生化习题及答案
- 格式:doc
- 大小:141.00 KB
- 文档页数:16
生化实验复习题及答案一、单项选择题1. 酶的催化作用主要依赖于其活性中心中的哪种基团?A. 疏水基团B. 极性基团C. 金属离子D. 氨基酸残基答案:B2. 以下哪种物质不是蛋白质的组成单位?A. 氨基酸B. 核苷酸C. 多肽D. 糖类答案:D3. DNA复制过程中,以下哪种酶负责解开双螺旋结构?A. DNA聚合酶B. DNA连接酶C. 拓扑异构酶D. 解旋酶答案:D二、填空题1. 蛋白质的一级结构是指_________的线性排列顺序。
答案:氨基酸2. 脂质体是一种由_________构成的球形结构。
答案:磷脂双层3. 核酸分子中的碱基配对遵循_________原则。
答案:互补配对三、简答题1. 描述糖酵解过程中的关键酶及其作用。
答案:糖酵解过程中的关键酶包括己糖激酶、磷酸果糖激酶-1和丙酮酸激酶。
己糖激酶催化葡萄糖磷酸化生成葡萄糖-6-磷酸,磷酸果糖激酶-1催化果糖-6-磷酸磷酸化生成果糖-1,6-二磷酸,丙酮酸激酶催化磷酸烯醇丙酮酸转化为丙酮酸,同时生成ATP。
2. 简述细胞呼吸过程中的三个主要阶段及其能量产生。
答案:细胞呼吸的三个主要阶段包括糖酵解、柠檬酸循环和电子传递链。
糖酵解在细胞质中进行,产生少量ATP和NADH;柠檬酸循环在细胞线粒体基质中进行,产生NADH、FADH2和少量ATP;电子传递链在线粒体内膜上进行,通过氧化NADH和FADH2产生大量的ATP。
四、计算题1. 如果一个DNA分子中有1000个碱基对,其中腺嘌呤占20%,那么该DNA分子中鸟嘌呤的含量是多少?答案:由于DNA中腺嘌呤(A)和胸腺嘧啶(T)配对,鸟嘌呤(G)和胞嘧啶(C)配对,且A+T=G+C,所以如果A占20%,则T也占20%,G 和C各占30%。
因此,鸟嘌呤的含量是1000个碱基对的30%,即300个鸟嘌呤。
第十九章肝胆生化一、选择题(一)A型题1. 有“物质代谢中枢”称号的器官是()A. 心B. 脑C. 肝D. 脾E. 肾2. 只在肝脏中合成的物质是()A. 血浆蛋白B. 胆固醇C. 激素D. 尿素E. 脂肪酸3. 只在肝脏中合成的蛋白质是()A. β-球蛋白B. α1-球蛋白C. α2-球蛋白D. 清蛋白E. γ-球蛋白4. 正常人血浆中的A/G比值是()A. <1B. 0.5~1.5C. 1.5~2.5D. 2.5~3.5E. 3.5~4.55. 肝脏化学组成的特点是()A. 糖原含量高B. 脂类含量高C. 蛋白质含量高D. 氨基酸含量高E. 脂肪含量高6. 只在肝脏中合成的是()A. 清蛋白B. 胆固醇C. 磷脂D. 脂肪酸E. 糖原7. 肝脏在糖代谢中的突出作用是()A. 使血糖浓度升高B. 使血糖浓度降低C. 使血糖浓度维持相对恒定D. 使血糖来源增多E. 使血糖来源减少8. 下面描述正确的是()A. 胆固醇只在肝脏中合成B. 胆固醇酯是在肝脏中生成的C. 酮体在肝脏中分解D. 胆汁酸是在胆囊中生成的E. 脂肪酸的合成和分解的主要场所是肝脏9. 只在肝脏中生成的物质是()A. 胆固醇B. 胆固醇酯C. 脂肪D. 尿素E. 蛋白质10. 下面描述正确的是()A. 凝血因子只在肝脏中合成B. 凝血酶原可在肝外合成C. 肝硬化患者常伴有A/G比值下降D. 纤维蛋白原可在肝外合成E. 血浆蛋白质在肝脏中合成11. 只在肝脏中合成的物质是()A. 尿酸B. 尿素C. 氨基酸D. 肌酸E. 多肽12. 肝内胆固醇的主要去路是()A. 转化为胆固醇酯B. 转化为肾上腺皮质激素C. 转化为7-脱氢胆固醇D. 转化为胆汁酸E. 转化为性激素13. 正常成人每天分泌的胆汁量是()A. <300mlB. 300~700mlC. 700~1000mlD. 1000~1400mlE. 1400~1800ml14. 初级胆汁酸是()A. 牛磺鹅脱氧胆酸B. 牛磺脱氧胆酸C. 牛磺石胆酸D. 甘氨脱氧胆酸E. 脱氧胆酸15. 次级胆汁酸是()A. 牛磺胆酸B. 甘氨脱氧胆酸C. 牛磺鹅脱氧胆酸D. 甘氨鹅脱氧胆酸E. 甘氨胆酸16. 次级胆汁酸()A. 在肝内由初级游离胆汁酸生成B. 在肠内由初级胆汁酸生成C. 在肝内由初级结合胆汁酸生成D. 在肠内由胆固醇生成E. 在肝内由胆固醇生成17. 在结合胆汁酸中,含甘氨酸者与含牛磺酸者之比约为()A. 1:1B. 1:2C. 1:3D. 2:1E. 3:118. 关于胆汁酸盐的错误叙述是()A. 能进入肠肝循环B. 不足时可导致生物体脂溶性维生素缺乏C. 是脂肪的乳化剂D. 由胆汁酸与钙离子结合而成E. 能激活脂肪酶19. 与胆囊胆汁相比,肝胆汁()A. 颜色变深B. 比重增大C. 含有较多的粘蛋白D. 含有较多的胆红素E. 含水量较高20. 糖异生、酮体合成和尿素合成都发生于()A. 心B. 脑C. 肌肉D. 肝E. 肾21. 存在于肝线粒体内的酶系是()A. 