变压器中性点的运用及保护
- 格式:doc
- 大小:16.50 KB
- 文档页数:4
主变压器中性点接地及保护的应用目录大型变压器是电力生产的核心设备,由于其成本较高,故在110kV及以上的中性点直接接地的电网中,普遍采用分级绝缘的变压器。
在中性点直接接地的电网中,接地短路故障是较常见的故障(约占故障总数的85%以上)。
虽然在实际运行中,部分变压器的中性点是直接接地的,它能够反映变压器高压绕组、引出线上的接地短路故障,并可作为大型电力变压器的主保护和相邻母线、线路接地保护的后备保护。
但还有部分变压器的中性点不接地运行,当系统发生接地故障,中性点接地的变压器跳开后,电网零序电压升高或谐振过电压等都会危及这些不接地的变压器中性点绝缘。
因此,处于该系统中运行的大型变压器必须装设中性点保护。
一、变压器中性点过电压的三种保护方式变压器中性点过电压保护可采用间隙、避雷器及避雷器联合放电间隙三种方式。
变压器中性点的过电压可分为三种形式:大气过电压、单相接地故障引起的过电压及断路器非全相分合闸引起的过电压。
(一)间隙间隙的优点是结构简单可靠、运行维护量小,在雷电、操作和工频过电压下都可对变压器进行保护;缺点是间隙参数确定较为困难、放电分散性大、保护性能一般、工频续流较大、灭弧能力差、在系统有不对称接地短路故障时有较大和较长时间的工频零序电流冲击主变压器,另外,间隙放电产生的谐波对主变压器的绕组绝缘也有一定的影响。
(二)避雷器避雷器具有优异的非线性伏安特性,残压随冲击电流波头时间变化的特性平稳,陡波响应特性好,无间隙的击穿和灭弧问题,通流容量大,无续流,动作迅速,对主变压器冲击小;其缺点是不能防护工频过电压,在较高的工频过电压下往往自身难保,需定期进行预防性试验,维护工作量较大。
(三)避雷器联合放电间隙避雷器并联间隙的保护分工是工频、操作过电压由间隙承担,雷电、暂态过电压由避雷器承担,同时,又用间隙来限制避雷器上可能出现的过高幅值的工频过电压和过高的残压。
这种方式既对变压器中性点进行保护,又起到互为保护的作用。
附件1220kV与110kV变压器中性点接地方式安排与间隙保护配置及整定要求一、变压器中性点接地方式安排要求110kV~220kV电网变压器中性点接地运行方式安排应满足变压器中性点绝缘承受要求,并尽量保持变电站的零序阻抗基本不变且系统任何短路点的零序综合阻抗不大于正序综合阻抗的三倍。
1.自耦变压器中性点必须直接接地或经小电抗接地。
2.没有改造的薄绝缘变压器中性点宜直接接地运行。
3.220kV变压器1)220kV变压器110kV侧中性点绝缘等级为35kV时,220kV侧、110kV侧中性点应直接接地运行。
2)变压器的220kV、110kV侧中性点接地方式宜相同。
3)220kV厂站宜按一台变压器中性点直接接地运行。
4)有两台及以上变压器的220kV厂站,220kV或110kV 侧母线任意一侧或两侧分列运行时,每一段母线上应保持一台变压器中性点直接接地运行。
4.110kV变压器1)110kV变压器110kV中性点绝缘等级为66kV时,中性点可不直接接地运行。
2)110kV中性点绝缘等级是44kV及以下的变压器,中性点宜直接接地运行。
3)发电厂或中、低压侧有电源的变电站,厂站内宜保持一台变压器中性点直接接地运行。
4)无地区电源供电的终端变压器中性点不宜直接接地运行。
二、变压器中性点间隙零序过流、零序过电压保护配置及整定要求间隙零序过电压应取PT开口三角电压;间隙零序电流应取中性点间隙专用CT;间隙零序电压、零序电流宜各按两时限配置;对于全绝缘变压器或中性点放电间隙满足取消条件的变压器(例如:中低压侧无电源且中性点绝缘等级为66kV 的110kV变压器),间隙零序过流保护应退出,间隙零序过电压保护可保留。
