On fuzzy stochastic optimization
- 格式:pdf
- 大小:535.84 KB
- 文档页数:9
第十章结构机构可靠性和可靠性灵敏度分析的展望可靠性是一个古老而又面临着新挑战的问题,它涉及 (1) 系统行为的描述和模拟,(2)系统行为的定量化,(3) 不确定性的描述、定量化和传递。
本书只是着重介绍了结构机构可靠性和可靠性灵敏度分析的一些经典方法和现在发展的新方法,研究在输入变量与系统行为之间关系确定,并且输入变量随机不确定性已知的条件下,不确定性的传递问题。
本书所介绍的这些方法只是可靠性工程涉及众多问题中的一个基本问题。
在结束本书的理论方法探讨之前,联系本书所研究的内容,对结构机构可靠性未来所需要研究的问题进行简单的展望。
1、输入变量不确定性的描述和定量化[1-14]一般输入变量的随机不确定性采用概率密度函数来描述,依据经典的概率统计理论,获取概率密度函数需要大量的样本数据,尤其是要准确获取密度函数的尾部时,则需要更大量的样本数据,而且往往影响系统行为失效概率的部分就是输入变量概率密度函数的尾部。
然而值得指出的是:由于经费和时间的限制,工程问题中的大样本数据往往是不可得的。
这使得可靠性研究人员投入了大量的精力和时间来研究小样本情况下母体概率密度函数的估计问题。
尽管挖掘小样本中关于母体信息的思路以及在同类产品中获取更多信息的方法是可取的,并且在今后相当长一段时间内基于这种思路的研究将在可靠性领域持续开展,但值得注意的是这种信息的挖掘和获取毕竟是有限的,因为小样本中本身所包含的信息量只是完整信息的一部分。
以有限的信息去推断完整的信息将承受一定的风险,了解并控制推断过程中的风险水平是保证所作推断有意义的前提。
另外,建立小样本情况下,输入变量不确定性的合适的描述模型也是解决信息不足问题的一个补充手段,如现在已在可靠性领域广泛研究的凸集描述模型和模糊描述模型等,还有各种描述的混合模型。
作为不足以获得概率密度函数情况下的必要补充,研究与样本信息量匹配的不确定性描述模型是输入变量不确定性描述和定量化方面的一项重要研究内容,并且在此基础上的各种不确定性描述模型的相容性也是今后可靠性领域的重要研究内容。
青霉素发酵过程优化控制问题及方法研究1)吴树坤(生物与化学工程学院 2012级生物工程 201210902029) 摘要:本文总结了各种过程优化控制方法的特点及其在青霉素发酵过程优化控制中的应用情况,指出了目前青霉素发酵过程建模和优化控制中存在的主要问题,并在对青霉素发酵过程复杂性进行分析的基础上提出了解决方法。
关键词:青霉素发酵过程,建模方法,优化控制1 引言目前,青霉素是世界各国需求量最大的抗生素,主要是通过微生物发酵法进行生产。
高成本和高能耗是其生产的特征,生产成本中,发酵部分占80%以上。
青霉素发酵过程的控制是在对生产菌的环境条件和代谢变化参数测量的基础上,结合代谢调控的基础理论进行,使产生菌的代谢变化沿着最佳的轨迹进行i以较低的能量和物料消耗生产更多的青霉素[1]。
因此,为了提高青霉素的产量,降低生产成本,对青霉索发酵过程进行优化控制就显得格外重要。
为了对青霉素发酵过程进行优化控制,提高产物产率,研究人员进行了大量的研究,并取得了很好的效果。
与青霉素生产初期相比,青霉素发酵的效价提高了1000多倍,平均生产率提高了40多倍,成本下降了90%[2]。
但由于青霉素是微生物的次级代谢产物,微生物发酵的生化反应过程机理复杂,表现出的动态行为复杂多变,使得目前的各种研究仍存在很大的局限性。
近年来,过程优化控制方法得到了较快的发展。
其在各个生产领域的应用也越来越广泛。
为了更好地对青霉素发酵过程进行优化控制,下面对各种优化控制方法的特点及其在青霉素发酵过程中的应用情况作一介绍,在此基础上指出目前青霉素发酵过程建模和优化控制中存在的主要问题,最后结合对青霉素发酵过程复杂性的分析指出解决途径。
2 青霉素发酵生产中的优化控制问题间歇补料批处理方式是目前我国青霉素生产最主要的生产方式,它在发酵开始时一次加入基础料,在发酵过程中不断流加营养物质,发酵终止时一次移走产物。
在青霉索分批发酵过程中,分泌期产生的青霉素约占总量的70%~80%。
摘要对于几类严格反馈的非线性系统, 本文依据模糊逻辑系统、Backstepping技术、command滤波和Nussbaum函数等方法对其进行控制器设计, 并且进行了稳定性分析. 具体内容如下:1.针对一类具有状态约束的严格反馈非线性系统, 构造了一个模糊跟踪控制器, 借助于模糊逻辑系统来近似非线性函数, 所提出的控制方案解决了有限时间跟踪控制问题.2.针对一类具有不确定参数的随机非线性系统, 构造了一个有限时间跟踪控制器. 通过构造一个tan−型的障碍Lyapunov函数, 证明了闭环系统是有限时间稳定的;跟踪误差在有限时间内收敛到零的一个足够小的邻域内.3.针对一类具有不确定扰动的非线性系统, 讨论了基于command滤波的有限时间自适应模糊控制问题. 通过用误差补偿信号和模糊逻辑系统, 提出了一个模糊控制方案, 保证了输出跟踪误差在有限时间内收敛到零的一个足够小的邻域内, 并且闭环系统中的所有信号都是有界的.4.为了处理一类具有未知控制方向的非线性系统, 提出了一个基于command滤波的自适应控制方案. 在控制方案中, 用模糊逻辑系统来处理非线性函数、用command滤波来解决由重复可导的虚拟函数引起的复杂性问题、用Nussbaum函数来解决未知控制方向问题.关键词:非线性系统; 模糊逻辑系统; 障碍Lyapunov函数;command滤波; 误差补偿信号;Nussbaum函数.ABSTRACTFor several classes of strict-feedback nonlinear systems, the controller is designed and stability is analyzed in this paper based on fuzzy logic system, backstepping technique, command filter and Nussbaum function. The specific contents are as follows:1. A fuzzy tracking controller is constructed for a class of strict-feedback nonlinear systems with full state constraints. Because fuzzy logic system is used to approximate the unknown nonlinear functions, the proposed control scheme addresses the finite-time tracking control problem.2. A finite-time tracking controller is constructed for a class of stochastic nonlinear systems with parametric uncertainties. By constructing a tan-type Barrier Lyapunov Function, the proposed control scheme ensures that the closed-loop system is finite-time stable and the output tracking errors converge to a sufficiently small neighborhood of the origin in finite-time.3. A command filter-based finite-time adaptive fuzzy control problem is discussed fora class of nonlinear systems with uncertain disturbance. By using the error compensation signals and fuzzy logic system, a fuzzy control scheme is proposed to ensure that the output tracking errors converge to a sufficiently small neighborhood of the origin in finite-time and all signals in the closed-loop systems are bounded.4. To deal with a class of nonlinear systems with unknown control directions, a command filter-based adaptive control scheme is proposed. In the design process, fuzzy logic system is required to handle nonlinear functions, command filter is employed to settle the explosion of complexity problem arose from repeated differentiation of virtual control function and Nussbaum function is introduced to deal with the problem of unknown control directions.Key words:nonlinear systems; fuzzy logic system; Barrier Lyapunov Function; command filter; error compensation signals; Nussbaum function.目录第一章前言 (1)1.1论文研究背景 (1)1.2本文的主要研究内容和安排 (3)第二章一类状态约束非线性系统的有限时间自适应模糊控制 (5)2.1模型描述及基本假设 (5)2.2控制器设计和稳定性分析 (7)2.3仿真结果 (12)2.4本章小结 (14)第三章一类状态约束随机非线性系统的有限时间跟踪控制 (15)3.1模型描述及基本假设 (15)3.2控制器设计和稳定性分析 (16)3.3仿真结果 (23)3.4本章小结 (25)第四章一类未知扰动非线性系统的有限时间自适应模糊控制 (26)4.1模型描述及基本假设 (26)4.2控制器设计和稳定性分析 (27)4.3仿真结果 (32)4.4本章小结 (33)第五章一类未知控制方向非线性系统的自适应跟踪控制 (34)5.1模型描述及基本假设 (34)5.2控制器设计和稳定性分析 (35)5.3仿真结果 (41)5.4本章小结 (42)第六章总结与展望 (43)参考文献 (44)致谢 (49)攻读硕士学位期间参与的科研项目和发表的学术论文 (50)第一章前言1.1 论文研究背景在工业、生活和生产中, 几乎所有系统都可以用非线性系统来描述, 例如机器人控制设计、无人机飞行器设计和网络信号传输控制设计等. 研究非线性系统为解决实际问题提供了理论帮助. 不像线性系统因其数学模型比较简单和容易建立, 非线性系统中包含了各种未知因素和扰动, 并且其系统不满足叠加原理. 所以研究非线性系统具有非常重要的意义.在之前的研究中, 可以用泰勒展式等处理非线性函数, 将其转化为线性问题, 从而应用线性系统完善的理论和方法解决非线性问题. 但是随着科技、计算机技术的发展和非线性系统的进一步研究, 应用线性系统来解决非线性问题显得捉襟见肘. 为了在研究中保证实际系统的良好性能和稳定性, 需要对实际系统建立精确的模型. 而实际系统存在不确定性和扰动等因素, 例如实际系统中能量消耗、重心转移引起的误差因素和系统本身的时滞性等. 这些因素难以测量, 不被我们熟知, 所以对非线性系统的研究比线性系统的研究更加困难和具有挑战性. 为了使非线性系统更加接近实际问题, 考虑非线性系统的不确定性是十分必要的.由于许多被控对象的数学模型随时间、能量消耗、环境等的变化而变化. 针对这类变化, 研究者们提出了许多解决方案. 当其数学模型变化的范围较小时, 可用反馈控制、最优控制等来消除或减弱对控制性能的不利影响. 而数学模型的变化范围较大时, 以上方法不可用, 从而引发了人们对自适应控制问题的研究. 在50年代末, Whitaker首次在飞机自动驾驶问题上提出了自适应控制方案, 但是没有进行实际应用. 1966 年, Parks根据Lyapunov方法提出了自适应算法, 保证了系统的全局渐近稳定. 但是该算法降低了自适应对干扰的抑制能力. Landau把超稳定性理论应用到自适应控制中, 使得系统是全局渐近稳定的, 并且增强了系统的抗干扰能力. 由于自适应控制对系统有良好的控制性能, 到目前为止自适应控制理论被广泛应用在线性系统理论、非线性系统理论、计算机控制、航空航天、空间飞行器的控制等各个方面[1]-[2].20世纪90年代初, 非线性系统自适应控制的研究引起越来越多的关注.Kanellakopoulos,Kokotovic和Morse等对部分线性的严格反馈系统提出了自适应反推(backstepping)方法. 在此基础上, [3]首次介绍了非线性系统的自适应backstepping设计方法. 但是, 由于自适应理论刚刚发展, 早期的backstepping方法还不成熟, 即存在过度参数化问题. Jiang和Praly将推广的匹配条件应用到高阶非线性系统, 成功的将估计参数减少了一半.Krsti在文[6]中通过引入调节函数处理了估计参数, 彻底地解决了过度参数化问题. 由于自适应backstepping设计方法不要求非线性系统满足匹配条件, 因此, 该方法在近年来引起了广泛的应用[4]-[10]. 但是backstepping设计方法Ge S S和存在局限性, 那就是针对的系统是严格反馈的非线性系统. 在2002年, .. Wang C用均值定理和隐函数定理, 通过设计backstepping方法, 解决了纯反馈系统.的自适应跟踪控制问题. 但到目前为止, 对于非严格反馈系统的控制器设计还没有得到解决.backstepping设计方法采用反向递推的设计思想, 对于严格反馈的系统, 将其分解成不超过系统阶数的子系统, 在每一个子系统中设计相应的Lyapunov函数和虚拟控制信号, 使得其具有一定的收敛性. 在下一个子系统中, 将上一个虚拟控制律作为跟踪目标, 获得该子系统的虚拟控制信号. 以此类推, 完成了整个backstepping设计, 构造了跟踪控制器, 并且实现系统的全局调节或跟踪.L A Zadeh在为了用数学方法解决自然界中不精确的信息, 1965年, 美国科学家..论文Fuzzy Set中提出了模糊理论. 模糊理论是建立在模糊集合和模糊逻辑的基础上,用于描述模糊信息, 处理模糊现象的一种新的数学工具. 至此, 模糊集理论得到了飞跃性的发展. 模糊控制是以模糊集理论、模糊语言变量、模糊逻辑推理为基础的一种智能控制, 是智能控制的重要组成部分. 同时, 模糊控制也是控制领域中非常有前景的一个分支, 并且已经得到了成功的应用. 1974年, Mamdani利用模糊语言构成模糊控制器, 首次在蒸汽机和锅炉的控制中应用模糊控制理论.当模糊控制应用于复杂的非线性系统时, 为了得到更好的控制效果, 需要有更完善的控制策略. 由于系统本身的性质、外界扰动等影响, 造成了原有的模糊机制不完善. 为了弥补这一问题, 自适应模糊控制被提出[11]. 自适应在处理和分析过程中, 能够自动的调节处理方法、参数等, 通过在线辨识, 使其达到最佳的效果, 使模型越来越接近实际系统. 将自适应控制和模糊控制相结合, 形成具有自我调节能力的更完善的控制系统. 根据控制对象的动态变化, 实时地调整对应的模糊控制器, 从而更有效的解决了非线性问题. 由于该控制系统能够不断的调节自己的控制机制来改变其性能, 因此越来越多的控制方案应用到工业、电力系统、航空航天等实际性问题中, 并且取得了令人瞩目的结果[12]-[17].在实际系统中, 我们常常需要在有限的时间内实现收敛. 因此, 有限时间控制问题已成为一个重要的研究课题. 随着有限时间稳定性理论的发展, 近年来有限时间控制问题得到了研究, 并给出了非线性系统的有限时间控制结果[18]-[27]. 随机现象在制造过程、机器人操作系统等实际系统中经常发生, 它会引起系统的不稳定性. 因此, 随机是需要考虑的另一个重要因素, 对随机非线性系统的研究近年来也受到越来越多的关注[28]-[38].此外, 以上文献中的控制方法都存在计算复杂性问题. 因为backstepping技术在α进行重复求导, 导致较高阶虚拟控制器和最终实际控每一步中都要对虚拟控制器i制器所含项随着系统阶数的增加呈现爆炸性增长, 使得控制器的计算复杂程度剧增, 从而限制了这种方法在实际工程中的应用. 庆幸的是, 文献[39]首次提出了一种动态面控制技术, 解决了以上复杂性问题. 随后, Levant[40]提出了Command滤波, 用来解决重复可导的虚拟控制器引起的复杂性问题. 之后, 各种非线性系统的动态面自适应控制方案[41]-[44]和Command滤波自适应控制方案[45]-[50]被提出.控制方向代表了系统在任意控制下的运动方向, 在控制设计中具有重要意义. 但是控制方向很难检测或从物理意义上决定, 这使得控制设计更加困难. 连续Nussbaum增益法在控制设计中易于实现, 是解决控制方向未知问题的一种常用方法. 该方法的关键是利用Nussbaum函数去估计控制系数的符号, 从而解决非线性系统中未知控制方向的问题[51]-[58].总的来说, 本文在有关不确定非线性系统的自适应控制方面已经取得了一定的研究成果, 但是还需要进一步的讨论与研究. 本文对几类严格反馈的非线性系统进行了稳定性分析及控制器设计, 对进一步研究基于自适应backstepping方法的非线性不确定系统控制问题具有一定的参考价值.1.2 本文的主要研究内容和安排本文主要对于几类严格反馈的非线性系统, 进行了控制器的设计, 并且以自适应控制、backstepping设计方法和模糊控制为理论基础进行了稳定性分析. 全文内容安排如下:第一章: 前言. 介绍了论文的研究背景以及本文的主要研究内容和安排.第二章: 针对一类状态约束的严格反馈非线性系统, 构造了一个模糊跟踪控制器, 证明了输出跟踪误差信号在有限时间收敛到零的任意小的领域内, 同时闭环系统中所有的信号都是有界的.第三章: 针对一类具有不确定参数的随机非线性系统, 研究了状态约束严格反馈随机非线性系统的稳定性问题, 证明了系统输出能够有效地跟踪参考信号, 并且闭环系统中所有的信号都是有界的.第四章: 针对一类具有不确定扰动的非线性系统, 构造了一个命令滤波模糊控制器, 保证了误差收敛于零的任意小邻域内, 而且系统中闭环信号均有界.第五章: 对于一类控制方向未知的非线性系统, 提出了一个command滤波跟踪控制方案. 保证了误差信号收敛到原点附近, 并且所有闭环信号都是有界的.第六章: 对全文的工作做了总结, 并指出了以后的工作中需要解决的问题.以上章节均给出仿真实例, 并且验证了所提出的方法的有效性.第二章 一类状态约束非线性系统的有限时间自适应模糊控制针对一类严格反馈的非线性系统, 本章设计了一个有限时间模糊跟踪控制器. 将tan −型障碍Lyapunov 函数、模糊逻辑系统和backstepping 技术灵活地结合起来, 给出了控制器的设计步骤. 所提出的控制方案保证了输出跟踪误差在有限时间内收敛到零的任意小的领域内, 同时系统中的所有信号均有界. 