年级数学下册教案(含解析):第四章三角形章末复习一. 教材分析北师大版七年级数学下册第四章《三角形》章末复习部分,主要对三角形的相关知识进行总结和复习。
内容包括:三角形的性质、三角形的分类、三角形的判定、三角形的角的性质、三角形的边的关系等。
这部分内容是学生进一步学习几何的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识,如线的性质、角的性质等。
但部分学生对于三角形的性质和判定仍存在理解上的困难,对于三角形的角的性质和边的关系掌握不够扎实。
因此,在复习过程中,需要注重巩固基础知识,提高学生的应用能力。
三. 教学目标1.知识与技能:使学生掌握三角形的性质、分类、判定等基本知识,提高学生的空间想象能力和逻辑思维能力。
2.过程与方法:通过复习,培养学生独立思考、合作交流的能力,提高学生分析问题和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学的价值。
四. 教学重难点1.重点:三角形的性质、分类、判定等基本知识。
2.难点:三角形的角的性质和边的关系的运用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等,引导学生主动参与课堂,提高学生的学习兴趣和积极性。
六. 教学准备1.教师准备:整理和准备相关的教学案例、习题等资源。
2.学生准备:完成本章的学习任务,准备好相关的学习资料。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念,激发学生的学习兴趣。
2.呈现(10分钟)教师利用多媒体展示三角形的相关性质、分类和判定等知识,引导学生总结和归纳。
3.操练(10分钟)教师提出问题,学生分组讨论,通过实际操作和举例来巩固三角形的相关知识。
4.巩固(10分钟)教师给出一些练习题,学生独立完成,检验自己对三角形知识的掌握程度。
5.拓展(10分钟)教师提出一些综合性的问题,引导学生运用所学的三角形知识解决问题,提高学生的应用能力。
七年级数学上册专题训练:角的计算(含答案)类型1利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算.1.如图所示,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD的度数.解:因为∠AOC=75°,∠BOC=30°,所以∠AO B=∠AOC-∠BOC=75°-30°=45°.又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°.2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD时,求∠CAE的度数;(2)如图2所示,在此种情形下,当∠ACE=3∠BCD时,求∠ACD的度数.解:(1)因为∠BAD+∠DA C=90°,∠DAC=4∠B AD,所以5∠BAD=90°,即∠BAD=18°.所以∠DAC=4×18°=72°.因为∠DAE=90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE=3∠BCD,所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°.解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图所示,点A,O,E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB 的度数.解:因为∠EOD=28°46′,OD 平分∠COE,所以∠COE=2∠EOD=2×28°46′=57°32′. 又因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.4.已知∠AOB=40°,OD 是∠BOC 的平分线.(1)如图1所示,当∠AOB 与∠BOC 互补时,求∠COD 的度数;(2)如图2所示,当∠AOB 与∠BOC 互余时,求∠COD 的度数.解:(1)因为∠AOB 与∠BOC 互补,所以∠AOB+∠BOC =180°.又因为∠AOB=40°,所以∠BOC=180°-40°=140°.因为OD 是∠BOC 的平分线,所以∠COD=12∠BOC=70°. (2)因为∠AOB 与∠BOC 互余,所以∠AOB+∠BOC=90°.又因为∠AOB=40°,所以∠BOC=90°-40°=50°.因为OD 是∠BOC 的平分线,所以∠COD=12∠BOC=25°.类型3 利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决.5.一个角的余角比它的补角的23还少40°,求这个角的度数. 解:设这个角的度数为x °,根据题意,得90-x =23(180-x)-40. 解得x =30.所以这个角的度数是30°.6.如图所示,已知∠AOE 是平角,∠DOE =20°,OB 平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC 的度数.解:设∠COD=2x °,则∠BOC=3x °.因为OB 平分∠AOC,所以∠AOB=3x °.所以2x +3x +3x +20=180.解得x =20.所以∠BOC=3×20°=60°.7.如图所示,已知∠AOB=12∠BOC,∠COD =∠AOD=3∠AOB ,求∠AOB 和∠COD 的度数.解:设∠AOB=x °,则∠COD=∠AOD=3∠AOB=3x °.因为∠AOB=12∠BOC, 所以∠BOC=2x °.所以3x +3x +2x +x =360.解得x =40.所以∠AOB=40°,∠COD =120°.类型4 利用分类讨论思想求解在角度计算中,如题目中无图,或补全图形时,常需分类讨论,确保答案的完整性.8.已知∠AOB=75°,∠AOC =23∠AOB,OD 平分∠AOC,求∠BOD 的大小. 解:因为∠AOB=75°,∠AOC =23∠AOB, 所以∠AOC=23×75°=50°.因为O D 平分∠AOC,所以∠AOD=∠COD=25°.如图1,∠BOD =75°+25°=100°;如图2,∠BOD =75°-25°=50°.9.已知:如图所示,OC 是∠AOB 的平分线.(1)当∠AOB=60°时,求∠AOC 的度数;(2)在(1)的条件下,∠EOC =90°,请在图中补全图形,并求∠AOE 的度数;(3)当∠AOB=α时,∠EOC =90°,直接写出∠AOE 的度数.(用含α的代数式表示)解:(1)因为OC 是∠AOB 的平分线,所以∠AOC=12∠AOB. 因为∠AOB=60°,所以∠AOC=30°.(2)如图1,∠AOE =∠EOC+∠AOC=90°+30°=120°;如图2,∠AOE =∠EOC-∠AOC=90°-30°=60°.(3)90°+α2 或90°-α2.专题训练 整式的加减运算计算:(1)(钦南期末)a 2b +3ab 2-a 2b ;解:原式=3ab 2.(2)2(a -1)-(2a -3)+3;解:原式=4.(3)2(2a 2+9b)+3(-5a 2-4b);解:原式=-11a 2+6b.(4)3(x 3+2x 2-1)-(3x 3+4x 2-2);解:原式=2x 2-1.(5)(钦南期末)(2x 2-12+3x)-4(x -x 2+12); 解:原式=2x 2-12+3x -4x +4x 2-2 =6x 2-x -52.(6)3(x2-x2y-2x2y2)-2(-x2+2x2y-3);解:原式=3x2-3x2y-6x2y2+2x2-4x2y+6=5x2-7x2y-6x2y2+6.(7)-(2x2+3xy-1)+(3x2-3xy+x-3);解:原式=-2x2-3xy+1+3x2-3xy+x-3=x2-6xy+x-2.(8)(4ab-b2)-2(a2+2ab-b2);解:原式=4ab-b2-2a2-4ab+2b2=-2a2+b2.(9)-3(2x2-xy)+4(x2+xy-6);解:原式=-6x2+3xy+4x2+4xy-24=-2x2+7xy-24.(10)(钦州期中)2a2-[-5ab+(ab-a2)]-2ab. 解:原式=2a2+5ab-ab+a2-2ab=3a2+2ab.。
七年级数学下思维探究-信息技术中的数学问题(带答案)4.信息技术中的数学问题解读课标伴随着计算机和网络技术的迅猛发展,人类社会已步入信息时代,并将迈人后信息化时代:IT技术、赛伯空间、数字化技术、智能通讯等信息技术彻底改变着我们的生活方式与思维方式.计算器、计算机正深刻影响着数学学习内容和方式,现代信息技术是学习数学和解决问题的有力工具.近年出现的以信息技术为背景的问题是中考竞赛试卷一道靓丽的风景,这类问题将信息技术与数学知识有机融合和渗透,构思巧妙、立意新颖,其内容涉及计算机常识(数制、字节等)、计算机的数据输出、计算机中的数据处理、计算机运算程序、网络与通讯等.解决这类问题的关键是找到数学知识与其内在的联系,将其转化为数学问题.问题解决例1给出下列程序,且已知当输入的值为时,输出值为;输入的值为时,输出值为,则当输入的值为时,输出值为________.试一试把程序流程图用代数式表示,由条件先求出、的值.例2计算机利用的是二进制数,它共有两个数码、,将一个十进制数转化为二进制数,只需把该数写成若干个数的和,依次写出或即可,如.为二进制下的位数,则十进制数是二进制下的( ). A.位数 B.位数 C 位数 D.位数试一试本例渗透了计算机的基本知识――“二进制计算”,无论何种进制的数都可表示为与数位上的数字、进制值有关联的和的形式.例3一条信息可通过如图所示的网络线由上(点)往下向各站点传送.例如信息到点可由经的站点送达,也可由经的站点送达,共有两条途径传送,那么信息由点到达的不同途径共有多少条.试一试在阅读理解的基础上,画出路线示意图,穷举得出结论.例4你觉得手机很神奇吗?它能在瞬间清晰地传递声音、文字、图像等信号,据说以后还能发送味道、触觉信息呢!这里都有手机中电脑芯片的功劳.其实,这些信号在电脑芯片中都是以二进制数的形式给出的.每个二进制数都由和构成,电脑芯片上电子元件的“开”、“关”分别代表“ ”和“ ”.一组电子元件的“开”“关”状态就表示相应的二进制数,例如“开”“开”“关”表示“ ”,如图,电脑芯片的某段电路上分布着一组电子元件(假设它们首尾不相连),且相邻的两个元件不能同时是关的.