1.间隙保护动作逻辑一(推荐)变压器间隙零序过电压元件单独经较短延时T1出口;变压器间隙零序过流和零序过电压元件组成“或门”逻辑,经较长延时T2出口;逻辑简图如图1所示:图1 间隙保护逻辑一简图间隙保护动作时间整定要求如下:1)变压器间隙零序过电压保护动作跳变压器时间应满足变压器中性点绝缘承受能力要求。
浅析配电变压器中性点断线的危害及预防摘要:配电变压器是电力系统中重要的电气设备,而其中性点是变压器中一个重要的元件,对变压器运行和电力系统稳定性具有重要作用。
本文将深入探讨配电变压器中性点断线的危害及预防措施。
关键词:配电变压器;中性点;断线;危害;预防正文:一、配电变压器中性点介绍配电变压器是电力系统中重要的电气设备,一般分为三相配电变压器和单相配电变压器两种。
在配电变压器中,中性点是变压器中一个重要的元件,中性点是变压器的零线,也是电力系统的地线。
二、配电变压器中性点断线的危害配电变压器中性点断线是一种很容易出现的故障,它会给电力系统带来很多危害。
(一)对设备带来的危害1. 产生过电压:因为配电变压器的中性点断开,电流就不能形成环路,容易引起电感电压过高,给设备带来危害。
2. 导致设备损坏:当中性点失去连通时,就会出现电压极性不一致的原因,容易使设备遭到损坏。
(二)对系统带来的危害1. 安全隐患:中性点的故障可能导致电气设备的电气击穿、过电压的产生,从而使电力系统发生安全隐患。
2. 影响负载的正常工作:中性点失去连通,会导致电路中电流不平衡,使接入的负载无法正常工作。
三、配电变压器中性点断线的预防(一)严格把关配电变压器的选型和设计在选型和设计变压器时应考虑到负载的容性和电感性,避免设备因达不到负载的平衡点而出现中性点断线的情况。
(二)安装接地电阻安装接地电阻是避免中性点断线的一种有效的方法,它可以防止因中性点断开而发生电感电压过高。
(三)定期保养检查定期进行配电变压器的保养检查,发现中性点故障及时修理,避免故障对设备和系统造成的影响。
结语:本文深入探讨了配电变压器中性点断线的危害及预防措施,希望对大家在工作中更好地理解变压器运行和电力系统的稳定性起到一定的帮助和指导。
四、中性点断线的处理方法如果发现配电变压器中性点已经断开了,应该立刻采取相应措施,快速处理中性点的故障。
(一)紧急停电发现中性点故障后,应立即进行紧急停电,避免因电流不平衡导致电气设备的受损。
简述变压器中性点保护及运行问题1、引言在我国的发电厂中,其核心设备包括变压器特别是主变压器,对于110kV及以上的中性点直接接地的电网来说,从经济方面的考虑来说,分级绝缘则是变压器所中性点采用的方式。
其中,在实际运行中,接地短路故障则为中性点直接接地的电网的总故障的85%左右,对于直接接地的中性点来说,其能够对于变压器的引出线上、高压绕组等部分的接地短路故障进行灵敏的响应,还能起到一定的对于线路接地保护、变压器相邻母线、主保护的后备保护作用。
但是,还存在部分的变压器中性点的不接地运行情况,中性点则会在系统发生故障的情况下,这样的变压器中性点绝缘,则应该把中性点保护装置设置在该系统的变压器中[1]。
2、变压器中性点间隙过流保护分析与思考有些中性点方式是采用避雷器联合放电间隙保护,这样,必然会在出现电网接地的故障的情况下,则会导致一定的安全问题,比如,变压器电源侧断路器的非全相分合闸造成变压器的中性点放电,或者导致变压器中心点零序电压升高等问题。
这里,不允许出现限制变压器中性点点位升高是通过间隙放电的方式,另外,长时间的通过电流在间隙中也是不允许的。
所以,放电间隙普遍采用在变压器的中性点中则是较为普通常见的方式,这样能够起到防止出现工频过电压而造成变压器中心点绝缘的损坏情况,这种设置独立电流互感器的方式中,还可以通过中性点套管电流互感器实现,使得变压器中性点放电间隙零序过电流保护成为可能,这就说所谓的间隙过流保护。
