延伸摩尔定律的应变硅技术
- 格式:pdf
- 大小:7.76 MB
- 文档页数:7
应变硅技术在纳米CMOS中的应用刘国柱;姚飞;王树杰;林丽【摘要】应变硅技术具有迁移率高、能带结构可调的优点,且与传统的体硅工艺相兼容,在CMOS工艺中得到广泛地应用,尤其是MOS件的尺寸进入纳米节点。
文章综述了应变硅技术对载流子迁移率影响的机理,并从全局应变和局部应变两个方面介绍了应变硅在CMOS器件中的应用。
同时,将多种应变硅技术整合在一起提升MOS器件的性能是未来发展的趋势。
%Strained silicon technology, which provided with merits of high mobility, modifiable band-gap, compatible with conventional sub-silicon technics, was widely used in CMOS technics, and especially in the nano-meter node CMOS devices. In this text, the principle of carrier mobility ,which influenced by strain,was Simply summarized, and the application of Global strain and Local strain in the nano CMOS technics was introduced. Meanwhile,multi-strain technics would become the trend of improvement of the nano CMOS devices'performance in the future.【期刊名称】《电子与封装》【年(卷),期】2012(012)001【总页数】6页(P31-36)【关键词】应变硅;CMOS;全局应变;局部应变【作者】刘国柱;姚飞;王树杰;林丽【作者单位】中国电子科技集团公司第58研究所,江苏无锡214035;中国电子科技集团公司第58研究所,江苏无锡214035;南通航运职业技术学院船舶与海洋工程系,江苏南通226026;中国电子科技集团公司第58研究所,江苏无锡214035【正文语种】中文【中图分类】TP702随着微纳技术的发展,CMOS工艺已经进入了(超)深亚微米阶段,晶体管的特征尺寸已达纳米级。
国际半导体技术发展路线图为了回答如何保持半导体产业按照摩尔定律继续发展的问题,国际上主要的半导体协会共同组织制定了国际半导体技术发展路线图ITRS《International technology roadmap for semiconductors》它为半导体产业界提供了被工业界广泛认同的;对未来十年内研发需求的最佳预测以及可能的解决方案,它对整个半导体茶叶需要开发什么样的技术起到了一个导向作用。
国际半导体技术发展路线图一、半导体产业生态环境半导体产业诞生于上世纪70年代,当时主要受两大因素驱动:一是为计算机行业提供更符合成本效益的存储器;二是为满足企业开发具备特定功能的新产品而快速生产的专用集成电路。
到了80年代,系统规范牢牢地掌握在系统集成商手中。
存储器件每3年更新一次半导体技术,并随即被逻辑器件制造商采用。
在90年代,逻辑器件集成电路制造商加速引进新技术,以每2年一代的速度更新,紧跟在内存厂商之后。
技术进步和产品性能增强之间不寻常的强相关性,使得相当一部分系统性能和利润的控制权转至集成电路(IC)制造商中。
他们利用这种力量的新平衡,使整个半导体行业收入在此期间年均增速达到17%。
21世纪的前十年,半导体行业全新的生态环境已经形成:一是每2年更新一代的半导体技术,导致集成电路和数以百万计的晶体管得以高效率、低成本地生产,从而在一个芯片上或同一封装中,可以以较低的成本整合极为复杂的系统。
此外,封装技术的进步使得我们可以在同一封装中放置多个芯片。
这类器件被定义为系统级芯片(system on chip,SOC)和系统级封装(system in package, SIP)。
二是集成电路晶圆代工商能够重新以非常有吸引力的成本提供“新一代专用集成电路”,这催生出一个非常有利可图的行业——集成电路设计。
三是集成电路高端设备的进步带动了相邻技术领域的发展,大大降低了平板显示器、微机电系统传感器、无线电设备和无源器件等设备的成本。
车辆工程技术72 机械电子微电子制造科学原理与工程技术董晨阳(中国计量大学,杭州 310018)摘 要:本文介绍了微电子制造的科学原理与工程技术。
微电子制造技术涵盖了集成电路制造所涉及到的多数单项工艺,囊括了反应离子刻蚀、离子注入以及等离子体等。
而对于每一种单项工艺,详细的介绍了其化学和物理原理,对用于集成电路制造的工艺设备业也进行了一定的描述。
其中对于一些先进技术也有详细的介绍,比如快速热处理丁浩分子束外延和有机化学沉淀等,在此基础上,还介绍了一系列常见的集成电路工艺技术,比如双极型技术和砷化镓技术,对于微电子制造的新兴领域即使微机械电子系统和工艺也有涉及。
微电子制造科学原理与工程技术一书是高等学校本科生的教科书,供相关专业人士参考。
关键词:微电子制造;科学原理;工程技术0 引言 在上世纪60年代,电子学领域诞生了一个新的分支,即是关于研究如何利用固体内部的微观特征和一些特殊工艺,在一小块半导体材料中制作出极多的元件,进而在一个细小的面积之内制造出一个极其复杂的电子系统,该电子系统就是微系统电子学。