糖酵解酶系B. 酮体合成酶系C. 磷酸戊糖途径酶系D. 糖原分解酶系E. 脂肪酸合成酶系22. 血氨升高的主要原因是()A. 组织蛋白质分解过多B. 急性、慢性肾功能衰竭C. 肝功能障碍D. 便秘使肠道吸收氨过多E. 体内合成非必需氨基酸过多23. 主要在肝内储存的是()A. 视黄醇B. 泛酸C. 核黄素D. 硫胺素E. 吡哆醇24. 一般在肝内不能储存的维生素是()A. 维生素KB. 硫胺素C. 生育酚D. 钙化醇E. 视黄醇25. 胆汁中出现沉淀往往是由于()A. 胆汁酸盐过多B. 胆固醇过多C. 磷脂酰胆碱过多D. 次级胆汁酸盐过多E. 胆红素较少26. 关于胆红素的叙述,正确的是()A. 在单核-吞噬系统中形成的胆红素不能自由透过细胞膜进入血液B. 血浆清蛋白结合胆红素的潜力不大C. 血浆清蛋白与胆红素结合有利于胆红素进入肝细胞内D. 与清蛋白结合的胆红素称为游离胆红素E. 甘氨酸和脂肪酸可竞争性地与清蛋白结合置换出蛋白质27. 正常人血浆中无()A. 胆红素-清蛋白B. 胆素原C. 游离胆红素D. 胆素E. 间接胆红素28. 脂溶性的胆红素在肝中转变成水溶性的形式,主要是通过()A. 与甲基结合B. 与甘氨酸结合C. 与葡糖醛酸结合D. 与乙酰基结合E. 与硫酸结合29. 在肝内形成的胆红素是()A. 尿胆素B. 未结合胆红素C. 粪胆素D. 结合胆红素E. 胆素原30. 关于结合胆红素的错误叙述是()A. 与重氮试剂呈直接反应B. 水溶性大C. 主要是葡糖醛酸胆红素D. 在肝脏生成E. 随人体尿液排出31. 溶血性黄疸时不出现()A. 粪便中胆素原增加B. 血中未结合胆红素增加C. 尿中胆素原增加D. 粪便颜色加深E. 尿中出现胆红素32. 阻塞性黄疸时不出现()A. 血中未结合胆红素增加B. 粪便颜色变浅C. 血中结合胆红素增加D. 尿中胆素原减少E. 尿中出现胆红素33. 肝细胞性黄疸时不出现()A. 粪便颜色可变浅B. 血中结合胆红素增加C. 尿中胆素原一般增加D. 血中未结合胆红素减少E. 尿中出现胆红素34. 生物转化最主要的作用是()A. 使药物失效B. 使毒物的毒性降低C. 使生物活性物质灭活D. 使某些药物药效更强或使某些毒物毒性增加E. 改变非营养性物质极性,利于排泄35. 生物转化作用最活跃的器官是()A. 肾B. 胃肠道C. 肺D. 肝E. 皮肤36. 不属于生物转化反应的是()A. 氧化B. 还原C. 水解D. 结合E. 磷酸化37. 属于生物转化第一相反应的是()A. 与葡糖醛酸结合B. 与硫酸结合C. 与甲基结合D. 与氧结合E. 与乙酰基结合38. 肝中进行生物转化时活性葡糖醛酸的供体是()A. GlcUAB. UDP-GlcC. ADP-GlcUAD. UDP-GlcUAE. CDP-GlcUA39. 生物转化时氧化反应发生于()A. 线粒体B. 细胞液C. 微粒体D. 细胞膜E. 细胞核40. 脂肪肝的重要原因之一是缺乏()A. 糖B. 酮体C. 胆固醇D. 磷脂E. 脂肪酸。
一、名词解释变构效应: 酶分子的非催化部位与某些化合物可逆地非共价结合后会使酶分子构象发生改变,进而会改变酶的活性状态,或是增加酶活力或是抑制酶活力,这种效应即称为酶的别构效应。
等电点:在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势和程度相等,成为兼性离子,呈电中性,此时溶液的pH 称为该氨基酸的等电点。
盐析:若向蛋白质溶液中加入大量中性盐时反而会因自由水成为盐离子的水化水而降低蛋白质的溶解度合使其从溶液中析出,此现象称为盐析。
亚基:有些蛋白质的分子量很大,由2条或2条以上具有独立三级结构的多肽链通过非共价键相互结合而成,称为蛋白质的四级结构。
构成四级结构的每条多肽链称为亚基 (subunit)诱导楔合学说:指用来解释酶的专一性的一种学说,该学说认为酶与底物的分子形状并不是正好完全互补的,而是在结合过程中,由于酶分子或底物分子,有时是二者的构象同时发生了改变才正好互补,发生催化反应的,这种动态过程即称为酶的诱导契合稳态:催化部位:酶活性中心:在酶分子中与酶活力直接相关的区域往往是由少数几个特异性的氨基酸残基集中的区域,这少数几个氨基酸残基参与底物结合和催化反应,因此这个区域称为酶活性中心或活性部位,一般可分为结合部位和催化部位.Tm: 当核酸分子发生热变性时,其 260nm 紫外吸收增加,双螺旋解体成单链,当双螺旋结构解体到一半时的温度称为核酸的热变性温度或熔解温度,以Tm 表示。
Tm 大小与核酸的均一性、G+C 含量等因素有关。
增色效应: DNA 变性后紫外吸收增加的现象称为增色效应减色效应:而当核酸热变性后在缓慢冷却条件下发生复性时,紫外吸收值会减少的现象称为核酸的减色效应。
终止因子:终止子是转录的终止控制元件,是基因末端一段特殊的序列,它使 RNA 聚合酶在模板上的移动减慢,停止 RNA 的合成。
