晶体管单端甲类输出变压器
- 格式:docx
- 大小:3.51 KB
- 文档页数:2
单端甲已类功放电路
单端甲级功放电路是一种常见的放大器电路,它通常用于音频放大器和低频放大器。
这种电路的特点是简单、稳定、可靠,并且功率输出较高。
下面将从设计原理、电路图、元器件及性能指标等方面介绍单端甲级功放电路的相关知识。
设计原理:
单端甲级功放电路是由一个放大管和一个输出变压器组成的。
放大管的主要作用是放大输入信号,将其送到输出变压器中。
输出变压器的作用是将电压信号变换成电流信号输出给负载。
电路图:
单端甲级功放电路的主要电路图如下所示。
该电路由一个NPN型晶体管T1和一个输出变压器组成。
电路中输入信号通过C1达到晶体管T1的基极,经过T1的放大作用,输出信号通过输出变压器产生输出。
元器件:
在单端甲级功放电路中,晶体管T1是最重要的元器件。
晶体管的选择需要考虑其型号、参数和工作状态等因素。
在选用晶体管时,应注意功率、最大电压、电流和频率等参数。
性能指标:
单端甲级功放电路的性能指标有很多,通常包括功率、失真度、信噪比、频率响应等。
在实际应用中,还需要考虑电流、电压、温度等因素对电路性能的影响。
总结:
单端甲级功放电路是一种基础的放大器电路,其设计相对简单,但需要仔细考虑各个元器件的选择和电路的性能指标。
合理地设计和选用元器件,可以得到良好的放大效果和稳定性能。
5只晶体管收音机输入输出变压器的测试收到了友谊电子张兄寄来的5只晶体管收音机使用的输入输出变压器,张兄希望我能帮助他测试一下,抽时间就粗略测试了这5只小变压器。
这5只小变压器都是使用质量很好的Z11硅钢片,其中有两只是EI19规格的,是一对推挽功放的输入输出变压器,另外3只都是EI24规格的,也有一对是推挽功放的输入输出变压器,另一只是单端功放的输出变压器。
首先用数字万用表的电阻档和数字电感表分别测量了5只变压器的线包直流电阻值和电感量,测到的数据如下。
EI19推挽输入变压器:绕组电阻值(Ω)电感量(mH)初级311 3110次级1 133 490次级2 132 490EI19推挽输出变压器:绕组电阻值(Ω)电感量(mH)初级1 11.2 62.2初级2 11.4 62.4次级4Ω端 1 4.8次级8Ω端 1.3 10EI24推挽输入变压器:绕组电阻值(Ω)电感量(mH)初级257 4700次级1 113 818次级2 108 818EI24推挽输出变压器:绕组电阻值(Ω)电感量(mH)初级1 8.3 96.6初级2 8.1 96.5次级4Ω端很小7.28次级8Ω端很小15.8EI24单端输出变压器:绕组电阻值(Ω)电感量(mH)初级22.8 660次级4Ω端很小 5.23次级8Ω端很小11将两副推挽变压器分别接入如下电路中,由音频信号发生器送入560Hz音频信号,将示波器和音频毫伏表接入喇叭两端,逐步增大音频信号的幅度,观察示波器的波形达到最大不失真的幅度,此时从音频毫伏表读出放大器输出电压并计算喇叭得到的音频功率,如下。
使用EI24单端输出变压器的功放:静态工作点Ic=15mA时测得如下数据。
4Ω喇叭两端音频电压是0.3V,喇叭上的最大不失真音频功率是0.3X0.3 / 4 = 22.5mW。
8Ω喇叭两端音频电压是0.4V,喇叭上的最大不失真音频功率是0.4X0.4 / 8 = 20mW。
使用EI24推挽输出变压器做单端功放的输出变压器:不使用推挽输出变压初级的中心抽头,将推挽输出变压器当做单端输出变压器用,静态工作点Ic=15mA时测到如下数据。
805甲类单端输出45W×2合并式胆机时间:2008-05-08 来源: 作者:贾萍舟点击:1049 字体大小:【大中小】805是优秀的乙类功率三极管,主要用途是乙类推挽音频功放,一对输出管可输出300~370W 音频功率;另一个用途是射频丙类功率放大。
所以其板极由管顶引出,若是只为音频设计,板极就不必从管顶引出了,可以和其他电极一并由管脚引出,如美国型号838。
由于805产量较大,广泛使用于大功率扩音机,故社会保有量较多,国产管型号为FU-5。
许多发烧友尝试用它做甲类单端功放,制作图纸也比较多,但结果大多不太令人满意,低音松散、高音不耐听,音质明显比功率相当的845管甲类单端机差。
不过,发烧友们知难而进、屡败屡战,精神可嘉。
一、不足之处乙类功率管和甲类功率管是有很大区别的,甲类功率三极管一般栅负压较深,最大板流时栅压为零,在整个放大区内不产生栅流,理论上输入阻抗为无穷大。
板极内阻较小,电路对扬声器有较大的阻尼系数。
栅极对板极电压放大系数很小,是所谓低μ管。
如2A3、300B、211、845等。
而乙类功率三极管,栅负偏压较浅,甚至为正栅偏压,在整个放大区内,栅压在正栅压与负栅压之间交替变化,并且在正栅压范围中有相当幅度的摆动,产生栅流。
该栅流随板压变化而变化,与栅压不成正比,呈非线性状态。
板极内阻普遍较大,功放对扬声器的阻尼系数很小,一般为零点几。
栅极对板极有很大的电压放大系数,μ常有60~200,是所谓高μ管。
如805、806、809、810、8l1A、812A、833、838、572B等。
其中838的各项参数与805相同,唯一不同的是板极由管脚引出,没有屏帽,都是乙类推挽功放用管。
据说曙光厂也生产无屏帽的805,型号为FU-5A,即为838的全等管。
805管约有11kΩ板内阻,μ值约为60。
805管脚接线如图1(a)所示,板极特性曲线如图1(b)所示。
板极最高工作电压1500V,最大板极损耗125W。
300B单端胆机的实作简洁至上,只要在推动力足够的前提下,尽量减少放大器的级数,这是笔者制作线路的基本原则。
说到300B,玩电子管的都知道有多种线路,也实作过多种线路。
在制作过多款线路之后,笔者感觉有一款线路无论从实听效果还是线路结构上来说都是非常不错的,因此笔者特地把它写了出来,希望喜爱300B的读者能享受到其中的乐趣。
一.原理简介甲类单端作为一种古老、低效、功耗大的放大器,它依然以其独特而难以抗拒的魅力吸引着无数的音响爱好者。
无论甲类石机还是甲类胆机,笔者对它们均情有独钟。
大家都知道.一个放大器如果它的放大级数太多的话,无论你采取任何一种方式来减少失真,它的失真总的来说绝对要比级数少的要大,而且放大的级数愈多,相移的可能性就越大,通频带就会越窄。
本文所介绍的是一款两级的单端放大器,它就很好地避免了以上的一些情况。
大家都清楚,电压放大级的主要作用就是将音频信号放大到足够的振幅,以达到能够推动末级功率放大的目的,这就需要电压放大级首先应有足够的放大倍数,即能达到整个音频放大器所需要的灵敏度,其次还需要频率特性均匀,以及放大后的信号不失真。
由于五极管具有放大系数大、驱动力较强等特点,因此本机电压放大级就选择了五极管。
由于6J4P的特性曲线、屏压、屏流以及放大系数均较符合做本机的电压放大级,因此笔者选择了6J4P作本机的推动管(图1为6J4P特性曲线图)。
一般来说五极管的失真比三极管要大一些,但是通过正确的设计和必要的措施,无论从实听还是从测试指标上来说,五极管并不逊色于三极管。
功率放大则由300B担任,(具体的电路原理见图2),(图3为300B的特性曲线图)。
Rg1为电压放大级的栅极电阻,Rg2为功率放大级的栅极电阻,这一栅极电阻有两个作用:一是:使下一级的电子管能将栅偏压Eg通过Rg加到栅极上去,即作为Eg的直流通路,同时下一级电子管内电子从阴极流向屏极的过程中,或多或少总有一些电子落到栅极上,Rg就给这些电子一个直流通路,使栅极的电位不至于越来越负从而影响放大器的正常工作,因此栅极电阻又叫栅漏电阻;作用二是:将屏极回路输出的交流信号Rg电阻的取值不宜过大也不宜过小,当该电阻过大时,电子从栅电压送到下一级去。
鍦烘晥搴旂鐗规€у強鍗曠鐢茬被鍔熸斁鍒朵綔鍏ㄨ繃绋?銆€銆€鍦烘晥搴旂鎺у埗宸ヤ綔鐢垫祦鐨勫師鐞嗕笌鏅€氭櫠浣撶瀹屽叏涓嶄竴鏍凤紝瑕佹瘮鏅€氭櫠浣撶绠€鍗曞緱澶氾紝鍦烘晥搴旂鍙槸鍗曠函鍦板埄鐢ㄥ鍔犵殑杈撳叆淇″彿浠ユ敼鍙樺崐瀵间綋鐨勭數闃伙紝瀹為檯涓婃槸鏀瑰彉宸ヤ綔鐢垫祦娴侀€氱殑閫氶亾澶у皬锛岃€屾櫠浣撶鏄埄鐢ㄥ姞鍦ㄥ彂灏勭粨涓婄殑淇″彿鐢靛帇浠ユ敼鍙樻祦缁忓彂灏勭粨鐨勭粨鐢垫祦锛岃繕鍖呮嫭灏戞暟杞芥祦瀛愭浮瓒婂熀鍖哄悗杩涘叆闆嗙數鍖虹瓑鏋佷负澶嶆潅鐨勪綔鐢ㄨ繃绋嬨€傚満鏁堝簲绠$殑鐙壒鑰岀畝鍗曠殑浣滅敤鍘熺悊璧嬩簣浜嗗満鏁堝簲绠¤澶氫紭鑹殑鎬ц兘锛屽畠鍚戜娇鐢ㄨ€呮暎鍙戝嚭璇变汉鐨勫厜杈夈€?銆€銆€鍦烘晥搴旂涓嶄粎鍏兼湁鏅€氭櫠浣撶鍜岀數瀛愮鐨勪紭鐐癸紝鑰屼笖杩樺叿澶囦袱鑰呮墍缂哄皯鐨勪紭鐐广€傚満鏁堝簲绠″叿鏈夊弻鍚戝绉版€э紝鍗冲満鏁堝簲绠$殑婧愭瀬鍜屾紡鏋佹槸鍙互浜掓崲鐨勶紙鏃犻樆灏硷級锛屼竴鑸殑鏅朵綋绠℃槸涓嶅鏄撳仛鍒拌繖涓€鐐圭殑锛岀數瀛愮鏄牴鏈笉鍙兘杈惧埌杩欎竴鐐广€傛墍璋撳弻鍚戝绉版€э紝瀵规櫘閫氭櫠浣撶鏉ヨ锛屽氨鏄彂灏勬瀬鍜岄泦鐢垫瀬浜掓崲锛屽鐢靛瓙绠℃潵璇达紝灏辨槸灏嗛槾鏋佸拰闃虫瀬浜掓崲銆?銆€銆€涓€銆佸満鏁堝簲绠$殑鐗规€?銆€銆€鍦烘晥搴旂涓庢櫘閫氭櫠浣撶鐩告瘮鍏锋湁杈撳叆闃绘姉楂樸€佸櫔澹扮郴鏁板皬銆佺儹绋冲畾鎬уソ銆佸姩鎬佽寖鍥村ぇ绛変紭鐐广€傚畠鏄竴绉嶅帇鎺у櫒浠讹紝鏈変笌鐢靛瓙绠$浉浼肩殑浼犺緭鐗规€э紝鍥犺€屽湪楂樹繚鐪熼煶鍝嶈澶囧拰闆嗘垚鐢佃矾涓緱鍒颁簡骞挎硾鐨勫簲鐢紝鍏剁壒鐐规湁浠ヤ笅涓€浜涖€?銆€銆€楂樿緭鍏ラ樆鎶楀鏄撻┍鍔紝杈撳叆闃绘姉闅忛鐜囩殑鍙樺寲姣旇緝灏忋€傝緭鍏ョ粨鐢靛灏忥紙鍙嶉鐢靛锛夛紝杈撳嚭绔礋杞界殑鍙樺寲瀵硅緭鍏ョ褰卞搷灏忥紝椹卞姩璐熻浇鑳藉姏寮猴紝鐢垫簮鍒╃敤鐜囬珮銆?