以下几种方式则是在进行“间隙过流”保护中实际应用的典型接线方式:第一,一组电流互感器为变压器零序过流保护和间隙过流保护所共用,其中,对于中性点接地回路的电流互感器来说,间隙电流继电器、变压器零序电流继电器的电流线圈串接于此。
这两个电流继电器存在不同的动作,并且接地电流的性质也不尽相同,其中,工频量则主要是零序CT过流时,而分段、间隙发展的性质也是间隙CT过流的特点,其电流复制和间歇时间都呈现出一定的随机性,且不能在较大的谐波分量。
变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成目前大电流接地系统普遍采用分级绝缘的变压器,当变电站有两台及以上的分级绝缘的变压器并列运行时,通常只考虑一部分变压器中性点接地,而另一部分变压器的中性点则经间隙接地运行,以防止故障过程中所产生的过电压破坏变压器的绝缘。
为保证接地点数目的稳定,当接地变压器退出运行时,应将经间隙接地的变压器转为接地运行。
由此可见并列运行的分级绝缘的变压器同时存在接地和经间隙接地两种运行方式。
为此应配置中性点直接接地零序电流保护和中性点间隙接地保护。
这两种保护的原理接线如图E-127所示中性点直接接地零序电流保护:中性点直接接地零序电流保护一般分为两段,第一段由电流继电器1、时间继电器2、信号继电器3及压板4组成,其定值与出线的接地保护第一段相配合,0.5s切母联断路器。
第二段由电流继电器5、时间继电器6、信号继电器7和8压板9和10等元件组成,。
定值与出线接地保护的最后一段相配合,以短延时切除母联断路器及主变压器高压侧断路器,长延时切除主变压器三侧断路器。
中性点间隙接地保护:当变电站的母线或线路发生接地短路,若故障元件的保护拒动,则中性点接地变压器的零序电流保护动作将母联断路器断开,如故障点在中性点经间隙接地的变压器所在的系统中,此局部系统变成中性点不接地系统,此时中性点的电位将升至相电压,分级绝缘变压器的绝缘会遭到破坏,中性点间隙接地保护的任务就是在中性点电压升高至危及中性点绝缘之前,可靠地将变压器切除,以保证变压器的绝缘不受破坏。
间隙接地保护包括零序电流保护和零序过电压保护,两种保护互为备用。
零序电流保护由电流继电器12、时间继电器13、信号继电器14和压板15组成。
一次启动电流通常取100A左右,时间取0.5s。
110kV变压器中性点放电间隙长度根据其绝缘可取115~158mm,击穿电压可取63kV(有效值)。
当中性点电压超过击穿电压(还没有达到危及变压器中性点绝缘的电压)时,间隙击穿,中性点有零序电流通过,保护启动后,经0.5s延时切变压器三侧断路器。
浅析发电厂主变压器中性点的保护及运行在发电厂中,主变压器扮演着传输和分配电能的重要角色。
而主变压器中性点的保护及运行则是影响发电系统安全稳定运行的关键因素之一。
本文将从主变压器中性点的保护原理、保护装置及运行注意事项等方面进行浅析。
一、主变压器中性点的保护原理主变压器中性点的保护主要是为了防止中性点接地故障导致的主变压器绝缘损坏、跳闸甚至爆炸,以及减小继电保护动作误差带来的运行中断。
主变压器中性点保护一般采用零序电流保护原理,当主变压器中性点接地故障时,会产生较大的零序电流,通过检测这种零序电流来对中性点进行保护。
零序电流保护装置通常采用电流互感器或者电流变送器检测主变压器的三相余流和零序电流。
通过比较检测到的电流与设定值进行判断,当检测到超出设定值的零序电流时,保护装置会发出信号,启动跳闸装置切断故障线路,保护主变压器。
还可以采用零序电流比率法,通过三个互感器检测主变压器三相电流和零序电流的比值来实现中性点保护。