启动子: 启动子是 RNA 聚合酶识别、结合和开始转录的一段 DNA 序列。
激酶:催化磷酸基从ATP转移到相应底物上的酶叫做激酶。
第一章蛋白质选择题1.某一溶液中蛋白质的百分含量为45%,此溶液的蛋白质氮的百分浓度为:EA.8.3% B.9.8% C.6.7% D.5.4% E.7.2%2.下列含有两个羧基的氨基酸是:DA.组氨酸B.赖氨酸C.甘氨酸D.天冬氨酸E.色氨酸3.下列哪一种氨基酸是亚氨基酸:AA.脯氨酸B.焦谷氨酸C.亮氨酸D.丝氨酸E.酪氨酸4.维持蛋白质一级结构的主要化学键是:CA.离子键B.疏水键C.肽键D.氢键E.二硫键5.关于肽键特点的错误叙述是:EA.肽键中的C-N键较C-N单键短B.肽键中的C-N键有部分双键性质C.肽键的羰基氧和亚氨氢为反式构型D.与C-N相连的六个原子处于同一平面上E.肽键的旋转性,使蛋白质形成各种立体构象6.关于蛋白质分子三级结构的描述,其中错误的是:BA.天然蛋白质分子均有这种结构B.有三级结构的多肽链都具有生物学活性C.三级结构的稳定性主要是次级键维系D.亲水基团聚集在三级结构的表面E.决定盘曲折叠的因素是氨基酸残基7.具有四级结构的蛋白质特征是:EA.依赖肽键维系四级结构的稳定性B.在三级结构的基础上,由二硫键将各多肽链进一步折叠、盘曲形成C.每条多肽链都具有独立的生物学活性D.分子中必定含有辅基E.由两条或两条以上具有三级结构的多肽链组成8.含有Ala,Asp,Lys,Cys的混合液,其pI依次分别为6.0,2.77,9.74,5.07,在pH9环境中电泳分离这四种氨基酸,自正极开始,电泳区带的顺序是:BA.Ala,Cys,Lys,AspB.Asp,Cys,Ala,LysC.Lys,Ala,Cys,AspD.Cys,Lys,Ala,AspE.Asp,Ala,Lys,Cys9.变性蛋白质的主要特点是:DB.溶解度增加C.不易被蛋白酶水解D.生物学活性丧失E.容易被盐析出现沉淀10.蛋白质分子在280nm处的吸收峰主要是由哪种氨基酸引起的:BA.谷氨酸B.色氨酸C.苯丙氨酸D.组氨酸E.赖氨酸第2章核酸的结构与功能1 [提示]思考题1.细胞有哪几类主要的RNA?其主要功能。
生化检验课后复习题答案1. 酶活性测定中,常用的酶活性单位是什么?答案:国际单位(IU)。
2. 血红蛋白测定中,常用的波长是多少?答案:540nm。
3. 血清蛋白电泳中,主要的蛋白质组分有哪些?答案:白蛋白、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白。
4. 脂质代谢紊乱时,血清中哪些指标会升高?答案:总胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白胆固醇(LDL-C)。
5. 血糖测定中,空腹血糖的正常值范围是多少?答案:3.9-6.1mmol/L。
6. 尿素氮测定中,正常值范围是多少?答案:2.8-7.2mmol/L。
7. 肌酐测定中,男性和女性的正常值范围分别是多少?答案:男性:53-106μmol/L;女性:44-97μmol/L。
8. 肝功能检查中,ALT的正常值范围是多少?答案:7-56U/L。
9. 肾功能检查中,血肌酐的正常值范围是多少?答案:男性:53-106μmol/L;女性:44-97μmol/L。
10. 血脂检查中,HDL-C的正常值范围是多少?答案:男性:0.91-1.55mmol/L;女性:0.90-1.90mmol/L。
11. 血气分析中,动脉血pH的正常值范围是多少?答案:7.35-7.45。
12. 电解质检查中,血清钾的正常值范围是多少?答案:3.5-5.5mmol/L。
13. 甲状腺功能检查中,TSH的正常值范围是多少?答案:0.4-4.0mIU/L。
14. 糖化血红蛋白测定中,正常值范围是多少?答案:4%-6%。
15. 尿液分析中,尿蛋白的正常值是多少?答案:阴性或小于150mg/24小时。
生化习题及解答(共21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--绪论什么是生物化学及其研究内容答:生物化学是一门在分子水平上研究生物体的化学组成、生命活动中的化学变化规律和生命本质的科学。
研究内容为:一、生物体的物质组成及生物分子的结构与功能;二、代谢及其调节;三、基因表达及其调控。
蛋白质化学1.什么是蛋白质答:蛋白质是由氨基酸连接形成的大分子化合物,分子内成千上万原子的空间排布十分复杂。
2.蛋白质元素组成特点是什么答:C、H、O和N是组成蛋白质的主要元素;有些蛋白质还含有S和P,还有些蛋白质含有Fe、Cu、Zn、Mn、Co、Mo和I等;N是蛋白质的特征性元素,各种元素的含氮量很接近,平均值为16%。
3.什么是肽键什么是肽答:在蛋白质分子内,一个氨基酸的α-氨基酸缩合形成的化学键称为肽键。
肽是氨基酸的链状聚合物。