銆€銆€鍦烘晥搴旂鐨勫櫔澹版槸闈炲父浣庣殑锛屽櫔澹扮郴鏁板彲浠ュ仛鍒?dB浠ヤ笅锛岀幇鍦ㄥぇ閮ㄥ垎鐨勫満鏁堝簲绠$殑鍣0绯绘暟涓?.5dB宸﹀彸锛岃繖鏄竴鑸櫠浣撶鍜岀數瀛愮闅句互杈惧埌鐨勩€?銆€銆€鍦烘晥搴旂鍏锋湁鏇村ソ鐨勭儹绋冲畾鎬у拰杈冨ぇ鐨勫姩鎬佽寖鍥淬€?銆€銆€鍦烘晥搴旂鐨勮緭鍑轰负杈撳叆鐨?娆″箓鍑芥暟锛屽け鐪熷害浣庝簬鏅朵綋绠★紝姣旇儐绠$暐澶т竴浜涖€傚満鏁堝簲绠$殑澶辩湡澶氫负鍋舵璋愭尝澶辩湡锛屽惉鎰熷ソ锛岄珮涓綆棰戣兘閲忓垎閰嶉€傚綋锛屽0闊虫湁瀵嗗害鎰燂紝浣庨娼滃緱杈冩繁锛岄煶鍦鸿緝绋筹紝閫忔槑鎰熼€備腑锛屽眰娆℃劅銆佽В鏋愬姏鍜屽畾浣嶆劅鍧囨湁杈冨ソ琛ㄧ幇锛屽叿鏈夎壇濂界殑澹板満绌洪棿鎻忕粯鑳藉姏锛屽闊充箰缁嗚妭鏈夊緢濂借〃鐜般€?銆€銆€鏅€氭櫠浣撶鍦ㄥ伐浣滄椂锛岀敱浜庤緭鍏ョ锛堝彂灏勭粨锛夊姞鐨勬槸姝e悜鍋忓帇锛屽洜姝よ緭鍏ョ數闃绘槸寰堜綆鐨勶紝鍦烘晥搴旂鐨勮緭鍏ョ锛堟爡鏋佷笌婧愭瀬涔嬮棿锛夊伐浣滄椂鍙互鏂藉姞璐熷亸鍘嬪嵆鍙嶅悜鍋忓帇锛屼篃鍙互鍔犳鍚戝亸鍘嬶紝鍥犳澧炲姞浜嗙數璺璁$殑鍙橀€氭€у拰澶氭牱鎬с€傞€氬父鍦ㄥ姞鍙嶅悜鍋忓帇鏃讹紝瀹冪殑杈撳叆鐢甸樆鏇撮珮锛岄珮杈?00MΩ浠ヤ笂锛屽満鏁堝簲绠$殑杩欎竴鐗规€у讥琛ヤ簡鏅€氭櫠浣撶鍙婄數瀛愮鍦ㄦ煇浜涙柟闈㈠簲鐢ㄧ殑涓嶈冻銆?銆€銆€鍦烘晥搴旂鐨勯槻杈愬皠鑳藉姏姣旀櫘閫氭櫠浣撶鎻愰珮10鍊嶅乏鍙炽€?銆€銆€杞崲閫熺巼蹇紝楂橀鐗规€уソ銆?銆€銆€鍦烘晥搴旂鐨勭數鍘嬩笌鐢垫祦鐗规€ф洸绾夸笌浜旀瀬鐢靛瓙绠¤緭鍑虹壒鎬ф洸绾垮崄鍒嗙浉浼笺€?銆€銆€鍦烘晥搴旂鐨勫搧绉嶈緝澶氾紝澶т綋涓婂彲鍒嗕负缁撳瀷鍦烘晥搴旂鍜岀粷缂樻爡鍦烘晥搴旂涓ょ被锛屼笖閮芥湁N鍨嬫矡閬擄紙鐢垫祦閫氶亾锛夊拰P鍨嬫矡閬撲袱绉嶏紝姣忕鍙堟湁澧炲己鍨嬪拰鑰楀敖鍨嬪叡鍥涚被銆?銆€銆€缁濈紭鏍呭満鏁堝簲绠″張绉伴噾灞烇紙M锛夋哀鍖栫墿锛圤锛夊崐瀵间綋锛圫锛夊満鏁堝簲绠★紝绠€绉癕OS绠°€傛寜鍏跺唴閮ㄧ粨鏋勫張鍙垎涓轰竴鑸琈OS绠″拰VMOS绠′袱绉嶏紝姣忕鍙堟湁N鍨嬫矡閬撳拰P鍨嬫矡閬撲袱绉嶃€佸寮哄瀷鍜岃€楀敖鍨嬪洓绫汇€?銆€銆€VMOS鍦烘晥搴旂锛屽叾鍏ㄧО涓篤鍨嬫ЫMOS鍦烘晥搴旂锛屾槸鍦ㄤ竴鑸琈OS 鍦烘晥搴旂鐨勫熀纭€涓婂彂灞曡捣鏉ョ殑鏂板瀷楂樻晥鍔熺巼寮€鍏冲櫒浠躲€傚畠涓嶄粎缁ф壙浜哅OS鍦烘晥搴旂杈撳叆闃绘姉楂橈紙澶т簬100MΩ锛夈€侀┍鍔ㄧ數娴佸皬锛?.1uA宸﹀彸锛夛紝杩樺叿鏈夎€愬帇楂橈紙鏈€楂?200V锛夈€佸伐浣滅數娴佸ぇ锛?.5锝?00A锛夈€佽緭鍑哄姛鐜囬珮锛?锝?50W锛夈€佽法瀵肩嚎鎬уソ銆佸紑鍏抽€熷害蹇瓑浼樿壇鐗规€с€傜洰鍓嶅凡鍦ㄩ珮閫熷紑鍏炽€佺數鍘嬫斁澶э紙鐢靛帇鏀惧ぇ鍊嶆暟鍙揪鏁板崈鍊嶏級銆佸皠棰戝姛鏀俱€佸紑鍏崇數婧愬拰閫嗗彉鍣ㄧ瓑鐢佃矾涓緱鍒颁簡骞挎硾搴旂敤銆傜敱浜庡畠鍏兼湁鐢靛瓙绠″拰鏅朵綋绠$殑浼樼偣锛岀敤瀹冨埗浣滅殑楂樹繚鐪熼煶棰戝姛鏀撅紝闊宠川娓╂殩鐢滄鼎鑰屽張涓嶅け鍔涘害锛屽鍙楃埍涔愪汉澹潚鐫愶紝鍥犺€屽湪闊冲搷棰嗗煙鏈夌潃骞块様鐨勫簲鐢ㄥ墠鏅€俈MOS绠″拰涓€鑸琈OS绠′竴鏍凤紝涔熷彲鍒嗕负N鍨嬫矡閬撳拰P鍨嬫矡閬撲袱绉嶃€佸寮哄瀷鍜岃€楀敖鍨嬪洓绫伙紝鍒嗙被鐗瑰緛涓庝竴鑸殑MOS绠$浉鍚屻€俈MOS鍦烘晥搴旂杩樻湁浠ヤ笅鐗圭偣銆?銆€銆€杈撳叆闃绘姉楂樸€傜敱浜庢爡婧愪箣闂存槸SiO2灞傦紝鏍呮簮涔嬮棿鐨勭洿娴佺數闃诲熀鏈笂灏辨槸SiO2缁濈紭鐢甸樆锛屼竴鑸揪100MΩ宸﹀彸锛屼氦娴佽緭鍏ラ樆鎶楀熀鏈笂灏辨槸杈撳叆鐢靛鐨勫鎶椼€?銆€銆€椹卞姩鐢垫祦灏忋€傜敱浜庤緭鍏ラ樆鎶楅珮锛孷MOS绠℃槸涓€绉嶅帇鎺у櫒浠讹紝涓€鑸湁鐢靛帇灏卞彲浠ラ┍鍔紝鎵€闇€鐨勯┍鍔ㄧ數娴佹瀬灏忋€?銆€銆€璺ㄥ鐨勭嚎鎬ц緝濂姐€傚叿鏈夎緝澶х殑绾挎€ф斁澶у尯鍩燂紝涓庣數瀛愮鐨勪紶杈撶壒鎬у崄鍒嗙浉浼笺€傝緝濂界殑绾挎€у氨鎰忓懗鐫€鏈夎緝浣庣殑澶辩湡锛屽挨鍏舵槸鍏锋湁璐熺殑鐢垫祦娓╁害绯绘暟锛堝嵆鍦ㄦ爡鏋佷笌婧愭瀬涔嬮棿鐢靛帇涓嶅彉鐨勬儏鍐典笅锛屽閫氱數娴佷細闅忕娓╁崌楂樿€屽噺灏忥級锛屾晠涓嶅瓨鍦ㄤ簩娆″嚮绌挎墍寮曡捣鐨勭瀛愭崯鍧忕幇璞°€傚洜姝わ紝VMOS绠$殑骞惰仈寰楀埌浜嗗箍娉涚殑搴旂敤銆?銆€銆€缁撶數瀹规棤鍙樺鏁堝簲銆俈MOS绠$殑缁撶數瀹逛笉闅忕粨鐢靛帇鑰屽彉鍖栵紝鏃犱竴鑸櫠浣撶缁撶數瀹圭殑鍙樺鏁堝簲锛屽彲閬垮厤鐢卞彉瀹规晥搴旀嫑鑷寸殑澶辩湡銆?銆€銆€棰戠巼鐗规€уソ銆俈MOS鍦烘晥搴旂鐨勫鏁拌浇娴佸瓙杩愬姩灞炰簬婕傜Щ杩愬姩锛屼笖婕傜Щ璺濈浠?锝?.5um锛屼笉鍙楁櫠浣撶閭f牱鐨勫皯鏁拌浇娴佸瓙鍩哄尯杩囨浮鏃堕棿闄愬埗锛屾晠鍔熺巼澧炵泭闅忛鐜囧彉鍖栨瀬灏忥紝棰戠巼鐗规€уソ銆?銆€銆€寮€鍏抽€熷害蹇€傜敱浜庢病鏈夊皯鏁拌浇娴佸瓙鐨勫瓨鍌ㄥ欢杩熸椂闂达紝VMOS鍦烘晥搴旂鐨勫紑鍏抽€熷害蹇紝鍙湪20ns鍐呭紑鍚垨鍏虫柇鍑犲崄A 鐢垫祦銆?銆€銆€浜屻€佸満鏁堝簲绠$殑涓昏鍙傛暟鍙婇€夌敤銆€銆€涓轰簡姝g‘瀹夊叏杩愮敤鍦烘晥搴旂锛岄槻姝㈤潤鐢点€佽鎿嶄綔鎴栧偍瀛樹笉褰撹€屾崯鍧忓満鏁堝簲绠★紝蹇呴』瀵瑰満鏁堝簲绠′富瑕佸弬鏁版湁鎵€浜嗚В鍜屾帉鎻°€傚満鏁堝簲绠$殑鍙傛暟澶氳揪鍑犲崄绉嶏紝鐜板皢涓昏鍙傛暟鍙婂惈涔夊垪浜庤〃1锛屼綔涓哄弬鑰冦€?銆€銆€琛? 鍦烘晥搴旂涓昏鍙傛暟鍙婂惈涔?銆€銆€鍦烘晥搴旂鐨勯€夌敤搴旀敞鎰忎互涓嬪嚑鐐广€?銆€銆€鍦烘晥搴旂鐨処D鐨勫弬鏁版寜鐢佃矾瑕佹眰閫夊彇锛岃兘婊¤冻鍔熻€楄姹傚苟鐣ユ湁浣欓噺鍗冲彲锛屼笉瑕佽涓鸿秺澶ц秺濂斤紝ID瓒婂ぇ锛孋GS涔熻秺澶э紝瀵圭數璺殑楂橀鍝嶅簲鍙婂け鐪熶笉鍒╋紝濡侷D涓?A鐨勭瀛愶紝CGS绾︿负80pF 锛汭D涓?0A鐨勭瀛愶紝CGS绾︿负1000pF銆備娇鐢ㄧ殑鍙潬鎬у彲閫氳繃鍚堢悊鐨勬暎鐑璁℃潵淇濊瘉銆?銆€銆€閫夌敤VMOS绠$殑婧愭紡鏋佽€愬帇BVDSS涓嶈杩囬珮锛岃兘杈惧埌瑕佹眰鍗冲彲銆傚洜涓築VDSS澶х殑绠″瓙楗卞拰鍘嬮檷涔熷ぇ锛屼細褰卞搷鏁堢巼銆傜粨鍨嬪満鏁堝簲绠″垯瑕佸敖鍙兘楂樹簺锛屽洜涓轰粬浠湰鏉ュ氨涓嶉珮锛屼竴鑸珺VDSS涓?0锝?0V锛孊VGSS涓?0V銆?銆€銆€VMOS绠$殑BVGSS灏藉彲鑳介珮浜涳紝鍥犱负VMOS绠″瓙鏍呮瀬寰堝▏姘旓紝寰堝鏄撹鍑荤┛锛屽偍瀛樻垨鎿嶄綔瑕佹厧涔嬪張鎱庯紝闃叉甯﹂潤鐢电殑鐗╀綋鎺ヨЕ绠¤剼銆傚湪鍌ㄥ瓨涓灏嗗紩鍑鸿剼鐭矾锛屽苟鐢ㄩ噾灞炵洅灞忚斀鍖呰锛屼互闃叉澶栨潵鎰熷簲鐢靛娍灏嗘爡鏋佸嚮绌匡紝灏ゅ叾瑕佹敞鎰忎笉鑳藉皢绠″瓙鏀惧叆濉戞枡鐩掑瓙鎴栧鏂欒涓€備负浜嗛槻姝㈡爡鏋佹劅搴斿嚮绌匡紝鍦ㄥ畨瑁呰皟璇曚腑瑕佹眰涓€鍒囦华鍣ㄤ华琛ㄣ€佺數鐑欓搧銆佺數璺澘浠ュ強浜轰綋绛夐兘蹇呴』鍏锋湁鑹ソ鐨勬帴鍦版晥鏋滐紝鍦ㄧ瀛愭帴鍏ョ數璺箣鍓嶏紝绠″瓙鐨勫叏閮ㄥ紩鑴氶兘蹇呴』淇濇寔鐭帴鐘舵€侊紝鐒婃帴瀹屾瘯鍚庢柟鍙妸鐭帴鏉愭枡鎷嗛櫎銆?銆€銆€閰嶅绠¤姹傜敤鍚屽巶鍚屾壒鍙风殑锛岃繖鏍峰弬鏁颁竴鑷存€уソ銆傚敖閲忛€夌敤瀛敓閰嶅绠★紝浣跨瀛愮殑澶规柇鐢靛帇鍜岃法瀵煎敖鍙兘淇濇寔涓€鑷达紝浣块厤瀵硅宸垎鍒皬浜?锛呭拰5锛呫€?銆€銆€灏藉彲鑳介€夌敤闊冲搷涓撶敤绠★紝杩欐牱鏇磋兘閫傚悎闊抽鏀惧ぇ鐢佃矾鐨勮姹傘€?銆€銆€鍦ㄥ畨瑁呭満鏁堝簲绠℃椂锛屼綅缃閬垮厤闈犺繎鍙戠儹鍏冧欢銆備负浜嗛槻姝㈢瀛愭尟鍔紝瑕佸皢绠″瓙绱у浐璧锋潵锛岀鑴氬紩绾垮湪寮洸鏃讹紝搴斿綋澶т簬鏍归儴璺濈5mm澶勮繘琛屽集鏇诧紝浠ラ槻姝㈠集鏇叉椂鎷嗘柇绠¤剼鎴栧紩璧锋紡姘旇€屾崯鍧忕瀛愩€傜瀛愯鏈夎壇濂界殑鏁g儹鏉′欢锛屽繀椤婚厤缃冻澶熺殑鏁g儹鍣紝淇濊瘉绠″瓙娓╁害涓嶈秴杩囬瀹氬€硷紝纭繚闀挎湡绋冲畾鍙潬宸ヤ綔銆?銆€銆€涓夈€侀煶棰戞斁澶у櫒鑹烘湳榄呭姏鍙婅瘎浠?銆€銆€闊抽鏀惧ぇ鍣ㄦ寜鎵€鐢ㄦ斁澶у櫒浠跺彲鍒嗕负鐢靛瓙绠℃斁澶у櫒銆佹櫠浣撶鏀惧ぇ鍣ㄣ€侀泦鎴愮數璺斁澶у櫒銆佸満鏁堝簲绠℃斁澶у櫒浠ュ強鐢变笂杩版墍鐢ㄥ櫒浠朵袱绉嶆垨涓ょ浠ヤ笂缁勬垚鐨勬贩鍚堟斁澶у櫒锛屽悇绫绘斁澶у櫒鐢佃矾鍙婃墍鐢ㄥ厓鍣ㄤ欢涔熸槸浜旇姳鍏棬銆佸崈鍙樹竾鍖栵紝鐢辨瀵归煶婧愮殑閲嶆斁闊宠川鍙堝悇鍏风壒鑹诧紝寰堥毦璇村摢涓€绉嶆斁澶у櫒鑳戒互鍋忔鍏ㄣ€佹妧鍘嬬兢鑺虫垚涓轰竾鑳芥斁澶у櫒銆?銆€銆€鐢靛瓙绠℃斁澶у櫒鐢变簬绌洪棿鐢佃嵎鐨勪紶杈撴椂婊炰綔鐢紝閲嶆斁闊宠壊娓╂殩鏌斿拰锛屽挨鍏舵槸寮︿箰浜哄0锛岃〃鐜颁负閱囩編鍓旈€忥紝鑰愪汉瀵诲懗銆傛櫠浣撶浠ュ強闆嗘垚鐢佃矾鏀惧ぇ鍣ㄥ叿鏈夌妧鍒╃殑鍒嗘瀽鍔涖€佸闃旂殑棰戝搷鍜屽己鍔茬殑鍔ㄦ€侊紝鍏锋湁鏈濇皵钃媰銆佸偓浜哄杩涚殑鎰熷彫鍔涖€傚満鏁堝簲绠℃斁澶у櫒浠ュ強娣峰悎鍣ㄤ欢鏀惧ぇ鍣紝鍔涘浘缁煎悎鐢靛瓙绠″拰鏅朵綋绠¢煶棰戠壒鎬э紝寮€鍒涘紓褰╋紝璁╀箰澹版洿浼犵锛岃闊宠壊鏇村畬缇庛€?銆€銆€杩戜簺骞存潵锛岄殢鐫€鐢靛瓙鐢佃剳鎶€鏈殑涓嶆柇鍙戝睍锛屽悇绉嶇數瀛愬悎鎴愬櫒銆佸悇绉嶉煶棰戞晥鏋滃櫒鍜岃儐闊虫晥鏋滃櫒杞欢浠ュ強铏氭嫙鎵0鍣ㄦ妧鏈眰鍑轰笉绌枫€傝繖浣垮緱闊抽鏀惧ぇ鍣ㄧ‖浠剁殑鍙戝睍鍜屾櫘鍙婅繙杩滆刀涓嶄笂杞欢鐨勯€熷害锛屽湪绮剧‘搴︿笂纭欢寰€寰€涔熻刀涓嶄笂杞欢锛屽鐢佃剳妯℃嫙3D鏁堟灉閫肩湡搴﹀ぇ澶ц秴杩囩湡瀹?D鏁堟灉锛屼笉鍙楀惉闊冲鐨勭┖闂翠互鍙婂0婧愬悎鎴愮殑闄愬埗锛屽悓鏃朵篃鑺傜渷鎶曞叆纭欢鐨勫紑鏀€?