浙教版七年级数学期末测试题
- 格式:doc
- 大小:90.92 KB
- 文档页数:3
浙教版七年级上册数学期末考试试题一、单选题1.在-5,0,-2,4这四个数中,最小的数是()A .-2B .0C .-5D .42.数据1412000000用科学记数法表示为()A .814.1210⨯B .100.141210⨯C .91.41210⨯D .81.41210⨯3.32的意义是()A .2×3B .2+3C .2+2+2D .2×2×24.已知2a =b +5,则下列等式中不一定...成立的是()A .2a -5=bB .2a +1=b +6C .a =522b +D .6a =3b +55.如图,射线OA 表示北偏东30°方向,射线OB 表示北偏西50°方向,则∠AOB 的度数是()A .60°B .80°C .90°D .100°6.实数x 满足371x =,则下列整数中与x 最接近的是()A .3B .4C .5D .67.若313mn x y -与3-x y 是同类项,则m -2n 的值为()A .1B .0C .-1D .-38.学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人,现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍,设应调往甲处x 人,则可列方程为()A .()2231720x x +=+-B .()2321720x x +=+-C .()23217x x +=+D .()2320217x x +-=+9.长方形ABCD 可以分割成如图所示的七个正方形.若AB =10,则AD 的长为()A .13B .11C .403D .100910.如图,将一副三角板叠在一起使直角顶点重合于点O ,(两块三角板可以在同一平面内自由转动,且BOD ∠,AOC ∠均小于180°),下列结论一定成立的是()A .BOD AOC ∠>∠B .90BOD AOC ∠-∠= C .180BOD AOC ∠+∠= D .BOD AOC∠≠∠二、填空题11.2022的相反数为_________.12.请写出一个无理数____.13.定义运算法则:2a b a ab ⊕=+,例如23233215⊕=⨯=+.若2⊕x =10,则x的值为____.14.如图,P 是线段MN 上一点,Q 是线段PN 的中点.若MN=10,MP=6,则MQ 的长是____.15.请在运算式“6□3□5□9”中的□内,分别填入+,-,×,÷中的一个符号(不重复使用),使计算所得的结果最大,则这个最大的结果为____.16.某数学兴趣小组在观察等式3232()ax bx cx d x +++=-时发现:当x =1时,3(11)2a b c d +++=-=-;请你解决下列问题:(1)-a +b -c +d =____;(2)8a +4b +2c =____.三、解答题17.计算:(1)4+(-5)×2()2133⎛⎫-⨯- ⎪⎝⎭18.解下列方程(1)3x+1=-2(2)13132y y-+=-19.先化简,再求值:()()2224132mn m m mn----,其中m=1,n=-2.20.如图,已知点A、B、C,按下列要求画出图形.(1)作射线BA,直线AC;(2)过点B画直线AC的垂线段BH.21.一辆出租车从A站出发,在一条东西走向的道路上行驶,记向东行驶的路程为正,行驶的路程依次为(单位:km):+12,-8,+4,-13,-6,-7.(1)通过计算说明出租车是否回到A站;(2)若出租车行驶的平均速度为50km/h,则出租车共行驶了多少时间?22.如图,直线AE与CD相交于点B,BF⊥AE.(1)若∠DBE=60°,求∠FBD的度数;(2)猜想∠CBE与∠DBF的数量关系,并说明理由.23.数学活动课上,小聪同学利用列表法探索一次式2x+1、-2x+1的值随着x取值的变化情况.x…-3-2-10123…2x+1…-5-3-11…-2x+1…1-1-3-5…(1)通过计算,完成表格的填写;(2)结合表中的数据,当x的值增大时,一次式2x+1,-2x+1的值分别有什么变化?(3)请你用类似的方法列表探索二次式2+1x的值随着x取值不断增大的变化情况.24.如图,是由A、B、E、F四个正方形和C、D两个长方形拼成的大长方形.已知正方形F的边长为8,求拼成的大长方形周长.25.如图,已知数轴上点A表示的数为10,点B位于点A左侧,AB=15.动点P从点A出发,以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)当点P在A、B两点之间运动时,①用含t的代数式表示PB的长度;②若PB=2PA,求点P所表示的数;(2)动点Q从点B出发,以每秒5个单位长度的速度沿数轴向右匀速运动,当点Q到达点A 后立即原速返回.若P,Q两点同时出发,其中一点运动到点B时,两点停止运动.求在这个运动过程中,P,Q两点相遇时t的值.参考答案1.C【分析】直接比较负数比较大小,绝对值大的反而小,即可得出答案.【详解】因为52->-,所以52-<-,所以5204-<-<<,所以最小的数为-5.故选:C【点睛】本题考查有理数的大小比较,属于基础题目,理解负数比较大小的方法是解题的关键.2.C【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,据此判断即可.【详解】解:91412000000=1.41210⨯.故选:C .【点睛】本题主要考查了科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,确定a 与n 的值是解题的关键.3.D【分析】根据幂的意义即可得出答案.【详解】解:,32222=⨯⨯故选:D .【点睛】本题考查了有理数的乘方,掌握n a 表示n 个a 相乘是解题的关键.4.D【分析】根据等式的基本性质,逐项分析判定即可求解.【详解】解:A .等式两边同时减去5即可得到,故A 正确,不符合题意;B .等式两边同时加上1即可得到,故B 正确,不符合题意;C .等式两边同时除以2即可得到,故C 正确,不符合题意;D .等式两边同时乘以3即得到6315a b =+,故D 错误,符合题意;故选:D .【点睛】本题考查等式的基本性质:等式两边同时加上或减去同一个数或式子,等号不变;等式两边同时乘以或除以(非0)的同一个数或式子,等号不变.5.B【分析】根据题意可得∠AOB=30°+50°,进而得出答案.【详解】解:如图所示:∵射线OA 表示北偏东30°方向,射线OB 表示北偏西50°方向,∴∠AOB=30°+50°=80°.故选:B【点睛】此题主要考查了方向角问题,根据题意借助互余两角的关系求出是解题关键.6.B【分析】先估算x 介于哪两个相邻的整数之间,再进一步地估算x 最接近哪一个整数即可.【详解】解:∵3464=,35125=,且6471125<<,∴45x <<,又∵34.591.125=,且647191.125<<,∴4 4.5x <<,∴与x 最接近的整数是4,故选:B .【点睛】本题考查了无理数的估算,关键是要准确找到与无理数相邻的两个整数中更接近的一个.7.D【分析】根据同类项的定义:含有相同字母,并且相同字母的指数也相同的项叫做同类项.可得得出m 、n 的值,代入m -2n 即可求解.【详解】解:因为313mn xy -与3-x y 是同类项,所以3311m n =-=,,所以12m n ==,.所以m -2n=1223-⨯=-.故选:D【点睛】本题考查同类项的定义,代数式的求值,理解同类项的定义,根据相同字母的指数相同求出m 、n 的值是解题的关键.8.B【分析】先求出调往乙处()20x -人,再根据甲处植树的人数是乙处植树人数的2倍列出方程即可.【详解】解:由题意得:调往乙处()20x -人,则可列方程为()2321720x x +=+-,故选:B .【点睛】本题考查了列一元一次方程,找准等量关系是解题关键.9.A【分析】根据题意,设最小正方形的边长为x ,则第二大的正方形的边长为3x ,解方程即可得到答案.【详解】解:设最小正方形的边长为x ,则第二大的正方形的边长为3x ,根据题意得,3×3x+x=10,解得:1x =,∴103113AD =+⨯=;故选:A .【点睛】本题考查了一元一次方程的应用,解题的关键是根据图形找出等量关系列一元一次方程求解.10.C【分析】根据角的和差关系以及余角和补角的定义、结合图形计算即可.【详解】解:因为是直角三角板,所以∠AOB=∠COD=90°,所以9090180BOD AOC COD BOC AOC COD AOB ∠+∠=∠+∠+∠=∠+∠=︒+︒= ,故选:C .【点睛】本题考查的是余角和补角的概念、角的计算,掌握余角和补角的概念、正确根据图形进行角的计算是解题的关键.11.-2022【分析】直接利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【详解】解:2022的相反数是:-2022.故答案为:-2022.【点睛】此题主要考查了相反数,正确掌握相反数的定义是解题关键.12(答案不唯一)13.3【分析】利用题中的新定义化简,列出一元一次方程,解方程求出x 的值即可求解.【详解】解:∵2a b a ab ⊕=+,∴2222x x ⊕=+,由2⊕x =10,得22210x +=,解得3x =,故答案为:3.【点睛】本题考查了新定义运算,解一元一次方程,根据新定义列出方程是解题的关键.14.8【分析】首先求得NP=4,根据点Q 为NP 中点得出PQ=2,据此即可得出MQ 的长.【详解】解:∵MN=10,MP=6,∴NP=MN-MP=4,∵点Q 为NP 中点,∴PQ=QN=12NP=2,∴MQ=MP+PQ=6+2=8,故答案为:8.【点睛】此题主要考查了两点之间的距离,根据中点的定义得出PQ=2是解题关键.15.48【分析】根据题意可得乘号填在5和9之间乘积最大,此时数字5前应填入加号,那么减号填在数字3前,即可求解.【详解】解:乘号填在5和9之间乘积最大,此时数字5前应填入加号,那么减号填在数字3前,则算式结果最大为6-3+5×9=6-3+45=48.故答案为:48【点睛】本题主要考查了有理数的混合运算,看清要求,分析题干,从最大、最小的数据入手,逐步确定运算符号的位置是解题的关键.16.-278【分析】(1)当1x =-时,代入3232()ax bx cx d x +++=-中,即可得出-a +b -c +d 的值;(2)当0x =时,可求出d 的值,当2x =时,代入3232()ax bx cx d x +++=-中,即可得出8a +4b +2c 的值.【详解】解:当1x =-时,32ax bx cx d a b c d=-+-++++()31227=--=-;当0x =时,3(02)8d =-=-;当2x =时,32842ax bx cx d a b c d=++++++3(2)20-==;∴8428a b c d =-=++.【点睛】本题考查代数式的求值,通过观察等式,找出符合题意的对应x 的值是解题的关键.17.(1)-6(2)0【分析】(1)原式先计算乘法,再计算誊即可;(2)原式先化简二次根式和乘方运算,再计算乘法,最后计算减法即可.(1)4+(-5)×2=4-10=-6(2)()2133⎛⎫+-⨯- ⎪⎝⎭=1393-⨯=3-3=0【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.18.(1)x =-1(2)15y =-【分析】(1)移项,化系数为1,即可得出结果;(2)根据解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1,即可得出结果.(1)3x +1=-23x =-2-1,3x =-3,x =-1;(2)13132y y -+=-2(y -1)=6-3(y+3),2y -2=6-3y -9,2y +3y=6-9+2,5y=-1,15y =-.【点睛】本题考查解一元一次方程,属于基础题,熟练运用解一元一次方程的步骤是解题的关键.19.原式=21142m mn -+-;-21【分析】先去括号、合并同类项化简原式,再将m 与n 的值代入计算可得.【详解】原式=2228232mn m m mn ---+=21142m mn -+-当m=1,n=-2时,原式=()21114122-⨯+⨯⨯--21=-20.(1)见解析(2)见解析【分析】(1)根据射线、直线的概念作图即可;(2)根据垂线段的概念作图即可.(1)解:如下图,射线BA 、直线AC 即为所求.(2)解:如下图,线段BH 即为所求.【点睛】本题主要考查了作图的知识,理解并掌握射线、直线和垂线段的概念是解题关键.21.(1)出租车不能回到A站.(2)1小时【分析】(1)只需将所有数加起来,看其和是否为0即可;(2)将出租车6次行驶的路程(绝对值)相加,再根据时间=路程÷速度可得结论.(1)解∶+12+(-8)+4+(-13)+(-6)+(-7)=-18,∴出租车不能回到A站;(2)解:+12+-8++4+-13+-6+-7=12+8+4+13+6+7=50,÷(小时)5050=1答∶出租车共行驶了1小时.【点睛】本题主要考查正数和负数的意义,绝对值的意义,理解正数和负数表示的是相反意义的量是本题解题的关键.22.(1)30°.(2)∠CBE=90°+∠DBF,理由见解析【分析】(1)由垂线的定义可得∠DBF+∠DBE=90°,结合已知条件即可求解.(2)根据∠CBE=∠ABD,∠ABD=∠ABF+∠DBF,可得∠CBE=∠ABF+∠DBF.由BF⊥AE,得出∠ABF=90°,即∠CBE=90°+∠DBF.(1)解:∵BF⊥AE,∴∠DBF+∠DBE=90°,∵∠DBE=60°,∴∠DBF=90°-∠DBE=30°.(2)∠CBE=∠DBF+90°.理由如下:∵∠CBE=∠ABD,∠ABD=∠ABF+∠DBF,∴∠CBE=∠ABF+∠DBF.∵BF⊥AE,∴∠ABF=90°,∴∠CBE=90°+∠DBF.【点睛】本题考查了垂线的定义,几何图形中角度的计算,数形结合是解题的关键.23.(1)答案见解析(2)当x增大时,2x+1的值不断增大,-2x+1的值不断减少(3)x为非负数,当x增大时,2+1x的值不断增大;x为负数,当x增大时,2+1x的值不断减小.【分析】(1)分别将x=1,2,3代入2x+1中求值;将x=-3,-2,-1代入2x+1中求值即可填表;(2)由表即可直接得出结论;(3)由(1)同理列出表格,即可得出结论.(1)完成表格如下:x…-3-2-10123…2x+1…-5-3-11357…-2x+1…7531-1-3-5…(2)由表可知当x增大时,2x+1的值不断增大,-2x+1的值不断减少(3)列表如下:x…-3-2-10123…21x …105212510…x的值不断增大;x为非负数,当x增大时,2+1x的值不断减小.x为负数,当x增大时,2+1【点睛】本题考查代数式求值以及规律探索.正确计算并由表格总结规律是解题关键.24.64.【分析】直接表示出大长方形的周长进而计算得出答案.【详解】设A正方形边长为a,∵正方形F的边长为8,∴正方形E的边长为8-a,正方形B的边长为8+a,大长方形长为8+8+a=16+a,宽为8+8-a=16-a,则大长方形周长为2(16+a+16-a)=64.【点睛】本题考查了列代数式,整式的加减,正确合并同类项是解题关键.25.(1)①PB=15-2t;②5(2)15或5.7【分析】(1)根据两点间的距离公式进行计算即可;(2)利用相遇时两点所表示的数相同进行计算即可.(1)解:①PB=15-2t.②PB=15-2t,PA=2t,∵PB=2PA∴15-2t=4t,解得t=2.5,∴10-2t=5,∴点P表示的数为5.(2)(i)点Q由点B运动到点A的过程中,点Q表示的数为-5+5t,点P表示的数为10-2t,相遇即两点所表示的数相同,则-5+5t=10-2t,解得t=157.(ii)P到达点A返回B的过程中,点Q表示的数为:10-5(t-3),点P表示的数为10-2t,相遇即两点所表示的数相同,则10-5(t-3)=10-2t,解得t=5.综上所述,P、Q两点相遇时,t的值是157或5.。