由两个氨基酸构成的肽是二肽,三肽和四肽等依此类推。
通常把2-10个氨基酸构成的肽称为寡肽;由更多氨基酸构成的肽称为多肽。
4.蛋白质的二级结构有哪几种答:有肽单元与肽平面、α螺旋、β折叠、β转角和无规卷曲。
肽键结构的四个原子与两个Cα构成一个肽单元;其中的六个原子处于同一平面,称为肽平面。
肽平面围绕C旋转盘绕形成右手螺旋结构,称为α螺旋。
多肽链局部肽段的主链呈锯齿状伸展状态,称为β折叠。
β转角位于肽链进行回折时的转折部位,由四个氨基酸构成,其中第二个氨基酸常为脯氨酸,第一个氨基酸的羰基O与第四个氨基酸的氨基H形成氢键.蛋白质多肽链的一些肽段的构象没有规律性,这些构象称为无规卷曲。
5.维持蛋白质空间结构主要化学键有哪些答:有肽键、二硫键、氢键、疏水作用、离子键和范德华力。
如果一个蛋白质内含有多个半胱氨酸,其巯基就可以通过氧化脱氢形成二硫键。
与O或N以共价键结合的H与另一个O或N结合所形成的化学键称为氢键。
疏水作用是指疏水性分子或基团为减少与水的接触而彼此聚集的一种相对作用力。
第四章糖代谢一、单项选择题1..糖类最主要的生理功能是:A.提供能量B. 细胞膜组分C. 软骨的基质D. 信息传递作用E.免疫作用2..关于糖酵解途径的叙述错误的是:A.是体内葡萄糖氧化分解的主要途径B.全过程在胞液中进行C.该途径中有 ATP 生成步骤D. 是由葡萄糖生成丙酮酸的过程E.只有在无氧条件下葡萄糖氧化才有此过程3..人体内糖酵解途径的终产物:A.CO2 和 H2OB. 丙酮酸C. 丙酮D. 乳酸E.草酰乙酸4..关于糖酵解途径中的关键酶正确的是:A.磷酸果糖激酶-1B. 果糖双磷酸酶-1C.磷酸甘油酸激酶D.丙酮酸羧化酶E.果糖双磷酸酶-2 5..调节糖酵解途径流量最重要的酶是:A.己糖激酶B. 6-磷酸果糖激酶-1C.磷酸甘油酸激酶D.丙酮酸激酶E.葡萄糖激酶6..1 分子葡萄糖经酵解生成乳酸时净生成 ATP 的分子数为:A.1B. 2C. 3D. 4E.5 7..糖原分子的一个葡萄糖残基酵解成乳酸时净生成 ATP 的分子数为:A.1B. 2C. 3D. 4 E.58.1 分子葡萄糖在有氧或无氧条件下经酵解途径氧化净生成 ATP 分子数之比为:A.2B.4C.6D.19E.36 9. 1 分子葡萄糖通过有氧氧化和糖酵解净产生 ATP 分子数之比为:A.2B. 4C. 6D .19E.36 10..成熟红细胞仅靠糖酵解供给能量是因为:A.无氧B. 无 TPPC. 无 COAD.无线粒体E.无微粒体11..糖酵解是:A.其终产物是丙酮酸B. 其酶系在胞液中C.不消耗 ATPD.所有反应均可逆E.通过氧化磷酸化产生 ATP 12..下列哪种酶与糖酵解途径无关?A.己糖激酶B. 醛缩酶C. 烯醇化酶D.磷酸甘油酸激酶E.磷酸烯醇式丙酮酸羧激酶13..关于有氧氧化的叙述,错误的是:A.糖有氧氧化是细胞获能的主要方式B.有氧氧化可抑制糖酵解C.糖有氧氧化的终产物是 CO2 和 H2OD.有氧氧化只通过氧化磷酸化产生 ATPE.有氧氧化在胞浆和线粒体进行14..下列哪一种不是丙酮酸脱氢酶复合体的辅酶?A.TPPB. FADC.NAD+D.硫辛酸E.生物素15..l 分子丙酮酸在线粒体内氧化成CO2 和H2O 时生成多少分子ATP?A.2D.12E.15 16..1 分子乙酰 CoA 经三羧酸循环氧化后的产物是:A.柠檬酸B.草酰乙酸C.CO2+ 4 分子还原当量D.CO2+ H2OE.草酰乙酸十 CO217..三羧酸循环中底物水平磷酸化的反应是:A.柠檬酸→异柠檬酸B.异柠檬酸→α-酮戊二酸C.α-酮戊二酸→琥珀酸D.琥珀酸→延胡索酸E.延胡索酸→草酰乙酸18..α-酮戊二酸脱氢酶复合体中不含哪种辅酶?A.硫辛酸B.FMNC.NAD+D.FADE.TPP19.调节三羧酸循环运转速率最主要的酶是:A.柠檬酸合成酶B.异柠檬酸脱氢酶C.琥珀酰 CoA 合成酶D.琥珀酸脱氢酶E.苹果酸脱氢酶20..三羧酸循环中产生 ATP 最多的反应是:A.柠檬酸→异柠檬酸B.异柠檬酸→α-酮戊二酸C.α-酮戊二酸→琥珀酸D.琥珀酸→延胡索酸E.苹果酸→草酸乙酸21..关于乙酰 CoA 的叙述,下列哪一项是错误的?A.丙酮酸生成乙酰 CoA 的过程不可逆B.三羧酸循环可逆向合成乙酰 CoAC.乙酰 CoA 是三大物质代谢的共同中间产物D.乙酰 CoA 不能进入线粒体E.乙酰 CoA 含有高能硫脂键22..三羧酸循环中底物水平磷酸化产生的高能化合物是:A.GTPB.ATP C.TTPD.UTPE.CTP23..丙酮酸脱氢酶复合体存在于细胞的:A.胞液B.线粒体C.微粒体D.核蛋白体E.溶酶体24..l 分子葡萄糖经过有氧氧化彻底分解成 CO2 和 H2O 的同时净生成:A.2~3 分子 ATPB.6~8 分子 ATPC.12~15 分子 ATPD.36~38 分子 ATPE.38~40 分子 ATP25..巴斯德效应是:A.