仿真实例说明了该方法的有效性.2.1 模型描述及基本假设2.1.1 模型描述:考虑如下严格反馈非线性系统:11,11,()()((,),)i i i i i i n n n n n i x f x g x x x f x g x n x u y +=≤≤−+==+ (2-1)其中12[,,,],,T n n x x x x R y R u R ∈∈∈ 分别为系统状态、输出和输入; 12[,,,]T i i x x x x = ; ()i i f x 是未知的光滑非线性函数并且满足(0)0i f =; ()i i g x 是已知的光滑非线性函数; 内, i c k 是正常数. 本章的目的是针对系统(2-1), 设计一个有限时间模糊跟踪控制器, 使得:(1)输出在有限时间内能够很好地跟踪参考信号;(2)闭环系统中所有信号均有界;(3)所有的状态都不能违反其约束边界.2.1.2 基本假设:模糊逻辑系统的基本原理:IF-THEN 规则: i R : 如果1x 属于1i F , ..., n x 属于i n F , 则y 属于,1,,i B i N = , 其中12[,,,],T n n x x x x R y R ∈∈ 分别为系统状态和输出; i j F 和i B 是模糊集; ()j i j F x µ和()iB y µ是模糊隶属度函数. 通过模糊系统规则, 可以将模糊逻辑系统表示为1111()()[()]i j i j nN i j F i j n N j F i j x y x x µµ====Φ=∑∏∑∏, 其中()i i y R B max y µ∈Φ=. 令111(()[)()]i j i j n j F j i n N j F i j x p x x µµ====∏∑∏, 12()[(),(),,()]T N P x p x p x p x = ,1[,,]T N Φ=ΦΦ , 则上式可写成()()T y x P x =Φ. (2-2)引理 2.1[16]. ()f x 是定义在紧集Ω上的一个连续函数, 则对于任何给定的常数0ε>, 存在模糊逻辑系统(2-2), 使得()()T x sup f x P x ε∈Ω−Φ≤.引理2.2[18]. 对于任何实数1,,n x x …和01b <<, 以下不等式成立:n 11(++)b n b bx x x x …≤…++. 定义2.1[19]. 如果对于任意00()t ζζ=, 存在正常数ε和驻留时间0(,)T εζ<∞, 对任意1120210()ln (1)1T V x λλµµµµ−+−≤.推论2.1.对于任何实数12,00µµ>>, 01λ<<, 01β<<和0τ<<∞, 如果存在一个21102011122()1ln (1)()(1)V x T λλλµβµµλτµβµβµ−−+≤−+−. 证明: 从(2-3)可知, 对于任意01β<<, 有122()()()(1)().V x V x V x V x λλµβµβµτ≤−−−−+定义集合2{()}(1)x x V x λτβµΩ=≤−∣和2{()}(1)x x V x λτβµΩ=>−∣. 以下分两种情形进行讨论: 情形1: 如果()x x t ∈Ω, 则12()()()V x V x V x λµβµ≤−− , 所以假设1. 对于连续函数)(i i g x , 存在正常数0g , 满足00()i i g g x <≤. 不失一般性, 假2.2 控制器设计和稳定性分析在这一部分中, 对于系统(2-1), 构造了一个有限时间自适应模糊跟踪控制器. 首先, 定义111,,id i i x y x ξξα−=−=− (2-5) 其中i ξ是状态跟踪误差, i α是虚拟控制器并且满足i i αα<, i α是正常数. 定义2i i θΦ. 给出以下tan −型的候选障碍Lyapunov 函数:22*2tan()2ii i b i b k V k πξπ=,其中:{,,1,,}i i i i b R k i n ξξξξ∈Ω=∈<=…, 11010,0i ib c b c i k k Y k k α−=−>=−>.第1步: 由(2-5)可得11112.d d x y f g x yξ−+==−选择如下障碍Lyapunov 函数:*121112V V θ=+ , 其中111ˆθθθ=− , 并且1ˆθ为1θ的估计. 定义222cos ()2iiiib k ξξϑπξ=, 计算1V 的导数:11122111111221112111ˆ(())cos ()2ˆ()),(d b V f g y k f g ξαθθπξϑξαξξθθ=−−=++−++ (2-6)其中11d f f y =− . 由引理2.1可知, 对于任何10τ>, 存在模糊逻辑系统111()TP X Φ, 使得以下式子成立:111111111()(),,()Tf P X X X δδτ=Φ+≤11)(X δ为近似误差. 通过使用'Young s 不等式, 可以得到:1111122221111111111121()()2222TTP P a f P X X a ξξξξξϑθϑτϑϑϑδ=Φ+≤+++, (2-7)1a 是一个给定的正常数. 设计虚拟控制器1α如下:11111122221111,1222111121111sin()cos()cos ()ˆ2221[]22tan Tb b b K K S k k k P P g aαξξπξπξπξϑθϑαξξ=−−−−, (2-8)其中1100,K K α>>是常数, ,tan i S 定义为:22,2221222tan ta (),0,2()(),,t 22n an i i i i i i b tan ii i i i b b if k S l l else k k απξξεπξπξ ≥> = +(2-9) 2212122251(),(),01,tan tan 04422i i i ii i i b b l l k k ααπεπεαε−−==−<<>. 根据洛必达法则可得 11221112211sin()cos()220,0.b b K k k πξπξξξ→→当这意味着奇点不会出现在1α的第一项中. 构造(2-9)是为了避免奇点发生在1α的第二项中. 根据洛必达法则, 有11221,1211cos ()20,0tan b K S k απξξξ→→当.将(2-7), (2-8)代入(2-6), 得到1111111111111122221111111211121222222221111111111112112222112211122ˆ()2222ˆˆ()(tan )22222222()(2tan tan tan 2TT T b b b b P P a V g a P P P P a K K g k k a a K K k k ξξξξξξξααξααϑθϑτϑξαθθϑθϑϑθϑπξπξτϑξθθπξπξ+++++−≤−−−−+++++−−−≤≤ 112221111121121ˆ)().222T P P a g a ξξϑτϑξθθ++++− (2-10)第i 步: 从(2-5), 可以得到111()ii i i i i i i x f g ξαξαα−+−=−=++− . 其中111(1)11111()101ˆ()ˆi i i j i i i j j jj i j d j j j j jd f g x y x y ααααθθ−−−+−−−−+===∂∂∂=+++∂∂∂∑∑∑ . 定义候选障碍Lyapunov 函数: 2112i i i i V V V θ∗−=++ , 其中ˆi i i θθθ=− , 并且ˆiθ是i θ的估计. 计算i V 的导数, 则有1111111ˆ(())ˆ(()),i iii i i i i i i i i i i i i i i i i i i V V f g g V f g ξξξξϑξααθθϑξϑξαθθϑ−−+−−−+=+++−−=+++−− (2-11) 其中111ii i ii i i g f f ξξϑξαϑ−−−=−+ . 根据引理 2.1, 对于任意0i τ>, 存在模糊逻辑系统()i i T i P X Φ, 使得下式成立:()(),,()i i i i i i i i T i f P X X X δδτ=Φ+≤)(i i X δ是近似误差. 利用'Young s 不等式, 以下不等式成立22222()(),2222iiiii i i i i i i i T i ii i i Tf P X X P P a a ξξξξξϑϑϑδϑθϑτ=Φ+≤+++ (2-12)i a 是一个给定的正常数. 设计控制器i α为2222,2222sin()cos()cos ()ˆ2221[]22i iiiiitan iT b i i i i i i ii ii b b iiK K S k k k P P g aαξξπξπξπξϑθϑαξξ=−−−−, (2-13)0,0i i K K α>>是常数. 相似于1α, 奇异点将不会发生在i α中, 将(2-10)、(2-12)和(2-13)代入(2-11), 可得1122222222222211122122112ˆ()222ˆˆtan()tan ()222222222i i i i i i i ii i i i i i i ii i i i i i i i iT T i i i i i i i i i i i i i i i i i b b i T i i i i P P P P a V K K P P a g g k k a V g a a V g ξξξξξξξααξξξϑθϑϑθϑθϑτϑξαϑξθθϑπξπξτϑξϑξθ−−−++−−−≤++++≤−−−−+++++−−++−− 2222212221111ˆ()()()().2222tan tan 2j j i j j i iiii j j j j j jj i j j T i j j j j b b j P g a P a K K k k ξααξϑπξπξτϑθθξθ+====≤−−++++−∑∑∑∑ (2-14)第n 步: 从(2-5), 可以得到11n n n n n n xf g u ξαα−−=−=+− , 其中111(1)11111()101ˆ()ˆn n n j n n n j j j jn j d j j j j jdf g x y x y ααααθθ−−−+−−−−+===∂∂∂=+++∂∂∂∑∑∑ . 定义候选障碍Lyapunov 函数: 2112n n n n V V V θ∗−++ , ˆn n nθθθ=− , 并且ˆn θ是n θ的估计. 计算n V 的导数, 可得11111ˆ()ˆ(),n n nnn n n n n n nn n n n n n n V V f g u g V f g u ξξξξϑαθθϑξϑθθϑ−−−−−=++−−=++−− (2-15)其中111n nn n nn n g f f ξξϑξαϑ−−−=−+ . 根据引理 2.1, 对于任意0n τ>, 存在模糊逻辑系统()n n T n P X Φ, 使得下式成立:()(),,()T n n n n n n n n n f P X X X δδτ=Φ+≤)(n n X δ是近似误差. 利用'Young s 不等式, 以下不等式成立22222()(),2222nnnnn T n n n n n n T n n nnn nf P X X P P a a ξξξξξϑϑϑδϑθϑτ=Φ+≤+++ (2-16)n a 是一个给定的正常数. 设计控制器u 为2222,2222sin()cos()cos ()ˆ2221[]22nnnnnnn n nn tan nT b b b n n n n n n nK K S k k k P P u g a αξξπξπξπξϑθϑξξ=−−−−, (2-17)0,0n n K K α>>是常数. 相似于1α, 奇异点将不会发生在n α中, 将(2-14)、(2-16)和(2-17)代入(2-15), 可得112222222212222111222122ˆˆtan()tan ˆ222()22222222ta 2n(n n n n n n n n nn n n T T n n n n n n n n n n n n n n n n b T n n nn n n n nn n n n nnb ni n i P P P P a V K K g k k a a P P a V V g u g a K ξξξξξααξξξξϑθϑϑθϑπξπξτϑξθϑθϑτϑϑξθθπξθ−−−−−−=≤+++++−≤−−−−++++−−−≤−∑ 22222222111ˆ)()()().2222tan 2iiiiT n n n i i i i i i i i i i i b b i P P a K k k a ξααϑπξτθθ===−+++−∑∑∑ (2-18) 设计自适应率为22ˆˆ2i T i i i i ii P P a ξϑθσθ=− , 则(2-18)能够写成 2222221111ta ˆ()()n t 22a )n (22i i i n n n ni i i i n i i i i i i i b b ia V K K k k ααπξπξτσθθ====≤−−+++∑∑∑∑ . (2-19) 由'Young s 不等式, ˆi i i σθθ 满足2222222222222ˆ222222(1)22222(1)(1).2222i i i i i i i i i i i i i i ii i i i i i i i ii i i i i i iαααασθσθσθθσθσθσθσθσθσθσθασθασσθασθσθασ≤−=−−+−≤−−++−−≤−−+ (2-20)将(2-20)代入(2-19), 有22222222211(1)(tan tan 1)(()())().22222222i i i n ni i i i i i i i i i i n i i i b b a V K K k k αααπξπξτσθασθσθασ=−−≤−−+++−−+∑∑(2-21) 定义111122min{,,,(1),,(1)}nn n b b K K k k ππησασα=…−…−, 11112122}min{,,,2,,2n n n b b K K k k ααααααααππησσ−−=……, 则(2-21)能够写成222222122211tan tan 11[()][()]2222ii i inn b b i ini i i i b b k k V C k k αααααπξπξηθηθππ==≤−+−++∑∑ , 其中2221(1)()2222ni i i i i ia C τσθασ=−=+++∑. 由引理2.2可知:12n n nV V V C αηη≤−−+ . (2-22)定理: 在满足假设1和假设2的条件下考虑系统(2-1). 如果设计的控制器是(2-17),虚拟控制信号是(2-13)和自适应律是22ˆˆ2i T i i i i ii P P a ξϑθσθ=− , 则有: (1)未违反状态约束的条件;(2)闭环系统中的所有信号都是有界的; (3) 误差信号()i t ξ将收敛到max{i i ξε<内,并且驻留时间满足: 110111222((0))1ln (1)()(1)n V T Cαααηξβηηαηβηβη−−+≤−+−.证明: 从(2-22)中可得1n nV V C η≤−+ , 解不等式可得111((0))t n n CCV V e ηηη−≤−+. 因此n V 是有界的. 根据2112n n n n V V V θ∗−++ 可知, i V 和i θ 都是有界的. 因此ˆi i iθθθ=+ 也是有界的. 根据122211()(ta (n 0))2iib t i n n b k CV V e kCηπξπηη−≤≤−+可知ii b k ξ<成立. 由(2-5)和假设2可得11110d b c x y k Y k ξ≤+<+=. 从模糊逻辑系统的定义可知111TP P <. 根据假设1可得11i g g ≤, 所以1ig 是有界的. 因此1α是有界的并且满足11αα≤. 从(2-25)和11αα≤可知222211b c x k k ξαα≤+<+=. 所以2α是有界的并且满足22αα≤. 同理可知,3,,i i c x k i n <=…. 因此, 未违反状态约束的条件.因为控制器u 中的所有信号都是有界的,所以控制器u 是有界的, 由以上分析可知闭环系统中的所有信号都是有界的.根据推论 2.1可知, n V 将在有限时间内收敛到紧集12()(1)n n CV V αβη−≤内. 因为21222()()tan (1)2iib i n b k C V kαπξπβη≤≤−,所以max{ii ξε<, 并且收敛时间满足110111222((0))1ln (1)()(1)nV T Cαααηξβηηαηβηβη−−+≤−+−.证明完毕.2.3 仿真结果:考虑以下非线性系统:11221221,.,xx x x x x u y x =+=+= 参考信号是()0.5sin()d y t t =. 初始条件是12(0)=0.1,(0)=0.1x x , 状态约束在12=1.5,=1.5c c k k 内.在状态区间[-1.5,1.5]中定义了7个模糊集. 并且给出了隶属度函数:222123222456270.5( 1.5)0.5(1)0.5(0.5)0.5()0.5(0.5)0.5(1)0.5( 1.5),,,,,,.i i i iiii i i iiiii x x x F F F x x x F F F x F e e e e e e e µµµµµµµ−+−+−+−−−−−−−=======参数设计为121212122,2,1,1,0.75,0.01,0.01,0.01,0.01K K K K ααασσττ=========. 仿真结果如图2-1至2-5.图2-1 输出y 和参考信号d y 图2-2 系统状态1x 和2x图2-3 自适应率1ˆθ和2ˆθ 图2-4 系统输入u图2-5误差信号1S 和2S2.4 本章小结:针对一类具有状态约束的严格反馈非线性系统, 本章提出了一个自适应有限时间模糊控制方案. 在该方案中, 跟踪误差在有限时间内收敛到零的任意小邻域内. 闭环系统中的信号均有界, 并且不违反状态约束的条件.第三章 一类状态约束随机非线性系统的有限时间跟踪控制本章研究了状态约束随机非线性系统的稳定性问题. 采用反推技术设计了基于tan −型障碍Lyapunov 函数的非线性系统有限时间跟踪控制器. 保证了系统输出能够有效地跟踪参考信号, 并且闭环系统中所有信号都是有界的. 最后, 仿真结果说明了所提出的有限时间控制方案的有效性.3.1 模型描述及基本假设3.1.1 模型描述:考虑如下严格反馈非线性系统:11(()())(),1,,1,(()(),)(),T i i i i i i i i Tn n n n n n n dx f x g x x dt x d i n dx f x g x u dt x d y x φωφω+=++=…−=++= (3-1)其中12[,,,],,T n n x x x x R y R u R ∈∈∈ 分别为系统状态、输出和输入; 12[,,,]T i i x x x x = ;()i i f x 是未知的光滑非线性函数并且满足()()T i i i i f x x θϕ=; i ϕ是光滑函数向量, θ是不确定的常数向量满足{,,}m M M R R θθθθθθ+∈Ω=∈≤∈; ()i i g x 是已知的光滑非线性函数;()i i x φ是已知的非线性函数向量; ω是标准维纳过程.所有的状态都严格约束在紧集, 其中ic k 是正常数.本章的控制目标是针对系统(3-1), 设计一个有限时间跟踪控制器, 使得: (1)输出在有界误差范围内跟踪参考信号; (2)闭环系统中的所有信号都有界; (3)并且所有状态都满足约束条件. 