銆€銆€缁胯壊闊冲搷銆佸弻鏂欏彂鐑?mdash;— 鐢佃剳闊冲搷寰堟湁鍙兘浼氭垚涓烘湭鏉ラ煶鍝嶇殑涓绘祦锛岀‖浠朵笉琛岃蒋浠舵潵锛屽疄琛岃蒋纭吋鏂斤紝鍔熻兘寮烘倣锛岄泦涓綋鐜颁簡楂樻晥銆佷究鎹枫€佺濂囦互鍙婄粡娴庣殑鐗圭偣銆傚鍦ㄧ數鑴戜腑璁剧疆铏氭嫙鍏夐┍锛屾瘡娆℃挱鏀句箰鏇叉椂锛屽氨涓嶅繀鍚姩鐗╃悊鍏夐┍锛岃繖鏍蜂笉浠呭噺灏戠瓑寰呮洸鐩椂闂村強鐗╃悊鍏夐┍鐨勭(鎹燂紝鏇撮噸瑕佺殑鏄秷闄や簡鐗╃悊鍏夐┍鐨勫櫔澹帮紝瀹炵幇楂樹繚鐪熸斁闊炽€傚啀濡傦紝鑳嗙鍔熸斁鏀鹃煶鏌斿拰鑰愬惉锛岃€屽埗浣滄垚鏈笉钖勶紝骞朵笖鍙栧緱闈撻煶鐨勮浠舵瘮杈冨锛岃€岄€氳繃鑳嗛煶鏁堟灉鍣ㄨ蒋浠讹紝鍙负鎴戜滑鍦ㄧ數鑴戜腑閫犲氨涓€涓?ldquo;杞儐”锛屽氨鍙互妯℃嫙鍑鸿儐鏈虹殑闊宠壊銆傜洰鍓嶇數鑴戝濯掍綋闊冲搷姝e浜庤繘闃舵椂鏈燂紝骞朵笌鐢佃涔熸灦璧蜂簡娌熼€氱殑妗ユ锛屽叾鍓嶆櫙鏄崄鍒嗙伩鐑傝浜虹殑锛佺數鑴戜互鍙婇煶鍝嶅彂鐑у弸锛屾槸涓€涓笉鎯滄椂闂村拰绮惧姏锛岀Н鏋佹帰绱㈣拷姹傞煶璐ㄧ殑鐗规畩灞傞潰锛屽皢缁х画鎷呰捣涓€浠界埍涔愯矗浠伙紝鐢熸椿涓涓€棣栫敎缇庣殑姝屽0锛屽氨灏戜竴骞曡嫤娑╃殑绾蜂簤銆傛棤璁烘槸鏅€氶煶鍝嶏紝杩樻槸鐢佃剳澶氬獟浣撻煶鍝嶏紝鍔熺巼鏀惧ぇ鍣ㄤ緷鐒舵槸闊抽鑳介噺鎵╁ぇ鎺ㄥ姩鎵0鍣ㄥ嚭澹颁笉鍙垨缂虹殑缁堢锛屽悇绫绘斁澶у櫒鍧囪兘杈冨ソ鍦板疄鐜拌繖涓€鍔熻兘銆備笉杩囩幇浠d汉浠闊冲搷锛堟妧鏈洜绱犱负涓伙紝濡傞鐜囧搷搴斻€佸け鐪熷害銆佷俊鍣瘮绛夛級鍜岄煶涔愶紙鑹烘湳榄呭姏涓轰富锛屽澹板簳鏄惁閱囧帤銆佸爞闊虫槸鍚︿赴瀵屻€佸惉鎰熸槸鍚﹂『鑰崇瓑锛夌殑鑻涙眰鎰堟潵鎰堥珮锛屼笉灏?ldquo;閲戣€虫湹”鑳藉鍚嚭姝屾墜鐨勯娇闊炽€佸彛瑙掍互鍙婅韩涓村叾澧冦€佺洿閫肩幇鍦虹殑鎰熻锛屽洜姝ゅ闊抽鏀惧ぇ鍣ㄩ噸鏀鹃煶鑹蹭篃瀵勪簣鏇村ぇ鐨勮姹傦紝鍔姏浠ョ壒鑹查煶鍝嶅閫犺糠浜虹殑闊充箰姘涘洿銆?銆€銆€鍚勭被闊抽鏀惧ぇ鍣ㄥ叿鏈夊悇鑷殑浼樼偣鍙婂睘鎬э紝涔熷悇鏈夊叾涓嶈冻涔嬪锛岃€屽満鏁堝簲绠℃斁澶у櫒涓绘祦鍏煎叿鏅朵綋绠″拰鐢靛瓙绠′袱鑰呯殑浼樺娍锛屽悓鏃惰繕鍏峰涓よ€呮墍娌℃湁鐨勪紭鍔裤€傚湪鐢佃矾绋嬪紡涓婏紝澶ч噺瀹炶返璇佹槑锛屽崟绔敳绫诲姛鏀炬槸浠ユ晥鐜囨崲闊宠川鐨勫吀鑼冿紝鍏锋湁鏃犱笌浼︽瘮鐨勯煶涔愰瓍鍔涖€備笉灏戝彂鐑у弸浠庡崟绾拷姹傞煶璐ㄥ嚭鍙戯紝鍙嶅鍒朵綔鍔熸斁锛屽弽澶嶅姣斿惉闊筹紝鏈€缁堜负A绫绘墍鍔紝浼间箮瑙夊緱娌℃湁A绫荤殑闊充箰鐘瑰瀛ょ嫭鐨勯煶涔愩€?銆€銆€鍥涖€佸崟绔敳绫绘斁澶у櫒鎬ц兘鍒嶈銆€銆€鏀惧ぇ鍣ㄦ寜宸ヤ綔鐘舵€佺殑涓嶅悓涓€鑸彲鍒嗕负3绫伙細鈶燗绫绘斁澶у櫒锛屽張绉颁负鐢茬被鏀惧ぇ鍣紱鈶?AB绫绘斁澶у櫒锛屽張绉颁负鐢蹭箼绫绘斁澶у櫒锛涒憿B绫绘斁澶у櫒锛屽張绉颁负涔欑被鏀惧ぇ鍣ㄣ€傚湪杩?绫绘斁澶у櫒涓紝绾挎€ф渶濂斤紝闊宠壊鏈€闈撶殑鏄疉绫绘斁澶у櫒锛岃€屽崟绔敳绫绘斁澶у櫒涓庢帹鎸芥斁澶у櫒鍦ㄨ璁′笂涓€涓笉鍚屼箣澶勶紝灏辨槸浣跨敤涓€涓斁澶у櫒浠舵潵鏀惧ぇ鏁翠釜闊充箰娉㈠舰銆傝€屾帹鎸借璁¢噰鐢ㄤ袱涓斁澶у櫒浠讹紝鍒嗗埆鏀惧ぇ淇″彿鐨勬璐熷崐鍛紝鍖呮嫭涓€浜涙帹鎸界敳绫绘斁澶у櫒銆傚崟绔敳绫绘斁澶т笌鎺ㄦ尳鏀惧ぇ涓€涓樉钁楃殑涓嶅悓鐗瑰緛灏辨槸鏀惧ぇ鍚庣殑闊充箰娉㈠舰鏄竴涓畬鏁寸殑涓庤緭鍏ユ尝褰㈠崄鍒嗙浉浼肩殑娉㈠舰锛屾病鏈夋帹鎸芥斁澶ф璐熸尝褰㈢殑浜よ秺澶辩湡锛屽敖绠℃帹鎸芥斁澶ч噰鐢ㄩ厤瀵圭簿搴﹂珮杈?锛?璇樊鐢氳嚦鏇村皬璇樊鐨勫鐢熺锛屼絾杩欏彧鏄竴涓墖闈㈡€х殑鏁板瓧鎻忚堪锛屼簨瀹炰笂姝h礋娉㈠舰涓嶅彲鑳戒氦鎺ュ緱濂斤紝鍔犱箣鐢佃矾鍏冨櫒浠堕潪绾挎€у紩璧风殑鐩哥Щ瀛樺湪锛屼氦瓒婂け鐪熷皢杩涗竴姝ュ澶э紝褰撶劧澶辩湡涓庨煶鑹插湪涓€瀹氱▼搴︿笂骞朵笉瀵圭珛锛岃繖瑕佺湅璁捐鏀惧ぇ鍣ㄧ殑鐢ㄩ€斿拰鐩爣锛屽苟闈炴帹鎸芥斁澶у氨姝ょ舰浼戯紝鍐典笖鎺ㄦ尳鏀惧ぇ鍣ㄤ腑锛岀敱浜庡瓨鍦ㄥ娆¤皭娉紝铏界劧鍘熼厤姝h礋娉㈠舰浜ゆ帴涓嶅ソ锛屼絾璋愭尝浜ゆ帴涓嶈兘鍚﹀畾锛屽彧鏄笌鍗曠娉㈠舰鐩告瘮闅句互鎶楄銆?銆€銆€鍏充簬鎺ㄦ尳鏀惧ぇ璋愭尝灏ゅ叾鏄伓娆¤皭娉細鐩镐簰鎶垫秷杩欎竴璇存硶锛岀瑪鑰呬笉浜堝畬鍏ㄨ鍚岋紝鍙湁鐩哥Щ澶辩湡杈?80°鎴?60°绛夎皭娉㈡垚鍒嗘墠浼氱浉浜掓姷娑堛€傚鎺ㄦ尳鍔熸斁涓殑鐩存祦楂樺帇涓殑浜ゆ祦绾规尝缁忔帹鎸藉彉鍘嬪櫒涓績鎶藉ご骞冲潎鍒嗘垚涓よ矾锛岀敱浜庝袱鑷傜嚎鍦堟瀬鎬х浉鍙嶏紝鐩稿樊180°锛屼氦娴佺汗娉㈠嚑涔庤瀹屽叏鎶垫秷銆?銆€銆€鍗曠鐢茬被鏀惧ぇ鍣ㄥ叿鏈夋渶鑷劧鐨勯煶涔愭€э紝鍏朵笉瀵圭О鎬т笌绌烘皵鍙楀帇缂╀笌鎵╁睍鐨勭壒鎬х浉浼笺€傜敱浜庣粍鎴愮┖姘斿惈閲忔渶澶氱殑涓洪潪鏋佹€у垎瀛愭爱姘旓紙N2锛夛紝绾﹀崰78锛咃紝鍥犳绌烘皵鏄帇寮鸿兘鍙樺緱闈炲父楂樼殑“鍗曠鏃犳瀬”濯掍粙锛屼娇寰楀崟绔疉绫讳箰澹版渶浼犵锛岄煶鑹叉渶閱囩編銆?銆€銆€浜斻€乂MOS鍦烘晥搴旂鍗曠鐢茬被鍔熸斁鐨勫埗浣?銆€銆€璁捐鏀惧ぇ鍣ㄦ湁涓や釜鍩烘湰鍘熷垯锛氫竴鏄畝鍗曪紝浜屾槸绾挎€с€傝€岃兘鍋氬埌鏈€绠€鍗曠殑鏀惧ぇ鍣ㄧ嚎璺氨鏄崟绔敳绫讳簡锛岀畝鍗曚笉鏄崟绔敳绫绘斁澶т娇鐢ㄧ殑鍞竴鐞嗙敱锛屾槸鍥犱负鍗曠鐢茬被鍏锋湁鏈€杩蜂汉鐨勯煶涔愭劅銆傚湪A绫汇€丅绫汇€丄B绫荤嚎璺▼寮忎腑锛岀嚎鎬ф渶濂界殑鏄敳绫伙紝鑰屼笉瓒充箣澶勫氨鏄晥鐜囨槸鏈€浣庣殑锛岀害涓?0锛咃紝鏄互鏁堢巼鎹㈤煶璐ㄧ殑鍏歌寖銆?銆€銆€鍦ㄥ崟绔敳绫绘斁澶х數璺腑浣跨敤鐨勬斁澶у櫒浠朵篃鏈変竴鐣绌躲€傛櫠浣撶鍏锋湁澶綆鐨勮緭鍏ラ樆鎶楋紝鐢靛瓙绠$殑杈撳叆闃绘姉寰堥珮锛屼絾鍏惰緭鍑洪樆鎶椾篃姣旇緝楂橈紝浠庡師鐞嗕笂璁茬數瀛愮骞朵笉閫傚悎鍋氬姛鏀捐緭鍑虹锛屽洜姝ゅ敮涓€鐨勯€夋嫨鏄満鏁堝簲绠°€傚満鏁堝簲绠″叿鏈夊緢楂樼殑杈撳叆闃绘姉鍜岃法瀵硷紝涔熻兘杈撳嚭寰堝ぇ鐨勭數娴侊紝寰堥€傚悎搴旂敤鍦ㄥ崟绔敳绫绘斁澶у櫒涓€傝€屽湪浼楀鐨勫満鏁堝簲绠′腑锛岀敤VMOS鍦烘晥搴旂鍒朵綔鐨勫崟绔敳绫绘斁澶у櫒锛屾洿棰嗛楠氾紝榄呭姏鐙壒銆傞珮绔殑閽涜啘澹帮紝涓楗辨弧缁嗚吇娴佺晠鐨勭鎬у0锛屽脊鎬у崄瓒抽渿鎾间汉蹇冪殑浣庨杞扮偢澹帮紝鍒湁涓€鐣湼閬撴皵鍔裤€?銆€銆€鍦ㄤ竴鑸殑璁捐涓満鏁堝簲绠$壒闀挎病鏈夊緱鍒板厖鍒嗗彂鎸ワ紝鐢氳嚦璁や负澹伴煶鍋忓喎銆佸亸鏆楋紝鍏跺疄杩欎笉鏄満鏁堝簲绠$殑鍘熷洜銆傚叾澹伴煶涓嶅ソ锛屼竴鏂归潰鏄汉浠娇鐢ㄥ畠鐩存帴浠f崲鏅朵綋绠★紝鏅朵綋绠$殑绾胯矾鏄笉鑳藉彂鎸ュ嚭鍦烘晥搴旂鐨勭壒鎬х殑锛涘彟涓€鏂归潰锛岃繖浜涚數璺€氬父浣跨敤AB绫荤殑鍋忕疆銆傛牴鎹満鏁堝簲绠¤浆绉荤壒鎬э紝鍦ㄤ綆鍋忕疆鏃跺叿鏈変弗閲嶇殑闈炵嚎鎬э紝甯︽潵涓ラ噸鐨勫け鐪燂紝瑙e喅鐨勫姙娉曟槸璁╁叾宸ヤ綔鍦ˋ绫荤姸鎬侊紝鐗瑰埆鏄崟绔疉绫伙紝鐬€佺壒鎬ф瀬浣筹紝闊宠川绾編锛屽伓娆¤皭娉赴瀵岋紝闊宠壊鎮﹁€冲姩鍚紝鏇村叿鏈夌數瀛愮鐨勯唶缇庨煶鑹层€?銆€銆€1.鐢佃矾鍘熺悊銆€銆€銆€銆€鍗曠鐢茬被鍦烘晥搴旂鍔熸斁鐢佃矾浜旇姳鍏棬锛屽悇鏈夌壒鑹诧紝鏈満鐢佃矾濡傞檮鍥炬墍绀恒€備负浜嗚幏寰楅潛涓界殑闊宠壊锛岄噰鍙栫畝娲佽嚦涓婂師鍒欙紝澶氫竴涓厓浠跺涓€鍒嗗け鐪燂紝澶氫竴鏉$嚎璺涓€鍒嗗け鐪熴€傜幇灏嗙數璺師鐞嗕綔涓€绠€杩帮紝浠ユ姏鐮栧紩鐜夛紝鍏朵富瑕佺壒鐐规湁浠ヤ笅涓€浜涖€? 銆€銆€锛?锛変负浜嗛伩鍏嶆櫘閫氶煶閲忕數浣嶅櫒浼犺緭澶辩湡锛岄潪绋虫€佹帴瑙︾數闃汇€佹懇鎿﹀櫔澹板拰鎿嶄綔鏄撴劅鐤叉儷涔嬪珜锛屾湰鏈洪噰鐢ㄩ煶鍝嶅瀷鏋佷綆鍣0VMOS鍦烘晥搴旂IRFD113浣滄寚瑙﹂煶閲忔帶鍒躲€傚叾鐩稿浜庨敭鎺ч煶閲忕數璺張鍑忓皯浜嗕竴浜涘厓浠讹紝骞跺姞浠ュ睆钄斤紝浣块煶閲忔帶鍒堕儴鍒嗙殑鍣0绯绘暟杈惧埌1dB浠ヤ笅锛圴MOS鍦烘晥搴旂鍣0绯绘暟鍦?.5dB宸﹀彸锛夛紝鏁笌楂樻。
FU50单端甲类功放的DIY方法作为一个电子管的生产大国,我国生产出了许多优秀的电子管,其中就有很多适合做音频放大的电子管。
有一款电子管无论从价格还是效果上来说,都是值得推荐的,该管就是我国生产的FU50,它也曾广泛地运用于广播和通信中,当FU50接成三极管时,其特性曲线比较接近名管300B,接成三极管时的工作状态,其播放效果也是非常不错的,再加上价格并不贵,因此还是值得推荐给各位音响爱好者的。
一.原理简介电子管甲类功放的放大工作点一般来说都是工作在电子管特性曲线的中心点,并对输入信号进行放大是双向对称的.工作点基本上是选择在特性曲线的直线段内,所以甲类的失真相对来说比其他的类型的电路要低些,再加上电子管单端甲类的偶次谐波含量较高,因此使得甲类单端功放播放出来的音乐特别润泽、特别甜美动听。
本文介绍的功放主要遵循以上的路线,并且考虑到使用成本不高的元器件来做出好效果的基本原则来制作本机。
相对高驱动电压的电子管来说FU50的驱动电压要求并不是太高,但为了保证有足够的驱动力和较低的失真,本机电压驱动部分还是使用了两级放大来驱动FU50,前级输入放大管Ql(6N8P)为双三极管,Q1的一半作为信号放大,另一半管充当末级管的电压激励放大,即使用了两级共阴电压放大电路,该组合仍具有较强的电压放大能力I有着较好的频向和较好的相位特性。
由于6N8P属于低“管,因此我们采用了两级共阴作为电压放大,使它能够产生足够的增益来达到驱动后级的目的。
FU50是一个五极管,将它接成三极管的工作形式,它所需要的驱动电压虽然不算低,但该共阴组合完全能够满足该管驱动所需要的电压。
由于6N8P的“值较低,用该管做电压放大时也较容易获取低失真的电压放大信号,并能有效地降低整机的失真度。
由于共阴组合较适合用于音频放大电路中,因此也被国内外许多音响厂家广泛地运用。
6N8P的电气参数和性能均较适合为本机电压放大级的放大管,6N8P电气参数见表1,其特性曲线如图2所示。
甲类、偏甲类、甲乙类功放的原理及其对音质的影响晶体管音频功率放大器的工作状态可分为甲类(A类)、甲乙类(AB类)和乙类三大类。
首先说明,只有双管推挽式的功放才有这种状态之分,单端功率放大器(就是只用一个功率管的功放电路)都是工作在甲类状态的。