微电子学中的各项工艺技术有一个统称,就是微电子技术,该领域最主要的应用就是集成电路。
集成电路现如今已经经历了包括小规模、中规模在内的四大发展阶段。
1 微电子材料和应用 微电子材料会根据形态而分成两大部分,一部分是晶圆片,另外一部分是薄膜,而不管微电子材料是晶圆片还是薄膜,都可以处在单晶、多晶或者不定的一种形态。
在晶圆片中,硅和锗是两种最为主要的构成材料,世界上的第一个晶体管就是利用锗制造,但是由于锗的熔点只有937摄氏度,导致其受到温度的制约,限制了高温工艺的发展,且在锗的表面会缺少因为自然氧化而形成的氧化膜而出现漏电的情况,这两种物理特性导致锗形成的微电子材料应用不够广泛。
而基于硅制造出的材料就具备一些显著优点。
除去上述两者之外,晶圆片还可以是碳化硅、蓝宝石或者玻璃等。
而薄膜也可以分为两大类,单元素薄膜,比如有单硅和铜等,以及化合物薄膜,比如氧化硅和氮化硅等。
摩尔定律已经接近物理局限了吗?刚刚过去的4月19日,是家喻户晓的摩尔定律诞生50周年纪念日。
电子和信息技术正深入和触摸着我们生活的方方面面。
从1958年开始的集成电路发明持续引导着电子革命,在很大程度上科技产业似乎都忠实遵守着这个个称为摩尔定律的东西。
1965年,戈登•摩尔(Gordon Moore)从一个化学家转型成电子工程师,注意到从第一块集成电路产生以来,每年芯片上集成的晶体管数量大约以两倍的数量增加。
他还大胆预测,这些组件的缩小速度将持续至少十年时间,并于1965年4月19日正式提出。
不过,当时并没有人把这个规律当作定律来看,只是认为是对芯片发展规律的总结。
甚至他自己都认为:摩尔定律不是定律,只是一个机遇而已。
不过,后来的发展却不断验证了这一说法,使其终于享有了“定律”的荣誉,并修正为为集成电路的集成度每18个月翻一番或者说三年翻两番。
摩尔定律提出3年后,英特尔公司诞生了,摩尔也成了这个公司的创始人之一。
1971年,英特尔推出第一片微处理器Intel 4004至今,微处理器使用的晶体管数量的增长情况基本上符合摩尔定律。
人们还发现,这不光适用于对存储器芯片的描述,也可精确说明处理机能力和磁盘驱动器存储容量的发展。
甚至生物学家们在2013年还将摩尔定律应用到了地球生命复杂性的研究上,他们将摩尔定律中的晶体管换成了核苷酸进行数学计算,结果显示生命最早出现在100亿年前,比地球45亿年的预测年龄老得多,也就是说,在太阳系形成之时,可能已经存在着类似细菌的生物体,或者一些存在于银河系古老区域的简单核苷酸,通过彗星、小行星或其他太空碎片来到地球,这一假说被称为有生源说(泛种论),一直是生命科学中的一个重要流派,从摩尔定律中居然也找到了根据。
数十年来,半导体行业的摩尔定律,主要得益于制造工艺上的天才和壮举,但是,基础科学在这方面的重要作用也值得重视,尤其是在今天人们想设法保持这种进步速度的时候更是如此。
(总第159期)1引言光学光刻作为推动半导体制造技术的关键工艺一直以来备受业界的关注。
近年来,随着器件尺寸的不断缩小,作为现有光学光刻技术的延伸,浸没式光刻因其能获得更高的数值孔径而实现更高的分辨率为业界所青睐。
30多年以来,集成电路技术的发展始终是随着光学光刻技术的不断创新所推进的。
在摩尔定律的驱动下,光学光刻技术经历了接触/接近(Aligner)、等倍投影、缩小步进投影(Stepper)、步进扫描投影(Scanner)曝光方式的变革(见图1所示),曝光波长由436nm的h线向365nm的i线、继而到248nm的KrF到193nm的ArF准分子光源,技术上跨越了1μm、光学光刻技术的历史演变马建军(长庆实业集团有限公司,西安710021)摘要:简要回顾了光学光刻技术的发展历程,从IC技术节点微细化要求对光刻技术的挑战方面讨论了光学光刻技术的发展趋势及进入32nm技术节点的可能性。
关键词:光学光刻;缩小步进光刻;步进扫描光刻;浸没式光刻;双重图形光刻中图分类号:TN305.7文献标识码:A文章编号:1004-4507(2008)04-0028-05TheHistoryEvolvementofOpticsLithographyMAJian-jun(ChangqingIndustryLtd.Co.,XiAn710021)Abstract:Thedevelopmentcoursoflithographyisreviewedinthispaper,thetrendofopticslithogra-phyandthepossibilityofitenter32nmnodearealsodiscussedwiththechallengeforopticslithographytechnicnodedemand.Keywords:OpticsLithographyStepper;Scanner;Immersionlithography;DualExposure收稿日期:2008-03-24图1光学光刻的进展1970198019902000Designnoe10μm8μm6μm4μm2.5μm1.5μm1.2μm0.8μm0.5μm0.35μm0.25μmDRM2561K4K16K64K256K1M4M16M64M256M接触式曝光→接近式曝光→步进式.扫描式硅片纯模版低缺陷接近式硅片掩模版高分辨接近式大圆片接触式低缺陷高分辨硅片硅片掩模版步进&扫描步进&扫描掩模版掩模版g线i线KrF28(总第159期)Apr.20080.5μm、0.35μm、0.1μm、90nm、65nm、45nm等节点。
