大学-高等数学(Ⅱ)试卷题(A)+参考答案
- 格式:docx
- 大小:158.13 KB
- 文档页数:8
华南农业大学期末考试试卷(A 卷)2010--2011学年第2学期 考试科目: 高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、单项选择题(本大题共5小题,每小题3分,共15分)1.与三坐标轴夹角均相等的单位向量为 ( )A.(1,1,1) B.111(,,)333 C. D.111(,,)333--- 2.设lnxz y=,则11x y dz ===( )A.dy dx - B.dx dy - C.dx dy + D.03.下列级数中收敛的是 ( )A.1n ∞= B.1n ∞= C.113n n ∞=∑ D.113n n ∞=∑4.当||1x <时,级数11(1)n n n x ∞-=-∑是 ( )A.绝对收敛 B.条件收敛 C.发散 D.敛散性不确定 5.设函数()p x ,()q x ,()f x 都连续,()f x 不恒为零,1y ,2y ,3y 都是()()()y p x y q x y f x '''++=的解,则它必定有解是 ( )A.123y y y ++ B.123y y y +- C.123y y y -- D.123y y y ---二、填空题(本大题共5小题,每小题3分,共15分) 1.微分方程''6'90y y y -+=的通解为__________.2.设有向量(4,3,1)a →=,(1,2,2)b →=-,则2a b →→-=_________. 3.过点(1,1,0)-且与平面32130x y z +--=垂直的直线方程是______. 4.设2cos()z xy =,则zy∂∂=_______. 5.设L 为曲线2y x =上从点(0,0)到点(1,1)的一线段,则32(2)Lx y dx +⎰___.三、计算题(本大题共7小题,每小题6分,共42分) 1.求微分方程2(12)(1)0x y dx x dy +++=的通解.2.设22()xyz x y =+,求z x ∂∂及2z x y∂∂∂.3.判断级数23112123!10101010nn ⋅⋅⋅+++++的敛散性.4.设一矩形的周长为2,现让它绕其一边旋转,求所得圆柱体体积为最大时矩形的面积及圆柱体的体积.5.将函数2()x f x xe -=展开成x 的幂级数,并确定其收敛域.6.设(,)z z x y =是由方程2z x y z e +-=确定的隐函数,求全微分dz .7.计算二重积分cos Dydxdy y⎰⎰,其中D是由y =y x =围成的区域.四、解答题(本大题共4小题,每小题7分,共28分) 1.计算曲线积分22(2)()Lxy x dx x y dy -++⎰,其中L 是由曲线2y x =和2y x =所围成的区域的正向边界曲线.2.计算二重积分Dσ⎰⎰,其中区域D 由221x y +≤,0x ≥及0y ≥所确定.3.设()u f xyz =,(0)0f =,(1)1f '=,且3222()ux y z f xyz x y z ∂'''=∂∂∂,试求u 的表达式.4.计算曲面积分=++,I xdydz ydzdx zdxdy)∑其中∑为上半球面z=参考答案一、选择题(本大题共5小题,每小题3分,共15分) 1.C 2.B 3.C 4.A 5.B 二、填空题(本大题共5小题,每小题3分,共15分) 1.312()x y C C x e =+ 2.(7,8,0) 3.11321x y z+-==- 4.22sin()xy xy - 5.710三、计算题(本大题共7小题,每小题6分,共42分) 1.求微分方程2(12)(1)0x y dx x dy +++=的通解. 解:21112x dx dy x y=-++⎰⎰..........(1分) 221111(1)(12)21212d x d y x y+=-+++⎰⎰.........(5分)2ln(1)ln |12|ln x y C +=-++,即2(1)(12)x y C ++=......(6分) 2.设22()xyz x y =+,求z x ∂∂及2z x y∂∂∂.解:设v z u =,22u x y =+,v xy =..........(1分)22222222()(ln())xyz z u z v x y x y y x y x u x v x x y∂∂∂∂∂=+=+++∂∂∂∂∂+..........(3分) 243342222222222(2)()[(21ln())ln()]()xy z x x y y x y xy xy x y x y x y x y ∂++=++++++∂∂+.(6分) 3.判断级数23112123!10101010nn ⋅⋅⋅+++++的敛散性.解:11(1)!10lim lim !10n n n n n nu n u n ρ++→∞→∞+==..........(3分) 1lim10n n →∞+==∞...........(5分)所以级数发散........(6分)4.设一矩形的周长为2,现让它绕其一边旋转,求所得圆柱体体积为最大时矩形的面积及圆柱体的体积.解:设矩形两边长分别为,x y .则1x y +=,假设绕长度为y 的一边旋转,则圆柱体体积为2V x y π=............(2分)作拉氏函数2(,,)(1)F x y x y x y λπλ=++-........(3分) 解方程组22001xy x x y πλπλ+=⎧⎪+=⎨⎪+=⎩................(4分) 得可能的极值点21(,)33..............(5分)由题意知道其一定是所求的最值点,所以最大体积为427π,对应面积为29..........(6分) 5.将函数2()x f x xe -=展开成x 的幂级数,并确定其收敛域.