音频信号都是正弦波,推挽式功放的末级放大电路使用2个功率管,一个工作在正弦波的正半周,一个工作在负半周,然后合成一个完整的正弦波,好似一个在推,一个在挽(挽就是拉的意思),所以叫推挽功放。
我们现在日常使用的晶体管功放几乎全部是推挽式功放。
推挽功放理想的最大效率状态应该工作在乙类状态,也就是一个管子在正半周工作时,另一个管子“休息”(截止),轮到负半周工作时,休息的那个工作,原来工作的则休息,轮流使劲。
在这种乙类工作状态下,每个功率管都处在导通--截止--导通的状态中,都只工作180度。
2个180度合成一个360度的完整波形。
它的优点是晶体管是从截止点开始向增大电流方向工作的,放大系数很高,因此也就省电,效率高,它的缺点是存在非线性失真和交越失真。
非线性失真是晶体管本身固有的,从零电流到电流饱和,晶体管的放大能力不是线性的,只有中间一段是线性状态优良的,晶体管从零电流开始工作,必定要有一段工作在非线性的区域内。
交越失真是由于2个功率管各管一个180度,在交接处又是互相的非线性工作区域,在交界处失真较大,互相接不住,产生波形失真。
所以,乙类放大器只能用在对音质要求不高,而对效率要求高的地方,比如手提式喊话器、工厂、学校等场合用的民用扩音器等。
放大器的甲类工作状态是指推挽功率管无论在正半周还是负半周,无论有否放大信号,都是导通在线性工作区域内的,这时给功率管设置了一个比较大的静态偏流,使它始终处在线性工作区域内。
甲类工作状态下,放大器的非线性失真和交越失真都很小,但缺点是:放大器功耗很大、效率很低、发热巨大。
甲类放大器的功耗和声音大小几乎没有关系,而乙类放大器的功耗和声音大小成正比关系。
制作家用单端场效应管甲类功放155 2010-7-14电子眼抓拍大解密,有车的友人能够进来看看,适用。
目前许多地方设了电子眼,看到公司一辆又一辆公车私车接到违章处分单,真是烦闷啊。
偶得一网友指导回避电子眼的方式,特发给各位同仁。
以供参看。
祝大家一路太平!电子眼拍的违章照片是存储在电子眼底下的存储卡里头,3天取挨次。
外包给某公司,照片先送到某公司,检验违章凭证是否富余(三张照片完备能力全证),然后再提交交管局。
第一招:你留神看,有电子眼的路口在警惕线先后,都挖的有菱型的槽子,里头埋的即使感应线圈。
然而你要记住,红灯亮后三秒种电子眼才启用!还有,开车你压线,照了第一张,不管是前轮后轮过线了,都不要动了,千万不要动,一动就又要引发线圈照第二张照片!要三张才顶事,照相的取证规定是这么的。
平常取证照片是这么的:第一张是前轮过警惕线第二张是后轮过警惕线第三张是你过扑面路口的警惕线这三张完备能力传递pol.ice,然后给你发罚金通告。
呵呵, 200啊。
因而,你前轮过了不要紧,照了第一张,没牵涉,你不动就不会照第二张,如果你动了,引发了第二张你后轮过了,那么也不怎么有要紧,你不过路口,或许你停在扑面路口的警惕线外边都能够!再说归来,刚刚你第一张前轮被照了,有些人也许想到往倒退一下总能够嘛,错了,一退,又引发一张!呵呵!第二招:你看到你的车牌照第一个字母后头的小圆点不曾!这个小圆点点是用稀土金属做来镶上去的,它的作用即使用来给电子眼对焦用的!全世界的牌照制造准绳哈!都要镶哪个东西是由日本sony公司提出来的!因而,淘宝网女装,开中国车的,不要bs日本,你们开的车上最少有一样东西是属于日本的技巧!内部人士爆料说的,这小原片是稀土金属制成,在光的感应下会发生脆弱的用于电子眼捕捉的微波信号。
怎么做呢?很容易,扣掉她今后妥当保留,待车检的时候用双面胶粘起,检完了再。
嘿嘿!电子眼怎么拍也拍不清晰你的牌照号码了。
是“0”还是“8”啊,呵呵!这些东西是许多pol.ice叔叔都不晓得的哈!pol.ice的阐释许多只对一半,防编造,也有这个性能。
6P3P电子管甲类单端功放机拉丝不锈钢6N1推6P455.0元6P3P电子管甲类单端功放机(拉丝不锈钢6N1推6P3P单端成品)最近售出7件客户评价:"是保安帮签收的,看了下好重,焊的还可以,还点了绝缘硅胶,感觉胆机的电子原件没有石机多,对电子管不是很懂,觉得就这几个原件能发声,刚开始没输出线用网线接的,声音好硬,没层次感,听了半个多小时,煲机,效果没什改善,最后买了专门的音箱线效果才上了一个层次,觉得还不错,到时候换个好点的喇叭试下,就是感觉电子原件好少,老板人不错,给个好评,就是老板可能太忙了,旺旺在线可回的太慢,机器继续试验中"客户评价:"东西很好,物流很慢,广州到南宁4天。
"客户评价:"第一次玩胆机,东西很漂亮,对音质提升也有帮助,关键是陈师傅人很好,因为音箱是后订的,陈师傅还给延长了付款期限,好评啊"客户评价:"很好,手工和布线很好很合理。
试听底噪几乎听不到。
值得购买。
"客户评价:"还好!"客户评价:"不错的胆机,性价比很高,正在煲机中,期待升级!谢谢陈师傅!辛苦了!"客户评价:"本人02年发烧至今,亲戚所做的关氏MA-one胆机、金嗓子功放,从丹特声到全套天朗海潮落地式,自己本来对音响要求还是极高的。
\n这次的搭配:\n1、功放-广大坛陈师傅做的手工纯胆机-500元\n2、音箱-中大玲韵-500元\n3、国产秋叶原信号线、音箱线若干。
-250元\n4、乐之邦-茉莉声卡-368元(声卡很重要,用集成去听就简直是对不起整套系统)\n\n如果音箱是肉身,这套功放可谓是灵魂,接入胆机的情况下,此套系统放在我5米的办公桌可谓刚好,听歌时候结像好,空气感、声场都发挥不错,三频调试均衡可谓难能可贵,低音打得恰到好处,不会太强,但是深度大,表现清晰,听《尘鼓》每个鼓点的细节都不会遗失。
浅谈300B单端甲类胆机的问题与解决方案2012-09-18 13:23:16 来源:发布者:半山版权:原创[书签]:评论:点击:1073导读:采用什么办法来提升300B单端甲类胆机的低频段表现力,前级放大兼推动采用什么样的电路比较好。
整流滤波采用什么样形式比较合适..300B这只有着几十年历史的直热式三极管,其独特的声音魅力不知迷倒了多少发烧友。
它哪美丽的中频与高频,温醇悦耳,柔美动人,通透流畅,声音圆润,有着非比寻常的吸引力。
而低频段表现力采用什么办法来提升?前级放大兼推动采用什么样的电路比较好?整流滤波采用什么样形式比较合适?笔者通过多台多电路的(300B单端)装机经验,在这一台胆机(见外形图片)上较好的解决了上述提出的问题,与大家切磋,共同提高而已。
一、前级兼推动放大电路,应当把非线性失真特性摆在第一位去考虑在大多数情况中,如果一部放大器它的非线性失真在没有降到一定程度情况下,而去谈功率放大、拓展频率响应的举措也就失去了意义。
就目前各种杂志上介绍的300B电路,大多采用6J8P+300B或者是6N9P(SRPP)+300B 电路,而6J8P采用五极管接法直推300B,笔者仿制过,就其音质而言;无可非议。
但在播放大动态音乐时,出现深而不实的现象非常严重。
且电路复杂,五极管做电压放大时的失真和管子的帘栅电压有相当大的关系,帘栅电压低则失真小,反之则大。
问题是电压低输出动态也相应变小,推300B自然成问题,而笔者将其6J8P(前苏联的6Ж8)直接设计为三极管接法,相关阻容元件只有三个,而推动级采用6N8P(前苏联6H8C)做SRPP放大,相关阻容元件只有四个,且结构简单、线性好、过载能力强、电路相移少、输入阻抗高、输出阻抗低、在担任电压放大的同时,也提高了推动电流。
俗话说“多一个香炉,就多一个鬼。
”不好伺候。
而这一款前级兼推动电路,加上电源电路总共使用了十个元件,放大性能特别好,输入波形与输出波形(量程不一样)几乎可以重叠。
简洁至上的晶体管甲类音频功率放大器Hi-Fi界有一句至理名言,就是“简洁至上”。
这就是说,假如能用一个元件或器件做成的电路,就尽量不用两个。
电子电路中常用的电子元件有电阻、电容、电感等,常用的电子器件有二极管、三极管及集成电路等。
电阻、电容都属于线性元件,在放大电路中可以认为不会因它们而产生非线性失真。
但是,目前用于放大的电子器件,不论是电子管、晶体管,还是集成电路,统统都是非线性器件,它们是放大电路中产生非线性失真的根源。
因此,在放大电路中应尽量少用管子。
要做到这一点也并非容易,所以通常所见到的放大电路都比较复杂。
要想“简洁”,必须解决两个问题:一是放大倍数要足够大,至少应该在接C D机时能够达到额定的输出功率;二是非线性失真要尽量小些,在不加负反馈或只加少量的负反馈时,谐波失真系数能够达到Hi-Fi要求。
功率放大器的输出电路方式,可按有无输出变压器分为两类。
无输出变压器的功放电路为了使扬声器中无直流电流通过,必须采用电容耦合(OTL电路)或者正负两套电源(OCL电路)。
本文介绍的晶体管甲类音频放大器选用变压器输出的单管放大方式,每声道只用两只管子,而若采用互补推挽电路,则至少要用四五只管子。
由于所用的输出变压器初级阻抗只有几十欧姆,所以绕制起来很容易,性能也很容易达到要求。
采用变压器输出的一个突出优点就是可以避免烧扬声器。
另外,变压器次级线圈极小的直流电阻,会改善扬声器的阻尼,使瞬态失真减小。
电路结构与特点该晶体管甲类音频功率放大器电路及电源电路如图1所示。
这一功放电路具有高达15W的有效值输出功率,它只用两只晶体管,并把它们直接相连,复合成一只高跨导的功率场效应晶体管。
这是笔者受到绝缘栅双极型晶体管(IGBT)的启发偶尔想到的。
IGBT是一种新型半导体功率器件,已成功地应用于高频开关电源中,近几年在高保真声频功率放大器中也常见到它的踪影。