管理知识:什么是摩尔定律?何为摩尔定律?摩尔定律是指IC上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍。
摩尔定律是由英特尔(Intel)名誉董事长戈登·摩尔(Gordon Moore)经过长期观察发现得之。
下面是店铺为大家收集整理的管理知识,一起来看看吧!摩尔定律概述摩尔定律是指IC上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍。
摩尔定律是由英特尔(Intel)名誉董事长戈登·摩尔(Gordon Moore)经过长期观察发现得之。
计算机第一定律——摩尔定律Moore定律1965年,戈登·摩尔(Gordon Moore)准备一个关于计算机存储器发展趋势的报告。
他整理了一份观察资料。
在他开始绘制数据时,发现了一个惊人的趋势。
每个新芯片大体上包含其前任两倍的容量,每个芯片的产生都是在前一个芯片产生后的18-24个月内。
如果这个趋势继续的话,计算能力相对于时间周期将呈指数式的上升。
Moore的观察资料,就是现在所谓的Moore定律,所阐述的趋势一直延续至今,且仍不同寻常地准确。
人们还发现这不光适用于对存储器芯片的描述,也精确地说明了处理机能力和磁盘驱动器存储容量的发展。
该定律成为许多工业对于性能预测的基础。
在26年的时间里,芯片上的晶体管数量增加了3200多倍,从1971年推出的第一款4004的2300个增加到奔腾II处理器的750万个。
由于高纯硅的独特性,集成度越高,晶体管的价格越便宜,这样也就引出了摩尔定律的经济学效益,在20世纪60年代初,一个晶体管要10美元左右,但随着晶体管越来越小,直小到一根头发丝上可以放1000个晶体管时,每个晶体管的价格只有千分之一美分。
据有关统计,按运算10万次乘法的价格算,IBM704电脑为1美元,IBM709降到20美分,而60年代中期IBM耗资50亿研制的IBM360系统电脑已变为3.5美分。
后来人们对它进行归纳,主要有以下三种"版本":1、集成电路芯片上所集成的电路的数目,每隔18个月就翻一番。
硅基锗材料的外延生长及其应用摘要:硅是最重要的半导体材料,在信息产业中起着不可替代的作用。
但是硅材料也有一些物理局限性,比如它是间接带隙半导体材料,它的载流子迁移率低,所以硅材料的发光效率很低,器件速度比较慢。
在硅衬底上外延生长其它半导体材料,可以充分发挥各自的优点,弥补硅材料的不足。
本文介绍了硅衬底上的锗材料外延生长技术进展,讨论了该材料在微电子和光电子等方面的可能应用,重点介绍了它在硅基高速长波长光电探测器研制方面的应用。
关键词:硅基;锗,外延;光电探测器Epitaxy and application of Ge layer on Silicon substrateHuiwen Nie1, Buwen Cheng2(1.Hunan Chemical Engineering Machinery School, Hunan Industrial Technology College2.State Key Laboratory on Integrated Optoelectronics, Instituteof Semiconductors, Chinese Academy of Sciences, Beijing 100083)Abstract: Silicon is the most important semiconductor material and it is irreplaceable in the information industry. But Silicon also has some shortcomings, such as very low luminescence efficiency and low device speed due to the indirect bandgap and low carrier mobility. Growing other semiconductors on Si substrate can take the advantages of the different semiconductors and improve the performance of theSi-based devices and integrated circuits. The progress of Ge growth on Si was introduced in the paper. The application of the Si-based Ge epitaxy layer was discussed, especially the application on Si-based high speed photodetectors operating at long wavelength.Key words: Si-based, Germanium, Epitaxy, Photodetector1引言硅基光电集成将微电子技术和光子学技术进行融合,是微电子技术的继承和发展,是信息技术发展的重要前沿研究领域。