有氧氧化抑制糖酵解B.糖酵解抑制有氧氧化C.糖酵解抑制糖异生D.有氧氧化与糖酵解无关E.有氧氧化与耗氧量成正比26..关于三羧酸循环的叙述哪项是错误的?A.每次循环消耗一个乙酰基B.每次循环有 4 次脱氢、2 次脱羧C.每次循环有 2 次底物水平磷酸化D.每次循环生成 12 分子 ATPE.提供生物合成的前体27..三羧酸循环主要在细胞的哪个部位进行?A.胞液B.细胞核C.微粒体D.线粒体E.高尔基体28..磷酸戊糖途径主要是:A.生成 NADPH 供合成代谢需要B.葡萄糖氧化供能的途径C.饥饿时此途径增强D.体内 CO2 生成的主要来源E.生成的 NADPH 可直接进电子传递链生成 ATP 29..磷酸戊糖途径是在哪个亚细胞部位进行?A.胞液中B.线粒体C.微粒体D.高尔基体 E.溶酶体30..磷酸戊糖途径主要的生理功用:A.为核酸的生物合成提供核糖B.为机体提供大量 NADH 十 H+C.生成 6-磷酸葡萄糖D. 生成 3-磷酸甘油醛E.生成 6-磷酸葡萄糖酸31..由于红细胞中的还原型谷胱苷肽不足,而易引起贫血是缺乏:A.葡萄糖激酶B. 葡萄糖 6-磷酸酶C.6-磷酸葡萄糖脱氢酶D.磷酸果糖激酶E.果糖双磷酸酶32..6-磷酸葡萄糖脱氢酶催化的反应中直接受氢体是:A.NAD+B.NADP+C.FADD.FMNE.CoA.SH33..葡萄糖合成糖原时的活性形式是:A.1-磷酸葡萄糖B. 6-磷酸葡萄糖C、UDPGD.CDPGE.GDPG34..糖原合成是耗能过程,每增加一个葡萄糖残基需消耗 ATP 的分子数为:A.1B.2C.3D.4E.5 35..肝糖原分解能直接补充血糖是因为肝脏含有:A.磷酸化酶B.磷酸葡萄糖变位酶C.葡萄糖激酶D.葡萄糖-6-磷酸酶E.果糖双磷酸酶36..关于糖原合成的叙述错误的是:A.葡萄糖的直接供体是 UDPGB.从 1-磷酸葡萄糖合成糖原不消耗高能磷酸键C.新加上的葡萄糖基连于糖原引物非还原端D.新加上的葡萄糖基以α-1, 4 糖苷键连于糖原引物上E.新加上的葡萄糖基连于糖原引物 C4 上37..肌糖原不能直接补充血糖是缺乏: A.磷酸化酶B.α-1,6-糖苷酶C.丙酮酸激酶D.变位酶E.葡萄糖-6-磷酸酶38..下列哪种酶不是糖异生的关键酶?A.丙酮酸羧化酶B.磷酸烯醇式丙酮酸羧激酶C.磷酸甘油酸激酶D.果糖双磷酸酶E.葡萄糖 6-磷酸酶39..下列哪种酶在糖异生和糖酵解中都起作用?A.丙酮酸激酶B.丙酮酸羧化酶C.果糖双磷酸酶D.3-磷酸甘油醛脱氨酶E.己糖激酶40..位于糖酵解、糖异生、磷酸戊糖途径、糖原合成与分解各代谢途径交汇点的化合物是:A.1-磷酸葡萄糖B. 6-磷酸葡萄糖C.l,6-双磷酸果糖D.6-磷酸果糖E.3-磷酸甘油醛41..关于 NADPH 生理功用的叙述不正确的是:A.为供氢体参与脂肪酸、胆固醇的合成B.NADPH 参与体内羟化反应C.有利于肝脏的生物转化作用D.NADPH 产生过少时易造成溶血性贫血E.使谷胱苷肽保持氧化状态42..某种遗传性疾病患者在服用蚕豆或抗疟疾药后,诱发溶血性贫血其原因是: A.抗疟疾药破坏红细胞B.磷酸戊糖途径障碍C.红细胞过氧化氢减少D.体内 GSH 量增多E.NADH+H+生成增多43..肝糖原与肌糖原在代谢中的不同点是:A.通过 UDPG 途径合成糖原B.可利用葡萄糖合成糖原C.糖原合成酶促糖原合成D.分解时可直接调节血糖E.合成糖原需消耗能量44.. l 分子葡萄糖先合成糖原再酵解成乳酸,净生成 ATP 的分子数为:A.0B.1C.2D.3E.445..1 分子葡萄糖在有氧条件下彻底氧化分解,该反应途径中有几次脱氢反应? A.10B. 12C.14D.16E.18 46..关于糖原累积症的叙述错误的是:A.是一种遗传性代谢病B.可分为 10 型C.Ⅲ型糖原累积症缺乏α-1,6 糖苷酶D.Ⅰ型糖原累积症缺乏葡萄糖 6-磷酸酶E.受累器官仅是肝、肾47..关于磷酸戊糖途径的叙述,下列哪项是不正确的?A.存在于生物合成较旺盛的组织细胞B.有氧化反应发生C.在胞液中进行D.反应过程中有 CO2 生成E.产生的 NADPH 能进行氧化磷酸化48..三羧酸循环中不提供氢和电子对的步骤是:A.柠檬酸→异柠檬酸B.异柠檬酸→α-酮戊二酸C.α-酮戊二酸→琥珀酸D.琥珀酸→延胡索酸E.苹果酸→草酰乙酸49..下列哪种产能过程不在线粒体进行?A.三羧酸循环B.糖酵解C.脂肪酸氧化D.酮体的氧化E.氧化磷酸化50..空腹血糖的正常浓度是:A.3.31~5.61 mmol/LB. 3.89~6.11mmol/LC.4.44~6.67 mmol/LD.5.56~7.61 mmol/LE.6.66~8.88 mmol/L51..调节血糖最主要的器官是:A.脑B.肾C.肝 D.胰E.肾上腺52..正常静息状态下,血糖是下列哪种组织器官的主要能源?A.肝脏B.肾脏C.脂肪D.大脑E.胰腺53..长期饥饿时,血糖的主要来源是:A.食物的消化吸收B.肝糖原的分解C.肌糖原的分解D.甘油的异生E.肌肉蛋白质的降解54..关于胰岛素作用的叙述错误的是。