二、主变压器中性点保护装置在电力系统中,主变压器中性点保护装置通常包括继电保护装置、零序电流检测装置、零序电流比率检测装置等。
继电保护装置是保护主变压器及相关线路的重要设备,它通过检测电流、电压等参数来判断设备的运行状况,并在故障发生时启动跳闸装置,切断故障线路,保护设备。
而零序电流检测装置则是用来检测主变压器中性点接地故障时产生的零序电流,以便及时发出信号,启动继电保护装置。
还有一些先进的保护装置采用了数字化技术,能够实现更精确的零序电流检测和判断,大大提高了保护的准确性和可靠性。
随着技术的不断发展,还出现了一些集成保护装置,将多种保护功能整合在一起,不仅能够实现中性点保护,还能够实现过流、过载、短路等多种保护功能,为主变压器的安全稳定运行提供了更全面的保障。
三、主变压器中性点的运行注意事项1. 定期检查继电保护装置的性能及运行状态,保证其正常工作。
2. 对继电保护装置进行定期的校验和测试,确保其准确可靠。
220kV和110kV主变压器中性点过电压保护配置与使用意见(试行)一、主变压器中性点接地方式要求500kV-110kV主变压器中性点接地方式应遵循DL/T 559-94《220-500kV电网继电保护装置运行整定规程》和DL/T 584-95 《3-110kV电网继电保护装置运行整定规程》的有关规定,并兼顾各电压等级主变压器中性点绝缘水平。
1. 自耦变压器中性点必须直接接地运行。
2. 220kV分级绝缘变压器中性点接地运行方式的安排,应按照DL/T 559-94《220-500kV电网继电保护装置运行整定规程》第4.1.4条执行,并应考虑变压器中性点绝缘水平:当主变压器220kV侧中性点绝缘等级为110kV时,220kV侧中性点可不接地运行;当220kV 主变压器的110kV侧中性点绝缘等级为66kV时,110kV侧中性点可不接地运行;当主变压器110kV侧中性点绝缘等级为44kV时,中性点一般应直接接地运行;当主变压器110kV侧中性点绝缘等级为35kV时,110kV侧中性点必须直接接地运行;当220kV主变压器中压侧或低压侧有并网小电源时,220kV侧和110kV侧中性点均宜直接接地运行,220kV进线侧宜配置线路保护。
3. 110kV分级绝缘变压器中性点接地运行方式的安排,应按照DL/T 584-95《3-110kV电网继电保护装置运行整定规程》第4.1.3.4条执行,并应考虑变压器中性点绝缘水平:当主变压器中性点绝缘等级为66kV 时,中性点可不接地运行;当主变压器中性点绝缘等级为44kV 时,中性点一般应直接接地运行,当主变压器中性点绝缘等级为35kV 时,中性点必须直接接地运行。
4.电网变压器中性点接地方式应尽量保持变电所零序阻抗基本不变。
云南电网主变压器中性点接地运行数目均由省调统一分配及管理,各运行单位不得随意更改,需要改变变压器中性点运行方式时,应事先得到省调同意。
在操作过程中允许某一厂站中性点接地数短时超过规定。
关于发电厂主变压器的中性点保护和运行分析主变压器是发电厂中的重要设备,对其中性点的保护及运行进行有效的分析非常的重要,这也是发电厂中的整个供电系统能够进行正常的运行的最基本的保证,本文就在对主变压器中性点的结构及运行方式进行简单分析的基础上,对其中性点的保护及运行进行简单分析。
标签:主变压器;中性点;保护;运行分析在发电厂的主变压器中,中性点是其重要的组成部分,它是星形连接的三相电路中将三相绕组进行有效的连接的公共点,对中性点实施有效的保护及运行分析,对于整个电厂的正常运行具有非常重要的作用,本文就针对此予以简单分析。
一、发电厂主变压器中性点的结构放电计数器、电流互感器、中性点保护间隙、中性点隔离开关、避雷器等是电厂主变压器的中性点的主要组成部分。
其中的中性点隔离开关的主要作用是对中性点的接地状态进行有效的控制,通常情况下,工作人员可以采用电动或者手动的形式对他的分合闸状态进行有效的控制。