解:因为212!!n xx x e x n =+++++ .......(1分)所以2221(1)222!2!xnnn x x x en -=-+++-+⋅⋅ ..........(3分)23112211()(1)(1)222!2!2(1)!x n nnn n n n x x x x f x xex n n +∞---===-+++-+=-⋅⋅⋅-∑(5分)收敛域为(,)-∞+∞..................(6分)6.设(,)z z x y =是由方程2z x y z e +-=确定的隐函数,求全微分dz . 解:2(,,)z F x y z x y z e =+--........(1分) 1,2,1z x y z F F y F e ===--...........(3分) 所以12,11y x z zz z F F z z yx F e y F e∂∂=-==-=∂+∂+.........(5分) 故1(2)1z z z dz dx dy dx ydy x y e∂∂=+=+∂∂+..........(6分) 7.计算二重积分cos Dydxdy y ⎰⎰,其中D 是由y =y x =围成的区域.解:积分区域为:2{(,)|01,}D x y y y x y =≤≤≤≤........(1分)210cos cos y y Dyy dxdy dy dx y y =⎰⎰⎰⎰..........(3分) 1(1)cos y ydy =-⎰............(5分) 1cos1=-.........(6分)四、解答题(本大题共4小题,每小题7分,共28分) 1.计算曲线积分22(2)()Lxy x dx x y dy -++⎰,其中L 是由曲线2y x =和2y x =所围成的区域的正向边界曲线. 解:22(2)()(12)LDxy x dx x y dy x d σ-++=-⎰⎰⎰......(2分)212)xdx x dy =-⎰........(4分) 1312322(22)x x x x dx =--+⎰........(6分)130=......(7分) 2.计算二重积分Dσ⎰⎰,其中区域D 由221x y +≤,0x ≥及0y ≥所确定.解:'DD σθ=..........(2分)12d πθ=⎰⎰............(4分) 224d ππθ-=⎰......(6分)=(2)8ππ-=.........(7分)3.设()u f xyz =,(0)0f =,'(1)1f =,且3222()ux y z f xyz x y z ∂'''=∂∂∂,试求u 的表达式.解:22(),()()u u yzf xyz zf xyz xyz f xyz x x y∂∂''''==+∂∂∂1.5CM3222()3()()uf xyz xyzf xyz x y z f xyz x y z∂''''''=++∂∂∂........(2分) 因为3222()u x y z f xyz x y z∂'''=∂∂∂,所以()3()0f xyz xyzf xyz '''+=令xyz t =,得3()()0tf t f t '''+=......(4分)解之得113311(),(1)1,1,()由得所以f t C t f C f t t --'''====.....(5分)解得22332233(),(0)0,0,()22由得所以f t t C f C f t t =+===.....(6分)即233()()2u f xyz xyz ==.......(7分)4.计算曲面积分)I xdydz ydzdx zdxdy ∑=++,其中∑为上半球面z = 解:因为在曲面∑上a ,所以()I a xdydz ydzdx zdxdy ∑=++⎰⎰..........(1分)补曲面2221{(,,)|0,}x y z z x y a ∑==+≤,1∑取下侧..........(2分) 由高斯公式得1()I a xdydz ydzdx zdxdy ∑+∑=++⎰⎰=342(111)323a dv a a a ππΩ++=⨯=⎰⎰⎰..(4分)而1)xdydz ydzdx zdxdy ∑++100Dzdxd y dxdy ∑===.......(6分)故)I xdydz ydzdx zdxdy ∑=++=114()()2a xdydz ydzdx zdxdy a π∑+∑∑-++=⎰⎰⎰⎰.......(7分)。
《⾼等数学》A试卷A答案⼀、填空题(每⼩题4分,共20分): 1.设ln(y x =,则1d 2x y dx ==. 2.曲线sin ,1cos x t t y t =-??=-? 在 2t π= 处的切线斜率为1.3.若1lim ()x f x →存在,且111()2lim ()x x f x xf x -→=+,则1()2x f x x e -=-.4.若01()f x '=,则000(2)()lim arctan u f x u f x u u→+--=3.5.若2lim 8xx x a x a →∞+??= ?-??,则a =ln 2.⼆、选择题(每⼩题4分,共20分):1.设()232x x f x =+-,则当0x →时( D ). (A )()f x 与x 是等价⽆穷⼩量(B )()f x 是⽐x 较低阶的⽆穷⼩量(C )()f x 是⽐x 较⾼阶的⽆穷⼩量(D )()f x 与x 是同阶但⾮等价⽆穷⼩量2.若函数()f x 在0x 点存在左、右导数,则()f x 在点0x ( A ).(A )连续(B )可导(C )不可导(D )不连续3.当1x →时,12111x x e x ---的极限( C ). (A )等于2 (B )等于0 (C )不存在但不为∞ (D )为∞4.设函数21()1lim nn xf x x →∞+=+,讨论()f x 的间断点,其结论为( A ).