3.1.2 基本假设:考虑如下随机系统:()()dxf x dtg x d ω=+,其中x 为状态向量; ()f x R ∈和()n r g x R ×∈满足局部李普希茨条件和线性增长条件, 并且满足(0)0,(0)0f g ==; ω是一个r 维的标准维纳过程.定义3.1[32] . 对于任何给定的正函数2,1(,)V x t C ∈, 我们定义微分算子L 如下:221[(,)]{}2T V V V L V x t f Tr g g t x x ∂∂∂=++∂∂∂, 其中(.)Tr 是矩阵的迹.引理3.1[33]. ()f x R ∈和()n r g x R ×∈满足局部李普希茨条件和线性增长条件, 如果存在一个2C 上的函数V , K ∞类函数12,µµ, 两个常数0c >和01γ<<, 满足12()()(),()(),x V x x LV x cV x γµµ≤≤≤−则系统是有限时间随机稳定的, 并且驻留时间满足:1001[()]()(1)E T x V x c γγ−≤−.引理3.2[34]. 存在一个2C 上的函数V , K ∞类函数12,µµ, 两个常数0γ>和0ρ>, 满足0[()]()/t E V x V x e γργ−≤+.3.2 控制器设计和稳定性分析在这一部分中, 对于系统(3-2), 构造了一个自适应有限时间控制器. 首先, 定义111,,i d i i x y x ξξα−=−=− (3-2) 其中i ξ是虚拟状态跟踪误差, i α是虚拟控制器并且满足i i αα<, i α是正的常数. 给出以下tan −型的候选障碍Lyapunov 函数:444tan()4iib i i b k V k πξπ∗=,其中:{,,1,,}ii i i b R k i n ξξξξ∈Ω=∈<=…, 11010,0iib c b c i k k Y k k α−=−>=−>.第1步: 由11d x y ξ=−和221x ξα=−可得 11112111211()(())T T T T d d d d dx dy g x y dt d g y dt d ξθϕφωθϕξαφω=−=+−+=++−+ .选择如下障碍Lyapunov 函数:1112T V V θθ∗=+ ,其中ˆθθθ=− 并且ˆθ为θ的估计. 定义3442cos ()4i ii ib k ξξϑπξ=, 由定义3.1可知: 111111444261111443211112114423411443cos()2sin()44(())cos ()2cos ()44b b b T T d b b b k k k LV g y k k kπξπξξπξξθϕξαφθθπξπξ+=++−++. (3-3) 令11ωϕ=和111ˆξθτωϑσθ=−. 设计虚拟控制器1α如下: 1111111144421111,144411331114411433322114441144),sin()cos()cos ()4441ˆ(2sin()41(3)cos()cos()44tan b b b T d b b b b K K S k k k y g k k kkαπξπξπξαθωξξπξπξφπξπξ=−−−++ (3-4)其中1100,K K α>>是常数, ,tan i S 定义为:44,4421244tan ta (),0,4()(),,t 44n an i i i i i i b tan ii i i i b b if k S l l else k k απξξεπξπξ ≥> = +(3-5) 4412124451(),()444t n n 4a ta i ii i i i b b l l k k ααπεπε−−==−. 根据洛必达法则可得 114411144131sin()cos()440,0.b b K k k πξπξξξ→→当这意味着奇点不会出现在1α的第一项中. 构造(3-5)是为了避免奇异发生在1α的第二项中. 根据洛必达法则, 有11421,14131cos ()400tan b K S k απξξξ→→当.通过使用'Young s 不等式, 以下不等式成立:1111111114444264111111444333231221114443343411114443cos()2sin()2sin()4441(3)32cos ()cos ()cos()444b b b b b b b b b k k k k S k k kkk πξπξπξξπξπξξφφπξπξπξ+≤++. (3-6)将(3-4)和(3-6)代入(3-3), 得到11111111144421111,1444311112433211144411433322111444114433121431sin()cos()cos ()444(cos ()42sin()41ˆ(3))cos()cos()44cos (4tan b b bT d bbT d b b b K K S k k k LV g y k k y k k k k απξπξπξξθϕξπξξξπξπξθωφπξπξξπξ≤+−−−−++ 111111111114411433214344411111214431144441114431111ˆˆtan()tan ()()442sin()41(3)3)cos()41ˆˆ()()()43tan tan 43bT b b bT T T b T T b bb K K k S k k g k k S K K k k S αξαθξααπξπξθϕξθωθπξπξφθθπξϑπξπξθθτσθθθϑ≤−−++−+−+++≤−−−−+++ 112.g ξ(3-7)第2步: 从221x ξα=−和332x ξα=−可得 22122312223212()(())T T T Td dx d g x dt d g dt d ξαθϕαφωθϕξααφω=−=+−+=++−+ ,其中1111211()Tg x x ααθϕη∂=++∂ ,22()11111111(1)2111ˆ()()ˆ2i Td i i d y x x y x αααηθφφθ−=∂∂∂=++×∂∂∂∑ . 上式可写为 12,2,223212121(())T Tr r d g dt d g x dt x αξθϕξαηφω∂=++−+−∂,其中1,2,2211[,],[,]TT T Tr r x αθθθϕϕϕ∂==−∂, 选择候选障碍Lyapunov 函数:212V V V ∗=+. 由定义3.1可得22222244426222244322121,2,2232112244234122443cos()2sin()44(())cos ()2cos ()44.b b b Tr r b b b k k k LV LV g g x x k k k πξπξξπξξαθϕξαηφπξπξ+∂=+++−−+∂(3-8) 令212212121,x ξαωϕϕττωϑ∂=−=+∂. 设计控制器2α为222221222244422222,2444221332224422433312122221244412244sin()cos()cos()4441ˆ[2sin()41(3)],cos()cos()44tanb b b Tbbb bK K Sk k kgk gg xxkk kαξξπξπξπξαθωηξξπξπξϑξαφϑπξπξ=−−−+∂++−∂(3-9) 220,0K Kα>>是常数. 通过使用'Young s不等式, 下列不等式成立:2222222224444264222222444333232222224443343422224443cos()2sin()2sin()4441(3)32cos()cos()cos()444bb b bb bb b bkk k kSk kk k kπξπξπξξπξπξξφφπξπξπξ+≤++. (3-10) 将(3-7), (3-9)和(3-10)代入(3-8), 得到2222221222244422222,24443221,2,2234332222444224333122222244422443222sin()cos()cos()444(cos()42sin()41ˆ(3))cos()cos()44tanb b bTr rbbTbb bK K Sk k kLV LV gkk gkk kαξξπξπξπξξθϕξπξξξπξπξϑξθωφϑπξπξξ≤++−−−+−2222221222442243332244334222444422122312244324422244112sin()41(3)3cos()cos()441tan()tan()443ˆtan()tan()()44ii ibbb bTb bTi iii ib bkSkk kLV K K g gk k SK Kk kααξξξααπξπξφπξπξπξπξϑξϑξϑθωπξπξθθτ==++≤−−++−≤−−−+−+∑∑2223311ˆ.3Ti igSθξσθθϑξ=++∑(3-11)第i步: 从1i i ixξα−=−和11i i ixξα++=−, 可得111(())Ti i i i iTi i iid dx d g dt dξαθϕξααφω−+−=−=++−+,其中111111()iTii jj jj jig xxααθϕη−−−+−=∂=++∂∑, 21()1111(1)1,11ˆ()()ˆ2ij Ti i ii d kij jjkjj j k kdy x xx xyαααηθφφθ−−−−−−==∂∂∂=++×∂∂∂∂∑∑. 上式能够写成11,,1111(())i iiT T ir i r iji i ji jjid g dt d g x dtxαξθϕξαηφω−−+−+=∂=++−+−∂∑,其中11,,1111[,,],[,,,]T T T Ti ir i r ii iix xααθθθϕϕϕϕ−−−−∂∂=…=−…−∂∂. 选择候选障碍Lyapunov函数:1i iiV V V∗−=+.根据定义3.1可得444264431211,,111441234443cos()2sin()44(())cos ()2cos ()44.i i iiiii i ii i i i i j b i b b Ti i r i r i i j ii i j i j b b b k k k LV LV g g x x k k kπξπξξπξξαθϕξαηφπξπξ−−−+−+=+∂=+++−−+∂∑(3-12)令1111,ii i j i i ji i i j x ξαωϕϕττωϑ−−−=∂=−=+∂∑. 设计控制器i α为14442,444133444331311221441444sin()cos()cos ()4441ˆ[2sin()41(3)],cos()cos()44i i i i ii i i i ii i ii i i i i ta ii ii ij n ib b b T i i b i i i j j b b b j i i K K S k k k g k g g x x k k k αξξπξπξπξαθωηξξπξπξϑξαφϑπξπξ−−−−−+==−−−+∂++−∂∑ (3-13)0,0i i K K α>>是常数.通过使用'Young s 不等式, 以下不等式成立:44442644443332322444334344443cos()2sin()2sin()4441(3)32cos ()cos ()cos()444i iiiiiii ii i i ib b bbii b b b b i ii ii i i ibk k k k S k k kk k πξπξπξξπξπξξφφπξπξπξ+≤++. (3-14) 将(3-11), (3-13)和(3-14)代入(3-12), 得到14442,44431,,14332444433312244444sin()cos()cos ()444(cos ()42sin()41ˆ(3))cos()cos()44i iiii i iii iita i i i i i i i ii i i n ib b b T i r i r i i b b i T ib b b iiiii i K K S k k k LV LV g k k g k kkαξξπξπξπξξθϕξπξξξπξπξϑξθωφϑπξπξ−−+−≤++−−−+−14443333224433444441114434444112sin()41(3)3cos ()cos()441tan()tan ()443tan()tan ()44iii ii i i iiji jj i i iii i i i i i i b it b b b T i i i b b i iij j j b j j b k S k k k LV K K g g kkS K K kk ααξξξααπξπξξφπξπξπξπξϑξϑξϑθωπξπξ−−+−==++≤−−+−++≤−−∑ 1311ˆˆ()3.i iii i jT T i j g S θξθθτσθθϑξ+=−++−+∑∑(3-15)第n 步: 从1nn n x ξα−=−可得 11()T Tn n n n n n n d dx d g u dt d ξαθϕαφω−−=−=+−+ ,其中2111()11111111(1)111,11ˆ()()()ˆ2,n nn n T i Tn n n n n i n n d k k i i i i i k k d i i i i i i g y x x x x x y x αααααθϕηηθφφθ−−−−−−−−+−−−====∂∂∂∂=++=++×∂∂∂∂∂∑∑∑∑ . 上式能够写成11,,111()n TT n nr nr n n n ni i i id g u dt d g x dt x αξθϕηφω−−−+=∂=+−+−∂∑, 其中11,,1111[,,],[,,,]T T T T n n r n r nn n n x x ααθθθϕϕϕϕ−−−−∂∂=…=−…−∂∂. 选择候选障碍Lyapunov 函数: 1n n n V V V ∗−=+. 根据定义3.1可得444264431211,,11441234443cos()2sin()44()cos ()2cos ()4.4nnnnnni n n b nn n b bTn n n n r n r n n n i n i nn b i bb k k k LV LV g u g x x k k kπξπξξπξξαθϕηφπξπξ−−−−+=+∂=++−−+∂∑(3-16)令1111,ni in n n n n n n i x ξαωϕϕττωϑ−−−=∂=−=+∂∑. 设计控制器u 为14442,444133444331311221441444sin()cos()cos ()4441ˆ[2sin()41(3)],cos()cos()44n nnnnn n nnnn n n n tan nb b b T n n nnnn i nn b n n n nni i n n b b ib K K S k k k u g k g g x x k kkαξξπξπξπξθωηξξπξπξϑξαφϑπξπξ−−−−−+==−−−+∂++−∂∑(3-17)0,0n n K K α>>是常数.通过使用'Young s 不等式, 以下不等式成立:44442644443332322444334344443cos()2sin()2sin()4441(3)32cos ()cos ()cos()444nnnnnnnn nn n n b nn nb bbn nnn n n n n bb b b bk k k k S k k kk k πξπξπξξπξπξξφφπξπξπξ+≤++. (3-18)将(3-15), (3-17)和(3-18)代入(3-16), 得到14442,44431,,433244443331224444432sin()cos()cos ()444ˆ(cos ()42sin()41(3))cos()cos()44n n n nnnn nn n nn n nn tan nb b b T T n n n r n r n nn n nb n nb n n nn n nb b b nK K S k k k LV LV k k g k k k αξξπξπξπξξθϕθωπξξξπξπξϑξφϑπξπξξ−−−≤+−−−+−14443332443344444114434444112sin()41(3)3cos ()cos()441tan()tan ()443ˆtan()tan ()()44nnn nn n n n n i i i n nb n n n n n b b b T n nn n n n nb b nnn T i ii n i i b b k S k k k LV K K g k k S K K k k ααξξααθπξπξφπξπξπξπξϑξϑθωπξπξθθτσ−−−==++≤−−+−≤−−−+−+∑∑ 311ˆ.3n T i i S θθ=+∑(3-19)。
模糊优选法1. 简介模糊优选法(Fuzzy Optimization)是一种基于模糊数学理论的优化方法,用于处理具有模糊性质的决策问题。
它将模糊集合理论与优化方法相结合,能够有效地处理不确定性和模糊性信息,提供了一种有效的决策支持工具。
模糊优选法适用于那些无法用传统的确定性方法进行准确建模和求解的问题。
它能够处理输入参数的模糊性和不确定性,通过建立模糊数学模型,对不同决策方案进行评估和比较,从而找到最优解或者最优解的一组可行解。
2. 模糊数学理论基础模糊数学是一种用于处理不确定性和模糊性信息的数学理论。
它通过引入模糊集合、模糊关系和模糊逻辑等概念,对模糊性信息进行建模和处理。
2.1 模糊集合模糊集合是一种特殊的集合,其元素的隶属度不是二元的0或1,而是在[0,1]之间的一个实数。
模糊集合用隶属函数来描述元素的隶属度,隶属函数的取值范围表示元素的隶属程度。
2.2 模糊关系模糊关系是一种描述元素间模糊关联的数学工具。
模糊关系用隶属函数矩阵来表示,矩阵的元素表示元素之间的模糊关联程度。
2.3 模糊逻辑模糊逻辑是一种基于模糊集合的逻辑推理方法,用于处理模糊性信息的推理和决策。
模糊逻辑通过模糊命题和模糊推理规则来描述和推理模糊性信息。
3. 模糊优选法的基本步骤模糊优选法的基本步骤包括问题建模、模糊评估、模糊比较和优化求解。
3.1 问题建模在问题建模阶段,需要明确问题的目标、约束和决策变量。
目标是指问题的优化目标,约束是指问题的限制条件,决策变量是指可以调整的决策参数。
3.2 模糊评估在模糊评估阶段,需要对决策变量进行模糊化处理,将其转化为模糊集合。
可以使用模糊数学中的隶属函数来描述决策变量的模糊性质。
3.3 模糊比较在模糊比较阶段,需要对不同决策方案进行模糊比较,确定它们之间的优劣关系。
可以使用模糊关系来描述决策方案之间的模糊关联程度。
3.4 优化求解在优化求解阶段,需要通过建立数学模型,将模糊优选问题转化为优化问题。