它兼有双极型晶体管(即普通PNP、NPN晶体管)和单极型晶体管(即场效应管)两者的优点,但没有两者各自的缺点,所以应用前景非常广阔。
高保真单端纯直流甲类前级放大电路的制作及调试类别:网文精粹阅读:2309图为单端甲类前级放大电路,电路板实物图如下图所示(图中仅画一个声道,另一个声道相同)。
电路特点如下:①采用发烧管K246,A970,C2240,Al145、C2705等,信号从输人级到输出级均设计为纯甲类状态,从而避免了交越失真,音色及听感特别好,动态好,解析力强。
②输人级采用场效应管做单端差分电路,以得到悦耳的音色,输人级采用场效应管对信噪比有好处,输人阻抗高,有利于微弱信号的拾取,其传输特性和电子管相似,可以表现出类似胆机的音色。
③为了适应不同的音源及发烧角度,需要电路由NE5532等组成的音调电路,并且设置有直通开关,当聆听音乐时,按一下自锁开关K即可跳过音调进人纯Hi-Fi状态。
④电源部分采用分立元器件稳压电源,具有极低的输出内阻,稳压精度高,反应速度快。
对电源纹波有良好的吸收特性,从而保证了本前级音色的纯净度。
电路原理如下:IC1及其外围元器件是音调电路;K1是直通/4调开关;T1,T2是由场效应管组成的单端差分电路;T7, T8是恒流源;R1、R2是T1、T2的负载,该级没有采用镜像恒流源做负载,可提高整体电路的转换速度并确保保真度。
实践证明,镜像恒流源做负载时,电路失真程度较电阻做负载时程度大。
这也就是Hi-Fi为什么越简洁失真越小的道理。
该级设置静态电流均为3 mA(每管),使该级工作在甲类状态,因而没有开关失真和交越失真,并提高了动态范围。
单端甲类线路本身可抵消奇次谐波失真,而偶次谐波比较丰富,对音色起到一定的润泽作用,听感优美,音色温暖柔润,具有更佳的耐听性,深受发烧友的喜爱。
T1,T2将输人信号转变为电流变化,再由T3, T4将电流变化转变为电压输出,T9, T10是T3,T 4的镜像恒流源,可确保该级的稳定性。
电压放大级采用共基极电路。
这种电路多用于宽频带放大电路,具有极高的高频特性。
T5 , T6是输出级,Tll及VR1、R3是其静态偏置电路,通过调节VR1使输出级静态电流在10-20 mA即可。
DIY2A3和300B单端甲类胆机(设计制作篇)之青柳念文创作一直想做一台2A3和300B通用单端胆机,可以将1993年购买的2A3用起来,而且刚把300B推挽机改为EL34和KT88通用推挽机(见《老树发新芽-2A3和300B推挽胆机》),换下了1992年版的曙光300B.从设计和修改电路、购买半成品机箱、设计制作变压器和扼流圈,到实际动手制作装置调试,花了一年多的业余时间,到2013年10月完成.之后两年多时间里又修改四次.现在信噪比约90db,耳朵紧贴音箱才可听到一点非常轻微的哼声,稍微分开一点就听不到了.听感:中高频很好,尤其中频失真很小,低频厚实而富有弹性.一、设计线路本机电路图如下:乍一看,此电路电源是CLC滤波,然而第一个电容取值很小(0.68uf),只起到了使输出电压在0.9Vin~1.414Vin之间调节的作用.带负载的情况下,Vin=352V和403V时,Vout=308V和355V标明:,因此,其实仍是LC 滤波.最初LC滤波并没有采取聚丙烯电容与电解电容混合并联,而是用多个聚丙烯电容并联成180uf,成果通电试机感到哼声比较大,离音箱1米才听不到,而且不受音量电位器节制.很分明,哼声来历于电源和输出级.于是操纵机箱剩余空间,增加了多个开关电源用的电解电容并联,使每声道总容量达到710uf.用于开关电源的电解电容具有更小的ESR.下面从实际上估算电源哼声的大小.Vin=352VL=10HC=530uf+180uf=710uf×10×功率管内阻ra与阳极负载RL(输出变压器)构成分压器,所以输出管2A3阳极处脉动电压:Va~=(ra×V~)/(ra+RL)=800×输出变压器只响应绕组两头的电压,因此它得到的哼声是:—在满输出之下,2A3的电压摆幅为92Vrms,信噪比S/N=20㏒1015)=7db信噪比约80db,意味着接近音箱仍可听到哼声.为了进一步提高信噪比,需要给驱动级和输出级的电源增设一级LC滤波.只要这一级滤波器在100HZ处有20.5db的衰减,便可令信噪比提高到100db.20db的换算为比率是25:1,所以要求增设的这级LC滤波器AC分压比是Xl/Xc=25.如果采取180uf电容,则扼流圈只需达到1H就已足够.同时要注意采取内阻(直流电阻)尽能够小的扼流圈,以减少直流电压降.我实际采取1.5H~1.8H,Rdc=26欧的扼流圈,在70mA 电流下的直流压降仅为 1.8V,不会影响电子管原来的工作点.根据2A3与300B通用和好声、耐用、不极限运用的原则,线路参数设计计算如下:(1)电源部分(a)左右声道的高压供电分为两组独立的绕组,采取两个整流管、两个扼流圈、两组电容器停止整流滤波.不采取CLC滤波,采取LC滤波,使整流电压中的交流成分绝大部分降在扼流圈两头(实测有100多伏),降低输出电压紋波,但电源效率较低.(b)300B的高压B+为直流365V,减去输出变压器(直流电阻约100欧姆)的直流压降约7~8V和300B阴极偏压60V,300B的工作电压是手册规定尺度电压300V 左右;2A3的高压B+定为直流300V,减去输出变压器的直流压降约7V和2A3阴极偏压45V,2A3的工作电压是手册规定尺度电压250V左右.两个整流管采取旁热式的CV2748(5AR4),减少对直热式2A3、300B的冲击.(c)电源变压器给300B供电的次级高压为交流405V,给2A3供电的次级高压为交流355V.用两个继电器(每一个继电器内有两组10A转换触头)对405V和355V电压的4个抽头停止切换.(d)300B和2A3的灯丝采取交流供电,用1个继电器(每一个继电器内有两组10A转换触头)对5V和2.5V电压的2个抽头停止切换.(e)滤波电容采取聚丙烯电容和电解电容组合并联,其中美国EC的5MP和法国苏伦MKP无感金属化聚丙烯电容并联成两组140uf..美国EC的5MP电容的性能指标:类型:metallized Polypropylene(金属化聚丙烯)应用:工业和军用级开关电源性能:相对电解电容,较好的电气性能,没有“Roll-off”电容漂移,ESR:4毫欧,共鸣频率:1065KH,纹波电流:30amps,容值高达50uf,过压呵护:200%;完美的稳定性,低电介质吸收(f)输入级管子的阳极工作电压用两个OB2(WY2)串联停止稳压(215V).电子管稳压可使低频大讯号强劲有力,防止振铃,消除的感觉.稳压后经10K阳极负载电阻降压至150V作为6J5GT(L63)的阳极电压.稳压限流电阻的选择计算如下图:最后选用7.2K(10W).(2)线路部分(a)输入级的共阴极放大管不必6SN7GT,而用它的单管类型6J5GT(欧洲马可尼公司生产的型号是L63),两声道两个输入管,互不干扰.(b)功率管采取2A3时,推动级的SRPP放大管用6SN7GT..这是因为根据Morgan Jones所著《电子管放大器》中结论:6SN7GT的原生失真是适合用作驱动级的电子管中最低的,而且在150V阳压下,栅负电压为-4V,实测音量调节后输入交流3.5V信号电压时,经SRPP放大后输出的不失真推动电压是交流60V,知足推动2A3至满功率输出的需要.(c)功率管采取300B时,推动级的SRPP放大管可用6SN7GT,也可用5687,用自制的转换座实现.根据Morgan Jones《电子管放大器》,5687的原生失真也很低,仅排在6SN7GT之后,其2次谐波失真仅比6SN7GT高1db,3次谐波失真虽比6SN7GT高13db,但低于E182CC、E288CC、ECC82等约2~16db.在180V阳压下,5687栅负电压为-7V,实测音量调节后输入交流5V信号电压时,经放大后输出的不失真推动电压是交流85V,知足推动300B的需要.(d)2A3与300B转换时,用1个继电器(每一个继电器内有两组10A转换触头)对750欧和1000欧阴极电阻的2个抽头停止切换,实现阴极电阻的阻值转换.(e)EF184、E180F三极管接法时,单级可推动2A3和300B,因此操纵6J5GT的空余管脚,接上EF184的阴极电阻,再自制转换座,并设置开关切除SRPP推动级.实测信号电平1.7V时,EF184输出的交流电压达到80V,足以推动300B.(3)元件参数部分1、功率级输出变压器:初级阻抗采取2.5K.因为300B的参数手册上,300V屏压下的负载阻抗是3K,2A3的参数手册上,250V屏压下的负载阻抗是2.5K.思索到将会以使用2A3为主,所以采取2.5K.2、各级电子管的阴极偏置电阻:必须设计计算,使其工作在栅压-屏流曲线直线段的中间位置,这就是A类放大的工作点.a)输入级6J5GT工作点阴极偏置电阻选用620欧.如想进一步提高输入管的线性范围,还可以选择430欧的阴极电阻,此时Vg=-3.4V,在150V阳极电压下,阳极电流8mA.由于调节性滤波电容最终由0.7uf增大为1uf,所以增加2mA电流应该不至于影响输入级稳压管正常点亮工作.由于6J5GT阳极电阻不大(10K),可以预期其负载线比较陡峭,有能够发生失真,所以在选择了工作点以后必须验证它的最大不失真输出电压摆幅.先做6J5GT负载线:在6J5GT阳极电压Va、电流Ia与栅极电压Vg关系曲线图横轴上找到高压Vht=215V(即稳压管稳定电压)那一点;再求出在高压Vht =215V下,负载电阻RL=10K时的阳极电流:Iam=Vht/RL=215/10=21.5mA.