(A )存在间断点1x = (B )存在间断点1x =-(C )存在间断点0x = (D )不存在间断点5.设对任意的x ,总有()()()x f x x ?ψ≤≤,且[]lim ()()0x x x ψ?→∞-=,则lim ()x f x →∞( C ).(A )存在且等于0 (B )存在但不⼀定等于0(C )不⼀定存在(D )⼀定不存在三、计算题(本题共4题,共计24分): 1.(5分)设tan y x y =+,求d y ;解:(tan )()d y d x y =+ 22s c 1e 1sec d ydy dx y d d xyy ==-+2.(6分)求极限:)lim x xx →-∞;解:)lim x xx →-∞limlim 05x x ==-=3.(6分)求极限:lim x +→;解:01lim lim 1()2x x x x ++→→=?22lim lim 212x x x x ++→→===4.(7分)设2(cos )y f x =,且f ⼆阶可导,求22d d yx.解:22(cos )2cos (sin )sin 2(cos )dyf x x x xf x dx''=?-=- (2cos 2)2sin )((cos 2sin )(cos 2cos 2'2''2'2 2xf x x xf x xf dx yd -=---=四、解答题(本题共3⼩题,共计24分): 1.(6分)设1x =1n x +=列{}n x 的极限存在,并求其极限.证明:单调性:当1n =时,1x =,21x x =>,假设当n k =时有1k k x x +>,则当1n k =+时仍然有,21k k x x ++=即,数列}{n x 是单调增加数列。
高等数学A (二)带答案一、单项选择题(每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10答案 B B A A D B C C BA 得分1、设三个向量,,a b c 满足关系式0a b c ++= ,则a b ⨯= ( )。
(A) c b ⨯ (B) b c ⨯ (C) a c ⨯ (D) b a ⨯2、函数()22,y x y x f +=在点)2,1(处沿向量→l =( )的方向导数最大。
(A) )2,1( (B) )4,2( (C) )4,4( (D) )2,2(3、函数()y x f ,在点()00,y x 处偏导数都存在且连续是()y x f ,在该点处可微的( )条件。
(A) 充分 (B) 必要 (C) 充分必要 (D) 既不充分也不必要4、空间曲线3,1,1t z tt y t t x =+=+=在对应于1=t 的点处的切线方程是( )。
(A) 12142121-=--=-z y x (B) 121411-=--=z y x (C) 02184=-+-z y x (D) 0284=++-z y x 5、取}01),({22>≤+=x y x y x D ,,则下面二重积分中其值为0的是 ( )。
(A) ()σd y x D ⎰⎰+22 (B) ()σd xy x D⎰⎰+23(C) ()σd y x D ⎰⎰+33 (D) σd y x D ⎰⎰sin cos6、()=+⎰ds y x L22( ),其中L 为圆周222=+y x 。
(A) π2- (B) π24 (C) 238π (D) 17、设曲面∑为上半球面2222x y z R ++=0)z ≥(,曲面1∑是曲面∑第一卦限的部分,则下面等式成立的是( )。
(A) 14xdS xdS ∑∑=⎰⎰⎰⎰(B)14ydS xdS ∑∑=⎰⎰⎰⎰ (C) 14zdS xdS ∑∑=⎰⎰⎰⎰(D) 14xyzdS xyzdS ∑∑=⎰⎰⎰⎰ 8、下列级数中,绝对收敛的是( )。
高等数学A (二)考试试卷一、 填空题(每小题5分,共25分)1. 设2u 1sin ,2xu e x y x y π-=∂∂∂则在(,)处的值为_________。
2. 改变二次积分10(,)x I dx f x y dy =⎰⎰的积分次序,则I=_______________。
3. 设平面曲线Γ为下半圆周y =22()x y ds Γ+⎰=___________。
4. 若级数1n n u∞=∑的前n 项部分和是:1122(21)n S n =-+,则n u =______________。
5. 设)2,5,3(-=a ,(2,1,4)b =,(1,1,1)c =,若c b a ⊥+μλ,则λ和μ满足 。
二、 计算题(每小题10分,共70分)1. 求由方程xyz =(,)z z x y =在点(1,0,1)-处的全微分。
(10分)2. 设21()x t f x e dx -=⎰,求10()f x dx ⎰。
(10分) 3. 计算xzdxdydz Ω⎰⎰⎰,其中Ω是由平面0,,1z z y y ===以及抛物柱面2y x =所围成的闭区域。
(10分)4. 计算dy xy ydx x L22+⎰,其中积分路径L 是xoy 平面上由点(2,0)A -顺次通过点(0,2)B 、(2,2)C 到点(2,4)D 的折线段。
(10分) 5. 把函数xx f 431)(+=展为1-x 的幂级数,并确定其收敛域。
6. 求点)3,2,1(-关于平面014=-++z y x 的对称点。
(10分)7. 要建造一个表面积为108平方米的长方形敞口水池,尺寸如何才能容积最大.。
(10分)三、证明题(5分)若0lim =∞→n n na ,且∑∞=+-+11])1[(n n n na a n 收敛于常数A ,试证明级数∑∞=1n n a 收敛。
答案课程名称:高等数学A(二) 试卷编号:5一、填空题。
(每小题5分,共25分)1.22e π,2.101(,)y dy f x y dx ⎰⎰,3.π,4.1(21)(21)n n -+, 5. 076=+μλ二、 计算题。