放电计数器的主要作用是对避雷器的泄露电流进行有效的监测,并对避雷器的动作次数进行有效的记录,如果发现异常情况能够实现自动报警,继电器、毫安表、电磁计数器、非线性电阻以及其他的一些电子元器件是其主要的组成部分,在电路正常工作的情况下,放电计数器及避雷器中流过的泄露电流值的测量工作是由放电计数器中的毫安表来完成,但是如果电路中流过过电压时,放电计数器中的毫安表受到保护,动作电流会转移至电磁计数回路中,电流的测量、动作次数的记录及相关的报警功能则由电磁计数器来完成。
避雷器的主要作用是对电力系统中的操作过电压的能量及雷电的能量进行释放,对相关的电气设备实施有效的保护,防止其在工作的过程中受到瞬时过电压的损害,常将避雷器安装于大地与带电的导线之间,使其与需要进行保护的电气设备并联,一旦电路中的电压的值达到了预设的动作电压,避雷器要立即进行相关的动作,对电路中的过电压进行限制,对相关的电气设备实施有效的绝缘保护,当电路中的电压值恢复到正常水平之后,避雷器会恢复到之前的正常状态,对于整个系统的正常运行具有非常重要的作用。
中性点可能接地或不接地运行时变压器的
零序电流电压保护
1.全绝缘变压器
(1)全绝缘变压器零序爱护原理接线图
(2)零序电压元件的动作电压整定
按躲过在部分接地的电网中发生接地短路时爱护安装处可能消失的最大零序电压整定。
(3)爱护的动作时限t5
t5 =0.3~0.5s
2.分级绝缘变压器
(1)分级绝缘变压器零序爱护原理接线
(2)分级绝缘变压器零序爱护组成
由零序电压爱护、零序电流爱护、间隙零序电流爱护共同构成。
(3)分级绝缘变压器零序爱护原理
当系统发生一点接地,中性点接地运行的变压器由其零序电流爱护动作于切除。
若高压母线上已没有中性点接地运行的变压器,而故障仍旧存在时,中性点电位将上升,发生过电压而导致放电间隙击穿,此时中性点不接地运行的变压器将由反应间隙放电电流的零序电流爱护瞬时动作于切除。
假如中性点过电压值不足以使放电间隙击穿,
则可由零序电压爱护带0.3~0.5S的延时将中性点不接地运行的变压器切除。
4)零序电压元件的起动电压的整定
①应低于变压器中性点工频耐受电压:
②躲过电网存在中性状况下单相接地短路时的最大零序电压:
一般=180V
5)放电间隙零序电流爱护的起动电流
击穿电流依据阅历数据整定,一般一次值为100A。
110kV变压器中性点接地方式与保护配置分析刘丛然;刘健;龙家文【摘要】电力系统中变压器中性点的接地方式和保护配置,是一个关系到电网安全运行的综合性问题,它与电压等级、电网结构、绝缘水平、供电可靠性等都有密切的关系.我国1 10kV及以上电网一般采用大电流接地方式,即中性点有效接地方式,发生单相接地故障时,暂态过电压水平较低,故障电流较大,继电保护迅速动作于跳闸以切除故障.主要研究分析了110kV变压器的接地方式及保护配置,并根据大港油田某变电站发生的实际案例来详细分析故障发生的过程及保护配置的必要性.【期刊名称】《电气开关》【年(卷),期】2014(052)006【总页数】3页(P100-102)【关键词】变压器中性点;间隙;避雷器;零序保护【作者】刘丛然;刘健;龙家文【作者单位】大港油田电力公司生产调度中心,天津300280;大港油田电力公司生产调度中心,天津300280;大港油田电力公司生产调度中心,天津300280【正文语种】中文【中图分类】TM7321 前言在110kV及以上电压等级电网系统中,电力变压器是电力生产的核心设备,其成本较高,为了减少成本,减小变压器的内绝缘尺寸从而使整个变压器的尺寸缩小,变压器普遍采用分级绝缘结构,其特点是中性点的绝缘水平低于三相端部出线电压等级的绝缘水平。