浙教版七年级上册数学期末考试试题一、单选题1.2022的相反数是()A .2022B .2022-C .12022D .12022-2.有理数5,-2,0,-4中最小的一个数是()A .5B .-2C .0D .-43.我国第七次人口普查显示,全国总人口约为1411000000人,将这个总人口数用科学记数法表示为()A .14.11×107B .1.411×108C .1.411×109D .0.1411×10104.下列四个图中,能用∠1、∠AOB 、∠O 三种方法表示同一个角的是()A .B .C .D .5.下列各组中的两个代数式属于同类项的是()A .3xy 与212x y-B . 2.1-与34C .32a b 与32ab D .23ab 与20.001ba 6.若3x =是关于x 的方程24x a +=的解,则a 的值为()A .10-B .2-C .12-D .127.某商品因换季准备打折销售,如果按定价的七五折出售,将亏本35元,而按定价的九五折出售,将赚25元.设这种商品的定价为x 元,可列方程为()A .75%x-35=95%x+25B .75%x+35=95%x+25C .75%x-35=95%x-25D .75%x+35=95%x-258.下列说法中错误的是()A .单项式6abc 的次数为3B .单项式23vt-的系数是-2C是无理数D.xy-2x+4是二次三项式9.解方程1.5 1.50.50.62x x--=,以下变形正确的是()A.5 1.5522x x--=B.51510522x x--=C.51515220x x--=D.5320.524x x--=10.已知某点阵的第①②③个图如图所示,按此规律第()个点阵图中,点的个数为2022个.A.1009B.2018C.2022D.2048二、填空题11.4的平方根是.12.计算:35°49'+44°26'=__________.13.用代数式表示:x的2倍与y的平方的差___________.14.若一个角是53 ,则它的补角是_________.15.已知4x-y=0,用含x的代数式来表示y为___________.16__________个.17.如图,OA的方向是北偏东15 ,OB的方向是西北方向,若AOC AOB∠=∠,则OC的方向是__________.18.已知线段AB=8cm,C是直线AB上的一点AC=3.2cm,M、N分别是AB、AC的中点,则MN的长等于______cm.19.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买一只羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设羊价为x 钱,所列方程是_______.20.张师傅晚上出门散步,出门时6点多一点,他看到手表上的分针与时针的夹角恰好为120°,回来时接近7点,他又看了一下手表,发现此时分针与时针再次成120°,则张师傅此次散步的时间是_____分钟.三、解答题21.计算:(1)-3+12-15(2)251()(18)369-+⨯-22.解方程:(1)8x-3(2x+1)=1(2)3157146x x ---=23.画图并度量,已知点A 是直线l 上一点,点M 、N 是直线l 外两点.(1)画线段MA ,并用刻度尺找出它的中点B ;(2)画直线MN ,交直线l 于点C ,并画出射线CB ;(3)画出点M 到直线l 的垂线段MH ,并量出点M 到直线l 的距离为多少cm ?(精确到0.1cm )24.先化简,再求值:-(a 2+6ab +9)+2(a 2+4ab-4.5),其中a =-2,b =6.25.如图,直线AE 与CD 相交于点B ,∠DBE =65°,BF ⊥AE ,求∠FBD 和∠CBF 的度数.26.已知M 、N 两点在数轴上所表示的数分别为m ,n ,且满足211(4)0m n -++=.(1)m=,n=;(2)若点P 从N 点出发,以每秒1个单位长度的速度向右运动,同时点Q 从M 点出发,以每秒2个单位长度的速度向左运动,经过多长时间后P、Q两点相距6个单位长度?(3)若点A、B为线段M、N上的两点,且NA=AB=BM,点P从N点出发,以每秒3个单位长度的速度向左运动,点Q从M点出发,以每秒4个单位长度的速度向右运动,点R 从B点出发,以每秒5个单位长度的速度向右运动,P、Q、R同时出发,是否存在常数k,的值与它们的运动时间无关,为定值?若存在,请求出k和这个定值;若不使得PQ kAR存在,请说明理由.27.某市某公交车从起点到终点共有六个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如表:站次人数二三四五六下车(人)3610719上车(人)1210940(1)求本趟公交车在起点站上车的人数;(2)若公交车的收费标准是上车每人2元,计算此趟公交车从起点到终点的总收入?28.如图,已知射线OB平分∠AOC,∠AOC的余角比∠BOC小42°.(1)求∠AOB的度数:(2)过点O作射线OD,使得∠AOC=4∠AOD,请你求出∠COD的度数(3)在(2)的条件下,画∠AOD的角平分线OE,则∠BOE=.参考答案:【分析】根据相反数的定义直接求解.-,【详解】解:实数2022的相反数是2022故选:B.【点睛】本题主要考查相反数的定义,解题的关键是熟练掌握相反数的定义.2.D【分析】根据正数>0>负数,以及负数比较时,绝对值较大的反而更小的原则判断即可.【详解】显然,5>0,-<-,∵24∴24->-,>>->-,∴5024故选:D.【点睛】本题考查有理数大小比较,熟练掌握常见的有理数大小比较的方法是解题关键.3.C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:1411000000=1.411×109.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.B【分析】根据角的表示方法求解即可.【详解】解:A、∠1、∠AOB表示同一个角,不符合题意;B、三种方法表示同一个角,符合题意;C、∠O、∠AOB表示同一个角,不符合题意;D、∠1、∠AOB、∠O不一定表示同一个角,不符合题意;故选B【点睛】本题考查角的表示,熟练掌握角的表示方法是解答的关键.【分析】根据同类项的定义:所含字母相同,相同字母的指数也相同的项,逐一判断即可.【详解】解:A .3xy 与212x y -相同字母的指数不相同,不是同类项,故A 不符合题意;B .-2.1与34是同类项,故B 符合题意;C .32a b 与32ab 相同字母的指数不相同,不是同类项,故C 不符合题意;D .23ab 与20.001ba 相同字母的指数不相同,不是同类项,故D 不符合题意;故选:B .【点睛】本题考查了同类项,熟练掌握同类项的定义是解题的关键.6.B【分析】将3x =代入原方程即可求出a 的值.【详解】解:将3x =,代入24x a +=,得:64a +=,解得:2a =-,故选:B .【点睛】本题考查一元一次方程,解题的关键是正确理解一元一次方程的解的定义.7.D【分析】设这种商品的定价是x 元.根据定价的7.5折出售将赔35元和定价的9.5折出售将赚25元,分别表示出进价,从而列方程求解.【详解】解:设这种商品的定价是x 元.根据题意,得75%x+35=95%x-25.故选:D .【点睛】本题考查了由实际问题抽象出一元一次方程的知识,解题的关键是根据题意找到等量关系,这是列方程的关键.8.B【分析】根据同类项“同类项是所含字母相同,并且相同字母的指数也相同的项.”单项式“由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式,字母前的常数为单项式的系数,字母的指数和为单项式的次数.”多项式“若干个单项式的和组成的式子叫做多项式.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.”的概念逐项判断A,B,D 选项即可,根据无理数的定义判断C 选项,即可求解.【详解】解:A.单项式6abc 的次数为3,故该选项正确,不符合题意;B.单项式23vt -的系数是23-,故该选项不正确,符合题意;C.是无理数,故该选项正确,不符合题意;D.xy-2x +4是二次三项式,故该选项正确,不符合题意;故选B【点睛】本题考查了单项式与多项式的定义,无理数的概念,掌握以上知识是解题的关键.9.D【分析】把方程中的分子与分母同时乘以10,使分母变为整数即可.【详解】把1.50.6x的分子分母同时乘以10,1.52x -的分子分母同时乘以2得15320.564x x--=,即5320.524x x--=.故选:D .【点睛】本题考查的是解一元一次方程,在解答此类题目时要注意把方程中分母化为整数再求解.10.A【分析】仔细观察图形变化,找到图形变化的规律,利用规律求解.【详解】解:第1个图里有6个点,6=4+2;第2个图有8个点,8=4+2×2;第3个有10个点,10=4+3×2;…则第n 个图中点的个数为4+2n ,令4+2n=2022,解得n=1009.故选:A .【点睛】本题主要考查图形的变化规律,解题的关键是根据图形得出每往后一个图形,点的个数相应增加2个.11.±2【详解】解:∵2(2)4±=,∴4的平方根是±2.故答案为±2.12.8015'︒【分析】把单位相同的量分别相加,再根据60进位制进位即可.【详解】解:35°49'+44°26'=79758015ⅱ°=°.故答案为:8015'︒.【点睛】本题主要考查了角的计算以及度分秒的换算,关键是掌握将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.13.22x y -【分析】根据“x 的2倍即2x ,再表示与y 的平方的差”可列出代数式.【详解】解:根据题意得;2x-y 2.故答案为:22x y -.【点睛】本题考查列代数式,关键根据语句的描述理解代数式中的运算顺序,从而得到代数式.14.127【分析】根据补角的定义求解即可.【详解】根据补角的定义:和为180 的两个角互为补角,得:18053127-=故答案为:127 .【点睛】本题考查补角的定义,解决本题的关键是熟练应用补角的定义.15.4y x=【分析】根据等式的性质移项即可.【详解】解:方程4x-y=0,解得:y=4x .故答案为:y=4x .【点睛】此题考查了等式的性质,解题的关键是熟练掌握等式的性质.16.13.【详解】∵67±6,±5,±4,±3,±2,±1,0,共13个故填:13.【点睛】此题主要考查实数的估算,解题的关键是熟知实数的估算方法.17.北偏东75°.【分析】已知OA的方向是北偏东15°,OB的方向是西北方向,可得∠AOB=60°,根据∠AOC=∠AOB,可得∠AOC=60°,然后求得OC与正北方向的夹角,再根据方位角的表达即可得出答案.【详解】∵OA的方向是北偏东15°,OB的方向是西北方向,∴∠AOB=15°+45°=60°.∵∠AOC=∠AOB,∴∠AOC=60°,∴OC的方向是北偏东15°+60°=75°.故答案为北偏东75°.【点睛】本题考查方位角,掌握方位角的相关知识是解题的关键.18.2.4或5.6【分析】先求出AN、AM的长度,然后根据点C的位置进行讨论即可求出答案.【详解】解:∵M、N分别是AB、AC的中点,AB=8cm,AC=3.2cm,∴AN=12AC=1.6cm,AM=12AB=4cm,当点C与B位于点A的异侧时,此时MN=AN+AM=4+1.6=5.6cm,当点C与B位于点A的同一侧时,此时MN=AM-AN=4-1.6=2.4cm,故答案为:2.4或5.6.【点睛】本题考查线段的和差运算,中点的含义,解题的关键是根据点C的位置进行讨论,本题属于基础题型.19.453 57 x x --=【分析】设羊价为x钱,根据题意可得合伙的人数为455x-或37x-,由合伙人数不变可得方程.【详解】解:设羊价为x 钱,根据题意可得方程:45357x x --=,故答案为:45357x x --=.【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,找到等量关系,列出相应的方程.20.48011【分析】设张师傅此次散步的时间是x 分钟,根据分针比时针多走了2个120°,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:分钟每分钟走6°,时针每分钟走0.5︒.设张师傅此次散步的时间是x 分钟,依题意得:6x-0.5x=120×2,解得:x=48011,∴张师傅此次散步的时间是48011分钟.故答案为:48011.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.(1)6-(2)1【分析】(1)先把同号的两个负数先加,再计算异号的两数的加法即可;(2)利用乘法的分配律把括号外的数乘以括号内的每一个数,再把所得的积相加即可.(1)解:-3+12-151812=-+6=-(2)251()(18)369-+⨯-()()()251181818369=´--´-+´-12152=-+-1=【点睛】本题考查的是加减混合运算,乘法的分配律的应用,掌握“利用乘法的分配律进行简便运算”是解本题的关键.22.(1)2x =(2)1x =-【分析】(1)先去括号,再移项,合并同类项,最后把未知数的系数化“1”即可;(2)先去分母,去括号,再移项,合并同类项,最后把未知数的系数化“1”即可.(1)解:8x-3(2x+1)=1去括号得:8631,x x --=整理得:24,x =解得: 2.x =(2)3157146x x ---=去分母得:()()33112257,x x --=-去括号得:93121014,x x --=-整理得:1,x -=解得: 1.x =-【点睛】本题考查的是一元一次方程的解法,掌握“解一元一次方程的步骤”是解本题的关键.23.(1)见解析(2)见解析(3)见解析,2.4cm【分析】(1)根据线段的定义即可画线段MA ,进而用刻度尺找出它的中点B 即可;(2)根据直线,射线定义即可画直线MN ,交直线l 于点C ,和射线CB ;(3)作MH ⊥L 于点H ,进而可以量出点M 到直线l 的距离.(1)如图,线段MA ,点B 即为所求;(2)如图,直线MN ,射线CB 即为所求;(3)点M 到直线l 的距离是MD 的长度为2.4cm .【点睛】本题考查了作图-复杂作图,点到直线的距离,解决本题的关键是掌握基本作图方法.24.2+218a ab -,38-【分析】先去括号、合并同类项化简,然后代入计算即可.【详解】解:-(a 2+6ab+9)+2(a 2+4ab-4.5)=-a 2-6ab-9+2a 2+8ab-9=a 2+2ab-18,当a=-2,b=6时,原式=(-2)2+2×(-2)×6-18=4-24-18=-38.【点睛】本题考查了整式的加减的化简求值,掌握去括号、合并同类项的运算法则是解题的关键.25.25,155FBD CBF ∠=︒∠=︒【分析】根据BF ⊥AE ,得到∠EBF=90°,从而得到∠FBD=∠EBF-∠DBE 的度数,根据邻补角的定义即可得到∠CBF 的度数.【详解】解:∵BF ⊥AE ,∴∠EBF=90°,∵∠DBE=65°,∴∠FBD=∠EBF-∠DBE=90°-65°=25°,∴∠CBF=180°-∠FBD=180°-25°=155°,答:∠FBD 的度数为25°,∠CBF 的度数为155°.【点睛】本题考查了垂线,邻补角,角的和差运算,掌握邻补角互补,角的和差运算是解题的关键.26.(1)11,4-(2)3s 或7s(3) 1.4k =时,定值为8;.【分析】(1)利用绝对值及偶次方的非负性,可求出m ,n 的值;(2)当运动时间为t 秒时,点P 对应的数是-4+t ,点Q 对应的数是11-2t ,根据PQ=6,即可得出关于t 的一元一次方程,解之即可得出结论;(3)由A ,B ,M ,N 四点间的关系可找出点A ,B 对应的数,当运动时间为t 秒时,点P 对应的数是-4-3t ,点Q 对应的数是11+4t ,点R 对应的数是6+5t ,利用数轴上两点间的距离公式可得出PQ ,AR 的长度,进而可得出PQ-kAR=15-5k+(7-5k )t ,再结合PQ-kAR 的值与它们的运动时间(t )无关,即可求出结论.(1)解:∵|m-11|+(n+4)2=0,∴m-11=0,n+4=0,∴m=11,n=-4.故答案为:11,-4;(2)当运动时间为t 秒时,点P 对应的数是-4+t ,点Q 对应的数是11-2t ,依题意得:|-4+t-(11-2t )|=6,解得:t=7或t=3,答:经过7秒或3秒后P ,Q 两点相距6个单位长度;(3)∵A ,B 为线段MN 上的两点,且NA=AB=BM ,()11415,MN =--=∴点A 对应的数是-4+5=1,点B 对应的数是11-5=6.当运动时间为t 秒时,点P 对应的数是-4-3t ,点Q 对应的数是11+4t ,点R 对应的数是6+5t ,∴PQ=(11+4t )-(-4-3t )=15+7t ,AR=(6+5t )-1=5+5t ,∴PQ-kAR=15+7t-k (5+5t )=15-5k+(7-5k )t ,当750k -=时,PQ-kAR 与它们的运动时间无关,解得k=1.4,此时PQ-kAR=155 1.48,-´=∴当k=1.4时,PQ-kAR 与它们的运动时间无关,为定值,该定值为8.27.(1)本趟公交车在起点站上车的人数是10人;(2)此趟公交车从起点到终点的总收入是90元.【分析】(1)根据下车的总人数减去上车的总人数得到起点站上车的人数即可;(2)从起点开始,把所有上车的人数相加,计算出和以后再乘以2即可求解.【详解】(1)(3+6+10+7+19)-(12+10+9+4+0)=45﹣35=10(人)答:本趟公交车在起点站上车的人数是10人.(2)由(1)知起点上车10人(10+12+10+9+4)×2=45×2=90(元)答:此趟公交车从起点到终点的总收入是90元.【点睛】本题考查了有理数加减运算的应用,读懂题意,正确列出算式是解决问题的关键. 28.(1)44°;(2)66°或110°;(3)33°或55°【分析】(1)设∠BOC=x,则∠AOC=2x,根据∠AOC的余角比∠BOC小42°列方程求解即可;(2)分两种情况:①当射线OD在∠AOC内部,②当射线OD在∠AOC外部,分别求出∠COD的度数即可;(3)根据(2)的结论以及角平分线的定义解答即可.【详解】解:(1)由射线OB平分∠AOC可得∠AOC=2∠BOC,∠AOB=∠BOC,设∠BOC=x,则∠AOC=2x,依题意列方程90°﹣2x=x﹣42°,解得:x=44°,即∠AOB=44°.(2)由(1)得,∠AOC=88°,①当射线OD在∠AOC内部时,如图,∵∠AOC=4∠AOD,∴∠AOD=22°,∴∠COD=∠AOC﹣∠AOD=66°;②当射线OD在∠AOC外部时,如图,由①可知∠AOD=22°,则∠COD=∠AOC+∠AOD=110°;故∠COD的度数为66°或110°;(3)∵OE平分∠AOD,∴∠AOE=1112AOD∠=︒,当射线OD在∠AOC内部时,如图,∴∠BOE=∠AOB﹣∠AOE=44°﹣11°=33°;当射线OD在∠AOC外部时,如图,∴∠BOE=∠AOB+∠AOE=44°+11°=55°.综上所述,∠BOE度数为33°或55°.故答案为:33°或55°。