华南农业大学期末考试试卷(A 卷)2011~2012学年第2 学期 考试科目:高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.设有向量(1,2,2)a =-,(2,1,2)b =-,则数量积()()a b a b -⋅+ 。
2.曲面22z x xy y =++在点(1,1,3)M 处的切平面方程是 。
3.设u =(1,1,1)u =grad 。
4.幂级数0()3n n x∞=∑的收敛半径R = 。
35.微分方程430y y y '''-+=的通解是 。
(今年不作要求)二、单项选择题(本大题共5小题,每小题3分,共15分)1.已知(1,1,1)A ,(2,2,1)B ,(2,1,2)C ,则AB 与AC 的夹角θ是(B )A .4π B .3π C .6π D .2π2.函数2z xy =在点(1,2)处的全微分是 ( D )A .8B .4dx dy +C .22y dx xydy +D .4()dx dy + 3.设L 为圆周222x y a +=,取逆时针方向,则2222()Lx ydx x xy dy ++=⎰( B )A .2a πB .42a π C .2πD .04.下列级数中收敛的是 ( C )A.1n ∞= B.1n ∞= C .114n n ∞=∑ D .114n n∞=∑5.微分方程12x y e-'=的通解是 ( C )A .12x y eC -=+ B .12x y e C =+ C .122x y e C -=-+ D .12x y Ce-=三、计算题(本大题共7小题,每小题7分,共49分) 1.设2,,xs f x xyz y⎛⎫= ⎪⎝⎭,且f 具有一阶连续偏导数,求s x ∂∂,s y ∂∂,s z∂∂. 2. 设由方程22240x y z z +++=确定隐函数(,)z z x y =,求全微分dz 。
安徽大学2008—2009学年第二学期院/系 专业 姓名 学号答 题 勿 超 装 订 线------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------《高等数学C (二)》考试试卷(A 卷)(闭卷 时间120分钟)题 号 一 二 三 四 五 总 分得 分阅卷人得分一、填空题(每小题2分,共10分)1.已知两个4维向量与21(1,,1,0)t α=2(2,1,3,2)t α=−正交,则= t . 2.幂级数221212n nn n x ∞−=−∑的收敛半径为 . 3.设,100220345A ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠A ∗是A 的伴随矩阵,则1()A ∗−= .4.设平面区域:0,D 01x y y ≤≤≤≤(,),f x y 在上连续,则利用极坐标变换可将二重积分D (,)Df x y d σ∫∫ 化为 .5.二次型22212312224243x x x x x x ++++x 的秩为 .得分 二、单项选择题(每小题2分,共10分)6. 二元函数222222,0(,)0,0xyx y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在点处( ).(0,0)A. 连续,偏导数也存在 B. 连续,偏导数不存在C. 不连续,偏导数存在D. 不连续,偏导数也不存在7.若,A B 均为同阶可逆矩阵,则必有( ) . A. A 可经行初等变换变到B B. A B =C. 存在可逆矩阵,使得P 1P AP B −=D. A B +为可逆矩阵8.若阶矩阵n A 的一个特征值为2,则23A A E ++必有一个特征值为( ) .A. 0B. 1C. 11D. 不能确定9.若级数收敛,则( ) .1(n n n a b ∞=+∑)A. 、中至少有一个收敛 B. 1n n a ∞=∑1n n b ∞=∑1n n a ∞=∑、1n n b ∞=∑均收敛C. 1n n n a b ∞=+∑收敛 D. 1n n a ∞=∑、1n n b ∞=∑敛散性相同10. 差分方程的通解为 ( ) (其中为任意常数) .2132t t t y y y ++−+=02222C 1,C C A. B. C. 1C t C +12t C C +1(2)t C −+ D.12(1)t C C −+三、计算题得分(第11小题至第14小题每题8分,第15小题至第17小题每题10分,共62分)11. 已知sin y z x =,求(1) zx ∂∂、z y ∂∂; (2) ; (3) d z 2z x y ∂∂∂.12. 求二重积分cos Dxdxdy x∫∫,其中为直线D y x =与抛物线2y x =所围成的区域.院/系 专业 姓名 学号答 题 勿 超 装 订 线------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------13. 求微分方程32x y y y e −′′′−+=的通解.14. 将1()f x x=展开成的幂级数,并求该幂级数的收敛半径、收敛域. (3x −)⎟⎟15. 已知,. 若201030202A ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠100010000B ⎛⎞⎜=−⎜⎜⎟⎝⎠X 满足22AX B BA X +=+,求X .16.求矩阵的特征值和特征向量;判断它是否可以对角化,并说明理由.110430102A −⎛⎞⎜⎟=−⎜⎜⎟⎝⎠⎟0,院/系 专业 姓名 学号答 题 勿 超 装 订 线------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------17.