毗连这两点做出RL=10K的负载线,正好通过工作点Q:Va=150V,Ia=6.2mA,果然很陡峭,如下图中的黑线.沿负载线向左,将栅极电压接近出现栅流的Vg=0V以前的Vg=-1V作为电压摆幅的限制点,对应电压是115V.沿负载线向右,一直到Vht=215V都没有限制点.于是:最大不失真输出电压摆幅峰峰值是工作点电压与饱和限制点电压的差值的2倍:Vp-p=2×(150-115)=70V,最大不失真输出电压摆幅交流有效值:Vrsm=Vp-p/2√由于本机调试时测得:输入现代音源尺度交流2.0V信号电平时,6J5GT的输出电压是交流有效值21.76V,小于最大不失真输出电压摆幅的交流有效值24.75V,所以不会发生失真,阳极负载电阻RL及工作点阴极电阻Rk都是合适的.为了提高输入管的线性范围和不失真输出电压幅值,可以选择560欧的阴极电阻,而且取消稳压,阳极负载电阻增大为17K,使输入管工作点改为:Va=175V,Ia=8mA,Vg=-4.5V,此时VHT=310V,Iam=VHT/RL=310//17=18.3mA,做出负载线如上图中的红线,正好过工作点Q.Vp-p=2×(175-122)=106V,最大不失真输出电压摆幅交流有效值:Vrsm=Vp-p/2√2=106/2.828=37.5V.此方案作为备用方案.6J5GT阴极电阻双方并联的交流旁路电容不但影响增益,而且其容量大小对低端频响有很大影响.我停止了计算,看在本线路工作点条件下,用多大容量合适.根据Morgan Jones的著作《电子管放大器》一书,电子管自己的阴极等效电阻为:rk=(RL+ra)/(u+1)本线路中,RL=10K.电子管的ra和u的值将随阳极静态工作电流大小而变更,不克不及直接套用手册值.在电子管特性曲线图上作图得出,在Ia=6mA下,ra=9k,u=20,见下图:把作图求出的参数代入上式:rk=阴极等效阴极交流电阻rk与阴极偏置电阻Rk是并联关系,阴极总电阻:rk′=rk‖Rk×Morgan Jones在《电子管放大器》一书中指出:“放大器要有杰出的低频响应,不止靠正确的幅度响应,还需要相位和瞬态响应所受的影响最小,而相位和瞬态响应涉及的低频端比截止频率低10倍,所以通常将截止频率f-3db选取为1HZ.”于是,与RK并联的交流旁路电容的容量为:Ck=1/2∏f-3dbrk′=1/2××1×.我选用了470uf/16V瑞典长寿命电容,型号:PEG124.b)推动级6SN7GT和5687的工作点如果换管时阴极电阻也要跟着换,就比较费事,失去了换管的乐趣,也不会轻易换管.最好是有一个两管和两种工作电压都通用的阴极电阻.操纵栅压-屏流曲线作图,在365V和310V电压下,居然恰好有6SN7GT和5687都适用阴极电阻:620欧.6SN7GT的Vg-Ia曲线图,两种电压下的两个工作点用Q1和Q2标在图中.5687的Vg-Ia曲线图,两种电压下的两个工作点用Q1和Q2标在图中.SRPP电路的阴极交流旁路电容需要计算在本线路工作点条件下用多大容量合适.Morgan Jones的著作《电子管放大器》指出:“SRPP电路中,上臂管子的阴极电阻Rk是下臂管子的RL,由于其阻值相当低,这意味着必定有Av<u.”据此,下臂管子的RL=Rk.由于6J5GT相当于半个6SN7GT,所以在6SN7GT电子管特性曲线图上作图,得到与6J5GT 相同的成果:在Ia=6mA 下,ra=9k,u=20,rk=(RL+rark′=rk‖Rk=(458×取f-3db=1HZ,则与RK并联的交流旁路电容的容量为:Ck=1/2∏f-3dbrk′=1/2××10×263.4=604uf最接近的电容尺度值是680uf.我选用了从丹麦军用通信设备上拆机的银壳680uf/10V钽电解(实测1000 uf)和国产上海牌680uf/6.3V钽电解(实测980uf).c)功率管2A3和300B的工作点由于阳极电压和阴极偏置电阻都按尺度值设置,所以可以预期工作点也在尺度位置上.复核如下:1)300B工作点:由于300B的Va-Vg-Ia特性曲线图没有给出负载线,所以用数值迫近法作出2.5K的负载线:Va=475V,Ia=188mA.沿着负载线向左,与Vg=0V的交点处,Va=112V:沿着负载线向右,与Vg=-120V的交点处,Va=450V:所以阳极交流电压摆幅的峰峰值是Vpp=450V-112V=338V,交流有效值是Vpp/2√2=119.5Vrms.输出功率P=V2/R=1202西电300B手册上,在阳极电压300V,阳极电流60mA下给出的输出功率是6W.2)2A3的工作点:在2A3的Va-Vg-Ia特性曲线图上,从工作点沿着负载线向左,与Vg=0V的交点处,Va=105V:沿着负载线向右,与Vg=-87V的交点处,Va=365V:所以阳极交流电压摆幅的峰峰值是Vpp=365V-105V=260V,交流有效值是Vpp/2√2=92Vrms.输出功率P=V2/R=922RCA的2A3手册上,在阳极电压250V,阳极电流60mA下给出的输出功率是3.5W.英国Audio Note Kit 1功放输出管的阴极交流旁路电容的容量是220uf,同理,也需要校验在本线路工作点条件下是否合适.由于本线路输出管的Va、Vg、Ia、RL,RL=2500欧姆,Rk=750欧姆,等效阴极交流电阻:rk=(RL+ra)/(u+1)阴极总电阻:rk′=rk‖Rk×750)/(634.6+750)设定f-3db=1HZ与RK并联的交流旁路电容的容量为:Ck=1/2∏f-3dbrk′=1/2××1×343.7=463uf最接近463uf的电容容量尺度值是470uf.我在8个220uf/100V瑞典PEG124长寿命电容中,实测挑选容量230uf左右的,两只并联成约460uf.二、设计制作变压器和扼流圈1、电源变压器初级:220V加屏蔽次级:400-340-0-340-400(V)(0.18A)——L声道B 电400-340-0-340-400(V)(0.18A)——R声道B电0-2.5-5(V)(3A)——L声道300B&2A3 的A电0-2.5-5(V)(3A)——R声道300B&2A3的A电0-6.3(V)(3A)——前级(6J5+6SN7)×2或(EF37A+5687)×2的A电0-5(V)(5A)——5Z4P×2的A电采取武钢H12 35WW270全新退火片,磁通17000,114×95,舌宽38, 0.35片厚,叠厚70mm,截面26.6c㎡.但是武钢H12的概况绝缘欠好,直接叠片能够发生涡流,造成较大的铁损,于是又买了一半叠厚(35mm)的日本Z11硅钢片,与武钢H12穿插使用,剩下的武钢片只能丢弃.计算时取磁通12500,从计算图查出截面26.6c㎡的变压器功率425W,每伏圈数1.37N/V,取1.4N/V.电流密度j=2.5A/m㎡时,d=2××j)1/2×(I)1/2电流密度j=3.0A/m㎡时,d=2××j)1/2×(I)1/2一般电源变压器电流密度取j=3.0A/m㎡38×70骨架尺寸如下:窗口尺寸:宽即可绕线圈厚度(74.6-42.8)÷2=15.9㎜,长51㎜(1)初级高压220V,1.37N/V,301匝×(1.9)1/2=0.896㎜,取0.9㎜,S=0.636m㎡查表,0.9㎜漆包线最大外径0.99㎜,51.8㎜长度可绕51÷0.99=51.5匝,取51匝,330匝绕301÷51=5.9层,5㎜,厚度6×(0.99+0.05)=6.42㎜屏蔽层厚度0.2㎜,两侧垫5×2=0.3㎜,初级厚度6.42+0.5=6.92㎜骨架内尺寸周长(42.8㎜+73.7㎜)×2=233㎜初级线圈一匝平均长度=233㎜+6.42㎜××301匝=74m ,留20%余量74×××90=0.510㎏,实际买了0.57㎏(2)次级高压800V×2, 1.37N/V,1097×2=2193匝电流0.2A(200mA),×(0.2)1/2=0.31㎜,查表,0.31㎜漆包线最大外径0.36㎜,51㎜长度可绕51÷0.36=142匝,2193 匝绕2193÷142=15.44层,取16层,层间垫绝缘5㎜,绕组间垫绝缘0.15㎜,厚16×(0.36+0.05)+0.15=6.71㎜.×次级线圈一匝平均长度=261㎜+6.71㎜××2193匝=603m ,留20%余量603×1.2=724mS=0.0755m㎡××724= 0.486㎏,实际买了0.5㎏2+6.71=13.63㎜(3)次级灯丝5V×3, 1.37N/V,21匝×1,1.5N/V,9匝合计:30匝×(5)1/2=1.45㎜,最大外径1.56㎜,S=1.65m㎡,51㎜长度可绕51÷1.56=33匝,一层可绕下.绕组间垫绝缘0.15㎜,外包绝缘层0.3㎜,厚度1.56+0.15+0.3=2.01㎜线包总厚度=(1)+(2)+(3)=13.63+2.01=15.64㎜,窗口宽度15.9㎜,尚有0.24㎜余量,OK.高压绕好后线包外周长:(42.8+12)×2+(73.3+12)×32匝××1.2=10.8m,取11米××11=0.161㎏,实际买了0.16㎏计算:1、每伏特匝数(N) 1.37 匝/每伏特2、初级匝数(N1)301.60 匝3、次级高压匝数(N2)2220.87 匝4、次级低压匝数(N3)29.20 匝5、初级线直径0.92 毫米6、次级高压线直径0.31 毫米7、次级低压线直径 1.45 毫米2、10H/200mA扼流圈实测铁芯78×65×32(㎜),是舌宽22㎜的EI22×32铁芯c㎡4㎡窗口面积:39㎜×14㎜=546m㎡=5.46c㎡去掉线圈骨架占用空间,可绕线的窗口面积:35㎜×12㎜=420m㎡=4.20c㎡m㎡时,线径是0.7乘以电流(A)的开平方,即:××=0.35㎜)1㎜漆包线,加漆包0.05㎜,实际线径0.36㎜,则窗口宽度35㎜,一层绕35㎜/0.36㎜=97.2圈;层间不垫纸,则窗口厚度12㎜,可排下:12㎜/0.36㎜=33层;总计可绕97×33=3201圈.