(以下各小题要求写出解答过程)(1)若此电路上有个元件,则这个元件所有不同的“开”“关”状态共有多少种?(请一一列出)(2)若用表示电路上只电子元件所有不同的“开”“关”状态数,试探索、、之间的关系式(不要求论证);(3)试用(2)中探索出的递推关系式,计算的值.试一试对于(l),通过穷举,得出答案值;对于(2),从特例入手,归纳出相应关系式.例5先阅读下面的材料,再解答后面各题.现代社会对保密要求越来越高,密码正在成为人们生活的一部分.有一种密码的明文(真实文)按计算机键盘字母排列分解,其中、、、、、这个字母依次对应、、、、、这个正整数(见下表):给出一个变换公式:将明文转换成密文,如:,即变为;,即变为.将密文转换成明文,如:,即变为;,即变为.(1)按上述方法将明文译为密文;(2)若按上述方法将明文译成的密文为,请找出它的明文.试一试对于(1),由明文选择变换公式,求得相应整数,推出密文;对于(2),逆用变换公式,即由导出值,推出明文,解题的关键是确定变换公式中的取值范围.电话号码的破译例6同学们看电影、看电视时,经常遇到破译密码的故事情节,在军事上、商业上,为了保密,都采用密码.破译密码需要有解密的“钥匙”,下面我们也来破译一个电话号码:一名间谍在他所追踪的人拨打电话时(话机是拨盘式的,如图,话机上的数字排列顺序是,,,,,,,,,,图中画出了拨数字时相应的小孔转过的路线),随着拨号盘转回的声音,用铅笔以同样的速度在纸上画线,他画出的条线如下:他很快就知道了那人拨的电话号码,这个号码是多少?分析与解从电话拨盘上可以看出,拨时,画出的线段最短,拨时,画出的线段最长,由于画线速度相同,所以,每个数字所对应的线段应比它下一个数所对应的线段增加一个固定的长度.间谍所画下的这条线段的长度互不相等,所表示的个数字当然也不一样,在这个数字的个数字中至少有个数字是相邻的(想一想为什么),因此,长度最接近的两条线段的长度差,就一定是上面所谈到的那个固定长度.通过对这条线段进行度量,可以发现第一条线段与第二条线段最为接近,它们相差厘米(相当于个格子的宽度).由于最长的线段与最短的线段相差厘米(相当于个格子的宽度),因此可以断定最长的线段代表数字,而最短的线段则代表.第一条线段比第三条线段长厘米,因此第一条线段代表,同样可推知第六条线段代表,第四条线段代表,第二条线段代表,所以这个电话号码是.数学冲浪知识技能广场 1.二进制数为法国数学家莱布尼兹所创,例如二进制数表示十进制数,即相当于十进制数,试将二进制数化为十进制数_________.二进制数是现代计算机理论的基础. 2.如图,是一个简单的数值运算程序,当输入的值为时,则输出的数值为_______. 3.老师设计了一个计算程序,输入和输出的数据如下表:输入数据输出数据那么,当输入数据是时,输出的数据是________. 4.在计算器上按照下面的程序进行操作:下表中的与分别是输入的个数及相应的计算结果:上面操作程序中所按的第三个键和第四个键应是. 5.在计算机程序中,二叉树是一种表示数据结构的方法.如图,一层二叉树的结点总数为,二层二叉树的结点总数为,三层二叉树的结点总数为照此规律,七层二叉树的结点总数为(). A. B. C. D. 6.如图所示的运算程序中,若开始输入的值为,我们发现第一次输出的结果为,第二次输出的结果为,则第次输出的结果为(). A. B. C. D. 7.计算机是将信息换成二进制数进行处理的,二进制即“逢进”,如表示二进制数,将它转换成十进制形式是,那么将二进制数转换成十进制形式是数(). A. B. C. D. 8.按下列程序计算,把答案写在表格内:(1)填写表格:输入输出答案(2)请将题中计算程序用代数式表达出来,并给予化简. 9.密码在通信安全技术、国防军事中扮演着重要角色,下面道算式,乍看真是莫名其妙!① ;② ;③ ;④ ;⑤ ;⑥ .当你知道这只是密码算式,各个密码数字各自对应另二个不同数字时,算式就合理了.请根据算式,写出表中密码所对应的数字.密码对应数字 10.为确保信息安全,信息需加密传输,发送方由明文密文(加密),接收方由密文明文(解密),已知有一种密码,将英文个小写字母,,,,依次对应,,,,,这个自然数(见表格).当明文中的字母对应的序号为时,将除以后所得的余数作为密文中的字母对应的序号,例如明文对应密文.字母序号字母序号按上述规定,将明文“ ”译成密文.思维方法天地 11.我们知道在十进制加法中,逢十进一,如,也可写成;在四进制加法中,逢四进一,如,那么在进制中有等式,则 ______. 12.某综合性大学拟建校园局域网络,将大学本部和所属专业学院、、、、、之间用网线连接起来.经过测算,网线费用如图所示(单位:万元),每个数字表示对应网线(线段)的费用,实际建网时,部分网线可以省略不建,但本部及所属专业学院之间可以传递信息,那么建网所需的最少网线费用为_______万元. 13.计算机中的堆栈是一些连续的存储单元,在每个堆栈中数据的存入、取出,按照“先进后出”的原则.如图堆栈(l)的个连续存储单元已依次存人数据,,取出数据的顺序是,;堆栈(2)的个连续存储单元已依次存人数据,,,取出数据的顺序则是,,.现在要从这两个堆栈中取出这个数据(每次取出个数据),则不同顺序的取法的种数有(). A.种 B.种C.种 D.种 14.如图,小圆圈表示网络的结点,结点之间的连线表示它们之间有网线相连,连线标注的数字表示该网线单位时间内可以通过的最大信息量.现从结点向结点传递信息,信息可以分开沿不同的路线同时传递,由单位时间内传递的最大信息量为()A. B. C. D. 15.写出一个四位数,它的各个数位上的数字都不相等(如),用这个四位数各个数位上的数字组成一个最大的数和一个最小的数,并用最大数减去最小数,得到一个新的四位数,对于新得到的四位数,重复上面过程,又得到一个新的四位数,一直重复下去,你发现了什么?请你用计算器,帮助你进行探索. 16.某人租用一辆汽车由城前往城,沿途可能经过的城币以及通过网城市之间所需的时间(单位:小时)如图所示.若汽车行驶的平均速度为千米/时,而汽车每行驶千米需要的平均费用为元,试指出此人从城出发到城的最短路线,并求出所需费用最少为多少元? 17.按下面的程序计算,若开始输入的值为正数,最后输出的结果为,那么满足条件的的不同值最多有多少个? 18.在密码学中,你直接可以看到的内容为明码,对明码进行某种处理后得到的内容为密码,对于英文,人们将个字母按顺序分别为对应整数到,现有个字母构成的密码单词,记个字母对应的数字分别为,,,,已知整数,,,,除以的余数分别是,,,,请你通过推理计算破译此密码,写出这个单词,并写出此单词的汉语词意. 4信息技术的数学问题问题解决例1由条件得得,故当时例2 B 例3画出路线图:故有条不同途径.例4(1)“ ”表示开,“ ”表示关,则所有不同的“开”“关”的状态可表示为:(全开),,,(三开一关),,(两开两关)共有种(2)由,,,归纳出例5(1)将明文NET转换成密文即密文为(2)将密文转换成明文即密文DWN的明文为FYC 数学冲浪 1. 2. 3. 4.“ ”、“ ” 5.C 6.B 经若干次输出后结果反复循环 7.B 8.(1)略;(2) 9.密码原数10.m对应的数学是,除以的余数仍然是,因此对应的字母是w;a对应的数字是,,除以的余数仍然是,因此对应的字母是k; t 对应的数字是,,除以的余数是,因此对应的字母是d;……所以maths译成密文后是wkdrc. 11. 12.最省路线图故最少网线费用为(万元) 13.C 14.B 15.最终总能出现这个四位数 16.从城出发到城的路线有如下两类:(1)从城出发到达城,经过城,因从城到城所需最短时间为小时,从城到城所需最短时间为小时,故此类路线所需最短时间为小时;(2)从城出发到达城,不经过城,这时从城到城,必定经过、、城或、、城,所需时间至少为小时.综上,从城到达城所需的最短时间为小时,所走的路线为,所需的费用最少为(元) 17.由得由,得;由,得.故的不同值最多有个. 18.在的整数中,只有满足得,又除以的余数为,而除以余数为,而除以的余数为,得,对应,,,的字母分别是h,o,p,e,故密码单词为hope(希望).。
人教版数学七年级上册4.3.2《角的比较与运算》教学设计一. 教材分析《角的比较与运算》是人教版数学七年级上册第4章“角的计算”的第3节内容。
本节内容是在学生已经掌握了角的概念、分类以及度量单位的基础上进行学习的,主要让学生掌握角的比较方法,以及学会运用角的运算规则进行计算。
教材通过角的度量工具——量角器,引导学生探究角的比较方法,并通过实际操作,让学生掌握角的运算规则,培养学生解决实际问题的能力。
二. 学情分析七年级的学生已经具备了一定的几何基础,对角的概念、分类和度量单位有所了解。
但学生在角的运算方面可能还存在一些困难,如对量角器的使用不熟练,对角的运算规则理解不深刻等。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际问题进行有针对性的教学。
三. 教学目标1.知识与技能目标:让学生掌握角的比较方法,学会运用角的运算规则进行计算。
2.过程与方法目标:通过观察、操作、交流等活动,培养学生的几何思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.教学重点:角的比较方法,角的运算规则。
2.教学难点:量角器的使用,角的运算计算方法。
五. 教学方法1.情境教学法:通过设置具体的教学情境,让学生在实际操作中学习角的比较和运算。
2.启发式教学法:引导学生主动思考,发现问题,解决问题。
3.小组合作学习:培养学生团队合作精神,提高学生解决问题的能力。
六. 教学准备1.教学用具:量角器、直尺、三角板、多媒体设备等。
2.教学资源:教学课件、练习题等。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引出本节课的主题——角的比较与运算。
如:在几何画图中,如何比较两个角的大小?如何计算两个角的和?2.呈现(10分钟)教师通过多媒体课件,展示角的比较与运算的相关知识,引导学生回顾已学的角的概念、分类和度量单位。
同时,介绍量角器的使用方法,让学生对角的运算有一个初步的认识。
