高分子物理
- 格式:docx
- 大小:22.92 KB
- 文档页数:3
高分子物理高分子的力学性能引言高分子是由大量重复单元组成的长链聚合物,具有广泛的应用领域。
高分子材料的力学性能是评估其性能和应用范围的重要指标之一。
本文将重点介绍高分子物理高分子的力学性能,包括拉伸性能、弯曲性能和压缩性能。
拉伸性能拉伸性能是衡量高分子材料抵抗拉伸变形的能力。
引伸模量是评估高分子材料刚度的指标,反映了材料在受力下沿着拉伸方向的抗弯刚度。
拉伸模量越大,材料刚度越高,说明材料越难被拉伸变形。
另一个重要的指标是断裂伸长率,即材料在断裂前所能延伸的长度与原始长度之比。
断裂伸长率越大,材料的延展性越好,能够在受力下更好地承受高应变。
弯曲性能弯曲性能是评估高分子材料在受力下的弯曲变形能力。
弯曲模量是衡量材料刚度和弯曲抗弯能力的指标,它反映了材料在弯曲过程中所需的力和弯曲程度之间的关系。
弯曲模量越大,材料的刚度越好,弯曲变形能力越低。
另一个重要的指标是弯曲强度,即材料在抵抗内部应力下断裂弯曲的能力。
弯曲强度越高,材料越能够承受弯曲应力而不断裂。
压缩性能压缩性能是评估高分子材料在受力下的抗压能力。
压缩模量是衡量材料在受压过程中抗弯刚度的指标,它反映了材料在压缩过程中所需的力和压缩程度之间的关系。
压缩模量越大,材料的刚度越高,抗压变形能力越低。
另一个重要的指标是压缩强度,即材料在抵抗内部应力下断裂压缩的能力。
压缩强度越高,材料越能够承受压缩应力而不断裂。
影响高分子材料力学性能的因素高分子材料的力学性能受多种因素影响。
其中,聚合度是一个重要的因素,即聚合物链的长度。
聚合度越高,链段之间的力学相互作用越多,因此材料的力学性能越好。
另一个重要因素是材料的结晶度。
高结晶度的材料通常具有更好的力学性能,因为结晶区域可以提供更多的强度和刚度。
此外,材料的处理方式和加工工艺也会对力学性能产生影响。
高分子物理高分子的力学性能是评估其应用潜力和性能表现的关键指标。
拉伸性能、弯曲性能和压缩性能是评估高分子材料力学性能的重要指标。
近程结构:高分子中与结构单元相关的化学结构,包括结构单元的构造与构型远程结构:指与整个高分子链相关的结构构型:分子链中由化学键所固定的原子在空间的几何排布方式构象:分子链中单键内旋转所形成的原子或基团在空间的几何排列图像碳链高分子:高分子主链全部由碳原子组成,且碳原子之间以共价键连接而成的高分子杂链高分子:主链上除碳原子外,还有氧氮硫等其他原子存在,原子键以共价键相连接的高分子元素有机高分子:主链不含碳原子,由Si,B,P,Al,Ti,As,O等无机元素组成,侧基为有机取代基团链接异构:结构单元在分子链中因键接顺序或连接方式不同而形成的异构体序列异构:不同序列排布方式形成的键接异构体旋光异构:d型和l型旋光异构单元在分子链中排列方式不同而构成的异构体几何异构:根据内双键连接的两个碳原子上键接基团在键两侧的排列方式分出顺式和反式两种立体异构体,称为顺反异构体,也称为几何异构体全同立构:分子链中所有不对称碳原子均以相同的构型键接间同立构:分子链中的不对称碳原子分别以d型和l型交替键接无规立构:分子链中的不对称碳原子以d和l构型任意键接线性高分子:具有一维拓扑结构的线性长链,长径比大,每个分子链带有两个端基支化高分子:分子主链上带有与其化学组成相同而长短