浙教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,现将一块含有60°角的三角板的顶点放在直尺的一边上,若∠2=50°,那么∠1的度数为()A.50°B.60°C.70°D.80°2、下列计算:①()2=2;②=2;③(–2 )2=12;④(+)(–)=–1.其中正确的有()A.1个B.2个C.3个D.4个3、若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a﹣b)2;②(2a﹣b)(2a+b);③a(a+b).其中是完全对称式的是()A.③B.①③C.②③D.①4、下列式子中,不能用平方差公式计算的是()A.(m﹣n)(n﹣m)B.(x 2﹣y 2)(x 2+y 2)C.(﹣a﹣b)(a ﹣b)D.(a 2﹣b 2)(b 2+a 2)5、下列计算正确的是()A. B. C. D.6、下列运算正确的是( )A. B. C. D.7、如果方程组的解是方程3x+my=8的一个解,则m=()A.1B.2C.3D.48、下列生活中的现象,属于平移的是()A.升降电梯从底楼升到顶楼B.闹钟的钟摆的运动C.DVD片在光驱中运行D.秋天的树叶从树上随风飘落9、如图,已知AB∥CD,∠1=∠2,那么下列结论中不成立的是()A.∠3=∠2B.∠1=∠5C.∠3=∠5D.∠1+∠2+∠3=180°10、(﹣3)100×()100等于()A.﹣3B.3C.D.111、某微生物的直径用科学记数法表示为5035×10-9m.购连微生物的直径的原数可以是()A.0.000005035mB.0.00005035mC.503500000mD.0.05035m12、为满足学生业余时间读书,学校图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书,已知科普书的单价比文学书的单价高出一半,所以购进的文学书比科普书多4本.若设这种文学书的单价为x元,下列所列方程正确的是( )A. B. C. D.13、下列运算结果为的是()A. B. C. D.14、下列运算,正确的是()A.x 3·x 3 = 2x 3B.x 5÷x = x 5C.x 2 = x 5 - x 3D.(-x 2)3 = -x 615、把分式中的a、b都扩大2倍,则分式的值是( )A.扩大4倍B.扩大2倍C.缩小2倍D.不变二、填空题(共10题,共计30分)16、小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.17、a,b,c是直线,且a∥b,b∥c,则________ .18、在半径为5的中,弦AB=8,弦CD=6,且AB||CD,则AB与CD间的距离为________.19、已知,(为正整数),则________.20、如图,写出一个能判定AD∥BC的条件:________.21、若的乘积中不含项,则m的值是________.22、王胖子在扬州某小区经营特色长鱼面,生意火爆,开业前5天销售情况如下:第一天46碗,第二天54碗,第三天69碗,第四天62碗,第五天87碗,如果要清楚地反映王胖子的特色长鱼面在前5天的销售情况,不能选择________统计图.23、化简:=________.24、如图,E为△ABC边CA延长线上一点,过点E作ED∥BC.若∠BAC=70°,∠CED=50°,则∠B=________°.25、如图,在△ABC中,CD平分∠ACB,∠1=∠2=36°,则∠3=________°.三、解答题(共5题,共计25分)26、先化简,再求值:(+ )•,其中x= ﹣3.27、已知二元一次方程:①x+y=4;②2x-y=2;③x-2y=1.请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这个方程组的解.28、已知y=ax2+bx+c.当x=﹣1时,y=0;当x=2时,y=﹣3;当x=3时,y=0.求a、b、c的值.29、随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?30、先化简,再求值:,其中m满足一元二次方程.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、A5、D6、D7、B8、A9、D10、D11、A12、C13、C14、D15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
2021年七年级下册期末考试数学试题满分:120分时间:120分钟亲爱的同学:沉着应试,认真书写,祝你取得满意成绩!一、选择题(共10小题,满分30分)1.如图,在下列给出的条件中,不能判定AB //EF的是()A. ∠B=∠3B. ∠1=∠4C. ∠1=∠BD. ∠B∠2=180°2.若3x=6,3y=2,则3x+y等于()A. 3B. 4C. 8D. 123.下列多项式能用公式法分解因式的是()A. m2+4mnB. m2+n2C. m2-4mn+4n2D. m2-2mn-n24.关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值是()A. -B.C.D. -5.如果把分式中的x和y都扩大为原来的2倍,那么分式的值()A. 不变B. 缩小为原来的C. 扩大2倍D. 扩大4倍6.学校为了了解七年级700名学生上学期参加社会实践活动的时间,随机对该年级50名学生进行了调查.根据收集的数据绘制了下面的频数分布直方图,则以下说法正确的是( )A. 绘制该频数分布直方图时,选取的组距为10,分成的组数为5B. 这50人中大多数学生参加社会实践活动的时间是12~14hC. 这50人中有64%的学生参加社会实践活动时间不少于10hD. 可以估计全年级700人中参加社会实践活动时间为6~8h的学生大约为28人7.如图,两个直角三角形重叠在一起,将△ABC沿AB方向平移2cm得到△DEF,CH=2cm,EF=4cm,下列结论:①BH∥EF;②AD=BE;③BD=CH;④∠C=∠BHD;⑤阴影部分的面积为6cm2.其中正确的是()A. ①②③④⑤B. ②③④⑤C. ①②③⑤D. ①②④⑤8.如果(x+1)2=3,|y-1|=1,那么代数式x2+2x+y2-2y+5的值是()A. 7B. 9C. 13D. 149.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A. -=4B. -=4C. -=4D. -=410.五张如图所示的长为a,宽为b(a>b)的小长方形纸片,按如图的方式不重叠地放在矩形ABCD中,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足的关系式为()A. a=2bB. a=3bC. 3a=2bD. 2a=3b+1二、填空题(共8小题,满分24分)11.设,,则、的大小关系为________.12.若m2=n+2020,n2=m+2020(m≠n),那么代数式m3-2mn+n3的值______ .13.如图1,∠DEF=20°,将长方形纸片ABCD沿直线EF折叠成图2,再沿折痕为BF折叠成图3,则∠CFE的度数为。
浙教版初中数学七年级下册期末试卷一、选择题(本题共10小题,每小题3分,共30分)1.下列现象属于平移的是()A.足球在草地上沿一条直线向前滚动B.钟摆的摆动C.投影仪将图片投影转换到屏幕上D.水平运输带上砖块的运动2.计算(﹣3x3)2的结果正确的是()A.﹣6x5B.9x6C.9x5D.﹣6x63.如图,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠54.下列多项式中,能用公式法分解因式的是()A.a2﹣a B.a2+b2C.﹣a2+9b2D.a2+4ab﹣4b25.下列分式中是最简分式的是()A.B.C.D.6.一组数据的最大值是44,最小值是9,制作频数分布表时取组距为5,为了使数据不落在边界上,应将这组数据分成()A.6组B.7组C.8组D.9组7.方程3x+2y=18的正整数解的个数是()A.1B.2C.3D.48.如图,直线a∥b,点C,D分别在直线b,a上,AC⊥BC,CD平分∠ACB,若∠1=65°,则∠2的度数为()A.65°B.70°C.75°D.80°9.某校举行少先队“一日捐”活动,七、八年级学生各捐款3000元,八年级学生比七年级学生人均多捐2元,“…”,求七年级学生人数?解:设七年级学生有x人,则可得方程=2,题中用“…”表示缺失的条件,根据题意,缺失的条件是()A.七年级学生的人数比八年级学生的人数少20%B.七年级学生的人数比八年级学生的人数多20%C.八年级学生的人数比七年级学生的人数多20%D.八年级学生的人数比七年级学生的人数少20%10.已知(2018+m)(2016+m)=n,则代数式(2018+m)2+(2016+m)2的值为()A.2B.2n C.2n+2D.2n+4二、填空题(本题有6小题,每小题2分,共12分)11.当x=﹣2时,代数式的值是.12.某校为开展“每天运动一小时”活动,对80名学生各自最喜爱的一项体育活动进行调查,制成了如图所示的扇形统计图,则在被调查的学生中,最喜爱打羽毛球的学生人数是人.13.若关于x的多项式x2﹣4mx+16能用完全平方公式进行因式分解,则常数m的值为.14.如图,∠AOB的一边OA为平面镜,∠AOB=α,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是.(用含α的代数式表示)15.若关于x的分式方程=2﹣有增根,则常数a的值是.16.如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连结AB.∠ABM的平分线BC交PQ于点C,连结AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=∠DAE,则∠ACD的度数是.三、解答题(共8小题,满分58分)17.(6分)因式分解:(1)1﹣x2(2)3x3﹣6x2y+3xy218.(6分)先化简,再求值:x(x﹣1)﹣(x﹣2)2,其中x=﹣119.(6分)(1)解方程组(2)解分式方程:=﹣120.(6分)阅读材料并回答问题:我们可以用平面几何图形的面积来表示一些代数恒等式,如(a+b)(a+2b)=a2+3ab+2b2,就可以用图1的几何图形的面积表示.(1)请写出图2的几何图形的面积所表示的代数恒等式;(2)试画一个几何图形,使它的面积所表示的代数恒等式为(2a+b)(a+2b)=2a2+5ab+2b2.21.(6分)如图,直线a∥b∥c,直线AC与直线a交于点C,与直线b交于点A,过点A作直线AB交直线c于点B,若AP平分∠CAB,且∠1=30°,∠2=70°,求∠3的度数.22.(8分)人工智能(ArtificialIntelligence),英文缩写为AI.它是研究、开发用于模拟、延伸和扩展人的智能的理沦、方法、技术及应用系统的一门新的技术科学.某科学小组抽取了本校50名学生进行问卷调查:您是否了解人工智能(AI)的发展状况?A.非常了解B.了解C.基本了解D.不了解将调查结果制成了如图1所示的条形统计图.(1)回答“基本了解”的学生有名.请补全条形统计图;(请画在答题卷相对应的图上)(2)若该校共有600名学生,则估计该校全体学生中回答“非常了解”和“了解”的一共有多少人?(3)为进一步提高大家对人工智能的认识,科学小组举办了一次关于人工智能的宣传活动,活动结束后按同样的方式抽取了与第一次样本容量相等的学生数进行第二次问卷调查,将调查结果制成了如图2所示的扇形统计图,求前后两次调查中回答“非常了解”的学生人数的增长率.23.(10分)2018年,浙江省开始推广垃圾分类,分类垃圾桶成为我们生活中的必备工具.某环保公司接到A型垃圾桶和B型垃圾桶各1600只的订单,已知一只A型垃圾桶的成本比一只B型垃圾桶的成本多10元,这份订单总成本为176000元.(1)问该份订单中A型垃圾桶和B型垃圾桶的单只成本各是多少元?(2)该公司有甲、乙两个车间,甲车间生产A型垃圾桶,乙车间生产B型垃圾桶,已知乙车间每天生产的垃圾桶数是甲车间每天生产的垃圾桶数的2倍,这样乙车间比甲车间提前2天完成订单任务.问甲乙两个车间每天各生产多少只垃圾桶?24.(10分)如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF 交CD于点M,且∠FEM=∠FME.(1)判断直线AB与直线CD是否平行,并说明理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=50°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.D 2.B 3.A 4.C 5.A 6.C 7 .B 8.B 9.D 10.D 二、填空题(本题有6小题,每小题2分,共12分)11.12.28 13.±2 14.2α.15.5 16.27°三、解答题(共8小题,满分58分)17.解:(1)原式=(1+x)(1﹣x);(2)原式=3x(x2﹣2xy+y2)=3x(x﹣y)2.18.解:原式=x2﹣x﹣x2+4x﹣4=3x﹣4,当x=﹣1时,原式=﹣3﹣4=﹣7.19.解:(1),①×2﹣②得:3x=12,解得:x=4,把x=4代入②得:y=﹣1,则方程组的解为;(2)去分母得:2=﹣x﹣x+1,解得:x=﹣,经检验x=﹣是分式方程的解.20.解:(1)由图可得:(a+b)(3a+b)=3a2+4ab+b2;(2)根据题意得:.21.解:如图,∵a∥b,∠1=30°,∴∠DAC=∠1=30°,∵b∥c,∠2=70°,∴∠DAB=∠2=70°,∴∠CAB=∠CAD+∠DAB=30°+70°=100°,∵AP平分∠CAB,∴∠CAP=∠BAP=∠CAB=50°,∴∠3=∠CAP﹣∠CAD=50°﹣30°=20°.22.解:(1)回答“基本了解”的学生有50﹣(5+15+10)=20人,补全图形如下:(2)估计该校全体学生中回答“非常了解”和“了解”的一共有600×=240人;(3)第二次“非常了解”的人数为50×(1﹣56%﹣12%﹣8%)=12人,则前后两次调查中回答“非常了解”的学生人数的增长率×100%=14%.23.解:(1)设B型垃圾桶的成本为x元/只,则A型垃圾桶的成本为(x+10)元/只,根据题意得:1600x+1600(x+10)=176000,解得:x=50,则x+10=50+10=60,答:该份订单中A型垃圾桶单只成本是60元,B型垃圾桶单只成本是50元,(2)设甲车间每天生产y只垃圾桶,则乙车间每天生产2y只垃圾桶,根据题意得:﹣=2,解得:y=400,经检验:y=400是原方程的解且符合题意,则2y=800,答:甲车间每天生产400只垃圾桶,则乙车间每天生产800只垃圾桶.24.解:(1)∵EM平分∠AEF∴∠AEF=∠FME,又∵∠FEM=∠FME,∴∠AEF=∠FEM,∴AB∥CD;(2)①如图2,∵AB∥CD,β=50°∴∠AEG=130°,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠AEG=65°,又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣65°=25°,即α=25°;②分两种情况讨论:如图2,当点G在点F的右侧时,α=.证明:∵AB∥CD,∴∠AEG=180°﹣β,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠AEG=(180°﹣β),又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣∠MEH=90°﹣(180°﹣β)=,即α=;如图3,当点G在点F的左侧时,α=90°﹣.证明:∵AB∥CD,∴∠AEG=∠EGF=β,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠MEF﹣∠HEF=(∠AEF﹣∠FEG)=∠AEG=β,又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣∠MEH,即α=90°﹣.。