七年级数学上册《第二章 角的和与差》同步练习题含答案(冀教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.已知∠AOB=60°,∠BOC=45°,则∠AOC 为( )A.105°B.15°C.105°或15°D.75° 2.把一个圆形蛋糕按如图所示的方式分成n 份,如果每份中的角是15°,那么n 的值是()A.22B.24C.26D.283.如图,已知点M 是直线AB 上一点,∠AMC=52°48′,∠BMD=72°19°,则∠CMD 等于()A.49°07′B.54°53′C.55°53′D.53°7′4.如果一个角a 度数为13°14′,那么关于x 的方程2a-x=180°-3x 的解为( )A.76°46′B.76°86′C.86°56′ D .166°46′5.把一副三角板按如图所示那样拼在一起,那么∠ABC 的度数是( )A.150°B.135°C.120°D.105°6.一个角的余角比它的补角的27多5°,则这个角是( )A.35°B.47°C.74°D.76.5°7.如图,∠AOB 为平角,且∠AOC =27∠BOC ,则∠BOC 的度数是( )A.140°B.135°C.120°D.40°8.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③180°﹣∠α;④12(∠α﹣∠β).正确的是:( ) A .①②③④ B .①②④ C .①②③ D .①②二、填空题9.如图,过直线AB 上一点O 作射线OC ,∠BOC =29°18′,则∠AOC 的度数为 ..10.一个角的余角比这个角的补角的一半小40°,则这个角为 度.11.如图,两块三角板的直角顶点O 重叠在一起,且OB 恰好平分∠COD ,则∠AOD 的度数是 .12.如图,A ,O ,B 是同一直线上的三点,OC ,OD ,OE 是从O 点引出的三条射线,且∠1:∠2:∠3:∠4=1:2:3:4,则∠5= 度.13.一副三角板如图所示放置,则∠AOB=_______.14.根据图填空:(1)∠AOC=∠AOB +∠____________;(2)∠BOD=∠COD +∠____________;(3)∠AOC=∠AOD -∠____________;(4)∠BOC=∠____________-∠____________-∠DOC ;(5)∠BOC=∠AOC+∠BOD-∠____________.三、解答题15.一个角的补角比它的余角的4倍还多15°,求这个角的度数.16.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.17.如图所示,已知O为AD上一点,∠AOC与∠AOB互补,OM、ON分别是∠AOC、∠AOB的平分线,若∠MON=40°,试求∠AOC与∠AOB的度数.18.如图,∠AOC 与∠BOC 的度数比为5:2,OD 平分∠AOB ,若∠COD =15°,求∠AOB 的度数.19.如图,直线AB 、CD 相交于点O ,∠BOM =90°,∠DON =90°.(1)若∠COM =∠AOC ,求∠AOD 的度数;(2)若∠COM =14∠BOC ,求∠AOC 和∠MOD.20.如图(甲),∠AOC和∠DOB都是直角.(1)如果∠DOC=28°,那么∠AOB的度数是多少?(2)找出图(甲)中相等的角.如果∠DOC≠28°,他们还会相等吗?(3)若∠DOC越来越小,则∠AOB如何变化?若∠DOC越来越大,则∠AOB又如何变化?(4)在图(乙)中利用能够画直角的工具再画一个与∠FOE相等的角.答案1.C2.B3.B4.A5.C6.B7.A8.B9.答案为:150°42′.10.答案为:80.11.答案为:135°.12.答案为:60.13.答案为:105°.14.答案为:(1)BOC (2)COB (3)DOC (4)AOD AOB (5)AOD15.解:设这个角为x则它的补角为(180°﹣x),余角为(90°﹣x)由题意得:180°﹣x=4(90°﹣x)+15°解得:x=65°即这个角的度数为65°.16.解:(1)∠AOB=∠BOC+∠AOC=70°+50°=120°其补角为180°﹣∠AOB=180°﹣120°=60°;(2)∠DOC=12×∠BOC=12×70°=35° ∠AOE=12×∠AOC=12×50°=25°.∠DOE 与∠AOB 互补 理由:∵∠DOE=∠DOC+∠COE=35°+25°=60°∴∠DOE+∠AOB=60°+120°=180°故∠DOE 与∠AOB 互补.17.解:因为OM 、ON 平分∠AOC 和∠AOB所以∠AOM=12∠AOC ,∠AON=12∠AOB所以∠MON=∠AOM -∠AON=12∠AOC -12∠AOB=40° 又因为∠AOC 与∠AOB 互补所以∠AOC+∠AOB=180°∠AOC=130°,∠AOB=50°18.解:设∠AOC =5x ,则∠BOC =2x ,∠AOB =7x∵OD 平分∠AOB∴∠BOD =12∠AOB =72x∵∠COD =∠BOD ﹣∠BOC∴15°=72x ﹣2x解得x =10°∴∠AOB =7×10°=70°.19.解:(1)∵∠COM =∠AOC∴∠AOC =12∠AOM∵∠BOM =90°∴∠AOM =90°∴∠AOC =45°∴∠AOD =180°﹣45°=135°;(2)设∠COM =x °,则∠BOC =4x °∴∠BOM =3x °∵∠BOM =90°∴3x =90x =30∴∠AOC =60°,∠MOD =90°+60°=150°.20.解:(1)因为∠AOC=∠DOB=90°,∠DOC=28°所以∠COB=90°﹣28°=62°所以∠AOB=90°+62°=152°(2)相等的角有:∠AOC=∠DOB ,∠AOD=∠COB 如果∠DOC ≠28°,他们还会相等(3)若∠DOC 越来越小,则∠AOB 越来越大;若∠DOC 越来越大,则∠AOB 越来越小(4)如图画∠GOE=∠HOF=90°,则∠HOG=∠FOE即,∠HOG为所画的角。
初中数学七年级上册《三角形》一、解答题(共11题;共55分)1.如图,点D在AB上,DF交AC于点E,CF∥AB,AE=EC.求证:2.如图,在△ABC中,,,,垂足为,,垂足为. 求证:.3.如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F. 求证:DF=EF.4.如图,点A,B,C,D在同一条直线上,,,求证:.5.如图,∠AOB=90°,将三角尺的直角顶点P落在∠AOB的平分线OC的任意一点上,使三角尺的两条直角边与∠AOB的两边分别相交于点E、F,证明:PE=PF.6.如图,点,在的边上,,,求证:.7.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,连接EF.求证:AD垂直平分EF.8.一副三角尺如图所示摆放,以AC为一边,在△ABC外作∠CAF=∠DCE,边AF交DC的延长线于点F,求∠F的度数.9.如图,,,,垂足分别为, ,.求证:.10.如图,在△ABC中,AD是△ABC的高线,AE是△ABC的角平分线,已知∠B=2∠C,∠BAC=120°,求∠C、∠DAE的度数。
11.已知:如图,△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.求证:∠M=∠N.二、综合题(共11题;共120分)12.已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AC=DF,BF=EC.求证:(1)△ABC≌△DEF;(2)FG=CG.13.如图1所示,点E、F在线段AC上,过E,F分别作DE⊥AC,BF⊥AC,垂足分别为点E,F;DE,BF分别在线段AC的两侧,且AE=CF,AB=CD,BD与AC相交于点G.(1)求证:EG=GF;(2)若点E在F的右边,如图2时,其余条件不变,上述结论是否成立?请说明理由.(3)若点E、F分别在线段CA的延长线与反向延长线上,其余条件不变,(1)中结论是否成立?(要求:在备用图中画出图形,直接判断,不必说明理由)14.如图,AB=3,BC=8,AB⊥BC,l⊥BC于点C,点E从B向C运动,过点E作ED⊥AE,交l于D.(1)求证:∠A=∠DEC;(2)当BE长度为多少时,△ABE≌△ECD?请说明理由.15.如图1,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,点P为BC边上的一个动点,连接AP,以AP 为直角边,A为直角顶点,在AP右侧作等腰直角三角形PAD,连接CD。
苏科版数学七年级上册6.3 余角、补角、对顶角教说课稿一. 教材分析苏科版数学七年级上册6.3节主要介绍了余角、补角和对顶角的概念及其性质。
本节内容是学生学习初中数学的基础知识,对于培养学生的逻辑思维和空间想象能力具有重要意义。
教材通过具体的例子和直观的图形,引导学生探究和发现余角、补角和对顶角的性质,从而提高学生的数学素养。
二. 学情分析七年级的学生已经掌握了实数、几何图形的的基本知识,具备了一定的逻辑思维和空间想象能力。
但他们对余角、补角和对顶角的概念及性质可能还比较陌生,因此需要在教学过程中给予耐心引导和讲解。
此外,学生可能对数学证明的方法和技巧还不够熟练,需要在教学过程中加强训练。
三. 说教学目标1.知识与技能:使学生了解余角、补角和对顶角的概念,掌握它们的性质,能运用它们解决一些简单的数学问题。
2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的逻辑思维和空间想象能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探究、合作交流的良好学习习惯。
四. 说教学重难点1.教学重点:余角、补角和对顶角的概念及其性质。
2.教学难点:对顶角的性质证明,以及如何运用余角和补角解决实际问题。
五. 说教学方法与手段1.教学方法:采用启发式教学法、小组合作学习法、实践操作法等。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学。
六. 说教学过程1.导入新课:通过展示一些生活中的实例,引导学生发现并思考余角、补角和对顶角的概念。
2.探究新知:学生分组讨论,观察图形,发现余角、补角和对顶角的性质。
教师引导学生用数学语言表达和证明这些性质。