对于非齐次线性方程组1231231231,220.x x x x x x x x ax ++=⎧⎪++=⎨⎪−+=⎩(1) a 为何值时,方程组无解;(2) a 为何值时,方程组有解,并求其解.得分 四、应用题(本题10分)18.在平面上求一点,使它到三条直线0x =、0y =、2160x y +−=距离的平方和最小.五、证明题(本题8分) 得分19.设A 为矩阵,其秩为,m n ×AX b =r β是非齐次线性方程组的一个解,0AX =12,,,n r ααα−"是对应的齐次线性方程组的一个基础解系.证明:向量组12,,,,n r ααα−"β 线性无关.安徽大学2008-2009学年第二学期《高等数学 C(二)》考试试卷(A 卷)参考答案及评分细则一、填空题(每小题2分,共10分)1.1或; 3. 110A ; 4.csc 204(cos ,sin )d f r r r πθπθθ∫∫dr θ; 5. .2二、单项选择题(每小题2分,共10分)6. C;7. A;8. C;9. D; 10. B.三、计算题(第11小题至第14小题每题8分, 第15小题至第17小题每题10分,共62分)11. 已知sin yz x =,求(1) z x ∂∂、z y ∂∂; (2) ; (3) d z 2z x y ∂∂∂.解:2cos z y y x x x ∂=−∂,1cos z y y x x∂=∂ 21cos cos y y ydz dx dy x x x x=−+22(cos )z y y x y y x ∂∂=−∂∂∂x 231cos sin y y y x x x x =−+ 12. 求二重积分cos Dxdxdy x∫∫,其中为直线D y x =与抛物线2y x =所围成的区域. 解:cos Dxdxdy x ∫∫210cos x x x dx dy x=∫∫120cos ()xx x dx x=−∫1(cos cos )x x x d =−∫x=1cos1−13. 求微分方程32x y y y e −′′′−+=的通解.解:方程对应的齐次微分方程为:32y y y 0′′′−+= 0 其特征方程为,解得232λλ−+=121, 2λλ==.故齐次方程的通解为:212x x C e C e +. 设非齐次方程的一个特解为x y Ae ∗−=代入原方程得到32x x x x Ae Ae Ae e −−−++=−,故16A =这样原方程的通解为:21216x x x C e C e e −++.14. 将1()f x x =展开成的幂级数,并求该幂级数的收敛半径、收敛域.解:(3x −)1111()33331()3f x x x x ===⋅−+−+ 而01(1)1n n n x x ∞==−+∑,,(1,1)x ∈− 故11331()3x ⋅−+013(1)()33n n n x ∞=−=−∑=1(3)(1)3n n n n x ∞+=−−∑ 且313x −<,于是33x −<,收敛半径为3r =, 收敛区域为.(0,6)15.已知,.若201030202A ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠100010000B ⎛⎞⎜⎟⎟=−⎜⎜⎟⎝⎠X 满足22AX B BA X +=+,求X . 解:由 22AX B BA X +=+得到:(2)(2)A E X B A E −=−,从而1(2)(2)X A E B A E −=−−又,001(2)010200A E ⎛⎞⎜⎟−=⎜⎟⎜⎟⎝⎠11002(2)010100A E −⎛⎞⎜⎟⎜⎟−=⎜⎟⎜⎟⎜⎟⎝⎠这样,1200100001010010010100000200X ⎛⎞⎜⎟⎛⎞⎛⎞⎟⎟⎟⎠000010001⎛⎞⎜⎟=−⎜⎟⎜⎟⎝⎠⎜⎟⎜⎟⎜=−⎜⎟⎜⎟⎜⎜⎟⎜⎜⎟⎝⎠⎝⎜⎟⎝⎠⎟⎟16.求矩阵的特征值和特征向量;判断它是否可以对角化,并说明理由.110430102A −⎛⎞⎜=−⎜⎜⎟⎝⎠解:1104301022(1)(2λλE A λλλλ+−−=−−−)=−− 令0E A λ−=解得特征值为12λ=,231λλ== 对于12λ=,解方程组,得基础解系为:123(2)0x E A x x ⎛⎞⎜⎟−⎜⎟⎜⎟⎝⎠=1(0,0,1)T η=故属于12λ=的全部特征向量为1(0,0,1)T k 1(0k )≠ 对于231λλ==,解方程组,得基础解系为:123()x E A x x ⎛⎞⎜⎟−⎜⎟⎜⎟⎝⎠0=2(1,2,1)T η=−故属于231λλ==的全部特征向量为2(1,2,1)T k −2(0k )≠ 因A 只有两个线性无关的特征向量,故A 不能对角化.17.对于非齐次线性方程组1231231231,220.x x x x x x x x ax 0,++=⎧⎪++=⎨⎪−+=⎩(1) 为何值时,方程组无解;a (2) 为何值时,方程组有解,并求其解. a 解:方程组对应系数的增广矩阵为:11 1 112 2 011 0A a ⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠111 1011 102 1 1 a ⎛⎞⎜⎟→−⎜⎟⎜⎟−−−⎝⎠11 1 1011 100 13 a ⎛⎞⎜⎟→−⎜⎟⎜⎟+−⎝⎠(1) 当时方程组无解;10a +=(2) 当即时,方程组有唯一解,其解为:10a +≠1a ≠− 123 23 113 1x x a x a ⎧⎪=⎪⎪=−⎨+⎪⎪=−⎪+⎩. 四、应用题(本题10分)18.在平面上求一点,使它到直线0x =,0y =及2160x y +−=的距离的平方和最小.解:设所求的点为(,)x y ,则它到0x =,0y =及2160x y +−=的距离分别为x ,y,于是由题意,距离的平方和为:221(216)5s x y x y =+++−2令22(216)0542(216)05s x x y x s y x y y∂⎧=++−=⎪∂⎪⎨∂⎪=++−=∂⎪⎩,解得唯一驻点816(,)55根据实际意义所求的点一点存在,即为816(,55.五、证明题(本题8分)设β是非齐次线性方程组AX b =的一个解,12,,,n r ααα−"是对应的齐次方程组的一个基础解系,证明:12,,,,n r ααα−"β线性无关.证明:设11220n r n r k k k k ααα−−++++="βr ,因为0,(1,2,,)i A i n α=="−,于是A 左乘上式两端得到0kA β=,而0A b β=≠,故0k =于是11220n r n rk k k ααα−−+++=",而12,,,n r ααα−"是0AX =的一个基础解系,从而线性无关,故,这样120n r k k k k −====="12,,,,n r ααα−"β线性无关.。