时变时滞随机非线性系统的自适应神经网络跟踪控制余昭旭;杜红彬【摘要】This paper focuses on the adaptive neural control for a class of uncertain stochastic nonlinear strict-feedback systems with time-varying delay. Based on the Razumikhin function approach, a novel adaptive neural controller is de- veloped by using the backstepping technique. The proposed adaptive controller guarantees that all the error variables are 4-moment semi-globally uniformly ultimately bounded in a compact set while the tracking error remains in a neighborhood of the origin. The effectiveness of the proposed design is validated by simulation results.%针对一类具有时变时滞的不确定随机非线性严格反馈系统的自适应跟踪问题,利用Razumikhin引理和backstepping方法,提出一种新的自适应神经网络跟踪控制器.该控制器可保证闭环系统的所有误差变量皆四阶矩半全局一致最终有界,并且跟踪误差可以稳定在原点附近的邻域内.仿真例子表明所提出控制方案的有效性.【期刊名称】《控制理论与应用》【年(卷),期】2011(028)012【总页数】5页(P1808-1812)【关键词】自适应跟踪控制;神经网络(NNs);Razumikhin引理;随机系统;时变时滞【作者】余昭旭;杜红彬【作者单位】华东理工大学自动化系,上海200237;华东理工大学自动化系,上海200237【正文语种】中文【中图分类】TP2731 引言(Introduction)随机干扰广泛地存在于各类实际系统中,因此随机非线性系统的稳定性分析及控制器设计受到越来越多的关注[1~6].特别地,对于严格反馈型随机非线性系统,采用backstepping方法提出了许多控制策略[3~6].然而这些控制策略往往要求系统函数已知或满足匹配条件.如果不能获得系统函数的这些先验知识,那么这些方法显然不适用.由于神经网络和模糊系统对未知非线性函数具有良好的逼近性能,采用自适应神经网络控制和自适应模糊控制能较好地避免前面的限制.然而对具有未知系统函数的随机系统的神经网络控制问题和模糊控制问题的研究结果还比较少[6~10]. 时滞现象大量存在于如计算机网络、核反应器等实际系统中,并且往往会导致系统的不稳定,因此时滞系统一直是研究的热点问题[11].Lyapunov-Krasovskii方法和Lyapunov-Razumikhin方法也广泛地应用于时滞随机非线性系统的稳定性分析和控制器设计.文献[12,13]已将Lyapunov-Razumikhin方法应用到时滞不确定随机非线性系统的稳定性分析.对时滞随机非线性系统的镇定与跟踪问题,大多采用Lyapunov-Krasovskii方法[9,14~16]. 相比Lyapunov-Razumikhin方法,Lyapunov-Krasovskii函数则不易构造,且Lyapunov-Krasovskii函数的复杂性使得稳定性分析与控制器设计也更为复杂.此外Lyapunov-Krasovskii对时滞常常不仅要求有界,而且须满足(t)<ς<1(ς为常数),而Lyapunov-Razumikhin方法仅要求时滞有界.因此针对时变时滞随机非线性系统的跟踪控制问题,采用Lyapunov-Razumikhin方法提出一种新的自适应神经网络控制器设计方法具有重要意义.本文利用Razumikhin引理和backstepping方法,针对一类具有时变时滞的不确定随机非线性严格反馈系统,提出一种新的自适应神经网络跟踪控制策略.所提出的控制器可保证跟踪误差四阶矩半全局一致最终有界.同时由于神经网络参数化[10]的应用,使得自适应控制器中所估计的参数大量减少.2 问题描述及准备(Problem formulation and preliminary results)2.1 预备知识(Preliminary results)考虑以下随机非线性系统:其中:x∈Rn为状态,ω为定义完备概率空间(Ω,F,P)上的r维的标准布朗运动,其中:Ω为采样空间,F为σ域以及P为概率测度;f和h为合适维数的向量值函数或矩阵值函数.针对C2函数V(t,x)定义如下算子L:其中tr(A)为A的迹.Razumikhin引理:考虑时滞随机泛函微分方程(retarded stochastic functional differential equation,RSFDE):dx=f(t,xτ)dt+h(t,xτ)dω,令p > 1,如果存在函数V(t,x)∈ C1,2([−τ,∞]× Rn)和常数ci>0(i=1,2),q>1,满足以下不等式:对所有的t≥0,满足那么RSFDE的具有初值ξ的解x(t,ξ)概率意义下一致最终有界,并且满足其中:|ξ(s)|p,γ=µ1∧.由文献[17]中定理4.1.4取κ =0,ψ(t)=e−t,µ = µ1和ζ(t)= µ2可容易得到以上Razumikhin引理,证明略.本文中考虑p=4.引理1 对于ε>0和任意实数η∈R,存在不等式[18]其中k为常数且满足k=e−(k+1),即k=0.2785.引理2 考虑不等式其中λ为正常数,如果初始条件(0)≥0成立,则对所有t≥0有(t)≥0.本文中,高斯径向基函数(RBF)神经网络用来逼近任意的连续函数g(·):Rn→R,也即=TΦ(Z),其中输入向量Z∈ΩNN⊂Rn,权向量=(w1,···,wl)T ∈ Rl以及核向量Φ(Z)=(s1(Z),s2(Z),···,sl(Z))T;激励函数si(Z)采用高斯函数,即其中:µi=(µi1,···,µin)T为接受域的中心,νi为高斯函数的宽度.通过选择足够多的节点,神经网络在紧集ΩNN⊂Rn上可以逼近任意的连续函数,即“理想”的权向量W∗是为了分析而设想的量,定义为W∗:=arg|g(Z)−Z)|}.假设1 ∀Z∈ΩNN,存在“理想”的常数权向量W∗,使得‖W∗‖∞ ≤ wmax和|δ|≤ δmax,其中上界wmax,δmax > 0.由式(7)容易得到其中:β(Z)==max{δmax,wmax}.2.2 问题描述(Problem formulation)考虑由以下方程描述的时滞随机非线性系统:其中:xi∈R(i=1,···,n)为系统的状态,定义i=[x1···xi]T,x=n;u∈R为控制输入;y∈R为系统的输出;Borel可测函数τ(t):R+→ [0,τ]表示未知的时变时滞;ω与系统(1)定义相同;f(·),g(·),q(·):Rn→ R和h(·):Rn→ Rr皆为未知的非线性光滑函数.本文的主要目的是设计一种自适应状态反馈控制率u(x,θ),=Φ(x,),使得对于某紧集内的初始条件x(0),(0),闭环系统的所有误差变量皆四阶矩半全局一致最终有界,且跟踪误差可以稳定在原点附近的邻域内.假设2 未知非线性函数g(x)的符号已知,且存在正常数bm和bM,满足0<bm≤|g(x)|≤bM<∞,∀x∈Rn.不失一般性,可进一步假设0<bm≤g(x)≤bM<∞.假设3 存在未知k∞类函数Q(·)满足以下不等式:|q(x(t− τ(t)))|≤ Q(‖x(t− τ(t))‖).假设 4 未知非线性函数h(x,x(t−τ(t)))满足以下不等式:‖h(x,x(t− τ(t)))‖2 ≤H1(‖x‖)+H2(‖x(t− τ(t))‖),其中:H1(·)为未知非负光滑函数,H2(·)为未知k∞类函数.(t)皆为连续且有界的.进一步,假定存在常数d,假设 5 参考信号yd(t)及其微分(t),···,使得‖[yd···]T‖ ≤ d.3 控制器设计及稳定性分析(Controller design and stability analysis)这一节,针对系统(9),利用backstepping方法及Razumikhin引理设计一种新的自适应神经网络跟踪控制器.首先,需引入以下误差变量:其中:为待定的虚拟控制函数,.对于1≤i≤n−1,选取Lyapunov函数选取虚拟控制函数为其中:Lαi−1=,ki为待定设计常数.则容易得到以下关系式:其中:p1=k1−3/4>0,pi=ki−1>0(2≤i≤n−1).将式(11)可改写为如下形式:系数di,j为常数.另外,α0(yd)=yd.基于以上的介绍,容易得到下面引理3.引理3 存在正常数ρ,υ,使得其中:Z=[z1···zn:=−θ/bm,表示未知常数θ/bm的估计.下面继续控制器的设计.当i=n时,由Itˆo公式可得其中Lαn−1:=.定义Lyapunov函数由式(2)可得由假设3可得由于Q(·)为k∞类函数,利用引理3及Razumikhin引理可得由引理1,||Fn,其中Fn=Q(2ρq‖Z(t)‖)+Q(2υ),可通过以下不等式进行处理: 由假设4,可得以下不等式:其中:Gn=H2(2ρq‖Z‖)+H2(2υ),ϑ1和ϑ2为任意的正常数.定义一个新的函数在紧集ΩZ中可通过RBF神经网络逼近:其中:Zn=[x[n]]∈ ΩZ,W∗TS(Zn)表示的“理想”神经网络近似,而δ(Zn)表示逼近误差.利用神经网络参数化式(8),可得其中: β(·)==max{δmax,wmax}.构造实际控制器及参数调整算法如下:其中kn,σ与λ为待定的正设计参数.利用不等式θ≥,在控制器(20)(21)的作用下,由式(14)~(19)可得其中pn:=knbm−>0.式(22)可改写为其中: µ :=min{4p1,4p2,···,4pn−1,4pn,λ},ν :=θ2+k(θσ + ε)+由式(23)及Razumikhin引理可知,闭环系统的解四阶矩半全局一致最终有界,且对于足够小的ς>0,存在时间T:=,其中:E|Z(s)|4,γ=µ∧,c1 ≤min{},使得∀t≥T,有E|(y(t)−yd)4|≤ (1+ς)基于以上分析,主要结论可由以下定理描述:定理1 对于满足假设(2)~假设(5)的时变时滞不确定随机非线性系统(9),在控制器(20)和参数自适应率(21)作用下,闭环系统的所有误差信号四阶矩半全局一致最终有界,且跟踪误差稳定在以下集合Ω所定义的区域内:注 1 定义如下紧集:初始值集合Ω0、有界紧集ΩZ、稳态紧集Ωs和神经网络逼近的有效集合ΩNN.在控制器设计过程中为了∀t≥0神经网络逼近皆有效,需保证ΩZ⊆ΩNN.为了阐述方便,由式(23)及Razumikhin引理,可将有界紧集ΩZ和稳态紧集Ωs定义如下:这些集合之间的关系如图1所示.在控制器设计的初始阶段首先定义ΩNN,并且ΩNN与控制器的参数和初始集合Ω0均无关.由式(24)(25)可知:i)初始集合Ω0通过‖ξ‖0影响ΩZ,但与Ωs和ΩNN无关;ii)可通过调整参数ki,λ,σ,ε,ϑ1和ϑ2,使得ΩZ和Ωs足够小.图1 各紧集之间的关系Fig.1 The relationship among compact sets由集合ΩZ和Ωs的界可知,对于给定足够大的ΩNN,存在合适的‖ξ‖0,γ和ν使得ΩZ ⊆ ΩNN和Ωs ⊆ ΩNN. 而由γ和ν的定义可知,γ和ν的值依赖于控制参数ki,λ,σ,ε,ϑ1和ϑ2的选择.因此对于给定足够大的ΩNN和‖ξ‖0=ξmax>0,存在合适的控制参数使得ΩZ⊆ΩNN.定义xi(0),zi(0)和(0)的初始值集合Ω0使得‖ξ‖0<ξmax.这时对于属于Ω0的所有xi(0),zi(0)和(0),∀t>0均有ΩZ⊆ΩNN.4 仿真研究(Simulation example)考虑以下时变时滞不确定随机非线性系统:其中:τ(t)=1+sint,初始条件为x1(0)=0.2和x2(0)=0.1,参考输入信号yd=0.5(sint+sin 0.5t).仿真过程中,采用RBF神经网络来逼近未知函数,W∗TS(Z2)包含729个节点,中心分布在[−5,5]×[− 5,5]×[− 5,5]×[− 5,5]×[− 5,5]×[0,5],宽度为1;其他仿真参数给出如下:k1=4.74,k2=15,λ=5,σ=1.采用定理1中的控制器(20)和参数自适应率(21),其中z1=x1−yd,z2=x2− α1,β = β(Z2).仿真结果由图2~4给出,图2表明所提出的自适应跟踪控制器具有良好的跟踪性能,输出响应y能比较快地跟踪参考输入yd;控制输入如图3所示;图4描述了自适应参数曲线.图2 输出响应y(t)和参考输入yd(t)Fig 2 Output responsey(t)and reference inputyd(t)图3 控制输入u(t)Fig 3 Control inputu(t)图4 自适应参数Fig 4 Adaptive parameter5 结论(Conclusion)本文针对一类具有未知时变时滞的不确定随机非线性严格反馈系统,利用Razumikhin引理和backstepping方法,提出了一种新的神经网络自适应控制器,可以保证跟踪误差四阶矩半全局一致最终有界.所给出的控制器结构简单,易于实现.将该方法推广到更一般的严格反馈型随机非线性系统是下一步工作的方向.参考文献(References):【相关文献】[1]FLORCHINGER P.Lyapunov-like techniques for stochastic stability[J].SIAM Journal on Control and Optimization,1995,33(4):1151–1169.[2]FLORCHINGER P.Feedback stabilization of affine in the control stochastic differential systems by the control Lyapunov function method[J].SIAM Journal on Control and Optimization,1997,35(2):500–511.[3]PAN Z G,BASAR T.Adaptive controller design for tracking and disturbance attenuation in parameter-feedback nonlinear systems[J].IEEE Transactions on AutomaticControl,1998,43(8):1066–1083.[4]DENG H,KRISTIC M.Stochastic nonlinear stabilization:part 1:a backsteppingdesign[J].Systems&Control Letters,1997,32(3):143–150.[5]DENG H,KRISTIC M.Stochastic nonlinear stabilization:part 2:inverseoptimality[J].Systems&Control Letters,1997,32(3):151–159.[6]WANG Y C,ZHANG H G,WANG Y Z.Fuzzy adaptive control of stochastic nonlinearsystems with unknown virtual control gainfunction[J].Acta AutomaticaSinica,2006,32(2):170–178.[7]PSILLAKIS H E,ALEXANDRIDIS.NN-based adaptive tracking control of uncertain nonlinear systems disturbed by unknown covariance noise[J].IEEE Transactions on Neural Networks,2007,18(6):1830–1835.[8]YU J J, ZHANG K J, FEI S M. Direct fuzzy tracking control of a class of nonaffine stochastic nonlinear systems with unknown dead-zone input[C] //Proceedings of the 17th World Congress, the International Federation of Automatic Control. Elseviet: International Federation of Accountants, 2008, 12236 – 12241.[9]谢立,何星,熊刚,等,随机非线性时滞大系统的输出反馈分散镇定[J].控制理论与应用,2003,20(6):825–830.(XIE Li,HE Xing,XIONG Gang,et al.Decentralized output feedback stabilization for large scale stochastic nonlinear system with time delays[J].Control Theory&Applications,2003,20(6):825–830.)[10]GE S S,HUANG C C,LEE T,et al.Stable Adaptive Neural Network Control[M].USA:Kluwer Academic,2002.[11]RICHARD J P.Time-delay systems:an overview of some recent advances and open problems[J].Automatica,2003,39(10):1667–1694.[12]MAO X R.Razumikhin-type theorems on exponential stability of stochastic functional differential equataions[J].Stochastic Process and Their Application,1996,65(2):233–250. [13]JANKOVIC S,RANDJELOVIC J,JOVANOVIC M.Razumikhintype exponential stability criteria of neutral stochastic functional differential equations[J].Journal of Mathematical Analysis and Applications,2009,355(2):811–820.[14]CHEN W S,JIAO L C,liJ,et al.Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays[J].IEEE Transations on System,Man and Cybernetics,Part B:Cybernetics,2010,40(3):939–950.[15]LIU S J,GE S S,ZHANG J F.Robust output-feedback stabilization for a class of uncertain stochastic nonlinear systems with timevarying delays[C]//Proceedings of 2007 IEEE International Conference on Control and Automation.Piscataway,NJ:IEEE,2007:2766–2771.[16]余昭旭,杜红彬.基于NN的不确定随机非线性时滞系统自适应有界镇定[J].控制理论与应用,2010,27(7):855–860.(YU Zhaoxu,DU Hongbin.Neural-network-based bounded adaptive stabilization for uncertain stochastic nonlinear systems with timedelay[J].Control Theory&Applications,2010,27(7):855–860.)[17]胡适耕,黄乘明,吴付科.随机微分方程[M].科学出版社,2008:153–156.(HU Shigeng,HUANG Chengming,WU Fuke.Stochastic Differential Equations[M].Beijing:Science Press,2008:153–156.)[18]PLOLYCARPOU M M.Stable adaptive neural control scheme for nonlinearsystems[J].IEEE Transactions on Automatic Control,1996,41(3):447–451.。