3.巩固新知:教师提出一些练习题,让学生运用余角和补角的知识解决问题,加深对知识的理解和运用。
4.拓展延伸:引导学生思考余角和补角在实际生活中的应用,提出一些实际问题,让学生尝试解决。
5.课堂小结:教师引导学生总结本节课所学内容,梳理知识点。
七. 说板书设计板书设计要简洁明了,突出余角、补角和对顶角的概念及性质。
学生做题前请先回答以下问题问题1:看到平行想什么?问题2:看到垂直想什么?问题3:看到三角形的外角想什么?问题4:看到三角形的内角想什么?角的相关计算和证明(人教版)一、单选题(共7道,每道14分)1.如图,在△ABC中,∠B=67°,∠C=33°,AD平分∠BAC,则∠ADC的度数为( )A.80°B.107°C.73°D.100°答案:B解题思路:如图,结合已知条件,∠ADC可以看作△ACD的内角,也可以看作△ABD的一个外角,因此有两种思路.第一种思路:将∠ADC看作△ACD的内角:在△ABC中,∠B=67°,∠C=33°,根据三角形的内角和等于180°,得∠BAC=80°;由AD平分∠BAC,根据角平分线的定义,得.在△ACD中,∠2=40°,∠C=33°,根据三角形的内角和等于180°,得∠ADC=107°.第二种思路:将∠ADC看作△ABD的一个外角:已知在△ABC中,∠B=67°,∠C=33°,根据三角形的内角和等于180°,得∠BAC=80°;由AD平分∠BAC,根据角平分线的定义,得.∠ADC是△ABD的一个外角,根据三角形的外角等于与它不相邻的两个内角的和,得∠ADC=∠B+∠1=67°+40°=107°.故选B.试题难度:三颗星知识点:三角形的外角2.如图,直线BD∥EF,AE交BD于点C,若∠B=30°,∠A=75°,则∠E的度数为( )A.60°B.75°C.90°D.105°答案:D解题思路:如图,由BD∥EF,根据两直线平行,同位角相等,得∠E=∠ACD,这样就把∠E转化为∠ACD.而∠ACD可以看作△ABC的外角,根据三角形的外角等于与它不相邻的两个内角的和,得∠ACD=∠A+∠B=105°.所以∠E=105°.故选D.试题难度:三颗星知识点:三角形的外角3.如图,在△ABC中,AD⊥BC于点D,E是AC边上一点,BE交AD于点F.∠ABC=45°,∠BAC=75°,∠BFD=60°,则∠BEC的度数为( )A.85°B.105°C.100°D.90°答案:D解题思路:如图,结合已知条件,∠BEC可以看作△BCE的内角,接下来的目标是求∠1和∠C.在△ABC中,由∠ABC=45°,∠BAC=75°,根据三角形的内角和等于180°,得∠C=60°;因为AD⊥BC,根据垂直的定义,得∠ADB=90°;在Rt△BDF中,根据直角三角形两锐角互余,可得∠1=90°-∠BFD=90°-60°=30°;在△BCE中,∠C=60°,∠1=30°,根据三角形的内角和等于180°,得∠BEC=90°.故选D.试题难度:三颗星知识点:垂直的定义4.如图,AB∥CD,AE平分∠CAB,CE平分∠ACD,则∠E=( )A.60°B.75°C.90°D.105°答案:C解题思路:如图,在△ACE中,要求∠E的度数,根据三角形的内角和等于180°,只需求出∠1+∠2的度数即可.由AB∥CD,根据两直线平行,同旁内角互补,得∠CAB+∠ACD=180°;又因为AE平分∠CAB,CE平分∠ACD,根据角平分线的定义,得∠1=∠ACD,∠2=∠CAB,所以∠1+∠2=(∠ACD+∠CAB)=90°.在△ACE中,根据三角形的内角和等于180°,得∠E=180°-(∠1+∠2)=180°-90°=90°.故选C.试题难度:三颗星知识点:三角形内角和定理5.如图,在△ABC中,∠B=∠C,DE⊥BC,EF⊥AC,垂足分别为E,F,若∠ADE=158°,则∠FEC的度数为( )A.22°B.32°C.44°D.58°答案:A解题思路:如图,从已知出发,因为∠ADE=158°,由平角的定义得∠1=180°-∠ADE=22°.由DE⊥BC,EF⊥AC,根据垂直的定义,∠DEB=∠EFC=90°,所以∠B+∠1=90°,∠C+∠FEC=90°,又因为∠B=∠C,根据等角的余角相等,得∠FEC=∠1,所以∠FEC=∠1=22°.故选A.试题难度:三颗星知识点:垂直的定义6.如图,在△ABC中,BD平分∠ABC,CD平分∠ACB.若∠A=70°,则∠D的度数为( )A.110°B.140°C.125°D.135°答案:C解题思路:如图,设∠DBC=α,∠DCB=β,因为BD平分∠ABC,CD平分∠ACB,根据角平分线的定义,∠ABC=2∠DBC=2α,∠ACB=2∠DCB=2β.在△ABC中,∠A=70°,根据三角形的内角和等于180°,得∠ABC+∠ACB=180°-∠A=110°,即2α+2β=110°,则α+β=55°.在△DBC中,α+β=55°,根据三角形的内角和等于180°,得∠D=180°-∠DBC-∠DCB=180°-α-β=180°-55°=125°.故选C.试题难度:三颗星知识点:三角形内角和定理7.如图,在△ABC中,AD平分∠BAC,EF⊥AD于点P,交BC的延长线于点M.若∠ACB=70°,∠B=40°,则∠M的度数为( )A.20°B.15°C.35°D.25°答案:B解题思路:如图,∠M可以放在Rt△DPM中,利用直角三角形两锐角互余计算,那么需要求∠2的度数;∠2可以看作△ABD的一个外角,根据三角形的一个外角等于和它不相邻的两个内角的和,得∠2=∠B+∠1,因此问题转化为求∠1的度数.在△ABC中,∠ACB=70°,∠B=40°,根据三角形的内角和等于180°,得∠BAC=180°-∠B-∠ACB=70°;又因为AD平分∠BAC,根据角平分线的定义,得∠1=∠BAC=35°,从而可以求出∠2=75°,所以∠M=90°-∠2=15°.故选B.试题难度:三颗星知识点:直角三角形两锐角互余。
专题13 与角相关的旋转(翻折)问题专项讲练与角有关的旋转(翻折)问题属于人教版七年级上期必考压轴题型,是尖子生必须要攻克的一块重要内容,对考生的综合素养要求较高。
绝大部分学生对角度旋转问题信心不足,原因就是很多角度旋转问题需要自己画出图形,与分类讨论思想、数形结合思想等结合得很紧密,思考性强,难度大。
本专题重点研究与角有关的旋转问题(求值问题;定值问题;探究问题;分类讨论问题)和与角有关的翻折问题。
【与角相关的旋转问题】【解题技巧】1、角度旋转问题解题步骤:①找——根据题意找到目标角度;②表——表示出目标角度:1)角度一边动另一边不动,角度变大:目标角=起始角+速度×时间;2)角度一边动另一边不动,角度变小:目标角=起始角—速度×时间;3)角度一边动另一边不动,角度先变小后变大:变小:目标角=起始角—速度×时间;变大:目标角=速度×时间—起始角③列——根据题意列方程求解。
注:①注意题中是否确定旋转方向,未确定时要分顺时针与逆时针分类讨论;②注意旋转角度取值范围。
常见的三角板旋转的问题:三角板有两种,一种是等腰直角三角板(90°、45°、45°),另一种是特殊角的直角三角板(90°、60°、30°)。
三角板的旋转中隐藏的条件就是上面所说的这几个特殊角的角度。
总之不管这个角如何旋转,它的角度大小是不变的,旋转的度数就是组成角的两条射线旋转的度数(角平分线也旋转了同样的度数)。
抓住这些等量关系是解题的关键,三角板只是把具体的度数隐藏了起来。
【重要题型】题型1:求值问题例1.(2022·江苏·七年级期中)已知∠AOB和∠COD均为锐角,∠AOB>∠COD,OP平分∠AOC,OQ平分∠BOD,将∠COD绕着点O逆时针旋转,使∠BOC=α(0≤α<180°)(1)若∠AOB=60°,∠COD=40°,①当α=0°时,如图1,则∠POQ= ;②当α=80°时,如图2,求∠POQ 的度数;③当α=130°时,如图3,请先补全图形,然后求出∠POQ的度数;(2)若∠AOB=m°,∠COD=n°,m>n,则∠POQ= ,(请用含m、n的代数式表示).【答案】(1)①50°;②50°;③130°;(2)12m °+12n °或180°-12m °-12n °【分析】(1)根据角的和差和角平分线的定义即可得到结论;(2)根据角的和差和角平分线的定义即可得到结论.【详解】解:(1)①∵∠AOB =60°,∠COD =40°,OP 平分∠AOC ,OQ 平分∠BOD ,∴∠BOP =12∠AOB =30°,∠BOQ =12∠COD =20°,∴∠POQ =50°,故答案为:50°;②解:∵∠AOB =60°,∠BOC =α=80°,∴∠AOC =140°,∵OP 平分∠AOC ,∴∠POC =12∠AOC =70°,∵∠COD =40°,∠BOC =α=80°,且OQ 平分∠BOD ,同理可求∠DOQ =60°,∴∠COQ =∠DOQ -∠DOC =20°,∴∠POQ =∠POC -∠COQ =70°-20°=50°;③解:补全图形如图3所示,∵∠AOB =60°,∠BOC =α=130°,∴∠AOC =360°-60°-130°=170°,∵OP 平分∠AOC ,∴∠POC =12∠AOC =85°,∵∠COD =40°,∠BOC =α=130°,且OQ 平分∠BOD ,同理可求∠DOQ =85°,∴∠COQ =∠DOQ -∠DOC =85°-40°=45°,∴∠POQ =∠POC +∠COQ =85°+45°=130°;(2)当∠AOB =m °,∠COD =n °时,如图2,∴∠AOC = m °+ a °,∵OP 平分∠AOC ,∴∠POC =12(m °+ a °),同理可求∠DOQ =12(n °+ a °),∴∠COQ =∠DOQ -∠DOC =12(n °+ a °)- n °=12(-n °+ a °),∴∠POQ =∠POC -∠COQ =12(m °+ a °)-12(-n °+ a °) =12m °+12n °,当∠AOB =m °,∠COD =n °时,如图3,∵∠AOB =m °,∠BOC =α,∴∠AOC =360°-m °-a °,∵OP 平分∠AOC ,∴∠POC =12∠AOC =180°12-(m °+ a °),∵∠COD =n °,∠BOC =α,且OQ 平分∠BOD ,同理可求∠DOQ =12(n °+ a °),∴∠COQ =∠DOQ -∠DOC =12(n °+ a °)-n °=12(-n °+ a °),∴∠POQ =∠POC +∠COQ =180°12-(m °+ a °)+12(-n °+ a °) =180°-12m °-12n °,综上所述,若∠AOB =m °,∠COD =n °,则∠POQ =12m °+12n °或180°-12m °-12n °.