在部分变压器中性点接地的电网中,接地短路故障是较常见的故障(约占故障总数的85%以上)。
当系统发生接地故障,中性点接地的变压器跳开后,电网变成不接地系统,电网零序电压升高或谐振等都会使不接地变压器中性点遭受过电压,从而危及变压器的中性点绝缘。
因此,处于该系统中运行的大型变压器必须装设中性点保护[1]。
2 变压器中性点接地方式2.1 变压器中性点接地系统的优缺点对电源中性点接地系统,若发生某单相接地,另两相电压不升高,这样可使整个系统绝缘水平降低;另外,单相接地会产生较大的短路电流,从而使保护装置(继电器、熔断器等)迅速准确地动作,提高了保护的可靠性。
变压器中性点的运用及保护
作者:李荣
来源:《智富时代》2018年第12期
【摘要】本文主要介绍了中性点的接地方式,使用方法及运用于变压器时的保护方式,中性点在电力系统的作用及其重要性。
【关键词】电力系统;中性点;接地方式;保护
电力系统中性点是指星形连接的变压器(或发电机)的中性点。
中性点的运行方式涉及到绝缘水平、通讯干扰、接地保护方式、电压等级、系统接线等方面。
电力系统中变压器中性点接地方式的选择合适不合适,关系着电网能否安全运行。
一、中性点接地方式
(一)中性点直接接地
中性点直接接地系统,也称大接地电流系统。
这种系统中一相接地时,出现除中性点以外的另一个接地点,构成了短路回路,接地故障相电流很大,为了防止设备损坏,必须迅速切断电源,因而供电可靠性低,易发生停电事故。
但这种系统上发生单相接地故障时,由于系统中性点的钳位作用,使非故障相的对地电压不会有明显的上升,因而对系统绝缘是有利的。
优点是绝缘方面减少了投资,因为在发生单相接地时,中性点电压为零,非故障相电压不升高,设备和线路对地电压可以按照相电压设计,从而降低了造价,减少了投资。
缺点是供电可靠性较低:因为中性点直接接地系统发生单相接地时,短路电流很大,必须断开故障电路,中断对用户的供电,故供电可靠性较低。
单相短路电流很大,中性点直接接地系统发生单相短路时,相当于将电源的正负极直接短路,故短路电流很大,可能须选用大容量的开关,增加了投资。
(二)中性点经消弧线圈接地
中性点经消弧线圈接地系统发生单相接地故障时,接地电流与故障点的位置无关。
由于残流很小,接地电弧可瞬间熄灭,有力地限制了电弧过电压的危害作用。
继电保护和自动装置、避雷器、避雷针等,只能保护具体的设备、厂所和线路,而消弧线圈却能使绝大多数的单相接地故障不发展为相间短路,发电机可免供短路电流,变压器等设备可免受短路电流的冲击,继电保护和自动装置不必动作,断路器不必动作,从而对所在系统中的全部电力设备均有保护作用。
(三)中性点不接地
我国大部分6~10kV和部分35kV高压电网采用中性点不接地运行方式。
其主要特点是:当系统发生单相接地时,各相间的电压大小和相位保持不变,三相系统的平衡没有遭到破坏,因此,在短时间内可以继续运行。
但是,为了防止故障扩大,造成相间短路;或者单相弧光接地时,使系统产生谐振而引起过电压,导致系统瘫痪,规定带故障点运行时间不得超过2h,这样较长时间带故障点运行给生产和调度造成很大的压力。
二、应用情况
我国110kV及以上电网一般采用大电流接地方式,即中性点有效接地方式(在实际运行中,为降低单相接地电流,可使部分变压器采用不接地方式),包括中性点直接接地和中性点经低阻接地。
这样中性点电位固定为地电位,发生单相接地故障时,非故障相电压升高不会超过1.4倍运行相电压;暂态过电压水平也较低;故障电流很大,继电保护能迅速动作于跳闸,切除故障,系统设备承受过电压时间较短。
因此,大电流接地系统可使整个系统设备绝缘水平降低,从而大幅降低造价。
6~35kV配电网一般采用小电流接地方式,即中性点非有效接地方式。
包括中性点不接地、高阻接地、经消弧线圈接地方式等。