浙教版七年级上册数学期末考试试题一、单选题1.在0,-1,2,-3这四个数中,最小的数是()A .-3B .2C .-1D .02.计算2a a -的结果是()A .1B .2C .aD .2a3.将390000用科学记数法表示应为()A .60.3910⨯B .53.910⨯C .43910⨯D .53.94.如果2x =是关于x 的方程46x a -=的解,那么a 的值是()A .1B .2C .1-D .2-5.将三角尺与直尺按如图所示摆放,下列关于∠α与∠β之间的关系一定正确的是()A .∠α=∠βB .∠α=12∠βC .∠α+∠β=90°D .∠α+∠β=180°6.下列选项中的量不能用“0.9a ”表示的是()A .边长为a ,且这条边上的高为0.9的三角形的面积B .原价为a 元/千克的商品打九折后的售价C .以0.9千米/小时的速度匀速行驶a 小时所经过的路程D .一本书共a 页,看了整本书的110后剩下的页数7.如图,点C ,D ,E 是线段AB 上的三个点,下列能表示线段CE 的式子为()A .CE CD BD =+B .CE BC CD=-C .CE AD BD AC =+-D .CE AE BC AB=+-8.若x y =,那么下列等式一定成立的式()A .11x y -=-B .3344x y =-C .1132x y =D .1122x y -=+9.有A ,B 两种卡片各4张,A 卡片正、反两面分别写着1和0,B 卡片正、反两面分别写着2和0,甲、乙两人从中各拿走4张卡片并摆放在桌上,发现各自的4张卡片向上一面的数字和相等:两人各自将所有卡片另一面朝上,则甲的4张卡片数字和减小了1,乙的4张卡片数字和增加了1,则甲拿取A 卡片的数量为()A .1张B .2张C .3张D .4张10.如图所示,该正方体的展开图为()A .B .C .D .二、填空题11.若2x y 与13m x y -是同类项,则m 的值为______.12.某检修小组从A 地出发,在东西方向的马路上检修线路,若规定向东行驶为正,向西行驶为负,一天中五次行驶记录如下(单位:km ):7+,9-,8+,6-,5-.则收工时检修小组在A 地______边______km .13.如图,点C 是线段AB 的中点,则线段AC 与线段AB 满足数量关系______.14.若32m n +=,则621m n +-=______.15.关于x 的一元一次方程224a x m +﹣=的解为x =1,则a+m 的值为_____.16.某眼镜厂车间有28名工人,每人每天可生产镜架40个或者镜片60片,已知一个镜架配两片镜片,为使每天生产的镜架和镜片刚好配套,应安排生产镜架和镜片的工人各多少名?若安排x 名工人生产镜片,则可列方程:______.17.对于有理数a ,b ,n ,若1a n b n -+-=,则称b 是a 关于n 的“相关数”,例如,22321-+-=,则3是2关于2的“相关数”.若1x 是x 关于1的“相关数”,2x 是1x 关于2的“相关数”,…,4x 是3x 关于4的“相关数”.则123x x x ++=______.(用含x 的式子表示)18.如图,把一张长方形的纸片沿着EF 折叠,点C 、D 分别落在M 、N 的位置,且∠AEF =23∠DEF ,则∠NEA =_____.三、解答题19.计算:(1)()24--;(2)()2122÷-.20.解方程:(1)318x -=;(2)12123x x +--=.21.先化简,再求值:()()222124x x x -+--,其中3x =.22.如图,在同一平面内有一条直线l 和三点A ,B ,C .按要求完成下列作图.(1)画线段AC ;(2)画射线AB 交直线l 于点D ;(3)在直线l 上找一点P ,使得PB PC +最短.(保留作图痕迹)23.已知图中有A、B、C、D四个点,现已画出A、B、C三个点,已知D点位于A的北偏东30°方向,位于B的北偏西45°方向上.(1)试在图中确定点D的位置;(2)连接AB,并在AB上求作一点O,使点O到C、D两点的距离之和最小;(3)第(2)小题画图的依据是.24.一家游泳馆出售会员证,每张会员证150元,只限本人使用.凭证购入场券每张10元,不凭证购入场券每张20元.请依据以上情境,提出一个问题并解决.(根据提出问题的层次,给不同的得分.)提出的问题是:___________解决过程如下:___________25.观察下面三行数:-,64,…;①2-,4,8-,16,32-,66,…;②0,6,6-,18,30-,32,…;③1-,2,4-,8,16(1)第①行第8个数为______;第②行第8个数为______;第③行第8个数为______.(2)是否存在这样一列数,使三个数的和为322?若存在,请写出这3个数;若不存在,请说明理由.26.小王和小李每天从A地到B地上班,小王坐公交车以40km/h的速度匀速行驶,小李开汽车以50km/h的速度匀速行驶.(1)若他们同时从A地出发,15分钟后,两人相距______km;(2)假设途中设有9个站点1P,2P,…,9P公交车在每个站点都停靠0.5分钟.①若两车同时从A地出发,则汽车比公交车早10.5分钟到达.求A,B两地的距离.②若每相邻两个站点间(包含起点站和终点站)的距离相等,小王4:30坐公交车从A地前往B 地,8分钟后小李开汽车也从A 地前往B 地,求小李追上小王的时刻.27.如图,已知ABP ∠与CBP ∠互余,32CBD ︒∠=,BP 平分ABD ∠.求ABP ∠的度数.参考答案1.A【分析】根据有理数的大小比较法则即可得.【详解】解:有理数的大小比较法则:正数大于0,负数小于0,负数绝对值大的反而小.则3102-<-<<,即在这四个数中,最小的数是3-,故选:A .【点睛】本题考查了有理数的大小比较,熟练掌握有理数的大小比较法则是解题关键.2.C【分析】根据合并同类项法则,即可求解.【详解】解:2a a a -=.故选:C【点睛】本题主要考查了整式的减法运算,熟练掌握合并同类项法则是解题的关键.3.B【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将390000用科学记数法表示应为3.9×105,故选:B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.B【分析】把x=2代入方程4x-a=6得出8-a=6,再求出方程的解即可.【详解】解:把x=2代入方程4x-a=6得:8-a=6,解得:a=2,故选:B.【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.5.C【分析】如果两个角的和等于90°(直角),就说这两个角互为余角,由题意可知∠α与∠β互余,即∠α+∠β=90°.【详解】解:∠α+∠β=180°﹣90°=90°,故选:C.【点睛】本题主要考查了余角,如果两个角的和等于90°(直角),就说这两个角互为余角.6.A【分析】根据题意,列出代数式,即可求解.【详解】解:A、边长为a,且这条边上的高为0.9的三角形的面积为10.90.452a a⨯=,故本选项符合题意;B、原价为a元/千克的商品打九折后的售价为0.9a元,故本选项不符合题意;C、以0.9千米/小时的速度匀速行驶a小时所经过的路程为0.9a千米,故本选项不符合题意;D、一本书共a页,看了整本书的110后剩下的页数为110.910a a⎛⎫-=⎪⎝⎭页,故本选项不符合题意;故选:A.【点睛】本题主要考查了列代数式,明确题意,准确得到数量关系是解题的关键.7.D【分析】根据线段和差的计算方法逐项进行计算,即可得出答案.【详解】解:A 、CE CD DE =+,故本选项错误,不符合题意;B 、CE BC BE =-,故本选项错误,不符合题意;C 、CE AD BD AC BE =+--,故本选项错误,不符合题意;D 、AE BC AB AE BE CE AB AB CE AB CE +-=++-=+-=,故本选项正确,符合题意;故选:D【点睛】本题主要考查了线段的和差,熟练掌握线段的和差算的方法进行计算是解决本题的关键.8.A【分析】根据等式的基本性质,逐项判断即可求解.【详解】解:A 、若x y =,则x y -=-,所以11x y -=-,故本选项正确,符合题意;B 、若x y =,则3344x y =,故本选项错误,不符合题意;C 、若x y =,则1133x y =,故本选项错误,不符合题意;D 、若x y =,则1122x y -=-,故本选项错误,不符合题意;故选:A【点睛】本题主要考查了等式的基本性质,熟练掌握等式的基本性质是解题的关键.9.C【分析】设开始时甲向上一面的数字之和为a ,根据题意有4a=12,即a=3,再根据数字确定满足条件的甲朝上的数字的可能情况,即可作答.【详解】解:设开始时甲向上一面的数字之和为a ,∵甲、乙正面朝上的数字之和相等,∴此时乙向上一面的数字之和也为a ,∵翻面之后,朝上一面的数字之和甲减小1,乙增加1,∴此时甲向上一面的数字之和为a-1,乙向上一面的数字之和为a+1,则总的面上数之和为:a+a+a-1+a+1=4a ,根据A 、B 两种卡片可知8中卡片的两面数字之和为:1+1+1+1+2+2+2+2=12,即4a=12,即a=3,∴甲一面朝上的数字之和为3,∴甲朝上的可能是1,1,1,0或者2,1,0,0,则甲朝下的可能是0,0,0,2或者0,0,1,1,综上可知,甲拿取A卡片的数量为3张.故选:C.【点睛】本题考查了有理数的运算,通过将12进行拆分来进行分配是解答本题的关键.10.D【分析】根据正方体的展开与折叠,正方体展开图的形状进行判断即可.【详解】解:根据正方体表面展开图的“相对的面”的判断方法可知,选项B中面“v”与“=”是对面,因此选项B不符合题意;再根据上面“v”符号开口,可以判断选项D符合题意;选项A、C不符合题意;故选:D.【点睛】本题考查几何体的展开图,掌握正方体展开图的特征是正确判断的前提.11.3【分析】根据同类项的定义解决此题.【详解】解:由题意得,2=m−1.∴m=3.故答案为:3.【点睛】本题主要考查同类项,如果两个单项式所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.熟练掌握同类项的定义是解决本题的关键.12.西5【分析】将五次行驶的记录数据相加即可得到答案.【详解】∵798655-+--=-,∴在A地西边5千米处.故答案为:西;5.【点睛】本题考查了有理数的加减法,能够将实际问题和有理数的加减相结合,并且能够准确计算出结果是解决本题的关键.13.12 AC AB=【分析】根据线段中点的定义可得答案.【详解】解:∵点C是线段AB的中点,∴12AC AB=.故答案为:12AC AB =【点睛】本题主要考查线段中点的定义,熟练掌握线段的中点是线段上一点,到线段两段距离相等的点是解题的关键.14.3【分析】根据32m n +=,可得624m n +=,再代入,即可求解.【详解】解:∵32m n +=,∴()23624m n m n +=+=,∴621413m n +-=-=.故答案为:3【点睛】本题主要考查了求代数式的值,利用整体代入思想解答是解题的关键.15.5.【分析】先根据一元一次方程的定义得出a ﹣2=1,求出a ,再把x =1代入方程2x+m =4得出2+m =4,求出方程的解即可.【详解】∵方程224a x m +﹣=是关于x 的一元一次方程,∴a ﹣2=1,解得:a =3,把x =1代入一元一次方程2x+m =4得:2+m =4,解得:m =2,∴a+m =3+2=5,故答案为:5.【点睛】本题考查了一元一次方程的定义,解一元一次方程和一元一次方程的解,能求出a 、m 的值是解此题的关键.16.60x=2×40(28-x )【分析】设安排x 名工人生产镜片,则(28-x )人生产镜架,根据2个镜片和1个镜架恰好配一套,列方程即可.【详解】解:设安排x 名工人生产镜片,则安排(28-x )名工人生产镜架,根据题意得:由题意得,60x=2×40(28-x ).故答案为:60x=2×40(28-x )【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系列方程.17.9﹣3|x﹣1|【分析】先读懂“相关数”的定义,列出对应等式,再根据等式分析各个数的取值范围,去绝对值,进而求出结果.【详解】解:依题意有:|x1﹣1|+|x﹣1|=1,①|x2﹣2|+|x1﹣2|=1,②|x3﹣3|+|x2﹣3|=1,③|x4﹣4|+|x3﹣4|=1,④由①可知0≤x,x1≤2,若否,则①不成立,由②可知1≤x1,x2≤3,若否,则②不成立,同理可知2≤x2,x3≤4,3≤x3,x4≤5,∴x1﹣1+|x﹣1|=1,⑤x2﹣2+2﹣x1=1,⑥x3﹣3+3﹣x2=1,⑦3×⑤+2×⑥+⑦,得x1+x2+x3﹣3+3|x﹣1|=6,∴x1+x2+x3=9﹣3|x﹣1|.故答案为:9﹣3|x﹣1|.【点睛】本题考查绝对值和新定义问题.解题的关键在于读懂题意,列出等式,根据等式判断出五个数的取值范围,进而去绝对值符号,最后得出结果.注意可以取特殊值,如x=1或x=2,来验证计算的结果是否正确.18.36°.【分析】由于∠AEF=23∠DEF,根据平角的定义,可求∠DEF,由折叠的性质可得∠FEN=∠DEF,再根据角的和差,即可求得答案.【详解】∵∠AEF=23∠DEF,∠AEF+∠DEF=180°,∴∠DEF=108°,由折叠可得∠FEN=∠DEF=108°,∴∠NEA=108°+108°﹣180°=36°.故答案为:36°.【点睛】此题考查了折叠的性质、矩形的性质及平角的定义,解题的关键是注意数形结合思想的应用,难度一般.19.(1)6(2)3【分析】(1)将有理数的减法转化为有理数的加法再计算;(2)先算乘方,再算有理数的除法.(1)解:()24246--=+=;(2)解:()21221243÷-=÷=.【点睛】本题考查了有理数的加法与除法运算,熟练掌握运算法则是解本题的关键.20.(1)x=3(2)x=-1【分析】(1)按解一元一次方程的一般步骤求解即可;(2)按解一元一次方程的一般步骤求解即可.(1)解:由原方程移项、合并同类项,得3x=9,解得x=3,所以,原方程的解为x=3;(2)解:去分母,得3(x+1)-6=2(x-2),去括号,得3x+3-6=2x-4,移项、合并同类项,得x=-1,所以,原方程的解为x=-1.【点睛】本题考查了一元一次方程解法.