离散区间二型Tagaki-Sugeno模型时滞系统广义耗散控制设计王雪飞;周绍生【摘要】对带有时变时滞和外部扰动的一类离散区间二型Tagaki-Sugeno(T-S)模型非线性系统,研究了其广义耗散性能分析与状态反馈控制器的设计问题.与一型T-S模糊系统相比,区间二型模糊系统能更好地处理隶属函数中的不确定信息.首先,通过模型转换的方法,对系统的滞后状态进行变换,从而将时变时滞的不确定性从原系统中分离出.根据转换后的仅含定常时滞和具有有界误差范数的两个子系统,利用时滞依赖的李雅普诺夫-克拉索夫斯基泛函方法推导出了使系统渐近稳定并具有广义耗散性能的充分条件.接着,设计了保证闭环系统渐近稳定并具有广义耗散性能指标的状态反馈控制器.最后由数值仿真验证了设计方法的有效性.【期刊名称】《控制理论与应用》【年(卷),期】2018(035)009【总页数】9页(P1293-1301)【关键词】离散控制系统;T-S模型;区间二型模糊系统;广义耗散性能;模型转换;时滞【作者】王雪飞;周绍生【作者单位】杭州电子科技大学自动化学院,浙江杭州310018;杭州电子科技大学自动化学院,浙江杭州310018【正文语种】中文【中图分类】TP2731 引言(Introduction)继模糊集合理论引入后,L.A.Zadeh于1975年又提出了二型模糊集合的概念[1].由于二型模糊集合是在一型集合基础上的扩维运算,原本单一的模糊变量被两个不同层次上的隶属函数所取代,为复杂非线性系统的建模和控制引入了更多的自由度,因而二型模糊集合在处理多重不确定信息上具备更强的能力.然而,二型集合计算复杂,建模困难,控制系统实时运行中并不常见,为了能弥补这一缺陷同时又能很好的处理系统中的不确定信息,进一步引入了区间二型模糊集合的概念[2],J.M.Mendel在一篇综述[3]中对这一概念进行了详细的阐述.另一方面,由一系列IF-THEN规则描述的T–S模糊模型,由于能很好的表示非线性系统的局部线性输入输出关系,成为了非线性系统建模的有效工具.因此,基于T–S模型的区间二型模糊系统的稳定性分析和控制器设计问题便成为了控制领域的研究热点[4–7].文献[5]考虑了内嵌在系统不确定域中的信息,利用二型模糊隶属函数的特性引入了松弛矩阵,得到了使系统稳定且保守性更小的约束条件.文献[7]将状态空间进行分解,通过构造满足不确定性条件的矩阵,并采用矩阵分解技巧,解决了系统中出现的参数不确定性和随机扰动,从而建立了此类区间二型伊藤随机系统渐近稳定的充分条件.实际的工业生产过程或通信网络中,时延现象广泛存在.T–S模糊系统中存在的时滞尤其是时变时滞会给系统的静态和动态特性造成很大的负面影响.有关时滞系统的研究非常广泛[8–10],文献[9]中基于T–S模型离散系统,利用小增益定理以及时滞分解的方法设计出了使模糊系统渐近稳定的控制器.为了克服非线性扰动的影响,增强系统的鲁棒性,各类保性能控制的问题也引起了许多研究者的关注[11–13],文献[13]对具有时变时滞的离散T–S模型随机系统的耗散性能进行了分析,利用模型转化的方法并结合基依赖的李雅普诺夫–克拉索夫斯基泛函(Lyapunov-Krasovskii function,LKF),给出了系统时滞依赖的耗散性充分条件. 与耗散性能相比,文献[12]中提出的广义耗散性能的概念更具有一般性,涵盖了文献中常见的几种重要的性能指标.受文献[13]方法的启发,本文基于具有时变时滞和外部扰动的区间二型离散T–S模型非线性系统,在LKF方法的基础上,利用模型转换的方法,研究了系统广义耗散性能的稳定性分析和镇定问题,并给出了使闭环系统渐近稳定的充分条件.2 系统描述和预备知识(System formulation and preliminaries)考虑如下由IF-THEN规则描述的区间二型T–S离散时滞系统:其中:x(k)∈Rn是系统状态向量;u(k)∈Rm是控制输入向量;ω(k)∈Rq是外部扰动向量;z(k)∈Rq是被控输出向量;d(k)是系统存在的时变时滞且满足16dm6d(k)6dM,正整数dm和dM分别代表时滞的下界和上界;{ψ(l),l=−dM,−dM+1,···,0}是初始条件序列;是第i个模糊规则中前提变量fα(x)隶属的区间二型模糊集,i=1,2,···,s,α=1,2,···,j;Ai,Adi,Bi,Ci,Ddi,Di,Fi是具有适当维数的常数矩阵.第i个规则的激活强度由表示,其中:分别表示函数fα(k)的上下隶属度并且满足和则分别代表上下隶属函数.故对于所有的规则i有.区间二型离散时滞模糊系统(Σ0)可描述为其中式(3)中,组合系数满足故有.接下来,考虑如下的状态反馈控制器:其中Kj是第j个规则中状态反馈控制器的增益矩阵,类似于式(2)的形式,最终的状态反馈控制器为将控制器表达式(4)带入系统表达式(2)中得到区间二型闭环离散系统(Σ)为其中Aij=Ai+BiKj.下面引入闭环离散系统广义耗散性能的概念:假设1 假设矩阵R,R1,R2,R3满足以下条件:定义1 在假设1的情况下,对于闭环系统(5),如果存在标量ρ,对任意的N>0和ω(k)∈L2[0,∞),满足以下不等式:则称该系统是广义耗散的,其中注1 广义耗散性的概念在文献[12]中被首次提出,该性能指标是定义在连续线性马尔科夫跳变时滞系统上的,文献[14]将该性能指标应用在离散时滞神经网络系统,与文献[14]中的定义类似,本文对区间二型离散时滞系统研究了该性能指标的控制问题.注2 根据文献[12]的表述,通过对参数矩阵R,R1,R2,R3赋不同的值,式(6)可以分别表示H∞性能、L2−L∞性能、无源性、严格(Q,S,R)耗散性等性能指标.对于系统(2)和(5)中的时变时滞d(k),作者采用一种与文献[13,15]类似的方法进行估计,即用一种模型转化的方法来处理d(k)中的不确定性.即时滞x(k−d(k))可表示为其中.注3 通过这种操作,时滞状态x(k−d(k))被分成2个部分.其中,确定部分可以视为x(k−d(k))的估计值,而不确定部分则可以视为x(k−d(k))的估计误差.令,通过简单的计算可得其中为了简化式子的复杂度,令结合式(7),原系统(Σ0)转化为以下两个相互关联的子系统其中算子∆d则表示式(8)中δ(k)到ωd(k)的映射关系.由此产生的子系统(Σ1)只包括两个已知的常时滞,而不确定的时变时滞d(k)则转移到了子系统(Σ2)中.注4 这种通过模型转化来处理时变时滞d(k)的方法,文献[15]在分析不确定时滞系统的稳定性问题时进行了详细的阐述:该方法较其他方法的优势以及对d(k)估计误差的分析可见文献[13]中的注4和Example 2.引理1[16](Jensen不等式) 对于任意正定矩阵M∈Rn×n,整数标量τ1和τ2满足τ2>τ1,向量函数x(k)∈Rn,有以下不等式成立:引理2[13] 若子系统(Σ1)的一个LKF为Vs(k),则存在合适维数的正定矩阵S,使得原系统(Σ0)的一个LKF可表示为且若Vs(k)和S满足则原系统(Σ0)是渐近稳定的.3 耗散性分析(Stability analysis)为了简化分析,首先作如下定义:由假设1知,R>0且R160,因此,总是存在矩阵,使得下面等式成立:定理1 给定满足假设1的矩阵R,R1,R2,R3,正整数dm,dM以及标量0<λ<1,当控制输入u=0时,系统(Σ0)渐近稳定且具有广义耗散性能的充分条件是:存在正定矩阵P,P1,P2,S,Q1,Q2使得如下线性矩阵不等式成立:其中:证为系统(Σ1)选择一个LKF其中:计算Vs(k)沿着系统(Σ0)轨迹的增量,且有其中:基于引理2,系统(Σ0)的一个LKF可构造为则其中:结合定义1,其中应用舒尔补引理,由式(11)–(12)可得i<0.因此,根据(14)可知总存在充分小的正实数c,使得Ωi6−cI,则令根据不等式(15),有根据定义1,需要证明对于满足假设1的矩阵R,R1,R2,R3要满足式(6).从以下两种情况讨论:1)当R=0时,由式(16)显然知不等式(6)成立;2)当时,由假设1的4)知(∥R1∥+∥R2∥)=0,即R1=0,R2=0;由式(3)知∥Fi∥=0;由式(5)知R3>0.因此,J(k)=ωT(k)R3ω(k)>0.结合式(16),可知对任意k>0以及N>k>0,有此时,当k>d(k)时,显然得0<k−d(k)6N,故而当k6d(k)时,有−dM6−d(k)6k−d(k)60,则因此,不等式(18)对于任意k>0,N>k>0均成立.结合式(17)可知,存在一标量λ满足0<λ<1使得以下条件成立:对式(13)使用舒尔补引理并结合式(11),可得由此可知故根据式(20)–(21)可得对任意k>0,N>k>0,有由1)和2)两种情况可知零输入控制系统(Σ0)满足定义的广义耗散性能.当ω(k)≡0时,根据式(15),有由于R160,从而有∆V(k)<−c|η(k)|2.因此,当无扰动作用时,零输入系统(Σ0)是渐近稳定的.4 控制器设计(Control design)定理2 给定满足假设1的矩阵R,R1,R2,R3,正整数dm,dM以及标量0<λ<1,标量ε>0,闭环控制系统(Σ)渐近稳定且具有广义耗散性能的充分条件是:在控制器增益Kj=MjX−1作用下,存在正定矩阵P,P1,P2,S,Q1,Q2,适维矩阵X,Mj使得如下线性矩阵不等式成立:,即闭环控制系统(Σ)渐近稳定且具有广义耗散性能.注5 由式(23)可知X+XT−P>0.因为P>0,故有X+XT>0,因此可以确保X−1是存在的.注6 在定理2中,建立式(23)和式(24)两个条件来取代直接令Πij<0的方法,降低了约束条件的保守性.另外,在条件中增加了一个算子ε,通过调节该算子的取值,可以降低由不等式放缩而带来的保守性.5 数值实例(Numerical examples)对于区间二型离散闭环控制系统(Σ),当s=2时,设ε=0.42,λ=0.5,各参数矩阵给定如下:在保证上述参数一致的情况下,给定不同的时滞下界dm,根据定理2的时滞稳定定性条件求解线性矩阵不等式,得到允许的时滞上界如表1所示.表1 允许的时滞上界dMTable 1 The allowed upper bounddMof time delaydm 1 3 5 7 9 11dM 6 8 10 10 11 12考虑广义耗散性能的特例:L2−L∞性能指标,即令由假设1可知此时F1=F2=0,根据定理2的条件结合表1,令dm=1,dM=3,通过求解LMI可得如下可行解:由定理2中Kj=MjX−1可计算出状态反馈控制器的增益矩阵为区间二型系统以及状态反馈控制器的上、下隶属函数定义如下:由此形成图1所示的不确定域(footprint of uncertainties,FOUs).图1 区间二型模糊模型不确定域Fig.1 The FOUs of the interval type–2 fuzzy sets in the model令状态初始函数为时变时滞仿真时长N=50,根据式(30)由模型变换求得的增益K1,K2,作出图2开环系统的状态响应和图3闭环系统的状态响应.由图2–3可以看出,在具有外部扰动的开环系统下,系统始终处于振荡状态.当状态反馈控制器作用在系统后,响应曲线经过一段时间趋于零点,从而使系统渐近稳定.图2 开环系统状态响应Fig.2 The state responses of the open loop system 图3 闭环系统状态响应Fig.3 The state responses of the close loop system 6 结论(Conclusions)针对区间二型离散T–S模型非线性系统,在考虑了二型隶属函数特性以及时变时滞和外部扰动的影响下,研究了系统广义耗散性能的稳定性分析和镇定问题.通过模型转换的方法,对系统的滞后状态进行合理变换,根据转换后的仅含定常时滞和含有有界误差范数的2个子系统,利用Lyapunov-Krasovski泛函方法推导出了使系统渐近稳定并具有广义耗散性能的充分条件.最后由数值仿真验证了模型变换方法的可行性和状态反馈控制器设计方法的有效性.参考文献(References):【相关文献】[1]ZADEH L A.The concept of a linguistic variable and its application to approximate reasoning–1[J].Information Sciences,1975,8(3):199–249.[2]MENDEL J M,JOHN R I B.Type–2 fuzzy sets made simple[J].IEEE Transactions on Fuzzy Systems,2002,10(2):117–127.[3]MENDEl J M.Type–2 fuzzy sets and systems:an overview[J].IEEE Computational Intelligence Magazine,2007,2(2):20–29.[4]LAMHK,LIH,DETERSC,etal.Control design for interval Type–2 fuzzy systems under imperfect premise matching[J].IEEE Transactions on Industrial Electronics,2013,61(2):956–968.[5]SHENG L,MA X Y.Stability analysis and controller design of discrete interval type–2 fuzzy systems[J].Asian Journal of Control,2014,16(4):1091–1104.[6]ZHAO T,XIAO J.A new interval type–2 fuzzy controller for stabilization of interval type–2 T–S fuzzy systems[J].Journal of the Franklin Institute,2015,352(4):1627–1648.[7]WANG C J,ZHOU S S,KONG Y Y.State feedback control of interval type–2 T–S model based uncertain stochastic systems with unmatched premises[J].Neurocomputing,2016,173(1):1082–1095.[8]WU H N,LI H X.New approach to delay-dependent stability analysis and stabilization for continuous-time fuzzy systems with timevarying delay[J].IEEE Transactions on Fuzzy Systems,2007,15(3):482–493.[9]SU X,SHI P,WU L,et al.A novel control design on discrete-time Takagi-Sugeno fuzzy systems with time-varying delays[J].IEEE Transactions on Fuzzy Systems,2013,21(4):655–671.[10]SHENG L,MA X Y.Stability analysis and controller design of interval type–2 fuzzy systems with time delay[J].International Journal of Systems Science,2014,45(5):977–993. [11]ZHOU S S,LAM J,ZHENG W X.Control design for fuzzy systems based on relaxed nonquadra tic stability and H∞performance conditions[J].IEEE Transactions on Fuzzy Systems,2007,15(2):188–199.[12]ZHANG B Y,ZHENG W X,XU S Y.Filtering of Markovian jump delay systems based on anew performance index[J].IEEE Transac-tions on Circuits and Systems I:Regular Papers,2013,60(5):1250–1263.[13]WU L,YANG X,LAM H K.Dissipativity analysis and synthesis for discrete-time T–S fuzzy stochastic systems with time-varying delay[J].IEEE Transactions on FuzzySystems,2014,22(2):380–394.[14]FENG Z,ZHENG W X.On extended dissipativity of discrete-time neural networks with time delay[J].IEEE Transactions on Neural Networks&Learning Systems,2015,26(12):3293–3300.[15]LI X,GAO H.A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis[J].IEEE Transactions on Automatic Control,2011,56(9):2172–2178.[16]SHAO H,HAN Q L.New stability criteria for linear discrete-time systems with interval-like time-varying delays[J].IEEE Transactions on Automatic Control,2011,56(3):619–625. [17]TUAN H D,APKARIAN P,NARIKIYO T,et al.Parameterized linear matrix inequality techniques in fuzzy control system design[J].IEEE Transactions on FuzzySystems,2001,9(2):324–332.。