每圈平均长度=骨架截面周长+线包厚度×2=(26×2+35×2)+12×2=146㎜每只扼流圈用线长度=3201圈×0.146米=467米,2只934米.计算每一个扼流圈直流电阻:R=ρ×L/S式中,L=导线长度,单位:米,S=导线截面,单位:m㎡,线径d=0.31㎜,r=0.155㎜,S=0.0755m㎡R=2×467÷气隙:实际垫了一张咭片厚度,约0.3㎜.计算电感量:L=uN2S/l公式中u:铁芯导磁率(H/m)——1(H/m)=T/(A/m),10000Gs=795,773(A/m)=1T10000Gs =0.01257(H/m)滤波扼流圈的铁芯体积V、线圈匝数N和空气隙lg,是由三个有相互关系的电气参数,即:电感量L、直流磁化电流I和线圈两头的交流的电压U~而决议的.滤波扼流圈的磁路是由铁芯的磁长度1和空气隙lg两部分组成.虽然磁路长度大于空气隙lg,但这两部分是不克不及直接相加的.因为这两部分的导磁率μ是分歧的,在空气隙中的导磁率是1,而在铁芯中的导磁率视铁芯的饱和程度而定.磁中有空气隙的,其有效导磁率μe一般在100~1000,减少10~100倍.按守旧的减少100倍计算,由此,磁通密度10000Gs铁芯的导磁率:u=(H/m)l:铁芯平均磁路长度(m).铁心是大EI22铁芯,即只有舌宽是22,外尺寸与EI26相同, Lc=[(78+68)+(39+14)×2]÷2 =0.126m,查表相同.N:线圈匝数=3201S:铁芯磁回路截面积(㎡)4㎡计算值L= uN2S/7×(3201) 2×÷如铁芯是舌宽26,叠厚32㎜ c㎡计算值L= uN2S/7×(3201) 2×÷3、输出变压器铁芯规格:114×mm片厚,叠厚60mm.德国出口高磁导率、高磁饱和强度,低矫顽率E型铁芯初级/次级阻抗:2.5KΩ/6Ω,8Ω初级铜阻:90Ω,次级铜阻0.45Ω(8Ω段环境温度25°测试)电感量:加入直流DC60mA----37H 加入直流效率:>92%频响:8.7Hz--50KHz(-1dB),以1KHz 0dB为参考点.相位:20Hz--16.74°,20KHz--14.67°,40KHz--28.31°,以1KHz 0.34°为参考点.变压器自己频率响应的测试a)幅频特性测试低频端高频端b)相频特性测试20HZ20KHZ(3)方波频响测试左20HZ左1000HZ左10KHZ左20KHZ右20HZ右1000HZ右10KHZ右20KHZ(4)阻抗测试(5)绕制电源变压器和扼流圈电源变压器和扼流圈做好后停止了带额定负荷实验.图片中的集束电灯泡和电阻是实验所用的负载.三、装置买了一个半成品机箱,来时开好了电源变压器方孔、功率管孔、面板旋钮孔以及机后的接线柱和插座孔,其他电子管装置孔、电流表装置需要自己开.装置时尤其注意要使输出变压器与电源变压器铁芯互相垂直,下图中电源变压器是卧式装置的,则输出变压器只能立式装置,以防止受电源变压器的漏磁干扰.接线依照惯例,一点接地点即接机箱外壳点选在信号输入插座处,而且用 1.5平方软线引到输入级和推动级电子管的接地母线上,信号线屏蔽层在插座处那一端接地,在输入电子管这一端不接地,如两头接地将会引入较大噪声,其他未几说了.上图是最初哼声比较大时的接线,机内没有电解电容.四、开声调试(1)调试电源.先不接入电路和电子管,用两组电灯泡代替功率管负载(2×60mA=120mA电流),用电阻代替输入级和推动级电子管负载(2×30mA=60mA电流).在共计180mA 电流下持续通电12小时,8月份环境温度28度时,电源变压器只有温热,扼流圈不发热.接着检验前级稳压电路在电压较低时可否正常工作.选择在市电较低(215V)时,开启所有家用电器,人为使供电电压降低至210V和208V,插上所有电子管,接好假负载(8欧25W电阻),通电后稳压管能正常点亮,稳定电压符合要求,验证了在低电压且机子满负荷时,稳压管能起稳压作用,达到了设计要求.(2)给机子通电后,校验各级的直流和交流工作状态是否正常.第一步丈量各级电子管的工作点也就是栅负压是否符合设计要求,测试成果与根据栅压-屏流图作出的数值完全一致,几乎没有差别.第二步测试阳阴极间电压是否符合手册和设计要求.测试成果完全符合.第三步测试输入级对信号的放大是否达到10倍的要求,测试成果:输入交流 1.7V信号电平时,输出电压交流18.5V,放大倍数10.88,知足要求.第四步测试在输入信号电压交流1V~2V时,推动级的输入电压是否超出栅负压,输出电压是否达到2A3和300B所需的推动电压要求.测试成果:6SN7GT推2A3,高压305V,栅负压-4V,音量调节后信号电压交流 3.5V,6SN7输出的推动电压交流60V,知足要求.6SN7GT推300B,高压365V,栅负压-5V,音量调节后信号电压交流4.7V,6SN7输出的推动电压交流80V,知足要求.5687推300B,高压365V,栅负压-8V,音量调节后信号电压交流5V,5687输出的推动电压交流85V,知足.不必再说,5687推2A3更知足要求.(3)检查评估哼声水平.如前所述,当发现哼声较大,而且不受音量电位器节制后,在机箱外部有限的空间增加了6个电解电容和2个扼流圈,使信噪比有很大提高,见下图:c)测试音源的输出电平交流有效值(5)测试20HZ~20KHZ的方波频率响应波形为什么要调试音频设备时要测试方波频率响应?因为音频信号是由无穷多的基波与泛音谐波组合而成的,HIFI音频器材必须完整地重现这些组合波形才是完美的高保真器材.如果器材性能不良,就会丢失音源波形信息,特别是高频泛音信息,所以听感细节缺乏、韵味乏陈、味同嚼蜡,松香味、质感缺失.根据傅里叶定律,方波是由无穷多次正弦波组合而成的,用方波测试功放的频率响应,比正弦波测试更代表实际音频信号,更能反应功放器材的动态性能.今朝采取正弦波的测试方法是不完善的,基本上只能反映其静态素质,所以造成指标好、但听感欠好的现象.以下是6J5WGT+6SN7WGT+2A3时的方波频率响应图:左40HZ左100HZ左1KHZ左10KHZ左20KHZ右40HZ右100HZ右1KHZ右10KHZ右20KHZ未完,下篇是——修改调试篇,详细先容了四次改进的设计、计算、作图、测试的全过程.。
浅谈300B单端甲类胆机的问题与解决方案2012-09-18 13:23:16 来源: 发布者:半山版权:原创[书签]:胆机300B低频表现力电子线路收藏评论:0点击:1073导读:采用什么办法来提升300B单端甲类胆机的低频段表现力,前级放大兼推动采用什么样的电路比较好。
整流滤波采用什么样形式比较合适..300B这只有着几十年历史的直热式三极管,其独特的声音魅力不知迷倒了多少音响发烧友。
它哪美丽的中频与高频,温醇悦耳,柔美动人,通透流畅,声音圆润,有着非比寻常的吸引力。
而低频段表现力采用什么办法来提升?前级放大兼推动采用什么样的电路比较好?整流滤波采用什么样形式比较合适?笔者通过多台多电路的(300B单端)装机经验,在这一台胆机(见外形图片)上较好的解决了上述提出的问题,与大家切磋,共同提高而已。
一、前级兼推动放大电路,应当把非线性失真特性摆在第一位去考虑在大多数情况中,如果一部放大器它的非线性失真在没有降到一定程度情况下,而去谈功率放大、拓展频率响应的举措也就失去了意义。
就目前各种音响杂志上介绍的300B电路,大多采用6J8P+300B或者是6N9P(SRPP)+300B 电路,而6J8P采用五极管接法直推300B,笔者仿制过,就其音质而言;无可非议。
但在播放大动态音乐时,出现深而不实的现象非常严重。
且电路复杂,五极管做电压放大时的失真和管子的帘栅电压有相当大的关系,帘栅电压低则失真小,反之则大。
问题是电压低输出动态也相应变小,推300B自然成问题,而笔者将其6J8P(前苏联的6Ж8)直接设计为三极管接法,相关阻容元件只有三个,而推动级采用6N8P(前苏联6H8C)做SRPP放大,相关阻容元件只有四个,且结构简单、线性好、过载能力强、电路相移少、输入阻抗高、输出阻抗低、在担任电压放大的同时,也提高了推动电流。
俗话说“多一个香炉,就多一个鬼。
”不好伺候。
而这一款前级兼推动电路,加上电源电路总共使用了十个元件,放大性能特别好,输入波形与输出波形(量程不一样)几乎可以重叠。
6n9p EL 34 B单端甲类胆机套件13w 13w真空管放大器39 0000详细介绍:大家对我和产品的意见,建议,批评,是对我的最大支持和鼓励,我一定要造出世界最牛土炮--便宜好声,让更多的人享受耳朵这个零件的快乐感觉,通过听到好声,提高耳朵的生活质量。
破除胆机渴望不可及神秘,高价的面纱。