解一元一次方程的一般步骤是:去分母,去括号,移项,合并同类项,系数化为1.21.2x 2;18【分析】先把整式去括号、合并同类项化简后,再把x =3代入计算即可.【详解】解:2(x 2﹣2x+1)﹣(2﹣4x )=2x 2﹣4x+2﹣2+4x=2x2,当x=3时,2x2=2×32=18.【点睛】本题考查了整式的加减—化简求值,掌握去括号、合并同类项的运算法则是解题的关键.22.(1)见解析(2)见解析(3)见解析【分析】(1)根据线段的定义,画出对应的几何图形,即可求解;(2)根据射线的定义,画出对应的几何图形,即可求解;(3)连接BC交直线于P点,根据两点之间线段最短可判断P点满足条件.(1)解∶如图,线段AC即为所求;(2)解∶如图,射线AB,点D即为所求;(3)解∶连接BC交直线l于点P,则点P即为所求,如图.【点睛】本题主要考查了直线、射线、线段的定义,线段的性质,熟练掌握直线是两端都没有端点、可以向两端无限延伸、不可测量长度的线;射线是只有一个端点,它从一个端点向另一边无限延长不可测量长度的线;直线上两个点和它们之间的部分叫做线段;两点之间,线段最短是解题的关键.23.(1)见解析;(2)见解析;(3)两点之间线段最短【分析】(1)根据方向角的定义解决问题即可.(2)连接CD交AB于点O,点O即为所求.(3)根据两点之间线段最短解决问题.【详解】(1)如图,点D即为所求.(2)如图,点O即为所求.(3)第(2)小题画图的依据是两点之间线段最短.故答案为:两点之间线段最短.【点睛】本题考查作图-应用与设计,方向角等知识,解题的关键是灵活运用所学知识解决问题.24.见解析;【分析】可提出问题:游泳多少次,购会员证与不购证付一样的钱?根据提出的问题解答即可.【详解】解:提出的问题是:游泳多少次,购会员证与不购证付一样的钱?(答案不唯一),解决过程如下:设游泳x次,购会员证与不购证付一样的钱,根据题意得:150+10x=20x,解得:x=15.答:游泳15次,购会员证与不购证付一样的钱.【点睛】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.25.(1)256,258,128;(2)不存在,理由见解析【分析】(1)①后一个数是前一个数的−2倍,②的数的规律是在①每个对应数加2,③后一个数是前一个数的−2倍,由此可求解;(2)通过观察可得规律:①的第n个数是(−2)n,②的第n个数是(−2)n+2,③的第n 个数是(−1)n2n−1,再由(−2)n+(−2)n+2+(−1)n×2n−1=322,求n即可.(1)解:(1)−2,4,−8,16,−32,64,…,第n个数为(-2)n,当n=8时,(-2)8=256,∴第8个数是256,②的数的规律是在①每个对应数加2∴②的第8个数是256+2=258,③的第n个数为(−1)n2n−1,当n=8时,(−1)8×27=27=128,∴③的第8个数是128,故答案为:256,258,128;(2)不存在一列数,使三个数的和为322,理由如下:①的第n个数是(−2)n,②的第n个数是(−2)n+2,③的第n个数是(−1)n2n−1,由题意得,(−2)n+(−2)n+2+(−1)n×2n−1=322,设n为偶数,∴4×2n−1+2n−1=5×2n−1=320,∴2n−1=64,∴n=7,与n为偶数互相矛盾,设n为奇数,∴-4×2n−1-2n−1=-5×2n−1=320,此方程无解,∴不存在一列数,使三个数的和为322.【点睛】本题考查数字的变化规律,通过观察所给的式子,找到式子中各数间的规律是解题的关键.26.(1)2.5km(2)①20km;②小李追上小王的时刻为4:48.【分析】(1)先求出小王和小李在15分钟内的路程,然后求得两个间的距离;(2)①先设A、B两地相距x千米,然后分别用含有x的式子表示两人从A地到B地的时间,再结合“汽车比公交车早10.5分钟到达”列出方程求解,即可得到A、B两地间的距离;②先由①得到每两个站点间的距离,然后计算得到公交车在每两个站点间的时间,进而初步判断8分钟后公交车的位置,然后设时间为m分钟,再分段进行讨论即可.(1)解:15分钟=0.25小时,∴小王的路程为40×0.25=10(km),小李的路程为50×0.25=12.5(km ),∴两人间的距离为12.5﹣10=2.5(km ),故答案为:2.5.(2)解:①设两地距离为x 千米,则小李的从A 地到B 地的时间为x 50小时,小王的时间为0.594060x ⎛⎫+⨯ ⎪⎝⎭小时,∵汽车比公交车早10.5分钟到达,∴0.510.5940605060x x ⎛⎫+⨯-= ⎪⎝⎭,解得:x =20,∴A 、B 两地相距20千米.②由①得,A 、B 两地相距20千米,∵每两个站点间的距离相等,∴每两个站点间的距离为20÷10=2(千米),∴小王经过两个站点间的时间为2÷40=0.05小时=3分钟,∵3+0.5+3+0.5=7<8,∴8分钟时,公交车在P 2与P 3之间,设小李经过m 分钟追上小王,当小李在P 2与P 3之间追上小王,即m≤2时,8150406060mm +-⨯=⨯,解得:m =28(舍);当小李在P 3与P 4之间追上小王,即2.5<m≤5.5时,8 1.550406060mm +-⨯=⨯,解得:m =26(舍);当小李在P 4与P 5之间追上小王,即6<m≤9时,8250406060m m +-⨯=⨯,解得:m =24(舍);当小李在P 5与P 6之间追上小王,即9.5<m≤12.5时,8 2.550406060m m +-⨯=⨯,解得:m =22(舍);当小李在P 6与P 7之间追上小王,即13<m≤16时,8350406060m m +-⨯=⨯,解得:m =20(舍);当小李在P 7与P 8之间追上小王,即16.5<m≤19.5时,8 3.550406060m m +-⨯=⨯,解得:m =18;∴经过18分钟,小李追上小王,此时的时刻为4:48.【点睛】本题考查了一元一次方程的应用,解题的关键是会利用“路程=速度×时间”进行相关时间和路程的表示和会将时间单位进行转化.27.61︒【分析】设ABP x ∠=,根据已知条件,列出方程求解即可.【详解】设ABP x∠=因为ABP ∠与CBP ∠互余,所以90CBP x∠=︒-因为BP 平分ABD ∠,且32CBD ︒∠=,所以CBD CBP ABP∠+∠=∠即:3290x x︒+︒-=解得:61x =︒。
浙教版七年级上册数学期末考试试题一、选择题。
(每小题只有一个答案正确)1.-2019的相反数是()A .2019B .-2019C .12019D .12019-2.为庆祝中华人民共和国成立70周年,我国举行了国庆大阅兵,受阅官兵约为15000人,将15000用科学记数法表示为()A ..41510⨯B .31510⨯C .41.5D .50.1510⨯3.下列各图中,∠1和∠2是对顶角的是()A .B .C .D .4.在下列五个数中:,③29,④0171771…(每两个1之间依次多一个7),⑤2π,是无理数的是()A .①③⑤B .①②⑤C .①④⑤D .①⑤5.下列四组变形中,变形正确的是()A .由126x =,得13x =B .由230x -=得2330x -+=C .由57x =得35x =D .由570x +=得57x =-6.如图,OE AB ⊥,OC 平分BOD ∠,则与COD ∠互补的角是()A .AOD ∠B .BOD ∠C .EOC ∠D .AOC ∠7最接近的整数是()A .4B .5C .6D .78.小明参加跳远比赛,他从地面踏板P 处起跳落到沙坑中,两脚后跟与沙坑的接触点分别为A ,B ,小明未站稳,一只手撑到沙坑C 点,则跳远成绩测量正确的图是()A .B .C .D .9.我们知道实数和数轴上的点一一对应,如图,正方形的边长为1,点P 是半圆与数轴的交点,则点P 对应的实数为()AB 1C .2.4D .2.510.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A .9B .63C .75D .495二、填空题11.4的算术平方根是_____.12.已知||2020a =,则a =______.13.如果∠α=35°,那么∠α的余角等于__________°.14.如图,一个酒瓶的容积为500毫升,瓶子内还剩有一些黄酒.当瓶子正放时,瓶内黄酒的高度为12厘米,倒放时,空余部分的高度为8厘米,则瓶子的底面积为______厘米2.(1毫升=1立方厘米)15.如图,把六张形状大小完全相同的小长方形卡片(如图1)不重复地放在一个底面为长方形的盒子底部,其中小长方形卡片较短边长为a 厘米,盒子底面长为10厘米,宽为5a 厘米,盒子底面中未被卡片覆盖的部分用阴影A ,B 表示,若阴影A 和B 的面积相等,则a 的值为______厘米.16.如图,长方形ABCD 是某个体育馆(四面是墙)的平面图,长102AD =米,宽66AB =米.小明父子两人都沿着体育馆外围跑步,其中小明从A 点沿A B C D ---方向跑,同时父亲从C 点出发,已知小明父亲的速度为6米/秒,小明的速度为4米/秒,若跑步过程中两人都没有回头跑,则经过______秒后,父亲第一次看到小明.三、解答题17.计算:(1)2|5|--(2)()231448⎛⎫-⨯- ⎪⎝⎭18.解方程:(1)273x +=-(2)3414x x -=+19.化简求值:()()22343a ab a ab ab ---+,其中5a =,5b =-.20.一家商店将某种服装按成本价提高30%后标价,又以8折优惠卖出,结果每件仍获利18元,这种服装每件的成本为多少元?21.已知点C 是线段AB 上一点,13AC AB =.(1)若60AB =,求BC 的长;(2)若AB a =,D 是AC 的中点,E 是BC 的中点,请用含a 的代数式表示DE 的长,并说明理由.22.如图,某田径场的最内圈半圆弯道半径为r 米,每条直道长a 米,且每条跑道宽1米.(共6条跑道,图中只画了最里面的3条.)(1)求最内圈的周长(用含有a ,r 的代数式表示).(2)小明在第1道,小刚在第3道,如果他们都沿着各自跑道的内线跑一圈,则小刚比小明多跑了几米?(精确到0.1米)23.定义:如果一个一元一次方程的一次项系数与常数项的差刚好是这个方程的解,则称这个方程为妙解方程.例如:方程240x +=中,242-=-,方程的解为2x =-,则方程240x +=为妙解方程.请根据上述定义解答下列问题:(1)方程230x +=是妙解方程吗?试说明理由.(2)已知关于x 的一元一次方程30x m +=是妙解方程.求m 的值.(3)已知关于x 的一元一次方程20x a b +-=是妙解方程,并且它的解是x b =.求代数式ab 的值.24.如图,已知120MON ∠=︒,射线OA 从ON 的位置开始绕点O 按顺时针方向旋转,速度是每秒4︒,同时射线OB 从OM 的位置开始绕点O 按逆时针方向旋转,速度是每秒6︒,设旋转时间为t 秒()020t .(1)用含t 的代数式表示NOA ∠和MOB ∠的度数;(2)在旋转过程中,当AOB ∠等于60︒时,求t 的值;(3)在旋转过程中是否存在这样的t ,使得射线OB 恰好是图中某个角的平分线?如果存在,请求出t 的值;如果不存在,请说明理由.参考答案1.A【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】解:-2019的相反数是2019.故选A .【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2.A【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】15000=1.5×104,故选:A【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.B【分析】根据对顶角的定义对各图形判断即可.【详解】解:A、∠1和∠2不是对顶角,故选项错误;B、∠1和∠2是对顶角,故选项正确;C、∠1和∠2不是对顶角,故选项错误;D、∠1和∠2不是对顶角,故选项错误.故选B.【点睛】本题考查了对顶角的定义,是基础题,熟记概念并准确识图是解题的关键.4.C【分析】根据无理数是无限不循环小数,可得答案.【详解】2,是有理数;29是分数,是有理数;0171771…(每两个1之间依次多一个7)、2π是无理数.故选:C【点睛】本题考查了无理数,无理数是无限不循环小数,注意带根号的数不一定是无理数.5.D【分析】利用等式的性质对每个等式进行变形,即可找出答案.【详解】A、根据等式性质2,126x=两边都乘6得x=12,所以A不正确;B、根据等式性质1,2x-3=0两边都加3得2x-3+3=3,所以B不正确;C、根据等式性质2,5x=7两边都除以5得x=75,所以C不正确;D、根据等式性质1,5x+7=0两边同时减7得5x=-7;所以D正确.故选:D【点睛】解决本题的关键是利用等式的性质对每个式子进行变形,然后找出答案.另外本题也可以运用排除法.6.D【分析】根据角平分线的定义得∠COD=∠BOC,根据平角的定义可得∠BOC+∠AOC=180°,即可判断.【详解】∵OC平分BOD∠∴∠COD=∠BOC∵∠BOC+∠AOC=180°∴∠COD+∠AOC=180°∴∠COD与∠AOC互补故选:D【点睛】本题考查的是补角的定义,掌握“互补两角之和为180°”是关键.7.B【解析】的近似值,最后得出解答:解:∵4<7<9,∴2<3,∴4<6,即4<6,最接近的整数是5;故选B.8.D【分析】根据跳远成绩为距离起跳线最近的点到起跳线的距离即可解答.【详解】根据跳远成绩为距离起跳线最近的点到起跳线的距离,过点C作CP⊥直线l,垂足为P,CP的长度为跳远成绩.故选:D【点睛】本题考查了垂线段最短的性质,熟悉测量跳远成绩的方法是解题的关键.9.B【分析】根据勾股定理求出正方形的对角线的长度,即为1到点P的长度,再加上1即为P点对应的数.【详解】根据勾股定理得:正方形的对角线的长度,则点P1故选:B【点睛】本题考查的是在数轴上表示实数,能根据勾股定理求出正方形的对角线长度(即半径)是关键.10.D【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数.【详解】孩子自出生后的天数是1×73+3×72+0×7+5=495故选:D【点睛】本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.11.2.【详解】试题分析:∵224=,∴4算术平方根为2.故答案为2.考点:算术平方根.±12.2020【分析】根据绝对值的定义解答即可.【详解】a=∵||2020±∴a=2020±故答案为:2020【点睛】本题考查的是绝对值的定义,掌握绝对值的定义是关键.13.55【分析】根据互为余角的两个角的和等于90°列式计算即可得解.【详解】∵∠α=35°,∴∠α的余角等于90°﹣35°=55°,故答案为:55.【点睛】本题考查了余角,熟记互为余角的两个角的和等于90°是解题的关键.14.25【分析】设瓶子的底面积为xcm2,根据瓶子中的液体体积相同列出方程,求出方程的解即可.【详解】设瓶子底面积为xcm2,根据题意得:12x=500-8x,解得:x=25故答案为:25【点睛】此题考查了一元一次方程的应用,弄清题意,找到等量关系是解答本题的关键.15.5 3【分析】根据图形表示出A、B的长与宽,再根据阴影A和B的面积相等,列方程解答即可.【详解】根据题意得:阴影A的长为3a厘米,宽为2a厘米;阴影B的长为(10-3a)厘米,宽为5a-3a=2a 厘米∵阴影A和B的面积相等∴3a=10-3aa=5 3故答案为:5 3【点睛】此题考查了一元一次方程的应用,弄清题意,表示出阴影部分的长和宽是解本题的关键.16.16.5或39【分析】父亲看到小明,则父亲和小明在一条直线时,分父亲从C点沿C D A B---方向跑和沿C B A D---方向跑两种情况讨论.【详解】①父亲从C点沿C D A B---方向跑当父亲跑到A点时需:(102+66)÷6=28秒,此时小明所跑路程:28×4=112>66当父亲跑到B点时需(102+66+102)÷6=39秒,此时小明所跑路程:4×39=156<102+66,故小明在线段BC上,父亲即可看见小明.②父亲沿C B A D---方向跑小明跑过B点需:66÷4=16.5秒,此时父亲所跑路程为:16.5×6=99<102,故父亲在线段CB上,即可看见小明.∴经过16.5或39秒后,父亲第一次看到小明.故答案为:16.5或39【点睛】本题主要考查学生的分析问题的能力及理解能力,要对父亲的运动方向分类讨论是关键.17.