故答案为:12m °+12n °或180°-12m °-12n °.【点睛】本题考查了角的计算,角平分线的定义,正确的识别图形是解题的关键.变式1.(2022•高新区期末)已知∠AOB =90°,∠COD =60°,按如图1所示摆放,将OA 、OC 边重合在直线MN 上,OB 、OD 边在直线MN 的两侧:(1)保持∠AOB 不动,将∠COD 绕点O 旋转至如图2所示的位置,则①∠AOC +∠BOD = ;②∠BOC ﹣∠AOD = .(2)若∠COD按每分钟5°的速度绕点O逆时针方向旋转,∠AOB按每分钟2°的速度也绕点O逆时针方向旋转,OC旋转到射线ON上时都停止运动,设旋转t分钟,计算∠MOC﹣∠AOD(用t的代数式表示).(3)保持∠AOB不动,将∠COD绕点O逆时针方向旋转n°(n≤360),若射线OE平分∠AOC,射线OF平分∠BOD,求∠EOF的大小.【解题思路】(1)①将∠AOC+∠BOD拆分、转化为∠COD+∠AOB即可得;②依据∠BOC=∠AOB﹣∠AOC、∠AOD=∠COD﹣∠AOC,将原式拆分、转化为∠AOB﹣∠COD计算可得;(2)设运动时间为t秒,0<t≤36,∠MOC=(5t)°,只需表示出∠AOD即可得出答案,而∠AOD在OD与OA相遇前、后表达式不同,故需分OD与OA相遇前后即0<t≤20和20<t≤36两种情况求解;(3)设OC绕点O逆时针旋转n°,则OD也绕点O逆时针旋转n°,再分①射线OE、OF在射线OB同侧,在直线MN同侧;②射线OE、OF在射线OB异侧,在直线MN同侧;③射线OE、OF在射线OB异侧,在直线MN异侧;④射线OE、OF在射线OB同侧,在直线MN异侧;四种情况分别求解.【解答过程】解:(1)①∠AOC+∠BOD=∠AOC+∠AOD+∠AOB=∠COD+∠AOB=60°+90°=150°;②∠BOC﹣∠AOD=(∠AOB﹣∠AOC)﹣(∠COD﹣∠AOC)=∠AOB﹣∠AOC﹣∠COD+∠AOC=∠AOB﹣∠COD=90°﹣60°=30°;故答案为:150°、30°;(2)设运动时间为t秒,0<t≤36,∠MOC=(5t)°,①0<t≤20时,OD与OA相遇前,∠AOD=(60+2t﹣5t)°=(60﹣3t)°,∴∠MOC﹣∠AOD=(8t﹣60)°;②20<t≤36时,OD与OA相遇后,∠AOD=[5t﹣(60+2t)]°=(3t﹣60)°,∴∠MOC﹣∠AOD=(2t+60)°;(3)设OC 绕点O 逆时针旋转n °,则OD 也绕点O 逆时针旋转n °,①0<n °≤150°时,如图4,射线OE 、OF 在射线OB 同侧,在直线MN 同侧,∵∠BOF =12[90°﹣(n ﹣60°)]=12(150﹣n )°,∠BOE =(90−12n )°=12(180﹣n )°,∴∠EOF =∠BOE ﹣∠BOF =15°;②150°<n °≤180°时,如图5,射线OE 、OF 在射线OB 异侧,在直线MN 同侧,∵∠BOF =12(n−150)°,∠BOE =(90−12n )°=12(180﹣n )°,∴∠EOF =∠BOE +∠BOF =15°;③180°<n °≤330°时,如图6,射线OE 、OF 在射线OB 异侧,在直线MN 异侧,∵∠DOF =12(n−150)°,∠COE =12(360−n)°,∴∠EOF =∠DOF +∠COD +∠COE =165°;④330°<n °≤360°时,如图7,射线OE 、OF 在射线OB 同侧,在直线MN 异侧,∵∠DOF =12[360﹣(n ﹣150)]°=12(510﹣n )°,∠COE =12(360−n)°,∴∠EOF =∠DOF ﹣∠COD ﹣∠COE =15°;综上,∠EOF =15°或165°.变式2.(2022•浙江七年级期中)如图1,O 为直线AB 上一点,过点O 作射线OC ,30AOC Ð=°,将一直角三角板(30M Ð=°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(注:本题旋转角度最多180°.)(1)将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转.如图2,经过t 秒后,AON Ð=______度(用含t 的式子表示),若OM 恰好平分BOC Ð,则t =______秒(直接写结果).(2)在(1)问的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转,如图3,经过t 秒后,AOC Ð=______度(用含t 的式子表示)若OC 平分MON Ð,求t 为多少秒?(3)若(2)问的条件不变,那么经过秒OC 平分BOM Ð?(直接写结果)【答案】(1)3t ,5;(2)306t +,5;(3)经过703秒OC 平分BOM Ð【解析】(1)3AON t Ð=,∵30AOC Ð=°,∴150BOC Ð=°∵OM 平分BOC Ð,90MON Ð=°,∴75COM Ð=°,∴15CON Ð=°∴301515AON AOC CON Ð=Ð-Ð=-=°°°,解得:1535t =¸=°°秒(2)()306AOC t Ð=+度∵90MON Ð=°,OC 平分MON Ð,∴45CON COM Ð=Ð=°∴45AOC AON CON Ð-Ð=Ð=°,∴306345t t +-=解得:5t =秒(3)如图:∵90AON BOM Ð+Ð=°,BOC COMÐ=Ð由题可设AON Ð为3t ,AOC Ð为()306t +°,∴()19032COM BOC t Ð=Ð=-°∵180BOC AOC Ð+Ð=°,()()130********t t ++-=,解得:703t =秒答:经过703秒OC 平分BOM Ð.题型2:定值问题(角度不变问题)例2.(2022·江苏南京·七年级期末)如图,两条直线AB ,CD 相交于点O ,且∠AOC =∠AOD ,射线OM 从OB 开始绕O 点逆时针方向旋转,速度为15°/s ,射线ON 同时从OD 开始绕O 点顺时针方向旋转,速度为12°/s ,运动时间为t 秒(0<t <12,本题出现的角均小于平角)(1)图中一定有 个直角;当t=2时,∠MON的度数为 ,∠BON的度数为 ;(2)若OE平分∠COM,OF平分∠NOD,当∠EOF为直角时,请求出t的值;(3)当射线OM在∠COB内部,且7COM2BONMONÐ+ÐÐ是定值时,求t的取值范围,并求出这个定值.变式1.(2022•渝中区七年级期中)如图1,∠AOB=40°,∠COD=60°,OM、ON分别为∠AOB和∠BOD的角平分线.(1)若∠MON=70°,则∠BOC= °;(2)如图2,∠COD从第(1)问中的位置出发,绕点O 逆时针以每秒4°的速度旋转;当OC与OA重合时,∠COD立即反向绕点O顺时针以每秒6°的速度旋转,直到OC与OA互为反向延长线时停止运动.整个运动过程中,∠COD的大小不变,OC旋转后的对应射线记为OC′,OD旋转后的对应射线记为OD′,∠BOD′的角平分线记为ON′,∠AOD′的角平分线记为OP.设运动时间为t秒.①当OC′平分∠BON′时,求出对应的t的值;②请问在整个运动过程中,是否存在某个时间段使得|∠BOP﹣∠MON′|的值不变?若存在,请直接写出这个定值及其对应的t的取值范围(包含运动的起止时间);若不存在,请说明理由.【解题思路】(1)根据角平分线的定义结合图形根据已知条件求角的大小;(2)①分类讨论顺时针、逆时针转两种情况,根据角平分线的定义用t 表示出角的度数,列出等量关系式求出t ;②分类讨论顺时针、逆时针转两种情况,当C ′在B 下方时,当C ′在B 上方时,根据角平分线的定义用t 表示出角的度数,求在某个时间段使得|∠BOP ﹣∠MON ′|的值不变,求出这个定值及其对应的t 的取值范围.【解答过程】解:(1)∵OM 为∠AOB 的角平分线、∠AOB =40°,∴∠MOB =20°.∵∠MON =70°,∴∠BON =∠MON ﹣∠MOB =50°.∵ON 为∠BOD 的角平分线,∴∠BON =∠DON =50°.∴∠CON =∠COD ﹣∠DON =10°∴∠BOC =∠DON ﹣∠CON =40°.故答案为:40°.(2)如图①:①逆时针旋转时:当C ′在B 上方时,根据题意可知,∠BOC ′=40°﹣4t ,∠BOD ′=∠BOD ﹣4t =100°﹣4t .∠BON ′=12∠BOD ′=12(100°−4t)=50°﹣2t ,∵OC ′平分∠BON ′,∴∠BOC ′=12∠BON′,即40°﹣4t =12(50°﹣2t ),解得:t =5(s ).当C ′在B 下方时,此时C ′也在N ′下方,此时不存在OC ′平分∠BON ′.顺时针旋转时:如图②,同理当C ′在B 下方时,此时C ′也在N ′下方,此时不存在OC ′平分∠BON ′.当C ′在B 上方时,即OC ′与OB 重合,由题意可求OC ′与OB 重合用的时间=∠AOC ÷4+∠AOB ÷6=(∠AOB +∠BOC )÷4+∠AOB ÷6=803(s ).∴OC ′与OB 重合之后,∠BOC ′=6(t −803)(s ).∴∠BOD ′=∠BOC ′+60°=6(t −803)+60°=6t ﹣100°.∴∠BON ′=12∠BOD′=12(6t ﹣100°)=3t ﹣50°,∵OC ′平分∠BON ′,∴∠BOC ′=12∠BON′,∴6(t −803)=12(3t ﹣50°),解得:t =30(s )综上所述t 的值为5或30.②逆时针旋转时:当C ′在B 上方时,如图③根据①可知,∠BOC ′=40°﹣4t ,∠BOD ′=100°﹣4t ,∠BON ′=50°﹣2t .∴∠AOD ′=∠AOB +∠BOD ′=140°﹣4t ,∴∠AOP =12∠AOD′=12∠(140°−4t)=70°﹣2t ,∴∠BOP =∠AOP ﹣∠AOB =30°﹣2t ,∵∠MON ′=∠MOB +∠BON ′=70°﹣2t ,∴|∠BOP ﹣∠MON ′|=|30°﹣2t ﹣70°+2t |=40°,此段时间0≤t ≤10s ;如图④当C ′在B 下方时,设经过OB 后运动时间为t 2,同理可知,∠BOC ′=4t 2,∠BOD ′=60°﹣4t 2,∴∠MON′=12∠BON′=30−2t 2,∴∠AOD ′=∠AOB +∠BOD ′=100°﹣4t 2,∴∠AOP =12∠AOD′=50°−2t 2,∴∠BOP =∠AOP ﹣∠AOB =10°﹣2t 2,∵∠MON ′=∠MOB +∠BON ′=50°﹣2t 2,∴|∠BOP﹣∠MON′|=|10°﹣2t2﹣50°+2t2|=40°.