成都理工大学2010—2011学年第二学期《高等数学》(Ⅰ,Ⅱ)考试试卷(A )一.填空题(每小题3分,共21分)1.函数221)ln(yx x x y z --+-=的定义域为 。
2.设y x z =)1,0(≠>x x ,则=∂∂+∂∂yzx x z y x ln 1 。
3.函数z xy u 2=在点(1,-1,2)处沿 方向的方向导数最大。
4.区域D :)0(222>≤+R R y x ,则积分⎰⎰+-Ddxdy y x R )(22的值为 。
5. 设L 为球面2222a z y x =++与平面y x =相交的圆周,则曲线积分⎰+=Ldl z y I 222= 。
6.函数)1ln(22y x z ++=在点(1,2)处的全微分dz = 。
7.级数∑∞=1!2n n n nn 的敛散性为 。
二、选择题(每小题3分,共15分) 1.直线110112-+=+=-z y x 与平面2=++z y x 的位置关系是( ) A .直线与平面平行 B. 直线在平面上 C .直线与平面垂直 D. 直线与平面斜交得 分 得 分2.22limy xy x yx y x +-+→∞→∞=( )A .1 B. 0 C. 1- D.不存在3.已知⎰⎰⎰Ω+=dv z y x f I ),(22,其中Ω由1=z 和22y x z +=围成,则=I ( )A .⎰⎰⎰πθ201012),(dz z r f dr d B.⎰⎰⎰πθ2010122),(rdz z r f rdr dC.⎰⎰⎰πθ201012),(dz z r f rdr d D.⎰⎰⎰πθ20122),(r dz z r f rdr d4.微分方程x xe y y 22='-''的特解形式是( ) A .x e B Ax 2)(+ B. x Axe 2 C .x e B Ax x 2)(+ D. x e Ax 225.函数⎩⎨⎧≤<-≤≤-=846402)(x x x xx f 展开为周期是8的傅立叶级数为∑∞+∞<<-∞++022)(4)12(cos )12(16x xk k ππ,则=)100(s ( )A .98- B. 94 C. 2 D. 2- 三、计算(每小题7分,共21分) 1.已知直线1L :130211--=-=-z y x ,2L :11122zy x =-=+,求通过1L 且与2L 平行的平面方程。
成人高考成考高等数学(二)(专升本)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=2x−3x),则函数的零点个数是:A. 1B. 2C. 3D. 02、设函数(f(x)=e x sinx),则该函数的导数(f′(x))为:A.(e x(sinx+cosx))B.(e x(sinx−cosx))C.(e x cosx)D.(e x sinx)3、设函数f(x)=x3-6x2+9x,若函数在x=1处取得极值,则该极值是:A. 4B. 0C. -4D. 84、下列函数中,定义域为实数集的有()A、f(x) = √(x^2 - 1)B、g(x) = 1/xC、h(x) = |x| + 1D、k(x) = √(-x)5、设函数(f(x)=x3−3x+2),则(f(x))的极值点为:A.(x=−1)和(x=1)B.(x=−1)和(x=2)C.(x=0)和(x=1)D.(x=0)和(x=2)6、设函数(f(x)=3x2−4x+1),则该函数的图像开口方向是:A. 向上B. 向下C. 水平D. 垂直),其定义域为((−∞,0)∪(0,+∞)),则函数(f(x))在(x=0)处7、设函数(f(x)=1x的极限值为:A. -∞B. +∞C. 0D. 不存在8、若函数(f(x)=x3−3x2+4x+1)在点(x=1)处可导,且其导数的反函数为(g(x)),则(g′(1))等于:B. -1C. 0D. 29、若函数(f(x)=11+x2)的定义域为(D f),则(D f)为:A.((−∞,+∞))B.((−∞,−1)∪(−1,+∞))C.((−∞,−1]∪[−1,+∞))D.((−1,1]∪[1,+∞))10、设函数f(x)=1xlnx,则f(x)的导数f′(x)为:A.−1x2lnx+1x2B.1x2lnx−1x2C.1x lnx−1x2D.−1x lnx+1x211、设函数(f(x)=11+x2),则(f′(0))的值为:A.(−1)B.(0)C.(12)D.(11+02)12、设函数f(x)=x 3−3xx2−1,则f′(1)的值为:A. 1C. 0D. 无定义二、填空题(本大题有3小题,每小题7分,共21分)1、设函数f(x) = x² - 3x + 2,若f(x)在x=1处的导数为0,则f(x)的极值点为______ 。