一 选择题1—5:④ ③ ② ③ ②二填空题1.一个带负电荷的蛋白质可牢固地结合到阴离子交换剂上,因此需要一种比上样缓冲液的pH 更 低 或/和离子强度更 大 的缓冲液,才能将此蛋白质洗脱下来。
2.聚丙烯酰胺凝胶电泳是鉴定蛋白质______均一性(或纯度)_____ ____最简便而有效的方法。
三 解释名词 (略)四 问答计算1~3, 答案略4, 凝胶过滤层析中,蛋白质分子通过凝胶柱的速度不直接取决于分子的质量,而是它的斯托克半径; 层析柱中的填料凝胶是某些惰性的多孔网状结构物质,多是交联的聚糖(如葡聚糖或琼脂糖)类物质,小分子物质能进入其内部,流下来速度慢,而大分子物质却被排阻在外部,下来的速度快,当一混合溶液通过凝胶过滤层析柱时,溶液中的物质就按不同分子量筛分开了。
聚丙烯酰胺凝胶电泳中蛋白分子迁移速率与分子的电荷及形状无关,而直接取决于分子质量。
凝胶电泳中,大小和形状不同的蛋白质通过一定孔径分离胶时,受阻滞的程度不同而表现出不同的迁移率,这就是分子筛效应。
蛋白质进入同一孔径的分离胶后,分子小且为球状的蛋白质分子所受阻力小,移动快,走在前面;反之,则阻力大,移动慢,走在后面,从而通过凝胶的分子筛作用将各种蛋白质分成各自的区带5, 130006, 过氧化氢酶,血清清蛋白,胰凝乳蛋白酶原,肌红蛋白,细胞色素c7, a 正极,b 负极,正极,c 负极,不动,正极8,计算二肽Lys −Asp 的等电点。
(5分)(+3''COOH NH p 8.01,p 2.81K K αα--==,+3''n COOH NH p 10.58,p 4.45K K βε--==)答:pI=+3''COOH NH p p 2K K βα--+=8.01 4.45 6.232+= 9,为何各种不同蛋白质的等电点并不一样?为什么把蛋白质溶液调到等电点会产生沉淀?(5分)答:组成蛋白质的氨基酸序列不同,空间结构不同。
生化测试一:蛋白质化学一、填空题1.氨基酸的结构通式为 H 3N CH C O OR -+a 。
2.氨基酸在等电点时,主要以 兼性/两性 离子形式存在,在pH>pI 的溶液中,大部分以阴 离子形式存在,在pH<pI 的溶液中,大部分以阳离子形式存在。
3.生理条件下(pH7.0左右),蛋白质分子中的Arg 侧链和 Lys__侧链几乎完全带正电荷,但 His 侧链带部分正电荷。
4.测定蛋白质紫外吸收的波长,一般在280nm ,要由于蛋白质中存在着Phe 、 Trp 、 Tyr 氨基酸残基侧链基团。
5.皮肤遇茚三酮试剂变成 蓝紫 色,是因为皮肤中含有 蛋白质 所致。
6.Lys 的pk 1(COOH-α)=2.18,pk 2(3H N +-α)=8.95,pk 3(3H N +-ε)=10.53,其pI 为 9.74 。
在pH=5.0的溶液中电泳,Lys 向 负 极移动。
7.实验室常用的甲醛滴定是利用氨基酸的氨基与中性甲醛反应,然后用碱(NaOH )来滴定 NH 3+/氨基 上放出的 H 。
8. 一个带负电荷的氨基酸可牢固地结合到阴离子交换树脂上,因此需要一种比原来缓冲液pH 值 小 和离子强度 高 的缓冲液,才能将此氨基酸洗脱下来。
9. 决定多肽或蛋白质分子空间构像能否稳定存在,以及以什么形式存在的主要因素是由 一级结构 来决定的。
10. 测定蛋白质中二硫键位置的经典方法是___对角线电泳 。
11. 从混合蛋白质中分离特定组分蛋白质的主要原理是根据它们之间的 溶解度 、 分子量/分子大小 、 带电性质 、 吸附性质 、 生物亲和力 。
12. 蛋白质多肽链主链构象的结构单元包括__α-螺旋__、_β-折叠__、__β-转角__等,维系蛋白质二级结构的主要作用力是__氢__键。
13. 蛋白质的α—螺旋结构中, 3.6 个氨基酸残基旋转一周,每个氨基酸沿纵轴上升的高度为 0.15 nm ,旋转 100 度。
生化习题及答案(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一.选择题1.唾液淀粉酶应属于下列那一类酶( D );A 蛋白酶类B 合成酶类C 裂解酶类D 水解酶类2.酶活性部位上的基团一定是( A );A 必需基团B 结合基团C 催化基团D 非必需基团3.实验上,丙二酸能抑制琥珀酸脱氢酶的活性,但可用增加底物浓度的方法来消除其抑制,这种抑制称为( C );A 不可逆抑制B 非竟争性抑制C 竟争性抑制D 非竟争性抑制的特殊形式4.动物体肝脏内,若葡萄糖经糖酵解反应进行到3-磷酸甘油酸即停止了,则此过程可净生成( A )ATP;A 0B -1C 2D 35.磷酸戊糖途径中,氢受体为( B );A NAD+B NADP+C FAD D FMN6.高等动物体内NADH呼吸链中,下列那一种化合物不是其电子传递体( D );A 辅酶QB 细胞色素bC 铁硫蛋白D FAD7.