(1)-3;(2)10【分析】(1)根据绝对值的定义去掉绝对值符号,按有理数的运算法则计算即可.(2)运用乘法的分配率计算.【详解】(1)原式253=-=-(2)原式3116180641=⨯-⨯=【点睛】本题考查的是有理数的运算,掌握有理数的运算法则及绝对值、乘法的定义是关键.18.(1)5x =-;(2)8x =-【分析】(1)按照解一元一次方程的步骤:移项、合并同类项、系数化为1解答即可.(2)按照解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1解答即可.【详解】(1)237x =--得5x =-.(2)去分母得:()3441x x -=+3444x x -=+,解得8x =-【点睛】本题考查的是解一元一次方程,易错点是移项忘记变号,去分母时有的项漏乘.19.22a ,50【分析】去括号后合并同类项即可化简,再把数值代入运算即可.【详解】原式22343a ab a ab ab =--++.22a =当5a =时,原式22550=⨯=.【点睛】本题考查的是整式的加减-化简求值,能正确的去括号并合并同类项是关键.20.每件服装的成本为450元【分析】设这种服装每件的成本为x 元,根据“成本价×(1+30%)×0.8-成本价=利润”列出方程,解方程就可以求出成本价.【详解】设每件服装的成本为x 元,则由题意可得:()0.8130%18x x ⨯+-=解得450x =(元)答:每件服装的成本为450元.【点睛】本题考查的是一元一次方程的应用,此类题目贴近生活,有利于培养学生应用数学解决生活中实际问题的能力.解题关键是明确提价或打折时的单位“1”.21.(1)40;(2)12a ,见解析【分析】(1)根据题目中的已知求出AC 的长,再求BC 的长即可.(2)根据中点的定义可得CD=12AC ,CE=12BC ,利用线段的加减可得DE 与AB 的关系,即可求解.【详解】(1)∵60AB =,13AC AB =,∴1203AC AB ==∴602040BC AB AC =-=-=(2)∵D 是AC 的中点,E 是BC 的中点,∴12DC AC =,12CE BC =,∴()1111122222DE DC CE AC BC AC BC AB a =+=+=+==【点睛】本题考查的是线段的加减,掌握线段中点的定义并能根据图形找到数量关系是关键.22.(1)22r a π+;(2)小刚比小明多跑了12.6米【分析】(1)两个弯道合起来是一个圆,求出圆的周长,再加上两个直道的长度即可.(2)求出第3道的周长与第1道的周长比较即可.【详解】(1)根据题意得:最内圈的周长为:22r aπ+(2)()()22222r a r a ππ++-+⎡⎤⎣⎦,4π=4 3.1412.6≈⨯≈(米)答:小刚比小明多跑了12.6米.【点睛】本题考查的是整式的加减,能正确的理解图形并列出代数式是关键.23.(1)不是,见解析;(2)92m =;(3)4ab =-【分析】(1)求出方程的解并根据妙解方程的定义检验即可.(2)根据妙解方程的定义确定方程的解,代入原方程即可.(3)根据妙解方程的定义确定方程的解,代入原方程求出a 的值,再求出b 的值,即可求得ab 的值.【详解】(1)230x +=中,一次项系数与常数项的差为:231-=-,方程的解为32x =-,∵312-≠-,∴方程230x +=不是妙解方程.(2)∵30x m +=是妙解方程,∴它的解是3x m =-.∴()330m m -+=,解得92m =.(3)∵20x a b +-=是妙解方程,∴它的解是()2x a b =--.∴()2a b b --=,解得2a =,代入方程得:220b b +-=,得2b =-.∴4ab =-.【点睛】本题考查的是新定义,是中考热点题型,关键是能抓住新定义的概念的本质进行运算.24.(1)4NOA t ∠=度,6MOB t ∠=度;(2)6t =或18t =;(3)7.5t =或15或10时,射线OB 恰好是图中某个角的平分线【分析】(1)射线OA 从ON 的位置开始绕点O 按顺时针方向旋转,速度是每秒4︒,则NOA ∠的度数为4t 度;射线OB 从OM 的位置开始绕点O 按逆时针方向旋转,速度是每秒6︒,则的度MOB ∠数为6t 度(2)分两种情况解答:①OA 、OB 相遇之前,则∠NOA+∠AOB+∠BOM=120°②OA 、OB 相遇之后,则∠NOA+∠BOM-∠AOB=120°,列方程解答即可.(3)分①当OB 平分MOA ∠时②当OB 平分NOA ∠时③当OB 平分MON ∠时三种情况讨论.【详解】(1)根据题意得:4NOA t ∠=度,6MOB t ∠=度.(2)由题意可分两种情况:①如图2,4660120t t ++=,解得:6t =.②如图3,4660120t t +-=,解得:18t =.∴当AOB ∠等于60︒时,求t 的值为:6或18(3)分三种情况:①如图4,当OB 平分MOA ∠时,466120t t t ++=,解得:7.5t =.②如图5,当OB 平分NOA ∠时,26120t t +=,解得:15t =.如图6,当OB 平分MON ∠时,660t =,解得:10t =.∴7.5t =或15或10时,射线OB 恰好是图中某个角的平分线.【点睛】本题考查的是角的加减,能正确的根据图形找到各角之间的关系是关键.。
浙教版七年级下册期末数学试卷(含答案) 七年级下册期末数学试卷一、选择题(每小题3分,共30分)1.下列各图案中,是由一个基本图形通过平移得到的是()。
A。
B。
C。
D。
2.已知空气的单位体积质量为1.24×10^-3克/厘米^3,1.24×10^-3用小数表示为()。
A。
0.B。
0.0124C。
-0.D。
0.3.下列四个多项式中,能因式分解的是()。
A。
a^2+1B。
a^2-6a+9C。
x^2+5yD。
x^2-5y4.若3x=4,9y=7,则3x-2y的值为()。
A。
4/7B。
7/4C。
-3D。
2/75.下列统计中,适合用“全面调查”的是()。
A。
某厂生产的电灯使用寿命B。
全国初中生的视力情况C。
某校七年级学生的身高情况D。
“XXX”产品的合格率6.下列分式中不管x取何值,一定有意义的是()。
A。
x^2/xB。
(x-1)/(x^2-1)C。
(x+3)/(x^2+1)D。
(x-1)/(x+1)7.能使分式(4x+7)/(2x-3)的值为整数的整数x有()个。
A。
2B。
3C。
4D。
无解8.2^2018-2^2019的值是()。
A。
1/2B。
-1/2C。
-2^2018D。
-29.如图所示,把一根铁丝折成图示形状后,AB∥DE,则∠BCD等于()。
A。
∠D+∠BB。
∠B-∠DC。
180°+∠D-∠BD。
180°+∠B-∠D10.XXX在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);XXX看见了,说:“我也来试一试.”结果XXX七拼八凑,拼成了XXX(2)那样的正方形,中间还留下了一个洞,恰好是边长为3mm的小正方形,则每个小长方形的面积为()。
A。
120mm^2B。
135mm^2C。
108mm^2D。
96mm^2二、填空题(每小题3分,共24分)11.当x=1时,分式x^2-1/(x+3)(x-1)的值是 0.12.当x^2+kx+25是一个完全平方式,则k的值是 -10.13.若关于x的方程ax^3/(x-1)^2+1无解,则a的值是 0.14.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是 2.15.3x+2y=20的正整数解有 5 组。
浙教版七年级上册数学期末考试试题一、单选题1.下列各组数中,互为相反数的是()A.6和6-B.6-和16C.6-和16-D.16和62.(﹣2)4是(﹣2)2的()倍.A.1B.2C.3D.43.下列式子:①(﹣3)+5;②(﹣6)×2;③(﹣3)×(﹣2);④(﹣3)÷(﹣6),计算结果是负数的是()A.①B.②C.③D.④4.如图,三条直线相交于点O,则∠1+∠2+∠3的度数等于()A.210°B.180°C.150°D.120°5.下列各组中的两项是同类项的是()A.2a与2ab B.3xy与﹣12yx C.2a2b与2ab2D.x2y与﹣16.正方形面积为10,其边长是x,以下说法正确的是()A.x是有理数B.2<x<3C.3<x<4D.在数轴上找不到表示实数x的点7.请仔细分析下列赋予4a实际意义的例子,其中错误的是()A.若葡萄的价格是4元/千克,则4a表示买a千克该种葡萄的金额B.若a表示一个正方形的边长,则4a表示这个正方形的周长C.一辆汽车以a千米/小时的速度行驶,从A城到B城需4小时,则4a表示A,B两城之间的路程D.若4和a分别表示一个两位数中的十位数字和个位数字,则4a表示这个两位数8.已知a=﹣3400,b=7300,c=﹣11200,则下列各式结果最大的是()A.|a+b+c|B.|a+b﹣c|C.|a﹣b+c|D.|a﹣b﹣c| 9.根据等式的性质,若等式m=n可以变为m+a=n﹣b,则()A.a,b互为相反数B.a,b互为倒数C.a=b D.a=0,b=010.若∠1与∠2互为余角,∠1与∠3互为补角,则下列结论:①∠3-∠2=90°;②∠3+∠2=270°﹣2∠1;③∠3=∠1=2∠2;④∠3<∠1+∠2.其中正确的是()A.①B.①②C.①②③D.①②③④二、填空题11.3x﹣7x=_____.12.数据36000用科学记数法表示为___________.13.若2a﹣b﹣2=0,则4a﹣2b﹣5=_____.14.汽车队运送一批货物,若每辆车装4吨,还剩下6吨未装;若每辆车装4.5吨,恰好装完,则这个车队共有车_______辆.15.如图,每个小正方形的边长为1,可通过“剪一剪”,“拼一拼”,将五个小正方形拼成一个面积一样的大正方形,则这个大正方形的边长是_____.16.某企业有A、B两类经营收入.今年A类年收入为a元,B类年收入是A类年收入的2倍,预计明年A类年收入将增加10%,B类年收入将减少10%.则明年该企业的年总收入为_____元.(用含a的代数式表示)三、解答题17.计算:(1)(﹣24)×111 () 834-+;2(2)-.18.解方程:(1)5x+3(2﹣x)=8;(2)3141136x x--=-.19.已知甲、乙两个油桶中各装有a升油.(1)把甲油桶的油倒出一半给乙桶,用含a的代数式表示现在乙桶中所装油的体积.(2)在(1)的前提下,再把乙桶的油倒出13给甲桶,最后甲、乙两个桶中的油一样多吗?请说明理由.20.(1)如图①,点C ,D ,E 在线段AB 上,AB =12,AC =4,D ,E 分别为AB ,CB 的中点,求DE 的长.(2)如图②,已知OC 平分∠AOD ,∠BOC =30°,且∠BOC 与∠AOD 互补,求∠AOD ,∠BOD 的度数.21.已知A =a 2﹣2ab+b 2,B =a 2+2ab+b 2.(1)求A+B .(2)求14(A ﹣B ),(3)若2A ﹣2B+9C =0,当a ,b 互为倒数时,求C 的值.22.已知点A ,B ,C ,D 是同一数轴上的不同四点,且点M 为线段AB 的中点,点N 为线段CD 的中点.如图,设数轴上点O 表示的数为0,点D 表示的数为1.(1)若数轴上点A ,B 表示的数分别是﹣5,﹣1,①若点C 表示的数是3,求线段MN 的长.②若CD =1,请结合数轴,求线段MN 的长.(2)若点A ,B ,C 均在点O 的右侧,且始终满足MN =2OA OB OC ++,求点M 在数轴上所表示的数.23.已知O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC .(1)如图①,若∠AOC=30°,求∠COE,∠DOB的度数.(2)如图①,若∠AOC=α,求∠DOE的度数(用含α的代数式表示).(3)将图①中的∠COD绕顶点O顺时针旋转至图②的位置,探究∠AOC与∠DOE的度数之间的数量关系,并说明理由.参考答案1.A【分析】根据相反数的定义:互为相反数的两个数是符号不同、绝对值相等的两个数.逐个判断即可.【详解】解:A、6和6-是互为相反数,故本选项符合题意;B、6-和16不是互为相反数,故本选项不符合题意;C、6-和16-不是互为相反数,故本选项不符合题意;D、16和6不是互为相反数,故本选项不符合题意;故选:A【点睛】本题考查了相反数的定义,牢记相反数的定义是解题的关键.2.D【分析】根据幂的法则计算即可.【详解】解:(-2)4÷(-2)2=(-2)2=4,故选:D.【点睛】本题考查了有理数的乘方,掌握an表示n个a相乘是解题的关键.3.B【分析】先计算各个小问的结果,即可得到哪个选项是正确的.【详解】解:(-3)+5=2,故①不符合题意;(-6)×2=-12,故②符合题意;(-3)×(-2)=6,故③不符合题意;(-3)÷(-6)=12,故④不符合题意;故选:B.【点睛】本题考查有理数的混合运算、正数和负数,熟练掌握运算法则是解答本题的关键.4.B【分析】如图,根据对顶角相等求出∠3=∠4,再根据平角的定义解答.【详解】解:如图,∵∠4=∠3,∴∠1+∠2+∠3=∠1+∠2+∠4=180°.故选:B.【点睛】本题考查了对顶角相等的性质,根据对顶角相等,把三个角转化为一个平角是解题的关键.5.B【分析】根据同类项的定义求解即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:A.2a与2ab,所含字母不尽相同,不是同类项,不符合题意;B.3xy与12 yx,所含字母相同,并且相同字母的指数也相同,是同类项,符合题意;C.2a2b与2ab2,所含相同字母的指数不相同,不是同类项,不符合题意;D.x2y与-1,所含字母不同,不是同类项,不符合题意;故选:B.【点睛】本题考查了同类项,掌握同类项的定义是解答本题的关键.6.C【分析】根据正方形的面积公式可得的意义逐项进行判断即可.【详解】解:由题意得,,是无理数,因此选项A不符合题意;由于3<4,因此选项B不符合题意;选项C符合题意;的点,所以选项D不符合题意;故选:C.【点睛】本题考查估算无理数的大小,数轴与实数,理解算术平方根的定义以及数轴表示数的方法是解决问题的关键.7.D【分析】根据代数式表示实际意义的方法分别判断每个选项即可得.【详解】解:A.若葡萄的价格是4元/千克,则4a表示买a千克葡萄的金额,原说法正确,故此选项不符合题意;B.若a表示一个正方形的边长,则4a表示这个正方形的周长,原说法正确,故此选项不符合题意;C.一辆汽车以a千米/小时的速度行驶,从A城到B城需4小时,则4a表示A,B两城之间的路程,原说法正确,故此选项不符合题意;D.若4和a分别表示一个两位数中的十位数字和个位数字,则40+a表示这个两位数,原说法错误,故此选项符合题意;故选:D.【点睛】本题主要考查代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.8.C【分析】根据有理数的加减法法以及绝对值的性质求出各个选项的值,再比较大小即可.【详解】解:|a+b+c|=92866 120012001200-+-=471200,|a+b-c|=92866120012001200-++=851200,|a-b+c|=92866120012001200---=1031200,|a-b-c|=92866120012001200--+=291200,∵1038547291200120012001200>>>,∴结果最大的是|a-b+c|.故选:C .【点睛】此题主要考查了有理数大小比较的方法,有理数的加减法以及绝对值,掌握有理数的加减法法则是解答本题的关键.9.A【分析】根据等式的基本性质得到a=-b ,再根据相反数的定义解决此题.【详解】解:由题意得:a=-b .∴a+b=0.∴a 与b 互为相反数.故选:A .【点睛】本题主要考查等式的基本性质、相反数、倒数,熟练掌握等式的基本性质、相反数的定义是解决本题的关键.10.C【分析】根据题意得:①(1)∠1+∠2=90°,(2)∠1+∠3=180°,(2)-(1)得出结果进行判断;②(1)+(2)得出结果进行判断;③(2)-(1)×2得出结果进行判断;④先把(1)等式两边乘2得2(∠1+∠2)=180°,把(2)变形后代入2(∠1+∠2)=180°,得出结果进行判断.