《高等数学》考试试卷A-2参考答案及评分标准一、单项选择题(每小题3分, 共15分)1.B 2.C 3.C 4.D 5.B二、填空题(每小题3分,共15分)1.12dx dy + 2.533.2(,)x f a b ' 4.230+-=y z 5.18π三、计算题(每题7分;共56分)1.解: 设平面方程为 0+++=Ax By Cz D根据题意有000+++=⎧⎪-+=⎨⎪++=⎩A B C D B C D A B C (4分)所以有0=D ;::2:1:1=-A B C所求平面方程为 20--=x y z (3分)2.解:21212()2()4,z z u z v u v x y x y x x u x v x∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅=++-= (3分) ()21212()2()4.z z u z v u v x y x y y y u y v y∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅-=+--= (4分)3解:D 是由22y x =及21y x =+所围成的闭区域也就是{}22(,)11,21=-≤≤≤≤+D x y x x y x (3分)(){}22221111120212240(2)(2)223221415++-+=+==+-=⎰⎰⎰⎰⎰⎰⎰x x x x D x y dxdyD dx x y dy dx ydyx x dx (4分)4.解:计算三重积分:zdxdydz Ω⎰⎰⎰,其中Ω是由旋转抛物面221()2z x y =+及平面1z =所围成的闭区域. 解: {}(,,)(,),01z x y z x y D z Ω=∈≤≤,其中z D :222x y z +≤ (+2分)故10z D zdxdydz zdz dxdy Ω=⎰⎰⎰⎰⎰⎰12022 3z dz ππ==⎰ (+5分) 5.解: 设2222(,),(,)y x P x y Q x y x y x y ==-++,因为()()22:111L x y -+-=, 所以220x y +≠,而且有()22222Q x y P x y x y ∂-∂==∂∂+, .(3分) 故由格林公式得22 L ydx xdy I x y -=+⎰0xy D Q P dxdy x y ⎛⎫∂∂=-= ⎪∂∂⎝⎭⎰⎰ .(4分) 6.解:计算⎰⎰∑++dxdy z dzdx y dydz x 222,∑是抛物面22y x z +=被平面1=z 所截下的有限部分的下侧。
大学-高等数学(Ⅱ)试卷题(A )一、选择题:(每小题2分,共10分)1. 函数 ),(y x f z =在点),(00y x 处偏导数 ),(00y x f x ,),(00y x f y 存在是函数z在点),(00y x 存在全微分的( );A.充分条件;B.必要条件;C.充分必要条件;D.既非充分又非必要条件.2.下列级数发散的是( );A .;(1)n nn n ∞=+- B.2(1)ln(1);1n n n n ∞=-++∑ C .222sin();n a π∞=+∑ D.1.1nn n ∞=+ 3.级数1sin (0) n nxx n ∞=≠∑!,则该级数( );A.是发散级数;B.是绝对收敛级数;C.是条件收敛级数;D. 仅在)1,0)(0,1(-内级数收敛,其他x 值时数发散。
4. 双曲抛物面22x y z p p-=.(p >0,q >0)与xOy 平面的交线是( );A.双曲线B.抛物线C.平行直线D.相交于原点的两条直线. 5.322(,)42,f x y x x xy y =-+-函数下列命题正确的是。
A.点(2,2)是f(x,y)的极小值点B. 点(0,0)是f(x,y)的极大值点C. 点(2,2)不是f(x,y)的驻 点D.f(0,0)不是 f(x,y)的极值.二、填空题:(每小题3分,共30分 )1.222ln()1z x y x y =-++-的定义域为 ;2.曲面2221ax by cz ++=在点()000,,x y z 的法线方程是 ;3.设(,)ln()2yf x y x x=+,则 '(1,0)y f = ;4.已知D 是由直线x +y =1,x -y =1及x = 0所围,则Dyd σ⎰⎰= ;5. 3(,)ydy f x y dx ⎰⎰交换积分次序得 ;7.1(2),n n n u u ∞→∞=+=∑n 若级数收敛则lim ;8.微分方程y / + P(x)y = Q(x)的积分因子为_____________(写出一个即可); 9.设y z x dz ==,则;10.设P(x,y)、Q(x,y)在曲线L 围成的单联通区域内具有一阶连续偏导数。
则曲线积分与路径无关的充要条件是 _______________。
三、计算题 (共33分 )1. (8分)sin ,,2,,.u z zz e v u xy v x y x y∂∂===-∂∂而求__________________1 (0x )() (-x 0)23(),();2f x x s x s ππππ≤≤⎧⎪=⎨-≤<⎪⎩=,6.设函数的傅立叶级数的,和函数为则2. (7分)22()22,: 1.xy De dxdy D x y -++≤⎰⎰计算其中3. (10)求幂级数11n n nx ∞-=∑的收敛域及和函数。
4. (8分)将xx f 1)(=展开成(x -2)的幂级数。
四.应用题(共17分 )1. (7分)设一个质点在 M(x,y)处受到力F 的作用,F 的大小与M 到原点O的距离成正比,F 的方向恒指向原点。
此质点由点A(a , 0)沿椭圆12222=+b y a x 按逆时针方向移动到点B(0,b),求F 所做的功。
2.(10分)求微分方程 y // + y = xcos2 x 的通解。