不一的支链的高分子,端基数目大于2交联网络:经交联后,分子链形成的具有一定强度的网状结构内旋转:与σ键相连的两个原子可以做相对旋转而不影响σ键电子云的分布,称为σ键的内旋转内旋转势垒:内旋转时需要消耗一定能量以克服所受的阻力,所需能量即为内旋转势垒内旋转势能差:内旋转异构体之间的势能差称为内旋转势能差静态分子链柔顺性:又称为平衡态柔顺性,指高分子链在热力学平衡条件下的柔顺性动态分子链柔顺性:指分子链在一定外界条件下,微构象从一种平衡态构象转变到另一种平衡态构象的速度或难易程度链段:如果人为的将若干个相互牵连的相邻σ键合并,看做一个相对独立的单元,即为链段均方末端距:均方末端距为末端距向量的平方按分子链构象分布求得的统计平均值均方旋转半径:均方旋转半径定义为从分子链质心到各质点的向量的平方以质点质量为权重的统计平均值伸展链:呈充分伸展的宏构象的高分子链自由连接链:假定分子链上化学键数目n相当大,各化学键之间自由连接每个键在任何方向取向的概率相等,不受键角的限制和位垒的障碍,内旋转完全自由,且分子量不占有体积自由旋转链:假定化学键在键角上的旋转是完全自由的,即每个单键可以在以键角的补角为半锥顶角的锥面上自由旋转,这种分子链模型即为自由旋转链模型等效自由连接链:将若干个相互连接的σ键合并成链段,视其为相对独立的单元,由于链段之间自由连接,高分子链可以视为以链段为统计单元的自由连接链,该模型为等效自由连接链模型Kuhn等效链段:等效自由连接链的等效结构单元是链段,也称为Kuhn等效链段Gauss链:链段数足够多,符合无规行走模型的要求,那么以链段为统计单元的分子链的构象也符合Gauss分布,称为Gauss链模型Flory特征比:定义为无扰均方末端距与自由链模型计算的均方末端距之比值凝聚态结构:在不同外部条件下,高分子链可能以无规线团构象堆砌,也可能排列整齐呈伸展链,折叠链,及螺旋链等构象,形成不同的有序晶相结构分子间作用力:主价键完全饱和的原子,仍有吸引其他分子中饱和原子的能力,这种作用力称为分子间作用力范德华力:分子间静电相互作用,主要指分子间静电引力,称为范德华力氢键:本质是氢原子参与形成的一种相当弱的化学键憎水相互作用:高分子链结构中的各类基团,可分为亲水基团和疏水基团,表面活性剂溶于水中,由于该作用,按浓度不同聚集成胶束,单层膜,双层膜,微泡体等结构内聚能密度:把一摩尔液体或固体的分子分离到分子引力范围以外所需要的能量,用于度量分子间作用力晶胞参数:分为三个边长参数和三个夹角参数,根据参数不同分为七大晶系等同周期:分子链排列时以相同结构单元重复出现的周期长度单晶:高分子链以折叠方式形成的晶片球晶:聚合物在无应力状态下从溶液或熔体结晶得到的一种最为普遍的结晶形态折叠链晶片:在一般温度场中结晶,分子链多沿晶片厚度方向反复折叠排列,形成折叠链晶片伸展链晶片:在强应力场中结晶,分子链易于沿应力方向伸展排列形成伸展链晶片纤维状晶:既有伸展链晶体又有折叠链片晶串晶:以纤维晶为结晶中心,在其周围生长出许多折叠链晶片,与纤维晶一起构成串状结构结晶度:晶区部分在聚合物总量中所占的质量分数或体积分数结晶速率:表征结晶的快慢异相成核:依靠外来杂质或加入的成核剂,或容器壁作为晶体的生长点均相成核:由热运动形成分子链局部有序,生成有一定体积而热力学稳定的晶核,晶核的化学组成与后生长的晶体相同熔点:结晶聚