【详解】解:根据题意得:(1)∠1+∠2=90°,(2)∠1+∠3=180°,∴(2)-(1)得,∠3-∠2=90°,∴①正确;(1)+(2)得,∠1+∠2+∠1+∠3=270°,∴∠3+∠2=270°-2∠1,∴②正确;(2)-(1)×2得,∠3-∠1=2∠2,∴③正确;∵(1)∠1+∠2=90°,(2)∠1+∠3=180°,∴2(∠1+∠2)=180°,∴∠3=180°-∠1=2(∠1+∠2)-∠1=∠1+2∠2,∴∠3>∠1+∠2,∴④错误;故选:C .【点睛】本题考查余角和补角,掌握余角和补角的定义,根据题目的要求对两个等式进行不同的计算是解题关键.11.-4x【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.据此计算即可.【详解】解:3x-7x=(3-7)x=-4x ,故答案为:-4x .【点睛】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.12.43.610⨯【分析】根据科学记数法可直接进行求解.【详解】解:由36000用科学记数法表示为43.610⨯;故答案为43.610⨯.【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.13.-1【分析】将4a-2b-5变形为2(2a-b )-5,然后整体代入数值进行计算即可.【详解】解:∵2a-b-2=0,∴2a-b=2∴4a-2b-5=2(2a-b )-5=4-5=-1.故答案为:-1.【点睛】本题主要考查代数式求值,将2a-b=2整体代入是解题的关键.14.12【分析】设这个车队共有车x辆,根据题意列方程,解方程即可求解.【详解】解:设这个车队共有车x辆,根据题意得4x+6=4.5x,解得x=12,答:这个车队共有车12辆.故答案为:12【点睛】本题考查了一元一次方程的应用,根据题意设出未知数,列出方程是解题关键.15【分析】由图可知每个小正方形的边长为1,面积为1,得出拼成的小方形的面积为5,进一步开方得出拼成的正方形的边长.【详解】解:分割图形如下:【点睛】本题考查图形的剪拼和算术平方根,熟知“如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根”是解答此题的关键.16.2.9a【分析】根据题意,可以用相应的代数式表示出今年和明年的总收入.【详解】解:今年A类年收入为a元,则B类收入为2a元,明年的总收入为:a(1+10%)+2a(1-10%)=2.9a(元),故答案为:2.9a.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.17.(1)-1(2)18【分析】(1)直接利用乘法分配律化简,再利用有理数的加法计算得出答案;(2)直接利用立方根以及二次根式的性质分别化简进而得出答案.(1)解:原式=()()()111242424834-⨯--⨯+-⨯=386-+-=-1;(2)原式=-2+5×4=-2+20=18.【点睛】此题主要考查了乘法分配律、立方根以及算术平方根等知识,正确化简各数是解题关键.18.(1)x=1(2)x=0.9【分析】(1)方程去括号,移项,合并同类项,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解.(1)解:去括号得:5x+6-3x=8,移项得:5x-3x=8-6,合并得:2x=2,解得:x=1;(2)去分母得:2(3x-1)=6-(4x-1),去括号得:6x-2=6-4x+1,移项得:6x+4x=6+1+2,合并得:10x=9,解得:x=0.9.【点睛】此题主要考查了一元一次方程的解法,正确掌握解方程的方法是解题关键.19.(1)32a(2)最后甲、乙两个桶中的油一样多.理由见解析【分析】(1)根据题意列出代数式即可;(2)根据题意分别求出甲乙两桶中现有油的体积即可.(1)解:现在乙桶中所装油的体积为:1322a a a +=;(2)最后甲、乙两个桶中的油一样多.理由如下:由(1)知:甲桶现有12a升油,乙桶现有32a升油,再把乙桶的油倒出13给甲桶后,甲桶现在所装油的体积为:113232a a a+⨯=,乙桶现在所装油的体积为:31123a a⎛⎫-=⎪⎝⎭,∴最后甲、乙两个桶中的油一样多.【点睛】本题考查了整式的加减,用含a的代数式分别表示两次倒出后两个桶中的油量是解题的关键.20.(1)2(2)∠AOD=150°,∠BOD=105°【分析】(1)先求出BC的长度,根据线段中点定义得出BD=12AB=6,BE=CE=12BC=4,再求出答案即可;(2)先根据补角的定义求出∠AOD,根据角平分线的定义得出∠DOC=12∠AOD=75°,再求出∠BOD即可.(1)解:∵AB=12,AC=4,∴BC=AB-AC=12-4=8,∵D,E分别为AB,CB的中点,∴BD=12AB=12×12=6,BE=CE=12BC=12×8=4,∴DE=BD-BE=6-4=2;(2)∵∠BOC与∠AOD互补,∴∠BOC+∠AOD=180°,∵∠BOC=30°,∴∠AOD=150°,∵OC平分∠AOD,∴∠DOC=12∠AOD=12×150°=75°,∴∠BOD=∠DOC+∠BOC=75°+30°=105°,即∠AOD=150°,∠BOD=105°.【点睛】本题考查了线段的和差计算,两点之间的距离,线段的中点定义,角的和差计算,角平分线的定义等知识点,能熟记线段中点的定义和角的平分线定义是解此题的关键.`21.(1)2a2+2b2(2)-ab(3)8 9【分析】(1)根据A=a2-2ab+b2,B=a2+2ab+b2,可以计算出A+B;(2)根据A=a2-2ab+b2,B=a2+2ab+b2,可以计算出14(A-B);(3)根据2A-2B+9C=0和(2)中的结果,可以得到C,然后根据a,b互为倒数,可以得到ab=1,再代入化简后的C,计算即可.(1)解:∵A=a2-2ab+b2,B=a2+2ab+b2,∴A+B=(a2-2ab+b2)+(a2+2ab+b2)=a2-2ab+b2+a2+2ab+b2=2a2+2b2;(2)∵A=a2-2ab+b2,B=a2+2ab+b2,∴14(A-B)=14[(a2-2ab+b2)-(a2+2ab+b2)]=14(a2-2ab+b2-a2-2ab-b2)=14×(-4ab)=-ab;(3)∵2A-2B+9C=0,∴C=29-(A-B),由(2)知14(A-B)=-ab,则A-B=-4ab,∴C=29-×(-4ab)=89ab,∵a,b互为倒数,∴ab=1,∴C=89×1=89.【点睛】本题考查整式的加减、倒数,熟练掌握运算法则是解答本题的关键.22.(1)①5;②线段MN的长为72或92(2)1 4【分析】(1)①先根据数轴上两点的距离可得AB的长,由线段中点的定义可得AM的长,同理得CN的长,由线段的和差关系可得MN的长;②存在两种情况:C在D的左边或右边,同理根据线段的和差关系可得MN的长;(2)设点A表示的数为a,点B表示的数为b,点C表示的数为c,结合数轴上两点间的距离公式,中点坐标公式和线段的和差关系列方程求解.(1)解:①如图1,点A ,B 表示的数分别是5-,1-,1(5)4AB ∴=---=,M 是AB 的中点,122AM AB ∴==,同理得:312CD =-=,112CN CD ==,3(5)215MN AC AM CN ∴=--=----=;②若1CD =,存在两种情况:)i 如图2,点C 在D 的左边时,C 与原点重合,表示的数为0,171(5)222MN AD AM DN ∴=--=----=;)ii 如图3,点C 在D 的右边时,C 表示的数为2,192(5)222MN AC AM CN ∴=--=----=;综上,线段MN 的长为72或92;(2)设点A 表示的数为a ,点B 表示的数为b ,点C 表示的数为c ,点A 、B 、C 、D 、M 、N 是数轴上的点,且点M 是线段AB 的中点,点N 是线段CD 的中点,∴点M 在数轴上表示的数为2a b +,点N 在数轴上表示12c +,1||22a b c MN ++∴=-, 点A ,B ,C 均在点O 的右侧,且始终满足2OA OB OC MN ++=,12||22a b c a b c ++∴-=++,整理,得|1|a b c a b c +--=++,当1a b c a b c +--=++时,解得12c =-(不符合题意,舍去),当1a b c a b c --++=++时,解得:12a b +=,∴点M 在数轴上表示的数为124a b +=,综上,点M 在数轴上所对应的数为14.【点睛】本题主要考查了数轴,数轴上的点的几何意义,绝对值的意义等知识的应用.掌握数轴上两点的距离公式是解题的关键.23.(1)75COE ∠=︒,60DOB ∠=︒(2)12DOE α∠=(3)12DOE AOC ∠=∠【分析】(1)由30AOC ∠=︒,COD ∠是直角,可知150BOC ∠=︒,60BOD ∠=︒,因为OE 平分BOC ∠,所以1752COE BOC ∠=∠=︒;(2)因为AOC α∠=,COD ∠是直角,所以180BOC α∠=︒-,90COD ∠=︒,所以18090BOD AOC COD α∠=︒-∠-∠=︒-,因为OE 平分BOC ∠,所以119022BOE BOC ∠=∠=︒-;所以1190(90)22DOE BOE BOD ααα∠=∠-∠=︒--︒-=.(3)设AOC α∠=,因为COD ∠是直角,所以180180BOC AOC α∠=︒-∠=︒-,90COD ∠=︒,因为OE 平分BOC ∠,所以119022COE BOC α∠=∠=︒-;所以119090(90)22DOE COE αα∠=︒-∠=︒-︒-=.(1)解:30AOC ∠=︒ ,COD ∠是直角,180150BOC AOC ∴∠=︒-∠=︒,90COD ∠=︒,18060BOD AOC COD ∴∠=︒-∠-∠=︒,OE 平分BOC ∠,1752COE BOC ∴∠==︒;(2)AOC α∠= ,COD ∠是直角,180180B AO OC C α∠∴==︒-︒-∠,90COD ∠=︒,18090BOD AOC COD α∴∠=︒-∠-∠=︒-,OE 平分BOC ∠,119022BOE BOC α∴∠=∠=︒-;1190(90)22DOE BOE BOD ααα∴∠=∠-∠=︒--︒-=.(3)12DOE AOC ∠=∠.理由如下:设AOC α∠=,COD ∠ 是直角,180180B AO OC C α∠∴==︒-︒-∠,90COD ∠=︒,OE 平分BOC ∠,119022COE BOC α∴∠=∠=︒-;119090(90)22DOE COE αα∴∠=︒-∠=︒-︒-=.即12DOE AOC ∠=∠.【点睛】本题主要考查角度的和差计算,角平分线的定义等知识,关键是由图形得到角度之间的关系.。
浙教版七年级上册数学期末考试试卷一、单选题1.-2021的绝对值是()A .12021B .12021-C .-2021D .20212.数据4600000000用科学记数法表示是()A .746010⨯B .84610⨯C .94.610⨯D .100.4610⨯3.下列计算结果最小的是()A .()22--B .()22-C .212⎛⎫- ⎪⎝⎭D .212⎛⎫-- ⎪⎝⎭4.下列计算正确的是()A9=±B 9=C 3=±D 3=5.若8mx y 与36n x y 是同类项,则n m -=()A .-4B .-2C .2D .46.下列说法正确的是()A .钝角的补角一定是锐角B .两个锐角的度数和一定大于90°C .射线AB 和射线BA 是同一条射线D .在同一平面内有三个点A ,B ,C ,过其中任意两个点画直线,可以画出3条直线7.方程313x -=1﹣416x -去分母后,正确的是()A .2(3x ﹣1)=1﹣4x ﹣1B .2(3x ﹣1)=6﹣4x+1C .2(3x ﹣1)=6﹣4x ﹣1D .2(3x ﹣1)=1﹣4x+18.若a ,b 是-1与1(包括-1和1)之间的有理数,满足a b ¹且0b ≠,则a b ÷()A .一定是正数B .一定是整数C .一定是有理数D .可以是无理数9.下列说法正确的是()A .若a b =,则a c b c +=-B .若a b =,则22ac bc =C .若b aa b=,则a b =D .若22ac bc =,则a b=10.将1,2,4按如图方式进行排列,记(,)m n 为该图形中第m 行从左往右第n 个数,例如图中圆圈中的“2”可以用(3,4)表示.若)202(1,9a =,(5,7)b =,则b a -=()A .-1B .-4C .-16D .4二、填空题11.单项式223x y的系数是________,次数是________.126,则该数是________,它的另一个平方根是________.13.比较大小:5-.14.若3618A ∠='︒,则90A ︒-∠=________.(结果用度表示)15.如图,C 、D 是线段AB 上两点,已知图中所有线段的长度都是正整数,且总和为35,则线段AB 的长度为________.16.已知||3a =,||2=b ,且||a b b a -=-,则a b +=________.17.多项式mx n -和2mx n -+(m ,n 为实数,且0m ≠)的值随x 的取值不同而不同,如表是当x 取不同值时多项式对应的值,则关于x 的方程2mx n mx n -+=-的解是________.x 1234mx n--2-1012mx n-+1-1-3-518.已知5x =是方程231x a -=的解,则a 的值是________.三、解答题19.计算:(1)-7+5;(2)()57732⎛⎫÷-⨯- ⎪⎝⎭;(3)()22216332⎛⎫-⨯-+- ⎪⎝⎭;(4)232934⨯+.20.化简:(1)2x x -;(2)()1462x --;(3)()222233a ab a ab ⎛⎫--- ⎪⎝⎭.21.解下列方程:(1)34x x =-;(2)()6233x x --=-;(3)3911233x x -⎛⎫--= ⎪⎝⎭.22.某超市出售一种商品,其原价为四元,现有三种调价方案:方案一,先提价10%,再降价10%;方案二,先提价20%,再降价20%;方案三,先降价20%,再提价20%.(1)用这三种方案调价,结果是否一样?(2)在方案三中,若先降价20%,要想恢复原价,需提价百分之几?(列方程解决)23.如图,已知A 是直线BC 外一点,请按要求完成下列作图并填空:(1)作线段AC ,射线BA .(2)过点C 作CD BC ⊥,交射线BA 于点D .(3)在(1),(2)的前提下,不再添加字母和线条,图中共有________条线段.24.列方程解应用题:甲、乙两人从A ,B 两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向..匀速行驶.出发后经2小时两人相遇.已知在相遇时乙比甲多行了90千米,相遇后经0.5小时乙到达A 地.求乙行驶的速度.25.如图,OC AB ⊥于点O ,14COD BOD ∠=∠,OE 平分BOD ∠.(1)求COE ∠和AOE ∠的度数.(2)过点O 作射线OF ,若OF OE ⊥,求BOF ∠的度数.26.如图,直线AB ,CD 交于点O ,射线OE ,OF 都在直线AB 的上方,且OE OF ⊥.(1)若28AOC ∠=︒,30BOF ∠=︒,求DOE ∠的度数.(2)若OB 平分DOF ∠,请写出图中与AOE ∠互余的角:________.(直接写出所有..答案)参考答案1.D【分析】根据绝对值的意义求解即可.【详解】解:-2021的绝对值是2021;故答案为:D .【点睛】本题考查绝对值的意义,一个正数的绝对值是它本身;零的绝对值是零;一个负数的绝对值是它的相反数.2.C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于4600000000有10位,所以可以确定n =10−1=9.【详解】解:4600000000=4.6×109.故选:C .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.3.A【分析】先化简原数,然后根据有理数的大小比较法则即可求出答案.【详解】解:∵2(2)4--=-,2(2)4-=,211(24-=,211()24--=-,∴114444-<-<<,∴222211(2)(()(2)22--<--<-<-故选:A .【点睛】本题考查了有理数的乘方和大小比较,解题的关键是正确化简原数.4.B【分析】直接利用算术平方根和立方根的意义即可得出答案.【详解】解:A 9=,原计算错误,故此选项不符合题意;B 9=,原计算正确,故此选项符合题意;C3=-,原计算错误,故此选项不符合题意;D3=-,原计算错误,故此选项不符合题意;故选:B .