力学,流体力学,固体力学英语词汇翻译牛顿力学Newtonian mechanics经典力学classical mechanics静力学statics运动学kinematics动力学dynamics动理学kinetics宏观力学macroscopic mechanics,macromechanics细观力学mesomechanics微观力学microscopic mechanics,micromechanics一般力学general mechanics固体力学solid mechanics流体力学fluid mechanics理论力学theoretical mechanics应用力学applied mechanics工程力学engineering mechanics实验力学experimental mechanics计算力学computational mechanics理性力学rational mechanics物理力学physical mechanics地球动力学geodynamics力force作用点point of action作用线line of action力系system of forces力系的简化reduction of force system等效力系equivalent force system刚体rigid body力的可传性transmissibility of force平行四边形定则parallelogram rule力三角形force triangle力多边形force polygon零力系null-force system平衡equilibrium力的平衡equilibrium of forces平衡条件equilibrium condition平衡位置equilibrium position平衡态equilibrium state分析力学analytical mechanics拉格朗日乘子Lagrange multiplier拉格朗日[量] Lagrangian拉格朗日括号Lagrange bracket循环坐标cyclic coordinate循环积分cyclic integral哈密顿[量] Hamiltonian哈密顿函数Hamiltonian function正则方程canonical equation正则摄动canonical perturbation正则变换canonical transformation正则变量canonical variable哈密顿原理Hamilton principle作用量积分action integral哈密顿--雅可比方程Hamilton-Jacobi equation 作用--角度变量action-angle variables阿佩尔方程Appell equation劳斯方程Routh equation拉格朗日函数Lagrangian function诺特定理Noether theorem泊松括号poisson bracket边界积分法boundary integral method并矢dyad运动稳定性stability of motion轨道稳定性orbital stability李雅普诺夫函数Lyapunov function渐近稳定性asymptotic stability结构稳定性structural stability久期不稳定性secular instability弗洛凯定理Floquet theorem倾覆力矩capsizing moment自由振动free vibration固有振动natural vibration暂态transient state环境振动ambient vibration反共振anti-resonance衰减attenuation库仑阻尼Coulomb damping同相分量in-phase component非同相分量out-of-phase component超调量overshoot参量[激励]振动parametric vibration模糊振动fuzzy vibration临界转速critical speed of rotation阻尼器damper半峰宽度half-peak width集总参量系统lumped parameter system相平面法phase plane method相轨迹phase trajectory等倾线法isocline method跳跃现象jump phenomenon负阻尼negative damping达芬方程Duffing equation希尔方程Hill equationKBM方法KBM method, Krylov-Bogoliu-bov-Mitropol'skii method 马蒂厄方程Mathieu equation平均法averaging method组合音调combination tone解谐detuning耗散函数dissipative function硬激励hard excitation硬弹簧hard spring, hardening spring谐波平衡法harmonic balance method久期项secular term自激振动self-excited vibration分界线separatrix亚谐波subharmonic软弹簧soft spring ,softening spring软激励soft excitation邓克利公式Dunkerley formula瑞利定理Rayleigh theorem分布参量系统distributed parameter system优势频率dominant frequency模态分析modal analysis固有模态natural mode of vibration同步synchronization超谐波ultraharmonic范德波尔方程van der pol equation频谱frequency spectrum基频fundamental frequencyWKB方法WKB method, Wentzel-Kramers-Brillouin method缓冲器buffer风激振动aeolian vibration嗡鸣buzz倒谱cepstrum颤动chatter蛇行hunting阻抗匹配impedance matching机械导纳mechanical admittance机械效率mechanical efficiency机械阻抗mechanical impedance随机振动stochastic vibration, random vibration隔振vibration isolation减振vibration reduction应力过冲stress overshoot喘振surge摆振shimmy起伏运动phugoid motion起伏振荡phugoid oscillation驰振galloping陀螺动力学gyrodynamics陀螺摆gyropendulum陀螺平台gyroplatform陀螺力矩gyroscoopic torque陀螺稳定器gyrostabilizer陀螺体gyrostat惯性导航inertial guidance姿态角attitude angle方位角azimuthal angle舒勒周期Schuler period机器人动力学robot dynamics多体系统multibody system多刚体系统multi-rigid-body system机动性maneuverability凯恩方法Kane method转子[系统]动力学rotor dynamics转子[一支承一基础]系统rotor-support-foundation system 静平衡static balancing动平衡dynamic balancing静不平衡static unbalance动不平衡dynamic unbalance现场平衡field balancing不平衡unbalance不平衡量unbalance互耦力cross force挠性转子flexible rotor分频进动fractional frequency precession半频进动half frequency precession油膜振荡oil whip转子临界转速rotor critical speed自动定心self-alignment亚临界转速subcritical speed涡动whirl连续过程continuous process碰撞截面collision cross section通用气体常数conventional gas constant燃烧不稳定性combustion instability稀释度dilution完全离解complete dissociation火焰传播flame propagation组份constituent碰撞反应速率collision reaction rate燃烧理论combustion theory浓度梯度concentration gradient阴极腐蚀cathodic corrosion火焰速度flame speed火焰驻定flame stabilization火焰结构flame structure着火ignition湍流火焰turbulent flame层流火焰laminar flame燃烧带burning zone渗流flow in porous media, seepage达西定律Darcy law赫尔-肖流Hele-Shaw flow毛[细]管流capillary flow过滤filtration爪进fingering不互溶驱替immiscible displacement不互溶流体immiscible fluid互溶驱替miscible displacement互溶流体miscible fluid迁移率mobility流度比mobility ratio渗透率permeability孔隙度porosity多孔介质porous medium比面specific surface迂曲度tortuosity空隙void空隙分数void fraction注水water flooding可湿性wettability地球物理流体动力学geophysical fluid dynamics 物理海洋学physical oceanography大气环流atmospheric circulation海洋环流ocean circulation海洋流ocean current旋转流rotating flow平流advection埃克曼流Ekman flow埃克曼边界层Ekman boundary layer大气边界层atmospheric boundary layer大气-海洋相互作用atmosphere-ocean interaction埃克曼数Ekman number罗斯贝数Rossby unmber罗斯贝波Rossby wave斜压性baroclinicity正压性barotropy内磨擦internal friction海洋波ocean wave盐度salinity环境流体力学environmental fluid mechanics斯托克斯流Stokes flow羽流plume理查森数Richardson number污染源pollutant source污染物扩散pollutant diffusion噪声noise噪声级noise level噪声污染noise pollution排放物effulent工业流体力学industrical fluid mechanics流控技术fluidics轴向流axial flow并向流co-current flow对向流counter current flow横向流cross flow螺旋流spiral flow旋拧流swirling flow滞后流after flow混合层mixing layer抖振buffeting风压wind pressure附壁效应wall attachment effect, Coanda effect简约频率reduced frequency爆炸力学mechanics of explosion终点弹道学terminal ballistics动态超高压技术dynamic ultrahigh pressure technique 流体弹塑性体hydro-elastoplastic medium热塑不稳定性thermoplastic instability空中爆炸explosion in air地下爆炸underground explosion水下爆炸underwater explosion电爆炸discharge-induced explosion激光爆炸laser-induced explosion核爆炸nuclear explosion点爆炸point-source explosion殉爆sympathatic detonation强爆炸intense explosion粒子束爆炸explosion by beam radiation 聚爆implosion起爆initiation of explosion爆破blasting霍普金森杆Hopkinson bar电炮electric gun电磁炮electromagnetic gun爆炸洞explosion chamber轻气炮light gas gun马赫反射Mach reflection基浪base surge成坑cratering能量沉积energy deposition爆心explosion center爆炸当量explosion equivalent火球fire ball爆高height of burst蘑菇云mushroom侵彻penetration规则反射regular reflection崩落spallation应变率史strain rate history流变学rheology聚合物减阻drag reduction by polymers挤出[物]胀大extrusion swell, die swell无管虹吸tubeless siphon剪胀效应dilatancy effect孔压[误差]效应hole-pressure[error]effect 剪切致稠shear thickening剪切致稀shear thinning触变性thixotropy反触变性anti-thixotropy超塑性superplasticity粘弹塑性材料viscoelasto-plastic material 滞弹性材料anelastic material本构关系constitutive relation麦克斯韦模型Maxwell model沃伊特-开尔文模型Voigt-Kelvin model宾厄姆模型Bingham model奥伊洛特模型Oldroyd model幂律模型power law model应力松驰stress relaxation应变史strain history应力史stress history记忆函数memory function衰退记忆fading memory应力增长stress growing粘度函数voscosity function相对粘度relative viscosity复态粘度complex viscosity拉伸粘度elongational viscosity拉伸流动elongational flow第一法向应力差first normal-stress difference第二法向应力差second normal-stress difference 德博拉数Deborah number魏森贝格数Weissenberg number动态模量dynamic modulus振荡剪切流oscillatory shear flow宇宙气体动力学cosmic gas dynamics等离[子]体动力学plasma dynamics电离气体ionized gas行星边界层planetary boundary layer阿尔文波Alfven wave泊肃叶-哈特曼流] Poiseuille-Hartman flow哈特曼数Hartman number生物流变学biorheology生物流体biofluid生物屈服点bioyield point生物屈服应力bioyield stress电气体力学electro-gas dynamics铁流体力学ferro-hydrodynamics血液流变学hemorheology, blood rheology血液动力学hemodynamics磁流体力学magneto fluid mechanics磁流体动力学magnetohydrodynamics, MHD磁流体动力波magnetohydrodynamic wave磁流体流magnetohydrodynamic flow磁流体动力稳定性magnetohydrodynamic stability 生物力学biomechanics生物流体力学biological fluid mechanics生物固体力学biological solid mechanics宾厄姆塑性流Bingham plastic flow开尔文体Kelvin body沃伊特体Voigt body可贴变形applicable deformation可贴曲面applicable surface边界润滑boundary lubrication液膜润滑fluid film lubrication向心收缩功concentric work离心收缩功eccentric work关节反作用力joint reaction force微循环力学microcyclic mechanics微纤维microfibril渗透性permeability生理横截面积physiological cross-sectional area 农业生物力学agrobiomechanics纤维度fibrousness硬皮度rustiness胶粘度gumminess粘稠度stickiness嫩度tenderness渗透流osmotic flow易位流translocation flow蒸腾流transpirational flow过滤阻力filtration resistance压扁wafering风雪流snow-driving wind停滞堆积accretion遇阻堆积encroachment沙漠地面desert floor流沙固定fixation of shifting sand流动阈值fluid threshold连续介质力学mechanics of continuous media 介质medium流体质点fluid particle无粘性流体nonviscous fluid, inviscid fluid连续介质假设continuous medium hypothesis流体运动学fluid kinematics水静力学hydrostatics液体静力学hydrostatics支配方程governing equation伯努利方程Bernoulli equation伯努利定理Bernonlli theorem毕奥-萨伐尔定律Biot-Savart law欧拉方程Euler equation亥姆霍兹定理Helmholtz theorem开尔文定理Kelvin theorem涡片vortex sheet库塔-茹可夫斯基条件Kutta-Zhoukowski condition 布拉休斯解Blasius solution达朗贝尔佯廖d'Alembert paradox雷诺数Reynolds number施特鲁哈尔数Strouhal number随体导数material derivative不可压缩流体incompressible fluid质量守恒conservation of mass动量守恒conservation of momentum能量守恒conservation of energy动量方程momentum equation能量方程energy equation控制体积control volume液体静压hydrostatic pressure涡量拟能enstrophy压差differential pressure流[动] flow流线stream line流面stream surface流管stream tube迹线path, path line流场flow field流态flow regime流动参量flow parameter流量flow rate, flow discharge涡旋vortex涡量vorticity涡丝vortex filament涡线vortex line涡面vortex surface涡层vortex layer涡环vortex ring涡对vortex pair涡管vortex tube涡街vortex street卡门涡街Karman vortex street马蹄涡horseshoe vortex对流涡胞convective