此时:10<t≤20;顺时针旋转时:当C′在B下方时,如图⑤,设经过OB后运动时间为t1,同理可知:∠BOC′=40°﹣6t1,∠BOD′=20°+6t1,∴∠BON′=12∠BOD′=10°+3t1,∴∠AOD′=60°+6t1,∠AOP=30°+3t1,∴∠BOP=∠AOP﹣∠AOB=3t1﹣10°,∵∠MON′=∠MOB+∠BON′=30°﹣3t1,∴|∠BOP﹣∠MON′|=|3t1﹣10°﹣30°﹣3t1|=40°,此时:20<t≤803;当C′在B上方时,如图⑥,设经过OB后运动时间为t3,同理可知:,∠BOC′=60°+6t3,∠BOD′=100°+6t3,∴∠BON′=12∠BON′=50°+3t3,∴∠AOD′=140°+6t3,∴∠AOP=70°+3t3,∴∠BOP=∠AOP﹣∠AOB=30°+3t3,∵∠MON′=∠MOB+∠BON′=70°+3t3,∴|∠BOP﹣∠MON′|=|30°+3t3﹣70°﹣3t3|=40°,此时:803<t≤50.综上所述:存在且定值为40°,0≤t≤50.变式2.(2022•碑林区七年级开学)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请直接写出结论:直线ON 平分 (平分或不平分)∠AOC.(2)将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 10或40 .(直接写出结果)(3)将图1中的三角板绕点O顺时针旋转,请探究,当ON始终在∠AOC的内部时(如图3),∠AOM与∠NOC的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.【解题思路】(1)设ON的反向延长线为OD,由角平分线的性质和对顶角的性质可求得∠BON=∠AOD=∠COD=30°;(2)由直线ON恰好平分锐角∠AOC可知旋转60°或240°时直线ON平分∠AOC,根据旋转速度可求得需要的时间;(3)由∠MON=90°,∠AOC=60°,可知∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,最后求得两角的差,从而可做出判断.【解答过程】解:(1)直线ON平分∠AOC.理由如下:设ON的反向延长线为OD,∵OM平分∠BOC,∠BOC=120°,∠BOC=60°,∴∠MOC=∠MOB=12又∠MOD=∠MON=90°,∴∠COD=90°﹣∠MOC=30°,∵∠AOC=180°﹣∠BOC=60°,∠AOC,∴OD平分∠AOC,∴∠COD=12即直线ON平分∠AOC,故答案为:平分;(2)∵∠BOC=120°,∴∠AOC=60°.∴∠BON=∠COD=30°.即旋转60°或240°时直线ON平分∠AOC.由题意得,6t=60或240.解得:t=10或40,故答案为:10或40;(3)∠AOM﹣∠NOC的差不变.∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON.∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.∴∠AOM与∠NOC的差不变,这个差值是30°.题型3:探究类问题(判断角的数量之间的关系)例3.(2022·四川·成都市七年级期末)如图所示:点P是直线AB上一点,∠CPD是直角,PE平分∠BPC.(1)如图1,若∠APC=40°,求∠DPE的度数;(2)如图1,若∠APC=a,直接写出∠DPE的度数(用含a的代数式表示);(3)保持题目条件不变,将图1中的∠CPD按顺时针方向旋转至图2所示的位置,探究∠APC和∠DPE的度数之间的关系,写出你的结论,并说明理由.变式1.(2022·广东七年级期中)如图(a),将两块直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=25°,∠ACB等于多少;若∠ACB=130°,则∠DCE等于多少;(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小有何关系,请说明理由;(4)已知∠AOB=α,∠COD=β(α、β都是锐角),如图(c),若把它们的顶点O重合在一起,则∠AOD与∠BOC的大小有何关系,请说明理由.【答案】(1)∠ACB=155°;∠DCE=50°;(2)∠ACB+∠DCE=180°,理由见解析;(3)∠DAB+∠CAE=120°,理由见解析;(4)∠AOD+∠BOC=α+β,理由见解析.【分析】(1)先求出∠BCD,再代入∠ACB=∠ACD+∠BCD求出即可;先求出∠BCD,再代入∠DCE=∠BCE﹣∠BCD求出即可;(2)根据∠ACB=∠ACE+∠DCE+∠DCE求出即可;(3)根据∠DAB=∠DAE+∠CAE+∠CAB求出即可;(4)根据∠AOD=∠AOC+∠COB+∠BOD求出即可.【详解】解:(1)∵∠BCE=90°,∠DCE=25°,∴∠BCD=∠BCE﹣∠DCE=65°,∵∠ACD=90°,∴∠ACB=∠ACD+∠BCD=90°+65°=155°;∵∠ACB=130°,∠ACD=90°,∴∠BCD=∠ACB﹣∠ACD=130°﹣90°=40°,∵∠BCE=90°,∴∠DCE=∠BCE﹣∠BCD=90°﹣40°=50°,故答案为:155°,50°;(2)∠ACB+∠DCE=180°,理由如下:∵∠ACB=∠ACE+∠DCE+∠DCE,∴∠ACB+∠DCE=∠ACE+∠DCE+∠DCE+∠DCE=∠ACD+∠BCE=180°;(3)∠DAB+∠CAE=120°,理由如下:∵∠DAB=∠DAE+∠CAE+∠CAB,∴∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°;(4)∠AOD+∠BOC=α+β,理由如下:∵∠AOD=∠AOC+∠COB+∠BOD,∴∠AOD+∠BOC=∠AOC+∠COB+∠BOD+∠BOC=∠AOB+∠COD=α+β.【点睛】本题考查了角的运算,理解角的和差运算是解题的关键.变式2.(2022•喀喇沁旗七年级期中)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使点N在OC的反向延长线上,请直接写出图中∠MOB 的度数;(2)将图1中的三角板绕点O顺时针旋转至图3,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;(3)将图1中的三角尺绕点O顺时针旋转至图4,使ON在∠AOC内部,请探究∠AOM 与∠NOC 之间的数量关系,并说明理由.【解题思路】(1)根据对顶角求出∠BON ,代入∠BOM =∠MON ﹣∠BON 求出即可;(2)求出∠BOC =120°,根据角平分线定义请求出∠COM =∠BOM =60°,代入∠CON =∠MON +∠COM 求出即可;(3)用∠AOM 和∠CON 表示出∠AON ,然后列出方程整理即可得解.【解答过程】解:(1)如图2,∵∠AOC =60°,∴∠BON =∠AOC =60°,∵∠MON =90°,∴∠BOM =∠MON ﹣∠BON =30°,故答案为:30°;(2)∵∠AOC =60°,∴∠BOC =180°﹣∠AOC =120°,∵OM 平分∠BOC ,∴∠COM =∠BOM =60°,∵∠MON =90°,∴∠CON =∠MON +∠COM =90°+60°=150°;(3)∠AOM ﹣∠NOC =30°,理由是:∵∠MON =90°,∠AOC =60°,∴∠AON =90°﹣∠AOM ,∠AON =60°﹣∠NOC ,∴90°﹣∠AOM =60°﹣∠NOC ,∴∠AOM ﹣∠NOC =30°,故∠AOM 与∠NOC 之间的数量关系为:∠AOM ﹣∠NOC =30°.题型4:分类讨论问题例4.(2022·成都市七中育才学校七年级月考)一副三角板(直角三角板OAB 和直角三角板OCD )如图1所示放置,两个顶点重合于点O ,OC 与OB 重合,且60AOB Ð=°,30A Ð=°,45OCD ODC Ð=Ð=°,90COD ABO Ð=Ð=°.将三角板OCD 绕着点O 逆时针旋转一周,旋转过程中,OE 平分BOC Ð,OF 平分AOD Ð,(AOD Ð和BOC Ð均是指小于180°的角)探究EOF Ð的度数.(1)当三角板OCD 绕点O 旋转至如图2的位置时,OB 与OD 重合,AOC Ð=______°,EOF Ð=______°.(2)三角板OCD 绕点O 旋转过程中,EOF Ð的度数还有其他可能吗?如果有,请研究证明结论,若没有,请说明理由.(3)类比拓展:当COD Ð的度数为a ()0180a °<<°时,其他条件不变,在旋转过程中,请直接写出EOF Ð的度数.(用含a 的式子来表示)【答案】(1)150;75 (2)有,105° (3)1302EOF a =°+或11502a °-【分析】(1)利用两个角的和的定义,角的平分线的定义计算即可; (2)利用分类思想, 确定不同方式计算即可;(3)利用特殊与一般的思想,分类将问题抽象即可.【详解】(1)如图,由OB 与OD 重合,∵60AOB Ð=°,90COD BOC Ð=Ð=°,∴6090150AOC AOB BOC Ð=Ð+Ð=°+°=°.又∵OE 平分BOC Ð,OF 平分AOD Ð,∴1452BOE BOC Ð=Ð=°,1302DOF AOD Ð=Ð=°,∴453075EOF BOE EOF Ð=Ð+Ð=°+°=°.故答案为:150°;75°;(2)如图,∵OE 平分BOC Ð,OF 平分AOD Ð,∴12BOE BOC Ð=Ð()12AOC AOB =Ð+Ð()1602AOC =Ð+°1302AOC =Ð+°()13602COD AOD =°-Ð-Ð+30°()1360902AOC =°-°-Ð+30°()12702AOD =°-Ð+30°11652AOD =°-Ð.∴EOF BOE AOF AOB Ð=Ð+Ð-Ð,∴111656010522EOF AOD AOD Ð=Ð+°-Ð-°=°.