五、证明题(每小题5分,共10分)22224t 2212110 1. f(t) [0,] f(t)e 1 ), ().2 2. f(x) [0, 1] ,(). ()().2x y a x f x y dxdy f t f x dx A A dx f x f y dy π+≤+∞=++==⎰⎰⎰⎰⎰设函数在连续,且满足方程求设函数在连续且试证:二次积分大学-高等数学(Ⅱ)试卷题(A )-参考答案一、选择题:(每小题2分,共10分)1. B ;2. A ;3. B ;4. D ;5. A二、 1. },|),{(1y x 0y x y x 222≥+>-; 2.;00000cz z z by y y ax x x -=-=- 3.;214. ; 05.; dy y x f dx 3x3⎰⎰),( 6.; 43π 7. -2 ; 8. ; e dxx P ⎰-)(9. ; lnxdy x dx yxy 1y +- 10.. yPx Q ∂∂=∂∂三、计算题 (共33分 )1.(8分)解xv v z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂ ………………………………….2分 v cos e sinv ye uu+=2y)]-(x cos 2y)-[ysin(x e xy+=…………………………….2分yv v z y u u z y z ∂∂∂∂+∂∂∂∂=∂∂ ………………………………….2分 v cos 2e sinv xe uu -=2y)]-(x 2cos 2y)-[ysin(x e xy-=…………………………….2分2. (7分)解 ⎰⎰⎰⎰-+-=πθ201r Dy xd dr re dxdy e 222)( ………………………………….2分)(2r -10r d e 2122-⋅-=⎰π 01|e2r-π-=…………………………….3分 ).(1e 1--=π ………………………………….1分v cos 2e sinv xe uu -=2y)]-(x 2cos 2y)-[ysin(x e xy-=…………………………….2分3. (10分)解 设所求和函数为S(x)= ∑∞=-1n 1n nx ………………………………….2分则∑⎰⎰∞=-=1n 1n xxdt nt dt t S )(………………………………….3分=∑∞=1n nx………………………………….1分=x1x- , (|x|<1) ………………………………….2分1)|x (| , x 11]S(t)dt [S(x) 2/x<-==∴⎰)(………………….2分 4. (8分)解 2x 21-+==x x f 1)( ………………….2分22x 112--⋅=1………………….2分 122x , 22x 20n n <--⋅=∑∞=||)(1………………….3分 .∑∞=+<<=0n n 1n 4)x (0 , 2)-(x 21………………….1分四.应用题(共17分 )1. (7分)解 椭圆的参数方程为x =a cos t , y =b sin t , t 从0变到2π.j i r y x OM +==→, )()||(||j i r r r F y x k k +-=-⋅⋅=, …………………2分其中k >0是比例常数.于是 . ………………….1分 ⎰+--=2022)cos sin sin cos (πdt t t b t t a k ………………….3分)(2cos sin )(222022b a k tdt t b a k -=-=⎰π. ………………….1分2.(10分)求微分方程 y // + y = xcos2 x 的通解。
解 (1) 对应的齐次方程的特征方程为r 2+1=0.解之得 r = ±I …………………2分 所以 对应的齐次方程的通解为 y = C 1cosx+C 2sinx. ……………2分 (2) 设特解为 y*=(ax +b)cos2x +(cx +d )sin2x 原方程的一个特解……………2分则(-3ax -3b +4c)cos2x -(3cx +3d +4a)sin2x =xcos2x .⎰⎰+-=--=BA B A ydy xdx k kydy kxdx W比较两端同类项的系数,得 ⎪⎪⎩⎪⎪⎨⎧=--=-=+-=-0340304313d a c c b a , 得31-=a , b =0, c =0, 94=d .于是求得一个特解为 x x x y 2sin 942cos 31*+-=. …………………3分 所以 所求方程的通解为 y = C 1cosx+C 2sinx+x x x 2sin 942cos 31+-……………1分五、证明题(每小题5分,共10分)1. 证明 ⎰⎰+=ππθ20a 0t 4d dr r 21rf e t f 2)()(,dr r 21rf 2et f a0t 42⎰+=)()(ππ ……………2分令 b dr r 21rf a 0=⎰)( 则 b 2e t f 2t 4ππ+=)(b 2e 2t f 2t ππ+=)( ,bt 2te 2ttf 2t ππ+=)(,两边积分得 btdt 2dt te dt 2t tf a 0t a 0a2ππ⎰⎰⎰+=)(, ……………2分b a 1e 21b 2a 2πππ+-=)(, )(2a a 121e b 2πππ--=, 所以 .2a t 4a11e e f(t)22πππ--+= ……………1分 2.证明⎰⎰⎰⎰⎰⎰+=21D D Ddxdyy f x f dxdy y f x f dxdy y f x f )()()()()()(y由积分区域及积分函数的对成性可知⎰⎰⎰⎰=21D D dxdy y f x f dxdy y f x f )()()()(而 ⎰⎰⎰⎰=1x10D dy y f x f dx dxdy y f x f 1)()()()(2)()()()(A ===⎰⎰⎰⎰⎰211010D]f(x)dx [dy y f dx x f dxdy y f x f所以 2)()(2A =⎰⎰1x 10dy y f x f dx 。
xD 1D 2。