cell卷筒涡胞roll cell涡eddy涡粘性eddy viscosity环流circulation环量circulation速度环量velocity circulation偶极子doublet, dipole驻点stagnation point总压[力] total pressure总压头total head静压头static head总焓total enthalpy能量输运energy transport速度剖面velocity profile库埃特流Couette flow单相流single phase flow单组份流single-component flow均匀流uniform flow非均匀流nonuniform flow二维流two-dimensional flow三维流three-dimensional flow准定常流quasi-steady flow非定常流unsteady flow, non-steady flow 暂态流transient flow周期流periodic flow振荡流oscillatory flow分层流stratified flow无旋流irrotational flow有旋流rotational flow轴对称流axisymmetric flow不可压缩性incompressibility不可压缩流[动] incompressible flow浮体floating body定倾中心metacenter阻力drag, resistance减阻drag reduction表面力surface force表面张力surface tension毛细[管]作用capillarity来流incoming flow自由流free stream自由流线free stream line外流external flow进口entrance, inlet出口exit, outlet扰动disturbance, perturbation分布distribution传播propagation色散dispersion弥散dispersion附加质量added mass ,associated mass 收缩contraction镜象法image method无量纲参数dimensionless parameter几何相似geometric similarity运动相似kinematic similarity动力相似[性] dynamic similarity平面流plane flow势potential势流potential flow速度势velocity potential复势complex potential复速度complex velocity流函数stream function源source汇sink速度[水]头velocity head拐角流corner flow空泡流cavity flow超空泡supercavity超空泡流supercavity flow空气动力学aerodynamics低速空气动力学low-speed aerodynamics 高速空气动力学high-speed aerodynamics 气动热力学aerothermodynamics亚声速流[动] subsonic flow跨声速流[动] transonic flow超声速流[动] supersonic flow锥形流conical flow楔流wedge flow叶栅流cascade flow非平衡流[动] non-equilibrium flow细长体slender body细长度slenderness钝头体bluff body钝体blunt body翼型airfoil翼弦chord薄翼理论thin-airfoil theory构型configuration后缘trailing edge迎角angle of attack失速stall脱体激波detached shock wave波阻wave drag诱导阻力induced drag诱导速度induced velocity临界雷诺数critical Reynolds number前缘涡leading edge vortex附着涡bound vortex约束涡confined vortex气动中心aerodynamic center气动力aerodynamic force气动噪声aerodynamic noise气动加热aerodynamic heating离解dissociation地面效应ground effect气体动力学gas dynamics稀疏波rarefaction wave热状态方程thermal equation of state喷管Nozzle普朗特-迈耶流Prandtl-Meyer flow瑞利流Rayleigh flow可压缩流[动] compressible flow可压缩流体compressible fluid绝热流adiabatic flow非绝热流diabatic flow未扰动流undisturbed flow等熵流isentropic flow匀熵流homoentropic flow兰金-于戈尼奥条件Rankine-Hugoniot condition 状态方程equation of state量热状态方程caloric equation of state完全气体perfect gas拉瓦尔喷管Laval nozzle马赫角Mach angle马赫锥Mach cone马赫线Mach line马赫数Mach number马赫波Mach wave当地马赫数local Mach number冲击波shock wave激波shock wave正激波normal shock wave斜激波oblique shock wave头波bow wave附体激波attached shock wave激波阵面shock front激波层shock layer压缩波compression wave反射reflection折射refraction散射scattering衍射diffraction绕射diffraction出口压力exit pressure超压[强] over pressure反压back pressure爆炸explosion爆轰detonation缓燃deflagration水动力学hydrodynamics液体动力学hydrodynamics泰勒不稳定性Taylor instability盖斯特纳波Gerstner wave斯托克斯波Stokes wave瑞利数Rayleigh number自由面free surface波速wave speed, wave velocity 波高wave height波列wave train波群wave group波能wave energy表面波surface wave表面张力波capillary wave规则波regular wave不规则波irregular wave浅水波shallow water wave深水波deep water wave重力波gravity wave椭圆余弦波cnoidal wave潮波tidal wave涌波surge wave破碎波breaking wave船波ship wave非线性波nonlinear wave孤立子soliton水动[力]噪声hydrodynamic noise 水击water hammer空化cavitation空化数cavitation number空蚀cavitation damage超空化流supercavitating flow水翼hydrofoil水力学hydraulics洪水波flood wave涟漪ripple消能energy dissipation海洋水动力学marine hydrodynamics谢齐公式Chezy formula欧拉数Euler number弗劳德数Froude number水力半径hydraulic radius水力坡度hvdraulic slope高度水头elevating head水头损失head loss水位water level水跃hydraulic jump含水层aquifer排水drainage排放量discharge壅水曲线back water curve压[强水]头pressure head过水断面flow cross-section明槽流open channel flow孔流orifice flow无压流free surface flow有压流pressure flow缓流subcritical flow急流supercritical flow渐变流gradually varied flow急变流rapidly varied flow临界流critical flow异重流density current, gravity flow堰流weir flow掺气流aerated flow含沙流sediment-laden stream降水曲线dropdown curve沉积物sediment, deposit沉[降堆]积sedimentation, deposition沉降速度settling velocity流动稳定性flow stability不稳定性instability奥尔-索末菲方程Orr-Sommerfeld equation涡量方程vorticity equation泊肃叶流Poiseuille flow奥辛流Oseen flow剪切流shear flow粘性流[动] viscous flow层流laminar flow分离流separated flow二次流secondary flow近场流near field flow远场流far field flow滞止流stagnation flow尾流wake [flow]回流back flow反流reverse flow射流jet自由射流free jet管流pipe flow, tube flow内流internal flow拟序结构coherent structure 猝发过程bursting process表观粘度apparent viscosity 运动粘性kinematic viscosity 动力粘性dynamic viscosity泊poise厘泊centipoise厘沱centistoke剪切层shear layer次层sublayer流动分离flow separation层流分离laminar separation 湍流分离turbulent separation 分离点separation point附着点attachment point再附reattachment再层流化relaminarization起动涡starting vortex驻涡standing vortex涡旋破碎vortex breakdown涡旋脱落vortex shedding压[力]降pressure drop压差阻力pressure drag压力能pressure energy型阻profile drag滑移速度slip velocity无滑移条件non-slip condition壁剪应力skin friction, frictional drag壁剪切速度friction velocity磨擦损失friction loss磨擦因子friction factor耗散dissipation滞后lag相似性解similar solution局域相似local similarity气体润滑gas lubrication液体动力润滑hydrodynamic lubrication浆体slurry泰勒数Taylor number纳维-斯托克斯方程Navier-Stokes equation 牛顿流体Newtonian fluid边界层理论boundary later theory边界层方程boundary layer equation边界层boundary layer附面层boundary layer层流边界层laminar boundary layer湍流边界层turbulent boundary layer温度边界层thermal boundary layer边界层转捩boundary layer transition边界层分离boundary layer separation边界层厚度boundary layer thickness位移厚度displacement thickness能量厚度energy thickness焓厚度enthalpy thickness注入injection吸出suction泰勒涡Taylor vortex速度亏损律velocity defect law形状因子shape factor测速法anemometry粘度测定法visco[si] metry流动显示flow visualization油烟显示oil smoke visualization孔板流量计orifice meter频率响应frequency response油膜显示oil film visualization阴影法shadow method纹影法schlieren method烟丝法smoke wire method丝线法tuft method氢泡法nydrogen bubble method相似理论similarity theory相似律similarity law部分相似partial similarity定理pi theorem, Buckingham theorem静[态]校准static calibration动态校准dynamic calibration风洞wind tunnel激波管shock tube激波管风洞shock tube wind tunnel水洞water tunnel拖曳水池towing tank旋臂水池rotating arm basin扩散段diffuser测压孔pressure tap皮托管pitot tube普雷斯顿管preston tube斯坦顿管Stanton tube文丘里管Venturi tubeU形管U-tube压强计manometer微压计micromanometer多管压强计multiple manometer静压管static [pressure]tube流速计anemometer风速管Pitot- static tube激光多普勒测速计laser Doppler anemometer, laser Doppler velocimeter 热线流速计hot-wire anemometer热膜流速计hot- film anemometer流量计flow meter粘度计visco[si] meter涡量计vorticity meter传感器transducer, sensor压强传感器pressure transducer热敏电阻thermistor示踪物tracer时间线time line脉线streak line尺度效应scale effect壁效应wall effect堵塞blockage堵寒效应blockage effect动态响应dynamic response响应频率response frequency底压base pressure菲克定律Fick law巴塞特力Basset force埃克特数Eckert number格拉斯霍夫数Grashof number努塞特数Nusselt number普朗特数prandtl number雷诺比拟Reynolds analogy施密特数schmidt number斯坦顿数Stanton number对流convection自由对流natural convection, free convec-tion 强迫对流forced convection热对流heat convection质量传递mass transfer传质系数mass transfer coefficient热量传递heat transfer传热系数heat transfer coefficient对流传热convective heat transfer辐射传热radiative heat transfer动量交换momentum transfer能量传递energy transfer传导conduction热传导conductive heat transfer热交换heat exchange临界热通量critical heat flux浓度concentration扩散diffusion扩散性diffusivity扩散率diffusivity扩散速度diffusion velocity分子扩散molecular diffusion沸腾boiling蒸发evaporation气化gasification凝结condensation成核nucleation计算流体力学computational fluid mechanics 多重尺度问题multiple scale problem伯格斯方程Burgers equation对流扩散方程convection diffusion equation KDU方程KDV equation修正微分方程modified differential equation拉克斯等价定理Lax equivalence theorem数值模拟numerical simulation大涡模拟large eddy simulation数值粘性numerical viscosity非线性不稳定性nonlinear instability希尔特稳定性分析Hirt stability analysis相容条件consistency conditionCFL条件Courant- Friedrichs- Lewy condition ,CFL condition 狄里克雷边界条件Dirichlet boundary condition熵条件entropy condition远场边界条件far field boundary condition流入边界条件inflow boundary condition无反射边界条件nonreflecting boundary condition数值边界条件numerical boundary condition流出边界条件outflow boundary condition冯.