(3)如图,∵OE 平分BOC Ð,OF 平分AOD Ð,∴12BOE BOC Ð=Ð()12AOC AOB =Ð+Ð()1602AOC =Ð+°1302AOC =Ð+°,()1111++2222AOF AOD COD AOC AOC a Ð=Ð=ÐÐ=Ð,∴EOF AOF AOB BOE Ð=Ð+Ð-Ð=11+22AOC a Ð+60°-1-302AOC а=1302a °+;如图,∵OE 平分BOC Ð,OF 平分AOD Ð,∴12BOE BOC Ð=Ð()12AOC AOB =Ð+Ð()1602AOC =Ð+°1302AOC =Ð+°,()()1111136036018022222AOF AOD COD AOC AOC AOC a a Ð=Ð=°-Ð-Ð=°--Ð=°--Ð∴EOF BOE AOF AOB Ð=Ð+Ð-Ð111130180601502222AOC AOC a a =Ð+°+°--Ð-°=°-.综上所述,1302EOF a Ð=°+或11502a °-.【点睛】本题考查了两个角的和,角的平分线,周角的定义,灵活运用分类思想,角的平分线定义,角的和,差定义计算是解题的关键.变式1.(2022•广东七年级期末)如图(1),∠BOC 和∠AOB 都是锐角,射线OB 在∠AOC 内部,AOB a Ð=,BOC b Ð=.(本题所涉及的角都是小于180°的角)(1)如图(2),OM 平分∠BOC ,ON 平分∠AOC ,填空:①当40a =°,70b =°时,COM Ð=______,CON Ð=______,MON Ð=______;②MON Ð=______(用含有a 或b 的代数式表示).(2)如图(3),P 为∠AOB 内任意一点,直线PQ 过点O ,点Q 在∠AOB 外部:①当OM 平分∠POB ,ON 平分∠POA ,∠MON 的度数为______;②当OM 平分∠QOB ,ON 平分∠QOA ,∠MON 的度数为______;(∠MON 的度数用含有a 或b 的代数式表示)(3)如图(4),当40a =°,70b =°时,射线OP 从OC 处以5°/分的速度绕点O 开始逆时针旋转一周,同时射线OQ 从OB 处以相同的速度绕点O 逆时针也旋转一周,OM 平分∠POQ ,ON 平分∠POA ,那么多少分钟时,∠MON 的度数是40°?【答案】(1)135,55,20,2°°°a ;(2)12a ,11802a °-;(3)48分钟时,∠MON 的度数是40°【解析】(1)①Q OM 平分∠BOC ,ON 平分∠AOC ,当40a =°,70b =°时,COM Ð=113522BOC Ð=b =°,CON Ð=()111()55222AOC AOB BOC Ð=Ð+Ð=a +b =°,MON Ð=()11120222CON COM a b b a Ð-=+-==°②MON Ð()111222CON COM =Ð-=a +b -b =a ,故答案为:135,55,20,2°°°a (2)①Q OM 平分∠POB ,ON 平分∠POA ,\()12MON POB POA Ð=Ð+Ð 1122AOB =Ð=a ②Q OM 平分∠QOB ,ON 平分∠QOA ,\()12MON BOQ QOA Ð=Ð+Ð()1136018022AOB =°-Ð=°-a 故答案为:12a ,11802a °-(3)根据题意POQ BOC Ð=Ð=bQ OM 平分∠POQ ,113522POM POQ \Ð=Ð=b =°如图,当OP 在AOB Ð的外部时,Q MON 的度数是40°MON PON POM Ð=Ð+Q 5PON \Ð=°Q ON 平分∠POA ,210POA PON \Ð=Ð=°,120POC \Ð=°,则OP 旋转了360120240°-°=°240548\¸=分,即48分钟时,∠MON 的度数是40°如图,OP 在AOB Ð的内部时,MON POM PON Ð=Ð-ÐQ 即4035PON °=°-Ð5PON \Ð=-°此情况不存在,综上所述,48分钟时,∠MON 的度数是40°变式2.(2022·成都市七年级阶段练习)定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角,如图1,若12COD AOB Ð=Ð,则COD Ð是ACB Ð的内半角.(1)如图1,已知80AOB °Ð=,25AOC °Ð=,COD Ð是AOB Ð的内半角,则BOD Ð=________;(2)如图2,已知68AOB °Ð=,将AOB Ð绕点O 按顺时针方向旋转一个角度()060a a °<<得COD Ð,当旋转的角度a 为何值时,COB Ð是AOD Ð的内半角;(3)已知30AOB °Ð=,把一块含有30°角的三角板如图3叠放,将三角板绕顶点O 以3度/秒的速度按顺时针方向旋转(如图4),问:在旋转一周的过程中,射线OA ,OB ,OC ,OD 能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.如图2,∵BOC Ð是AOD Ð的内半角,AOC BOD a Ð=Ð=,如图4,∵AOD Ð是BOC Ð的内半角,360AOC BOD a Ð=Ð=-,【折叠(翻折)问题】【解题技巧】折叠前后对应角、对应边相等;出现角的比值或无角的具体度数却求度数常设x 列方程。
北师大版数学七年级上册《4 角的比较》说课稿1一. 教材分析北师大版数学七年级上册《4 角的比较》这一章节是在学生已经掌握了角的概念和分类的基础上进行教学的。
本章节主要让学生了解并掌握各种角的比较方法,能够运用角的比较方法解决实际问题。
在教材中,通过丰富的例题和练习题,引导学生探索角的比较方法,培养学生的动手操作能力和数学思维能力。
二. 学情分析面对七年级的学生,他们在之前的学习中已经掌握了角的基本概念和分类,具备一定的数学基础。
但是,对于角的比较方法,他们可能还比较陌生,需要通过实例和动手操作来进一步理解和掌握。
此外,学生在学习过程中,可能对一些概念性的知识容易理解,但对于实际操作和应用可能存在一定的困难。
三. 说教学目标1.知识与技能目标:使学生了解并掌握各种角的比较方法,能够运用角的比较方法解决实际问题。
2.过程与方法目标:通过学生的自主探究和合作交流,培养学生的动手操作能力和数学思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和探究精神。
四. 说教学重难点1.教学重点:各种角的比较方法的掌握和运用。
2.教学难点:角的比较方法在实际问题中的应用。
五. 说教学方法与手段在本节课的教学过程中,我将采用讲授法、自主探究法、合作交流法和动手操作法等多种教学方法。
通过引导学生自主探究和合作交流,让学生在实际操作中理解和掌握角的比较方法。
同时,利用多媒体教学手段,为学生提供丰富的学习资源,提高学生的学习兴趣和效果。
六. 说教学过程1.导入新课:通过复习角的概念和分类,引出角的比较方法。
2.自主探究:学生自主尝试各种角的比较方法,总结出比较角的大小的方法。
3.合作交流:学生分组讨论,分享各自的探究成果,互相学习和借鉴。
4.教师讲解:教师针对学生的探究结果,进行讲解和总结,使学生掌握角的比较方法。
5.巩固练习:学生进行角的比较练习,运用所学知识解决实际问题。
6.课堂小结:教师引导学生总结本节课所学内容,巩固知识点。
毕达哥拉斯(约公元前580——前500),古希腊数学家.他既是哲学家、数学家、又是天文学家,创建了政治、宗教、数学合一的秘密学术团体,这个团体被后人称为毕达哥拉斯学派.他提出了“万物皆数”的著名论断,被誉为西方理性数学的创始人.毕达哥拉斯定理(即勾股定理)是毕达哥拉斯的一大贡献,他还首创地圆说,认为日、月、星都是球体,悬浮在太空之中.22.角解读课标角也是一种最基本的几何图形,它在现实生活中随处可见.张开的剪刀、纵横交错的公路、钟面上的时针和分针等都给我们以角的形象.角既可以看作有公共端点的两条射线组成的图形,又可看作一条射线绕着它的端点旋转而成的图形.与角相关的知识有: 1.角平分线的概念; 2.角的分类;3.互余、互补等数量关系角.类似于解与线段相关的问题,解与角相关的问题时,往往用到相关概念、分类与讨论、代数式的思想等知识方法.问题解决例1 把一张长方形纸条按图中那样折叠后,若得到'70AOB ∠=︒,则'B OG ∠=_______.DOG ABCC'B'试一试 折痕OG 两旁的部分能互相重合,即OG 为'BOB ∠平分线,这是解本例的关键. 例2 如图,A 、O 、B 在一条直线上,AOC BOC ∠=∠,若12∠=∠,则图中互余的角共有( ). A .5对 B .4对 C .3对 D .2对21DOABCE试一试 从互余的概念入手,应注意等量代换,避免漏掉互余的角.例3 如图,已知2BOC AOC ∠=∠,OD 平分AOB ∠,且19COD ∠=︒,求AOB ∠的度数.试一试 设AOC x ∠=,建立方程,用代数方法计算.DABC例4 将一副三角板的两三角板如图放置,OM 平分AOC ∠,ON 平分DOC ∠. (1)将45︒三角板绕O 点旋转(30︒角的三角板不动),求MON ∠的大小.(2)若将30︒角三角板换成一个任意锐角的纸板,其他条件不变,(1)中的结论是否变化?(直接写出结论,不必说明理由)试一试 三角板绕O 点旋转过程中,有下列情形:OA 与OB 重合,OA 在COB ∠内部,COB ∠包含在AOD ∠内部,故分类讨论是解本例的关键.30°45°DOAB C例5 已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.图①DO ABC E图②DOA B C E(1)如图①,若30AOC ∠=︒,求DOE ∠的度数;(2)在图①中,若AOC α∠=,直接写出DOE ∠的度数(用含α的代数式表示); (3)将图①中的DOE ∠绕顶点O 顺时针旋转至图②的位置. ①探究AOC ∠与DOE ∠的度数之间的关系;②在AOC ∠的内部有一条射线OF ,满足42AOC AOF BOE AOF ∠-∠=∠+∠,试确定AOF ∠与DOE ∠的度数之间的关系,并说明理由.分析与解 对于(3)②,为方便设DOE x ∠=,AOF y ∠=,将条件等式变形为只含x ,y 的等式. (1)15︒ (2)2DOE α∠=(3)①12DOE AOC ∠=∠.