根据化学渗透假说理论,电子沿呼吸链传递时,在线粒体内产生了膜电势,其中下列正确的是( A );A 内膜外侧为正,内侧为负B 内膜外侧为负,内侧为正C 外膜外侧为正,内侧为负D 外膜外侧为负,内侧为正8.动物体内,脂酰CoA经β-氧化作用脱氢,则这对氢原子可生成( B )分子ATP;A 3B 2C 4D 19.高等动物体内,游离脂肪酸可通过下列那一种形式转运( C );A 血浆脂蛋白B 高密度脂蛋白C 可溶性复合体D 乳糜微粒10.对于高等动物,下列属于必需氨基酸的是(B );A 丙氨酸B 苏氨酸C 谷氨酰胺D 脯氨酸11.高等动物体内,谷丙转氨酶(GPT)最可能催化丙酮酸与下列那一种化合物反应( D );A 谷氨酰胺B α-酮戊二酸C 丙氨酸D 谷氨酸12.哺乳动物体内,尿素生成机制是在( B )中进行;A 线粒体B 线粒体和细胞质C 线粒体和溶酶体D 溶酶体13.在DNA的二级结构中,两条链的方向是( B );A 相同的B 相反的C 可相同也可相反D 不可能复制时,开始于( A );A 特定的起点B AUGC 启动子D 任何位置生物合成时,其合成方向是 ( C );A 5→3B 3′→5′C 5′→3′D B和C和UGC都代表半胱氨酸,它们可称为( D );A 通用密码子B 摇摆密码C 互用密码D 同义密码子17.原核生物完整核糖体为70s,由一个30s和( B )亚基组成;A 40sB 50sC 60sD 20s18.核糖体在mRNA模板上移动需要( A )参与;A EF-GB EF-TuC EF-TsD IF119.原核生物多肽链合成终止时需要( A )识别终止密码UAG;A RFB RRC RF1D RF220.你认为下列那一类物质合成后不需要加工即具有生物学功能( D );A tRNAB 肽链C mRNAD DNA21.下列那一种为真核生物肽链生物合成时的第一个氨基酸( A );A 甲硫氨酸B 亮氨酸C 甲酰甲硫氨酸D A和C22.大肠杆菌乳糖操纵子中,β-半乳糖苷酶合成时的诱导物为( D );A 半乳糖B 乳糖C 葡萄糖D 半乳糖苷23.到目前为止,发现下列那一种不是遗传信息的传递方向( D );A DNA→RNAB RNA→DNAC DNA→DNAD 蛋白质→DNA24.下列那一种不是AA-tRNA合成酶的功能( D );A 将氨基酸接合于tRNA上B 专一地识别氨基酸C 专一地识别tRNAD 水解肽链与tRNA 的酯键25.有一DNA模板5′AATTCCGGGGCCTTAA3′,其转录产物应为( C );A 5′TTAAGGCCCCGGAATT3′B 5′UUAAGGCCCCGGAATT3′C 5′UUAAGGCCCCGGAAUU3′D B和C二.判断题1.生物化学是研究地球上物质的化学组成、性质及其相互关系的学科。
+2.没有活性的酶叫酶原。
.-3.酶与一般催化剂不同,因此它不需要降低反应活化能即可提高反应速度-。
4.高等动物体内有许多激素能调节血糖浓度,如胰岛素即可降低血糖浓度。
+5.所有的细胞都含有RNA和DNA。
-6.琥珀酸脱氢酶的辅酶为FAD。
+7.所有氨基酸都可以在动物体内转变为脂肪。
+呼吸链中,ATP生成部位其中一个是在细胞色素C氧化酶复合体(细胞色素a到O2)。
+9.肉碱的功能是携带脂酰CoA进入线粒体内。
+10.哺乳动物体内尿素是在肝脏中合成,但需消耗能量GTP。
-11.所有生物其遗传信息都是贮存于DNA中。
-12.在DNA的损伤与修复中,切除修复是光修复中的一种。
-13.目前认为,蛋白质生物合成时,其解码系统包括tRNA和氨基酰-tRNA合成酶。
+14.核糖体上P部位是结合氨基酰-tRNA的部位。
-15.核酸是一种重要的营养物质。
-三.填空题1.酶是由( 生物活细胞 )产生的具有( 高度专一性和催化能力 )的生物催化剂,其专一性是指酶对于( 底物 )和( 反应类型 )有严格的选择性,;脲酶催化尿素的水解反应为( 反应类型 )专一性。
.2.根据酶分子的特点可以将酶分子分成下列三类( 单体酶 )、寡聚酶和( 多酶复合体 )。
又名( 硫胺素焦磷酸 ),叶酸在动物体内通过合成( 核酸 )而起作用。
4.影响酶促反应的因素主要有温度、( PH )、( 酶浓度 )、底物浓度、( 抑制剂 )和( 激活剂 ).5.高等动物体内糖来源的主要途径有( 消化吸 )和(非糖物质转换化 )。
6.高等动物体内,催化葡萄糖生成6-磷酸葡萄糖的酶为( 己糖激酶 ),而催化柠檬酸循环第一个反应的酶为(柠檬酸合成酶 )。
7.( ATP )是生物体中自由能的通用货币。
8.在高等动物肝脏和心肌等组织中,1分子葡萄糖彻底氧化分解可净得( 36或38 )分子ATP.9.高等动物体内,脂肪经( 脂肪酶 )水解可生成甘油和( 游离脂肪酸 )。