诺伊曼条件von Neumann condition近似因子分解法approximate factorization method人工压缩artificial compression人工粘性artificial viscosity边界元法boundary element method配置方法collocation method能量法energy method有限体积法finite volume method流体网格法fluid in cell method, FLIC method通量校正传输法flux-corrected transport method通量矢量分解法flux vector splitting method伽辽金法Galerkin method积分方法integral method标记网格法marker and cell method, MAC method特征线法method of characteristics直线法method of lines矩量法moment method多重网格法multi- grid method板块法panel method质点网格法particle in cell method, PIC method质点法particle method预估校正法predictor-corrector method投影法projection method准谱法pseudo-spectral method随机选取法random choice method激波捕捉法shock-capturing method激波拟合法shock-fitting method谱方法spectral method稀疏矩阵分解法split coefficient matrix method不定常法time-dependent method时间分步法time splitting method变分法variational method涡方法vortex method隐格式implicit scheme显格式explicit scheme交替方向隐格式alternating direction implicit scheme, ADI scheme 反扩散差分格式anti-diffusion difference scheme紧差分格式compact difference scheme守恒差分格式conservation difference scheme克兰克-尼科尔森格式Crank-Nicolson scheme杜福特-弗兰克尔格式Dufort-Frankel scheme指数格式exponential scheme戈本诺夫格式Godunov scheme高分辨率格式high resolution scheme拉克斯-温德罗夫格式Lax-Wendroff scheme蛙跳格式leap-frog scheme单调差分格式monotone difference scheme保单调差分格式monotonicity preserving difference scheme穆曼-科尔格式Murman-Cole scheme半隐格式semi-implicit scheme斜迎风格式skew-upstream scheme全变差下降格式total variation decreasing scheme TVD scheme迎风格式upstream scheme , upwind scheme计算区域computational domain物理区域physical domain影响域domain of influence依赖域domain of dependence区域分解domain decomposition维数分解dimensional split物理解physical solution弱解weak solution黎曼解算子Riemann solver守恒型conservation form弱守恒型weak conservation form强守恒型strong conservation form散度型divergence form贴体曲线坐标body- fitted curvilinear coordi-nates[自]适应网格[self-] adaptive mesh适应网格生成adaptive grid generation自动网格生成automatic grid generation数值网格生成numerical grid generation交错网格staggered mesh网格雷诺数cell Reynolds number数植扩散numerical diffusion数值耗散numerical dissipation数值色散numerical dispersion数值通量numerical flux放大因子amplification factor放大矩阵amplification matrix阻尼误差damping error离散涡discrete vortex熵通量entropy flux熵函数entropy function分步法fractional step method广义连续统力学generalized continuum mechanics简单物质simple material纯力学物质purely mechanical material微分型物质material of differential type积分型物质material of integral type混合物组份constituents of a mixture非协调理论incompatibility theory微极理论micropolar theory决定性原理principle of determinism等存在原理principle of equipresence局部作用原理principle of objectivity客观性原理principle of objectivity电磁连续统理论theory of electromagnetic continuum 内时理论endochronic theory非局部理论nonlocal theory混合物理论theory of mixtures里夫林-矣里克森张量Rivlin-Ericksen tensor声张量acoustic tensor半向同性张量hemitropic tensor各向同性张量isotropic tensor应变张量strain tensor伸缩张量stretch tensor连续旋错continuous dislination连续位错continuous dislocation动量矩平衡angular momentum balance余本构关系complementary constitutive relations共旋导数co-rotational derivative, Jaumann derivative 非完整分量anholonomic component爬升效应climbing effect协调条件compatibility condition错综度complexity当时构形current configuration能量平衡energy balance变形梯度deformation gradient有限弹性finite elasticity熵增entropy production标架无差异性frame indifference弹性势elastic potential熵不等式entropy inequality极分解polar decomposition低弹性hypoelasticity参考构形reference configuration响应泛函response functional动量平衡momentum balance奇异面singular surface贮能函数stored-energy function内部约束internal constraint物理分量physical components本原元primitive element普适变形universal deformation速度梯度velocity gradient测粘流动viscometric flow当地导数local derivative岩石力学rock mechanics原始岩体应力virgin rock stress构造应力tectonic stress三轴压缩试验three-axial compression test 三轴拉伸试验three-axial tensile test三轴试验triaxial test岩层静态应力lithostatic stress吕荣lugeon地压强geostatic pressure水力劈裂hydraulic fracture咬合[作用] interlocking内禀抗剪强度intrinsic shear strength循环抗剪强度cyclic shear strength残余抗剪强度residual shear strength土力学soil mechanics孔隙比void ratio内磨擦角angle of internal friction休止角angle of repose孔隙率porosity围压ambient pressure渗透系数coefficient of permeability [抗]剪切角angle of shear resistance渗流力seepage force表观粘聚力apparent cohesion粘聚力cohesion稠度consistency固结consolidation主固结primary consolidation次固结secondary consolidation固结仪consolidometer浮升力uplift扩容dilatancy有效应力effective stress絮凝[作用] flocculation主动土压力active earth pressure 被动土压力passive earth pressure 土动力学soil dynamics应力解除stress relief次时间效应secondary time effect 贯入阻力penetration resistance沙土液化liquefaction of sand泥流mud flow多相流multiphase flow马格努斯效应Magnus effect韦伯数Weber number环状流annular flow泡状流bubble flow层状流stratified flow平衡流equilibrium flow二组份流two-component flow冻结流frozen flow均质流homogeneous flow二相流two-phase flow气-液流gas-liquid flow气-固流gas-solid flow液-气流liquid-gas flow液-固流liquid-solid flow液体-蒸气流liquid-vapor flow浓相dense phase稀相dilute phase连续相continuous phase离散相dispersed phase悬浮suspension气力输运pneumatic transport气泡形成bubble formation体密度bulk density壅塞choking微滴droplet挟带entrainment流型flow pattern流[态]化fluidization界面interface跃动速度saltation velocity非牛顿流体力学non-Newtonian fluid mechanics非牛顿流体non-Newtonian fluid幂律流体power law fluid拟塑性流体pseudoplastic fluid触稠流体rheopectic fluid触变流体thixotropic fluid粘弹性流体viscoelastic fluid流变测量学rheometry震凝性rheopexy体[积]粘性bulk viscosity魏森贝格效应Weissenberg effect流变仪rheometer稀薄气体动力学rarefied gas dynamics物理化学流体力学physico-chemical hydrodynamics 空气热化学aerothermochemistry绝对压强absolute pressure绝对反应速率absolute reaction rate绝对温度absolute temperature吸收系数absorption coefficient活化分子activated molecule活化能activation energy绝热压缩adiabatic compression绝热膨胀adiabatic expansion绝热火焰温度adiabatic flame temperature电弧风洞arc tunnel原子热atomic heat雾化atomization自燃auto-ignition自动氧化auto-oxidation可用能量available energy缓冲作用buffer action松密度bulk density燃烧率burning rate燃烧速度burning velocity接触面contact surface烧蚀ablation弹性力学elasticity弹性理论theory of elasticity均匀应力状态homogeneous state of stress应力不变量stress invariant应变不变量strain invariant应变椭球strain ellipsoid均匀应变状态homogeneous state of strain应变协调方程equation of strain compatibility拉梅常量Lame constants各向同性弹性isotropic elasticity旋转圆盘rotating circular disk楔wedge开尔文问题Kelvin problem布西内斯克问题Boussinesq problem艾里应力函数Airy stress function克罗索夫-穆斯赫利什维利法Kolosoff-Muskhelishvili method 基尔霍夫假设Kirchhoff hypothesis板Plate矩形板Rectangular plate圆板Circular plate环板Annular plate波纹板Corrugated plate加劲板Stiffened plate,reinforced Plate中厚板Plate of moderate thickness弯[曲]应力函数Stress function of bending壳Shell扁壳Shallow shell旋转壳Revolutionary shell球壳Spherical shell[圆]柱壳Cylindrical shell锥壳Conical shell环壳Toroidal shell封闭壳Closed shell波纹壳Corrugated shell扭[转]应力函数Stress function of torsion翘曲函数Warping function半逆解法semi-inverse method瑞利--里茨法Rayleigh-Ritz method松弛法Relaxation method莱维法Levy method松弛Relaxation量纲分析Dimensional analysis自相似[性] self-similarity影响面Influence surface接触应力Contact stress赫兹理论Hertz theory协调接触Conforming contact滑动接触Sliding contact滚动接触Rolling contact压入Indentation各向异性弹性Anisotropic elasticity颗粒材料Granular material散体力学Mechanics of granular media 热弹性Thermoelasticity超弹性Hyperelasticity粘弹性Viscoelasticity对应原理Correspondence principle褶皱Wrinkle塑性全量理论Total theory of plasticity 滑动Sliding微滑Microslip粗糙度Roughness非线性弹性Nonlinear elasticity大挠度Large deflection突弹跳变snap-through有限变形Finite deformation格林应变Green strain阿尔曼西应变Almansi strain弹性动力学Dynamic elasticity运动方程Equation of motion准静态的Quasi-static气动弹性Aeroelasticity水弹性Hydroelasticity颤振Flutter弹性波Elastic wave简单波Simple wave柱面波Cylindrical wave水平剪切波Horizontal shear wave竖直剪切波Vertical shear wave体波body wave无旋波Irrotational wave畸变波Distortion wave膨胀波Dilatation wave瑞利波Rayleigh wave等容波Equivoluminal wave勒夫波Love wave界面波Interfacial wave边缘效应edge effect塑性力学Plasticity可成形性Formability金属成形Metal forming。
离散随机奇异系统的零和博弈及H∞控制周海英【摘要】针对噪声依赖于状态的It(o)型离散随机奇异系统,讨论其在有限时域下的零和博弈及基于博弈方法的H..控制问题.在最优控制(单人博弈)的基础上,利用配方法,得到了离散随机奇异系统鞍点均衡策略的存在等价于相应的耦合Riccati代数方程存在解,并给出了最优解的形式.进一步地,根据博弈方法应用于鲁棒控制问题的思路,得到离散随机奇异系统H∞控制问题的最优策略,最后根据动态投入产出问题的特性,建立相应的博弈模型,得到动态投入产出问题的均衡策略.【期刊名称】《南昌大学学报(理科版)》【年(卷),期】2017(041)006【总页数】5页(P519-523)【关键词】离散随机奇异系统;零和博弈;耦合Riccati代数方程;鞍点均衡策略【作者】周海英【作者单位】广州航海学院港口与航运管理系,广东广州 510725【正文语种】中文【中图分类】F224.32奇异系统由于其广泛的应用背景,自产生以来,得到了广泛研究 [1-4]。
随着研究的深入,随机奇异系统由于能更好的模拟现实实际,近年来,引起了众多研究者的兴趣。
在随机奇异系统的稳定性、最优控制及鲁棒控制方面都有不少成果。
Yan Z等研究了伊腾型随机广义系统的稳定性问题[5]。
Zhang W等研究了广义随机线性系统的稳定性问题[6];Jin H等研究了随机奇异系统的虑波问题[7]。
文献[8]把神经网络法应用于随机奇异系统不定线性二次控制问题中,得到了相应的Riccati微分方程;高明等研究了离散随机Markov跳跃系统的广义Lyapunov方程解的性质[9];张庆灵等在研究随机奇异系统的稳定性的基础上,得到了连续随机奇异系统线性二次最优控制的Riccati方程[10]。
Xing等研究了不确定广义随机线性系统的H∞鲁棒控制问题[11]。
Zhang和Zhao Y等研究了广义随机线性系统的H∞鲁棒控制问题[12-13] ;Shu Y等研究不确定连续时间奇异系统的稳定性和最优控制问题 [14]。
基于随机程序优化的最优化搜索算法研究随机程序优化算法(Stochastic Optimization Algorithm,SOA)是指在概率论的基础上,通过一定的随机性生成搜索点,并利用产生的搜索点来解决最优化问题的一类求解算法。
基于此,结合最优化搜索的研究,本文将探究基于随机程序优化的最优化搜索算法。
一、概述最优化搜索算法是一种经典的求解最优化问题的方法。
而SOA则是建立在优化算法上的一种新型概率型寻优方法。
相比其他优化方法,其具有寻优速度快,局部最优解碳化概率低的优点,适用于许多传统方法无法解决的问题。
因此,基于SOA的最优化搜索算法被广泛应用于复杂多变的工程实践中。
二、基本原理SOA中随机性体现在搜索点的生成中,即搜索点的位置不是由优化算法决定的,而是通过随机过程生成的。
这样,搜索过程有其随机性,从而避免了落入局部最优解的风险。
SOA的基本思想是利用随机过程生成一批搜索点,然后根据一定的仿真和评价方法对这些点进行探测、筛选和改进,最终得到全局最优解。
通常,SOA算法依赖于种群,其搜索过程以种群作为单位进行进化。
每个个体都由一组参数表示,在每一次进化中,种群中的每一个个体根据一定的概率互相交叉、变异或选择,从而模拟自然界中生物进化过程。
在SOA中,通常使用适应度函数作为评价函数,以在搜索过程中对个体进行筛选和改进。
适应度函数评价每个搜索点的好坏程度。
通过这样的经过筛选后,留下更适合解决问题的点,并从中产生新的搜索点。
这样不断重复迭代,最终找到全局最优解。
三、常用算法在随机程序优化的最优化搜索算法中,遗传算法(GA)和模拟退火算法(SA)是两种应用广泛的方法。
1、遗传算法(GA)遗传算法是模拟生物进化规律,通过模拟交叉、变异等生物遗传学的基本操作,人工地将优秀个体的基因遗传到下一代中,并改变其中部分基因的目标函数值。
从而实现种群的进化性质,最终选取进化完成的个体,得到全局最优解。
2、模拟退火算法(SA)模拟退火算法是一种类似于物理退火过程的优化算法。