在小电流接地系统中发生单相接地故障时,由于中性点非有效接地,故障点不会产生大的短路电流,因此允许系统短时间带故障运行。
这对于减少用户停电时间,提高供电可靠性是非常有意义的。
三、变压器中性点保护
情况1:当系统发生接地故障,中性点接地的变压器应装设零序电流保护,可由两段组成,每段各带两个时限,短时限动作于断开母联或分段断路器,缩小故障影响范围,长时限动作于断开变压器各侧断路器。
情况2:当系统发生接地故障,中性点接地的变压器跳开后,电网零序电压升高或谐振过电压等都会危及中性点不接地的变压器中性点绝缘。
因此,中性点不接地的变压器应装设零序电压保护或间隙零序电流保护。
(一)分级绝缘变压器
大型变压器是电力生产的核心设备,由于其成本较高,故在110kV及以上的中性点直接接地的电网中,多采用分级绝缘的变压器。
在实际运行中,部分变压器的中性点是直接接地的。
但还有部分变压器的中性点不接地运行。
所谓分级绝缘,就是变压器的线圈靠近中性点部分的主绝缘,其绝缘水平比线圈端部的绝缘水平低。
分级绝缘变压器运行中应注意的问题:
1、分级绝缘变压器中性点一定要加装避雷器和防止过电压间隙;
2、如果条件允许,运行方式允许,分级绝缘变压器一定要中性点接地运行;
3、分级绝缘变压器中性点如果不接地运行,中性点过电压保护一定要可靠投入。
(二)变压器中性点配置关键原则
(1)在双母线运行时,应考虑当母联开关跳闸后,保证被分开的两个系统至少应有一台变压器中性点接地;
(2)变压器中、低压侧有电源时,则变压器中性点必须直接接地,以防止高压侧断路器跳闸,变压器成为中性点绝缘系统;
(3)发电机—变压器—线路组的主变压器中性点应保持接地运行。
(三)变压器中性点过电压的三种形式
(1)大气过电压
(2)单相接地故障引起的过电压
(3)断路器非全相分合闸引起的过电压(主要表现为电网中断路器的非同期重合闸、非全相动作、导线断线等)
(四)变压器中性点间隙保护的三种方式
可采用间隙、避雷器及避雷器联合放电间隙3种方式。
变压器多采用避雷器联合放电间隙的保护方式。
放电间隙采用棒—棒间隙,避雷器多配置为氧化锌避雷器。
避雷器并联间隙的保护分工是工频、操作过电压由间隙承担,雷电、暂态过电压由避雷器承担,同时,又用间隙来限制避雷器上可能出现的过高幅值的工频过电压和过高的残压。
这种方式既对变压器中性点进行保护,又起到互为保护的作用。
(五)变压器中性点间隙过流保护
放电间隙保护是由零序电压和零序电流并联组成,且电流定值比较灵敏,时间较短,没有与其他保护配合的关系。
在直接接地状态时,如遇到外部故障,在中性点CT中就有零序电流流过,将造成间隙过流保护误动。
在经间隙接地状态时,在发生接地故障时,在其他接地变跳开后,中性点零序电压将升高,使间隙零序电压保护动作。
间隙击穿后,零序电流动作,保护
不接地变压器的安全。
间隙保护全称为变压器中性点间隙接地保护成套装置。
主要用于
110KV和220KV变压器中性点过电压保护。
(六)变压器零序电压保护
中性点放电间隙是一种较为粗糙的设备,因其放电电压受气象条件、调整精度以及连续放电次数的影响可能出现该动作而不能动作的情况。
为此,还应装设零序电压保护,作为放电间隙拒动时的后备保护。
四、结论
中性点的接地方式关系到整个电力系统运行的稳定性,而相关的保护配置与配合关系到变压器设备的安全运行与绝缘。
所以为了使电力系统安全稳定的运行,使我们有拥有一个坚强可靠的电力系统,我们还要继续我们的探索与追求。
【参考文献】
[1]李本瑜,辜新宇,张凯. 变压器中性点接地刀闸自动控制技术研究[J]. 电网与清洁能源, 2015(3):69-73.
[2]晏青,陈军,梁静,等. 变压器中性点间隙零序过流保护改进[J]. 电力科学与工程,2015(8):14-19.。