【点睛】此题主要考查了算术平方根、立方根,正确掌握算术平方根和立方根的意义是解题的关键.5.B【分析】根据同类项的定义求出m ,n 的值,代入式子进行计算即可.【详解】解:∵8m x y 与36n x y 是同类项,∴m=3,n=1,∴n−m=1−3=−2,故选:B.【点睛】本题考查了同类项,熟练掌握同类项的定义是解题的关键.6.A【分析】根据余角、补角的定义、直线、射线的定义判断即可.【详解】解:A、钝角的补角一定是锐角,正确,故符合题意;B、两个锐角的度数和一定大于90°错误,反例,10°+70°=80°<90°,故不符合题意;C、射线AB和射线BA不是同一条射线,故不符合题意;D、在同一平面内有三个点A,B,C,过其中任意两个点画直线,可以画出1条或3条直线,故不符合题意;故选:A.【点睛】本题考查余角、补角、直线、射线的定义,熟练掌握相关知识是解题的关键.7.B【分析】利用等式的性质,方程两边同时乘6得到结果,即可作出判断.【详解】解:方程313x-=1﹣416x-,去分母得:2(3x-1)=6-(4x-1),即2(3x-1)=6-4x+1,故选:B.【点睛】此题考查了解一元一次方程,以及等式的性质,熟练掌握等式的性质是解本题的关键.8.C【分析】根据有理数和无理数的概念判断即可.【详解】解:∵a,b是−1与1(包括−1和1)之间的有理数,且满足a≠b且b≠0,∴a÷b一定是有理数,故选:C.【点睛】本题考查了估算无理数的大小,熟练掌握有理数和无理数的概念是解题的关键.9.B【分析】根据等式的性质逐项判断即可.【详解】解:若a b =,则a c b c +=+,故A 选项错误;若a b =,则22ac bc =,B 选项正确;若b a ab=,则22a b =,a b =±,故C 选项错误;若22ac bc =,当20c ≠时a b =,故D 选项错误.故答案为:B .【点睛】此题考查了等式的性质,需要熟记:在等式两边同时加上或减去同一个值,等式依然成立;在等式两边同时乘以或除以(除数不为0)同一个值等式仍然成立;在等式有意义的前提下,在等式两边同时取任意次方(或开任意次方),等式仍然成立;在等式有意义的前提下,等式两边同时取倒数、相反数,等式仍然成立.10.A【分析】根据题意计算出a 和b 的值,再代入代数式可得答案.【详解】解:由题意可得,前1行的数字个数总数是1=12,前2行的数字个数总数是4=22,前3行的数字个数总数是9=32,…,所以前n 行的数字个数总数是n 2,当n =2020时,n 2=20202=4080400,即a 是第4080400+9=4080409个数字,4080409÷3=1360136……1,∴a =1,当n =4时,n 2=42=16,即b 是第16+7=23个数字,23÷3=7……2,∴b =2,∴−ab =−12=−1.故选:A .【点睛】本题考查规律型:图形的变化类,找到数字变化的规律并会应用是解题关键.11.233【分析】根据单项式系数和次数的定义作答;【详解】解:单项式223x y的数字因数是23;所有字母的指数的和是3;所以系数为23,次数是3故答案为:23;3;【点睛】此题考查单项式的系数和次数;只含有数与字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式;注意(1)π是数字,不是字母;(2)分母上含有字母的不是单项式;单项式中的数字因数叫做这个单项式的系数;一个单项式中,所有字母的指数的和叫做这个单项式的次数,字母的指数不写的,表示这个字母的指数是1,不是“没有”.12.6【分析】根据平方根的平方等于被开方数,可得答案,根据一个正数的平方根互为相反数,可得答案.6,它的另一个平方根是,故答案为:6,.【点睛】本题考查了平方根.解题的关键是掌握平方根的定义,注意一个正数的两个平方根互为相反数.13.<【分析】求出2<,再根据实数的大小比较法则比较即可.【详解】解:∵2<∴−2,故答案为:<.【点睛】本题考查了实数的大小比较法则的应用,注意:两个负数比较大小,其绝对值大的反而小.14.53.7°【分析】根据度分秒的进制,先求出∠A=36.3°,然后进行计算即可.【详解】解:∵1°=60′,∴18′=0.3°,∴∠A=36°18′=36.3°,∴90°−∠A=53.7°,故答案为:53.7°.【点睛】本题考查了度分秒的换算,熟练掌握度分秒的进制是解题的关键.15.11或10或9【分析】将所有线段加起来可得3AB+CD=35,从而根据题意可判断出AB的取值.【详解】解:根据题意可得:AC+AD+AB+CD+CB+DB=35,即(AC+CB)+(AD+DB)+(AB+CD)=35,3AB+CD=35,∵图中所有线段的长度都是正整数,∴当CD=1时,AB不是整数,当CD=2时,AB=11,当CD=3时,AB不是整数,当CD=4时,AB不是整数,当CD=5时,AB=10,当CD=6时,AB不是整数,当CD=7时,AB不是整数,当CD=8时,AB=9,…当CD=11时,AB=8,又∵AB>CD,∴AB只有为11或10或9.故答案为:11或10或9.【点睛】本题考查求解线段长度的知识,有一定难度,注意列出表达式根据题意及实际意义判断AB的取值.16.-1或-5【分析】先根据|a|=3,|b|=2求出a、b的值,再根据|a-b|=b-a判断出a-b的符号,找出适合条件的a、b的值,代入a+b进行计算即可.【详解】解:∵|a|=3,|b|=2,∴a=±3,b=±2,∵|a-b|=b-a,∴a-b<0,即a<b,∴当a=-3,b=2时,a+b=-3+2=-1;当a=-3,b=-2时,a+b=-3-2=-5.故答案为:-1或-5.【点睛】本题考查的是绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.17.x=2【分析】根据表格确定出方程-mx+n=2mx-n的解即可.【详解】解:当x=2时,mx-n=-1,当x=2时,-2mx+n=-1,则关于x的方程-mx+n=2mx-n的解是x=2,故答案为:x=2.【点睛】此题考查了解一元一次方程,以及一元一次方程的解,弄清表格中的数据是解本题的关键.18.3【分析】把x=5代入方程,即可得出一个关于a的一元一次方程,求出方程的解即可.【详解】解:把x=5代入方程2x-3a=1得:10-3a=1,解得:a=3,故答案为:3.【点睛】本题考查了一元一次方程的解,解一元一次方程等知识点,能得出关于a的一元一次方程是解此题的关键.19.(1)2-(2)15 98(3)15-(4)2-【分析】(1)根据有理数加法法则运算即可;(2)根据有理数的乘除运算法则运算即可;(3)根据乘法法则,乘法的分配律运算即可;(4)先化简,然后合并同类二次根式即可.(1)解∶原式2=-,(2)解∶原式1515779832⎛⎫⎛⎫⨯-⨯-== ⎪ ⎝⎭⎝⎭;(3)解∶原式21213693636924189153232⎛⎫⎛⎫=⨯-+-=⨯-+⨯-=-+-=- ⎪ ⎪⎝⎭⎝⎭;(4)解∶原式(234=⨯++64=-2=-.【点睛】本题考查了实数的运算,乘法分配律,合并同类二次根式法则等知识,灵活运用乘法分配律是解第3题的关键.20.(1)x-(2)23x -+(3)ab【分析】(1)合并同类项进行化简;(2)去括号进行化简;(3)先去括号,再合并同类项进行化简.(1)解:原式12xx =-=-();(2)解:原式11462322x x =-⨯+⨯=-+;(3)解:原式22222333a ab a ab ab =--⨯+=.【点睛】本题考查整式的加减运算,需要掌握合并同类项和去括号的运算法则:合并同类项时,系数相加,字母及其指数不变;去括号时,括号前是正号的,去掉正号和括号,括号里各项不变号,括号前是负号的,去掉负号和括号,括号里各项都变号.21.(1)x =2(2)x =5(3)x =−163【分析】(1)移项,合并同类项,系数化成1即可;(2)去括号,移项,合并同类项,系数化成1即可;(3)去括号,去分母,去括号,移项,合并同类项,系数化成1即可.(1)解:x =3x−4,移项,得x−3x =−4,合并同类项,得−2x =−4,系数化成1,得x =2;(2)6−2(x−3)=x−3,去括号,得6−2x +6=x−3,移项,得−2x−x =−3−6−6,合并同类项,得−3x =−15,系数化成1,得x =5;(3)3911233x x -⎛⎫--= ⎪⎝⎭,去分母,得6x−9+3(9−x )=2,去括号,得6x−9+27−3x =2,移项,得6x−3x =2+9−27,合并同类项,得3x =−16,系数化成1,得x =−163.【点睛】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.22.(1)用这三种方案调价,结果不一样;(2)需提价25%.【分析】(1)根据题意,可以写出三种方案下的售价,然后比较大小即可;(2)根据题意,可以列出相应的方程,然后求解即可.(1)由题意可得:方案一的售价为:a(1+10%)(1-10%)=0.99a(元),方案二的售价为:a(1+20%)(1-20%)=0.96a(元),方案三的售价为:a(1-20%)(1+20%)=0.96a(元),∵0.99a>0.96a=0.96a,∴用这三种方案调价,结果不一样;(2)设要想恢复原价,需提价的百分比为x,a(1-20%)(1+x)=a,解得x=25%,答:要想恢复原价,需提价25%.【点睛】本题考查一元一次方程的应用、列代数式,解答本题的关键是明确题意,找出等量关系,列出相应的方程.23.(1)见解析;(2)见解析;(3)6【分析】(1)连接AC,再连接BA并延长即可;(2)过点C作BC的延长线,交射线BA于点D即可;(3)根据线段的定义可得.【详解】解:(1)如图,线段AC,射线BA即为所作;(2)如图,CD即为所作;(3)如图,图中有AC,AB,AD,BD,BC,CD共6条线段.【点睛】本题主要考查尺规作图,解题的关键是掌握射线、线段的概念.24.60千米/小时【分析】根据经过2小时,乙比甲多行了90千米,可知乙每小时比甲快45千米,然后设出乙的速度,从而可以得到甲的速度,再根据相遇后经0.5小时乙到达A地,可以列出相应的方程,然后求解即可.【详解】解:∵经过2小时,乙比甲多行了90千米,∴乙每小时比甲快45千米,设乙的速度为x千米小时,则甲的速度为(x-45)千米/小时,由题意可得:0.5x=2(x-45),解得x=60,答:乙行驶的速度为60千米/小时.【点睛】此题主要考查了一元一次方程的应用,关键是首先审清题意,找到等量关系,设出未知数,表示出乙的速度,列出方程.25.(1)∠COE=30°;∠AOE=120°(2)150°或30°【分析】(1)由垂线的定义结合14COD BOD∠=∠可求解∠BOD=120°,再根据角平分线的定义可求解∠BOE的度数,进而可求解∠COE,∠AOE的度数;(2)可分两种情况:当OF在直线AB上方时,当OF在直线AB下方时,分别计算可求解.(1)解:(1)∵OC⊥AB,∴∠BOC=∠AOC=90°,∵14COD BOD ∠=∠,∴∠COD=13∠BOC=30°,∴∠BOD=120°,∵OE平分∠BOD,∴∠BOE=∠DOE=60°,∴∠COE=∠BOC−∠BOE=90°−60°=30°,∠AOE=180°−∠BOE=180°−60°=120°;(2)如图,当OF在直线AB上方时,∵OF⊥OE,∴∠EOF=90°,∵∠BOE=60°,∴∠BOF=∠BOE+∠EOF=60°+90°=150°;当OF在直线AB下方时,∵OF⊥OE,∴∠EOF=90°,∵∠BOE=60°,∴∠BOF=∠EOF−∠BOE=90°−60°=30°,故∠BOF的度数为150°或30°.【点睛】本题主要考查垂线,角平分线的定义,角的计算,分类讨论是解题的关键.26.(1)148°;(2)∠BOF,∠BOD,∠AOC【分析】(1)根据对顶角相等得到∠AOC=∠BOD=28°,结合OE⊥OF,得到∠DOE=∠EOF+∠BOD+∠BOF;(2)根据∠EOF=90°得到∠AOE+∠BOF=90°,再证明∠BOD=∠BOF,∠AOC=∠BOD,可得其他互余的角.【详解】解:(1)∵∠AOC=∠BOD=28°,OE⊥OF,∴∠DOE=∠EOF+∠BOD+∠BOF=90°+28°+30°=148°;(2)∵OE⊥OF,∴∠EOF=90°,∴∠AOE+∠BOF=90°,∵OB平分∠DOF,∴∠BOD=∠BOF,∴∠AOE+∠BOD=90°,∵∠AOC=∠BOD,∴∠AOE+∠AOC=90°,∴与∠AOE互余的角有:∠BOF,∠BOD,∠AOC.。
ZE
学才一对一
卓尔教育学才(福田)一对一期中检测卷
年级 姓名
一、 选择题(本题 分)。
1.下列各组数中,数值相等的是( )
A.32 和 23 B.- 23 和(-2)3 C.-︱23︱和︱-23 ︱ D.-32 和(-3)2
2.2008年5月12日,四川汶川发生里氏8.0级地震,国内外社会各界纷纷向灾区捐款捐物,截止6月4日12时,
全国共接收捐款约为43 681 000 000元人民币.这笔款额用科学记数法表示(保留三个有效数字)正确
的是( )
A. 1110437.0 B. 10104.4 C. 101037.4 D. 9107.43
3. 下列各组是同类项的一组是( ).
A. x2y 与 -xy2 B. 3x2y 与 -4x2yz C. a3 与 b3 D. –2a3b 与
2
1
ba
3
4.在式子xxyxayx1,31,3,,0,2 中,单项式共有( )
A.5 个 B.4 个 C.3 个 D.2 个
5.实数a、b在数轴上的位置如图所示,则下列结论中:
①0ab ;②0ba; ③0ba;④ab ;⑤ba.
正确的有( )
A.2个 B.3个 C.4个 D.5个
6.如图,梯形上、下底分别为a、b,高线长恰好等于圆的直径r2,则图中阴影部分下面积是( )
A.2)(rrba B.2rabr
C.2)(2rrba D.rabr22
二、填空题(本题 分)。
7. 32的倒数是_______,81的立方根是________, -2.5的绝对值是________.
8. 1.2568≈_____________ (保留2个有效数字).
9.足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分.已知某队踢了14场足球,负5
场,共得19分,那么这个队胜了 场.
10.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,
他突然发现一道题:
空格的地方被钢笔水弄污了,那么空格中的一项是 _______________.
11.若3a-9与4a-5互为相反数,则a2-2a+12的值为_________.
三、解答题。
b
0
a
(第7题)
(第6题)
222222
_______21)23721()212(yxyxyxyxyx
12、(本题 分)把下列各数填在相应的表示集合的大括号内
-6,π,32,3,722,-0.4,1.6,6,0,1.1010010001„„
整 数{ „„}
负分数{ „„}
无理数{ „„}
13.计算(本题 分)
(1) 523121234 (2) 22128(2)2
14.(本题 分)小聪和小明在同时计算这样一道求值题:“当117,1ba时,求整式
)]22(2[)43(22abaaaba
的值。”小聪已正确求得结果;而小明在计算时,错把
看成了一个其它值,却也计算出与小聪同样的结果,你知道为什么吗?请写出详
细解答过程,并计算出结果。
15.(本题 分)小花猫从某点O出发在一直线上来回跑动,假定向右跑的路程记为正数,向左跑的路
程记为负数,跑动的各段路程依次为(单位:米):
+4,-2,+10,-7,-6,+9,-10,+12
(1)问:小花猫最后在出发点的哪一边?离开出发点O相距多少米?
(2)在跑动过程中,如果每跑过10米奖励一条小鱼,则小花猫一共得到多少条小鱼?
11
7
b
16(本题 分)中央电视台“开心辞典”栏目中,常有一个“算二十四”的趣味题,即用“数字牌”做
计算结果等于24的游戏(每张牌只能用一.......次.,可以用加、减、乘、除.......运算)。
(1)若抽出的四张牌分别表示2、3、4、6.请写出一个算式,使结果为24:
_________________________________________________;
(2) 若抽出的四张牌分别表示7、-3、-7、3.请写出一个算式,使结果为24:
________________________________________________.