数控冲压机箱手工搭棚焊接二边侧板采用实木喷漆加工6n9p+EL-34-B单端甲类胆机套件13w+13w真空管放大器,下面是装出的实物图片,本机电子管采用曙光的库存新胆5z3p6n9pEL34采用曙光出口包装的全新胆请买家主意以上套件不含府底板的如要机箱底板35元一块连接数控冲压加工不锈钢拉丝面机箱上市了EL-34-B单端甲类胆机套件13w+13w不锈钢拉丝面,以上标的价格成品和套件是不含底板的价格,如需要加配底板加35元一块底板,材料是镀锌铁板数控冲的带有长方型散热孔的音色温暖醇厚的EL-34-B电子管功放,简单易制,全手工制作电子管EL-34-B全新胆管输出端有4欧8欧二个端口的6n9p库存没使用过的+EL34-B全新胆整流管5z3p库存胆没使用过特配2个全新BENNIC(本尼克)0.33UF630V电容,胆机音频耦合精品发烧电容拆机的2个220uf德国阴极电容RIFA100V220UF发烧电容6n9p+EL34-B元件清单470k*22k*4270k*2340*2120k*147k*15k*1220k*1加电阻…220uf/35v*20.22*4220uf/35v*222/400v*147/450v*1330uf/450v*147uf/45 0v*15z3p*16n9p*2EL34*2管座*5电源变压器180w310v*26.3v*25v3.15v*2输出变压器13w3.5k*2阻流圈5H*1机箱*1机箱脚*4信号输入插座*2输出插座*6电源插座*1电源线*1开关*1电位器100K*1电位器旋钮*1双芯屏蔽线35cm套管15cm焊接线3m3mm4mm螺丝母各25个电子管功放在历史上曾辉煌过一时,但是随着晶体管及集成电路工艺的逐步成熟,电子管功放被冷落了。
805甲类单端输出45W×2合并式胆机805甲类单端输出45W×2合并式胆机805是优秀的乙类功率三极管,主要用途是乙类推挽音频功放,一对输出管可输出300~370W 音频功率;另一个用途是射频丙类功率放大。
所以其板极由管顶引出,若是只为音频设计,板极就不必从管顶引出了,可以和其他电极一并由管脚引出,如美国型号838。
由于805产量较大,广泛使用于大功率扩音机,故社会保有量较多,国产管型号为FU-5。
许多发烧友尝试用它做甲类单端功放,制作图纸也比较多,但结果大多不太令人满意,低音松散、高音不耐听,音质明显比功率相当的845管甲类单端机差。
不过,发烧友们知难而进、屡败屡战,精神可嘉。
一、不足之处乙类功率管和甲类功率管是有很大区别的,甲类功率三极管一般栅负压较深,最大板流时栅压为零,在整个放大区内不产生栅流,理论上输入阻抗为无穷大。
板极内阻较小,电路对扬声器有较大的阻尼系数。
栅极对板极电压放大系数很小,是所谓低μ管。
如2A3、300B、211、845等。
而乙类功率三极管,栅负偏压较浅,甚至为正栅偏压,在整个放大区内,栅压在正栅压与负栅压之间交替变化,并且在正栅压范围中有相当幅度的摆动,产生栅流。
该栅流随板压变化而变化,与栅压不成正比,呈非线性状态。
板极内阻普遍较大,功放对扬声器的阻尼系数很小,一般为零点几。
栅极对板极有很大的电压放大系数,μ常有60~200,是所谓高μ管。
如805、806、809、810、8l1A、812A、833、838、572B 等。
其中838的各项参数与805相同,唯一不同的是板极由管脚引出,没有屏帽,都是乙类推挽功放用管。
据说曙光厂也生产无屏帽的805,型号为FU-5A,即为838的全等管。
805管约有11kΩ板内阻,μ值约为60。
805管脚接线如图1(a)所示,板极特性曲线如图1(b)所示。
板极最高工作电压1500V,最大板极损耗125W。
在乙类推挽功放电路中有乙1(即B1)类和乙2(B2)类之别,乙1类最高栅压为零伏,乙2类是在动态过程中有正栅压,有栅流驱动的,而805正是乙2类用管。
845单端A类胆机制作郭熙和【摘要】用FU-33制作的瞧机输出功率大音质好,但因电源电压高,能耗高,费用支出大,对于胆机发烧友来说,制作难度大,抽之业余条件断限普及较难。
本文介绍一款电源电压适中,取材容易,调试方便,线路简单,音质被胆机发烧友公认的845胆机。
【期刊名称】《电子制作》【年(卷),期】2012(000)001【总页数】4页(P34-37)【关键词】胆机;制作;单端;电源电压;输出功率;费用支出;发烧友;音质【作者】郭熙和【作者单位】不详【正文语种】中文【中图分类】TN722.75用FU-33制作的胆机输出功率大音质好,但因电源电压高,能耗高,费用支出大,对于胆机发烧友来说,制作难度大,加之业余条件所限普及较难。
本文介绍一款电源电压适中,取材容易,调试方便,线路简单,音质被胆机发烧友公认的845胆机。
845是一只直热式三极管,20世纪30年代由美国的WE与RCA公司推出。
在当时条件下是大功率管,屏压高达1000~1500V,该管内阻低,放大线型好,单管制作的甲类功放输出功率可达30W,适合推动多种音箱。
该电子管电路成熟,存量很大。
许多胆机生产厂家都选用845做功放,本机有以下特点:(1)845 乙电高压1000V用电子管桥式整流取得;其中心点出450V供其他电子管高压;(2)845甲电供电是直流电,由半导体二极管桥式整流直流而得;(3)用四对C型铁芯堆垛成一个大的XEC输出变压器的铁芯;(4)用铝钢双金属板做底座;(5)整机全用三极管做放大;(6)用6E2电眼作输出音量指示。
图1845胆机的结构图1是845胆机的一个通道的实物照片,整机有左右两个声道。
全机共用14只电子管,8个变压器及阻流圈。
前面板上为电源开关。
功放的后面为电源保险盒输入插座输出接线柱等,其他所有的元件全部在底板内。
本机不用机壳,直接摆在桌面上,工作时可以观察内部,845管底座上装有金色装饰圈,显出“一柱擎天”的特色。
20W晶体管单端甲类功放设计与制作电路原理和设计思路: 整机电路可以分为四部分:输入级:核心电路是由两只BC559组成的差分放大电路,22K对地电阻为三极管的偏置电阻,它的大小同时决定了整个功放的输入电阻。
8.2K电阻是差分对管的公共发射极电阻,决定了差分电路的共模抑制比和本级的静态工作电流。
经过输入级放大的电流在流经1K可调电阻时产生的电压信号,直接输送到下一级。
1UF电容是整机的输入电容,其容量的大小和制造材料对音质的影响很大。
根据理论计算,1UF的电容与输入电阻22K组成了一个高通滤波电路,它的低端转折频率可以用下式计算:f=1000/(2*3.14*22*1)=7.2HZ。
(在过去将放大器的低端频响定位在20HZ时,还是可接受以的。
现在数码音源大行其道的今天,看来还是高了一些,低端转折频率定在1HZ以下还是可以接受的。
)由于该电容的重要性,一定要选择品质优良的进口音频专用耦合电容,在国产的电容中,新德克的品牌还是值得信任的,经过笔者和朋友的试用,效果令人满意,只是体积稍大了些,在设计电路板时要考虑是否能安装得下。
8.2K电阻决定了输入级的晶体管静态工作电流,可以由下式进行估算(两管值):VCC/8.2K=20/8.2=2.4MA。
由于输入级的晶体管静态工作电流对音质有较大的影响,可以调整该电阻的大小来满足自己的要求。
(晶体管静态工作电流小,信噪比高,但是音质发干,低音单薄。
如果电流大一些,音质温暖,低音厚实,但是晶体管特有的高频噪声和反映在音频内的电流声也会增加,使信噪比下降。
本机取2.4MA还是比较合适的。
)电压放大级:为了简化电路,本机使用一只三极管BD139,采用共射放大电路,还采用了自举电路。
本级的静态电流可以由下式进行估算:VCC/(1.5k+1.5k)=6.8MA。
100P的小电容是做频率补偿用的,容量要尽可能的小,如果没有高频自激,可以不用。
(当然由于这个小电容的存在对音质有微妙的调节作用,具体怎样处理,看自己的喜好了。
晶体管单端甲类输出变压器
晶体管单端甲类输出变压器是一种常见的电子设备,广泛应用于音频放大器、电源供应器和无线电发射器等领域。
本文将从原理、结构和应用等方面介绍晶体管单端甲类输出变压器的相关知识。
一、原理
晶体管单端甲类输出变压器是一种功率放大器,其工作原理是通过晶体管的放大作用,将输入信号放大到足够的功率输出。
晶体管作为一种电子元件,具有放大电流和电压的功能,可以将小信号放大成大信号,从而实现信号的放大。
甲类输出表示晶体管的工作状态为导通,因此输出信号为正半周波形。
二、结构
晶体管单端甲类输出变压器由三个主要部分组成:输入电路、输出电路和功率放大电路。
输入电路接收来自信号源的输入信号,并将其传递给功率放大电路。
功率放大电路通过晶体管对输入信号进行放大,然后将放大后的信号传递给输出电路。
输出电路通过变压器将信号从低阻抗转换为高阻抗,以适应负载的需求。
三、应用
晶体管单端甲类输出变压器广泛应用于音频放大器、电源供应器和无线电发射器等领域。
在音频放大器中,它可以将低功率的音频信号放大到足够的功率,以驱动扬声器产生高质量的声音。
在电源供
应器中,它可以将输入电源的电压进行调整和放大,以满足电子设备的工作需求。
在无线电发射器中,它可以将输入信号放大到足够的功率,以实现信号的传输。
晶体管单端甲类输出变压器具有以下优点:
1. 高效率:晶体管作为功率放大器,具有较高的效率,能够将电能有效地转换为输出功率。
2. 简单可靠:晶体管单端甲类输出变压器的结构相对简单,易于制造和维护。
3. 高保真度:晶体管单端甲类输出变压器能够提供高保真度的信号放大,保证音频信号的高质量输出。
然而,晶体管单端甲类输出变压器也存在一些局限性:
1. 低输出功率:由于甲类输出的工作原理,晶体管单端甲类输出变压器在输出功率方面有一定的限制,无法满足高功率需求。
2. 失真:甲类输出存在一定的失真,会对信号的准确性产生影响。
总结起来,晶体管单端甲类输出变压器是一种常见的电子设备,具有广泛的应用领域。
它通过晶体管的放大作用,将输入信号放大到足够的功率输出。
其优点包括高效率、简单可靠和高保真度,但也存在一些局限性,如低输出功率和失真。
在实际应用中,我们需要根据具体需求选择适合的晶体管单端甲类输出变压器,以实现最佳的信号放大效果。