②左边2424DOE AOF x y =∠-∠=-,右边()22901802BOE AOF x y x y =∠+∠=︒-+=︒-+, 即241802x y x y -=︒-+,得45180x y -=︒, 45180DOE AOF ∠-∠=︒∴.钟表上的角度例6 在0时到12时之间,钟面上的时针与分针在什么时候成60︒的角?试尽可能多地找出答案,又秒针与时针共有几次成60︒的角?分析与解 直觉作答或近似估计,可得到一些答案,而通过方程可使我们找到问题全部的解. 而列方程解答,又有几种不同的解题策略: (1)分别对两个整点之间的答案列出方程求解; (2)在上述某础上寻找规律求出全部解;(3)将问题看成圆周追及问题.设分针的速度为每分钟1个单位长度,则时针的速度为112,将时针、分针看成两个不同速度的人在环形跑道上同时(从0时开始)开始同向而行,要求使两者相距10个单位长度所用的时间.设从0时开始,过x 分钟后分针与时针成60︒的角,此时分针比时针多走了n 圈()0,1,2,3,,11n =,则601012x x n -=+,或605012xx n -=+, 解得()12601011x n =+或()12605011x n =+. 分别令以0n =,1,2,3,…,11,即得本题的所有22个解(精确到秒):0:54:33,2:00:00,3:05:27,4:10:55,5:16:22,6:21:49,7:27:16,8:32:44,9:38:11,10:43:38,11:49:05;1:16:22,2:21:49,3:27:16,4:32:44,5:38:11,6:43:38,7:49:05,8:54:33,10:00:00,11:05:27,0:10:55.在12小时内,秒针相对于时针走了60121719⨯-=圈,所以秒针与时针共有71921438⨯=次成60︒的角.数学冲浪 知识技能广场1.一个角的余角比它的补角的13还少20︒,则这个角是________.2.如图,将一副三角板的直角顶点重合,摆放在桌面上.(1)若145AOD ∠=︒,则BOC ∠=________. (2)若AOD BOC ∠=4∠,则AOC ∠=___________.DABC3.如图,AOB ∠是钝角,OC 、OD 、OE 是三条射线,若OC OA ⊥,OD 平分AOB ∠,OE 平分BOC ∠,那么DOE ∠的度数是_________.DOABCE4.如图,O 是直线AB 上一点,120AOD ∠=︒,90AOC ∠=︒,OE 平分BOD ∠,则图中彼此互补的角有________对.DOABCE5.在时刻8:30,时钟上的时针与分针之间的夹角为( ). A .85︒ B .75︒ C .70︒ D .60︒6.如图所示的44⨯的方格表中,设ABD α∠=,DEF β∠=,CGH γ∠=,则( ). A .βαγ<< B .βγα<< C .αγβ<< D .αβγ<<DGHABCEF7.如图,A 、O 、B 在一条直线上,1∠是锐角,则1∠的余角是( ).A .1212∠-∠B .132122∠-∠C .()1212∠-∠D .()1213∠+∠OAB128.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在'D 、'C 的位置.若65EFB ∠=︒,则'AED ∠等于( ).A .70︒B .65︒C .50︒D .25︒D'C'FEDCBA9.如图,已知OB 、OC 、OD 为AOE ∠内三条射线. (1)图中共有多少个角?(2)若OB 、OC 、OD 为AOE ∠四等分线,且图中所有锐角的和为400︒,求AOE ∠的度数; (3)若89AOE ∠=︒,30BOD ∠=︒,求图中所有锐角的和.OECBAD10.如图,两个形状、大小完全相同的含有30︒、60︒的三角板如图①放置,PA 、PB 与直线MN 重合,且三角板PAC ,三角板PBD 均可以绕点P 逆时针旋转.图①CBANMD图②FE C B AP NMD图③D MNPAC(1)试说明:90DPC ∠=︒;(2)如图②,若三角板PAC ∠的边PA 从PN 处开始绕点P 逆时针旋转一定角度,PF 平分APD ∠,PE 平分CPD ∠,求EPF ∠;(3)如图③,若三角板PAC 的边PA 从PN 处开始绕点P 逆时针旋转,转速为3/s ︒,同时三角板PBD 的边PB 从PM 处开始绕点P 逆时针旋转,转速为2/s ︒,在两个三角形旋转过程中(PC 转到与PM 重合时,两三角板都停止转动),问CPDBPN∠∠的值是否变化?若不变,求出其值;若变化,说明理由.思维方法天地11.以AOB ∠的顶点O 为端点引射线OC ,使:5:4AOC BOC ∠∠=,若15AOB ∠=︒,则AOC ∠的度数是__________.12.在上午10时30分到11时30分之间,时针和分针成直角的时刻是________. 13.如图,在33⨯的网格中标出了1∠和2∠,则12∠+∠=________.2114.如图,45BOD ∠=︒,90AOE ∠=︒,那么不大于90︒的角有________个,它们的度数之和是_______.DOAB CE15.如图,在一个正方体的2个面上画了两条对角线AB ,AC ,那么这两条对角线的夹角等于( ).A .60︒B .75︒C .90︒D .135︒CBA16.如图,直线AB 、CD 相交于点O ,OE AB ⊥于点O ,OF 平分AOE ∠,11531'∠=︒,则下列结论中不正确的是( ).A .245∠=︒B .13∠=∠C .AOD ∠与1∠互为补角 D .1∠的余角等于7531'︒DOA BCEF12317.如图是一个33⨯的正方形,则图中1239∠+∠+∠++∠的和等于( ). A .270︒ B .315︒ C .360︒ D .405︒987654321BA18.如图,OB 、OC 是AOD ∠的任意两条射线,OM 平分AOB ∠,ON 平分COD ∠,若MON α∠=,BOC β∠=,则表示AOD ∠的式子是( ).A .2αβ-B .αβ-C .αβ+D .以上都不正确D OMNAB C19.如图,在直线AB 上取一点O ,在AB 同侧引射线OC 、OD 、OE 、OF ,使COE ∠和BOE ∠互余,射线OF 和OD 分别平分COE ∠和BOE ∠,试探究AOF BOD ∠+∠与DOF ∠的关系,并说明理由.DO A BC EF20.如图①,点O 为直线AB 上一点.过O 点作射线OC ,使120BOC ∠=︒,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.图①CBAMO 图②OMA BC图③C BA NMO(1)将图①中的三角板绕点O 按逆时针方向旋转至图②,使一边OM 在BOC ∠的内部,且恰好平分BOC ∠.问:直线ON 是否平分AOC ∠?请说明理由;(2)将图中的三角板绕点O 按每秒6︒的速度逆时针方向旋转一周,在旋转的过程中,直线ON 恰好平分AOC ∠,求t 的值;(3)将图①中的三角板绕点O 按顺时针方向旋转至图③的位置,使ON 在AOC ∠的内部.请探究:AOM ∠与NOC ∠之间数量关系,并说明理由.应用探究乐园21.(1)时钟在2点15分时,时针和分针的夹角是多少度?(2)晚饭后,小明准备外出散步,出发时看了一下钟,时间是6点多,时针与分针成90︒角,散完步后回家,小明又看了一下钟,还不到7点,而时针与分针又恰好成90︒角,问小明外出多少分钟?22.已知150AOB ∠=︒,OC 是AOB ∠内的一条射线,射线OD 平分AOC ∠,射线OE 平分BOD ∠. (1)若AOD EOC ∠=∠(如图①),求AOD ∠的度数; (2)设()50AOD αα∠=≠︒,求AOD BOECOE∠-∠∠的值.DABCE图①OAB备用图AB备用图角答案问题解决例1 ()()111''180'1807055222B OG BOB AOB ∠=∠=︒-∠=︒-︒=︒.例2 B 90AOC BOC ∠=∠=︒,12∠=∠,COD AOE ∠=∠.例3 2BOC x ∠=,3AOB x ∠=,32AOD x ∠=,由AOD AOC COD ∠-∠=∠,得3192x x -=︒,解得38x =︒,故338114AOB ∠=⨯︒=︒.例4 (1)在旋转的过程中,12MON AOD ∠=∠这一关系不变,从而22.5MON ∠=︒. (2)略数学冲浪1.75︒ 2.(1)35︒;(2)54︒ 3.1452DOE AOC ∠=∠=︒4.6 5.B 6.B 7.C 8.C 9.(1)有10个角;(2)80AOE ∠=︒;(3)416︒. 10.(1)略(2)30EPF ∠=︒,设CPE DPE x ∠=∠=,CPF y ∠=.(3)设运动时间为t 秒,则2BPM t ∠=,1802BPN t ∠=︒-,302DPM t ∠=︒-,3APN t ∠=,18090CPD DPM CPA APN t ∠=︒-∠-∠-∠=︒-.90118022CPD t BPN t ∠︒-==∠︒-∴,为定值.11.若射线在AOB ∠的内部,则820'AOC ∠=︒;若射线OC 在AOB ∠的外部,则75AOC ∠=︒. 12. 10点23811分或11点101011分 设10点30分以后,过x 分钟,时针与分针的夹角为90︒,由60.513590x x -=-或60.513590x x -=+得2811x =或104011. 13.45︒ 通过拼补计算14. 10;450︒ 15.A 16.D17.D 沿AB 作对折时,上、下图形能够重合,得19264890∠+∠=∠+∠=∠+∠=︒. 18.A19.90COE BOE ∠+∠=︒,45DOF ∠=︒,135AOF BOD ∠+∠=︒,从而3AOF BOD DOF ∠+∠=∠. 20.(1)ON 平分AOC ∠; (2)10t =或40;(3)30AOM NOC ∠-∠=︒ 21.(1)22.5︒(2)由题意得:18060.590x x -+=,61800.590y y --=, 解得41611x =,14911y =,148491632111111y x -=-=.即小明出去了83211分钟. 22.(1)30AOD ∠=︒(2)如图①,当50α<︒时,原式31501503115031503αααα-︒︒-===︒-︒-;如图②,当50α>︒时,原式31503150131503150αααα-︒-︒===-︒-︒.O ED CBA图①ABCDEO图②。