10.高等动物体内,脂酰CoA经过脱氢、( 加水 )、( 脱氢 )、硫解四步反应,生成比原来少2个碳原子的脂酰CoA和1分子的乙酰CoA的过程称为一次β-氧化作用。
11.高等动物体内,由于糖与脂类代谢的紊乱而引起血中酮体含量超过肝外组织的利用能力则称为( 酮病 )。
12.为了了解畜禽由饲料摄入的蛋白质是否满足机体的需要而须进行氮平衡测定,其情况可有下列三种( 氮的总平衡 )、( 氮的正平衡 )和氮的负平衡。
13.高等动物体内氨基酸经( 脱羧酶 )作用可生成胺和( CO2 )。
14.在生物体内有许多催化核酸水解的酶,称( 核酸酶 );按其底物不同,有一能水解核糖核酸的酶,可把它称为( 核糖核酸酶 )。
15.血浆脂蛋白根据其密度由小至大可分为(乳糜微粒)、(极低密度脂蛋白)(低密度脂蛋白)和(高密度脂蛋白)。
16.大肠杆菌DNA聚合酶Ⅰ具有(5′→3′聚合 )、5′→3′外切和( 3’→5’外切 )。
17.( PCR )是一种快速DNA特定片段体外合成扩增的方法,该技术现已成为医学、( 分子生物学 )、( 生物工程 )等领域不可缺少的工具。
18.催化RNA合成的酶称为( RNA聚合酶 ),对于大肠杆菌,此酶由(α亚基 )、( β亚基 )、β′亚基和(σ亚基 )组成;RNA生物合成时,把DNA模板中被转录的一股链称为( 模板链 )。
19.生物界中,现发现的遗传密码(密码子)共有( 64 )个,其中( UAA )、UAG、( UGA )称为终止密码子;反密码子CCA识别密码子(UGG )。
四.名词解释1.操纵子操纵子是原核生物在分子水平上基因表达调控的单位。
2.密码子 3个核苷酸组成的三联体3.半保留复制原则 DNA复制时,双链分开,以其中一条为模板在其上合成新的互补链,结果子代DNA分子中一条链来自亲代,而另一条链是新合成的,这种方式称为半保留复制4.同工酶催化相同的化学反应,但酶蛋白的分子结构、理化特性和免疫学性质不同的一组酶5.葡萄糖异生作用由非糖物质转变为葡萄糖和糖原的过程6.必需氨基酸动物体内不能合成或合成速度太慢,远不能满足动物的需要,必须由饲料供给的氨基酸。
五. 用反应方程式表示丙酮酸脱氢酶复合体、脂酰CoA合成酶所催化的生化反应.六. 简单说明动物体内氨基酸脱氨基作用的类型.七. 已知某种蛋白质的一条肽链为:fMet-Phe-Ser-Leu-Ala-Leu-Phe-Ser,请推出编码肽链的mRNA和DNA的核酸顺序片段.( 已知:AUG:fMet;UUU:Phe;CUA:Leu;UCU:Ser:GCG:Ala)八. 现细胞需要某种蛋白质,但细胞内缺乏该蛋白质的信使RNA,你认为细胞必须要进行哪些工作请阐述各主要过程.1、根据你所学的生化知识,说明磺胺类药物的抗菌机理。
磺胺类药物与对氨苯甲酸发生竞增争性抑制所致,对氨苯甲酸是对磺胺类药物敏感的细菌合成叶酸的必须物质,有了叶酸才能逐步合成核酸,直至综合成核蛋白,以保证细菌的生长繁殖。
细菌在利用对氨苯甲酸合成叶酸的过程中,对氨苯甲酸需要与细菌体内二氢叶酸合成酶相结合。
磺胺类药物因化学结构与对氨苯甲酸相似,故亦能与细菌利用对氨苯甲酸的此种酶相结合,于是发生争夺细菌的这种酶,以致细菌不能利用对氨苯甲酸合成叶酸,导致核蛋白不能合成。
而达到抑菌和杀菌的目的。
2、根据你所学的生化知识,说明有机磷农药中毒的机理。
书本P1283、利用所学生化知识,在肌肉中1分子葡萄糖彻底氧化分解可净生成多少分子ATP请说明理由。
(用反应式等表示)1mol的葡萄糖氧化成二氧化碳和水时可生成38mol?ATP。
?①糖酵解途径G + 2Pi + 2ADP + 2NAD+ —→ 2丙酮酸 + 2ATP + 2NADH +2H+ + 2H2O计算:2个NAD 2*3+2-2②丙酮酸氧化成乙酰CoA丙酮酸 + CoA + NAD+ —酶系—→乙酰CoA + CO2 + NADH + H+③三羧酸循环和氧化磷酸化乙酰CoA+3 NAD+FAD+GDP+Pi+ 2H2O—→2 CO2+3 NADH+FADH2+GTP+2H++ CoA -SH计算:4个NAD 4*31个 FAD1*2生成1个GTP6/8+ (4*3+1*2+1)*2=36/384、图示动物体内两条电子传递链的排列顺序。
5、用反应式方程式表示己糖激酶、丙酮酸脱氢酶复合体、柠檬酸合酶、脂酰CoA合成酶、脂酰CoA脱氢酶和β-羟脂酰CoA脱氢酶、谷氨酰胺合成酶、谷丙转氨酶所催化的反应。
葡萄糖+ ATP —己糖激酶→葡萄糖—6—磷酸 + ADP柠檬酸草酰乙酸乙酰CoAα-酮戊二酸 + 丙氨酸 ==GPT=== 谷氨酸 + 丙酮酸1、简述磷酸戊糖途径的特点及其在生物体中的生理意义。
特点:1. 6-磷酸葡萄糖是直接脱氢和脱羧即可彻底分解;2. 氢受体为NADP+;3. 中间产物有磷酸戊糖产生;生理意义1、生成的5-磷酸核糖供核苷酸的生物合成;2. 生成的还原型辅酶Ⅱ(NADPH)可供还原性的生物合成如脂肪酸、类固醇等;同时可保护生物膜被氧化剂的破坏。