合物的熔点一般指晶体完全融化时的温度熔限:结晶聚合物的熔化温度范围无规线团:在非晶聚合物中,高分子链为柔性链,大量分子链以无规线团状互相穿插,缠结在一起,无局部有序结构,分子链间存在空隙,称为无规线团模型无定形态:以非晶态或非晶态占绝对优势的聚合物称为无定型聚合物取向度:材料的取向程度单轴取向:指材料只沿一个方向拉伸,分子链或链段沿拉伸方向排列双轴取向:指材料沿两个互相垂直的方向拉伸,分子链或链段处于与拉伸平面平行排列的状态,但平面内结构单元的排列可能是无序的液晶:介于液态和晶态之间的中介状态热致性液晶:由于温度导致分子运动能力变化,在液固相变过程中形成的中间态熔致性液晶:由于有机分子溶液浓度变化,在憎水作用下,形成的有机分子溶质有序排列机构织态结构:多相高分子材料由于成分复杂,凝聚态也相对复杂,这类凝聚态结构称为织态结构高分子共混物:两种或两种以上高分子材料的物理混合物填充改性高分子材料:通过填充使材料获得新的功能及性质,提高其性价比软物质:包括液晶材料,高分子材料,两亲分子,生物有机材料和胶体等多尺度性:从空间尺度的角度去理解即为多层次性运动单元的多重性:高分子材料具有多层次,多类型的复杂结构,决定着其分子运动单元和运动模式也是多层次,多类型的形变-温度曲线:在一定载荷和恒速升温条件下式样形变与温度的关系力学状态:材料力学性能规定的物质存在状态玻璃态:温度低,分子热运动能量低,分子链及链段的运动均处于冻结状态,弹性模量高,形变小,外力撤去后形变立即恢复高弹态:温度升高,热运动加剧,链段具有充分运动能力,模量小,形变大外力撤去后形变可恢复粘流态:自由体积进一步增大,链段协同运动加剧,在外力作用下分子链质心发生相对位移的运动占优势,具有明显的粘性流动特征,材料呈熔体状玻璃化转变:由玻璃态转变为高弹态,自由体积增大,链段运动解冻黏流转变:由高弹态转变为粘流态,链段可沿外力方向协同运动,分子链解缠结,分子质心发生相对位移分解温度:分解温度指处于粘流态的聚合物当温度进一步升高时,便会使分子链的降解加剧,升至使聚合物分子链明显降解时的温度为分解温度脆化温度:以具有一定能量的冲锤冲击试样时,当试样开裂几率达到50%时的温度称脆化温度自由体积:分子尺寸的空穴和堆砌形成的空隙分子占有体积:单个原子的振动体积,由原子的范德华半径和与原子振动有关的体积确定等自由体积理论:对不同高分子材料而言,发生玻璃化转变时自由体积分数的临界值基本相等,高分子材料的玻璃态为等自由体积状态自由体积膨胀系数:玻璃化转变温度前后玻璃态和高弹态聚合物的膨胀系数之差松弛过程:物质状态的时间演变过程松弛时间:松弛过程所用时间玻璃化转变的多维性:恒温下改变其他条件,如改变各向同性压力,外力作用频率等也能改变链段运动状态,引发玻璃化转变主转变:玻璃化转变,高分子结晶或熔融等涉及链段运动状态的改变次级转变:在温度,频率等外界条件变化时尺寸小于链段的小结构单元的运动也存在冻结或释放的状态变化,影响材料的性质拉伸应力:物体在被拉伸时产生的应力剪切应力:物体由于外因而变形时,在它内部任一截面的两方出现的相互作用力拉伸应变:物体在拉伸力作用下的形变剪切应变:物体在变形时截面上的形变模量:应力与应变的比例系数柔量:模量的倒数杨氏模量:拉伸时的应力与应变之比剪切模量:发生剪切应变时的应力与应变之比普弹性:小分子材料的弹性形变能力高弹性:高分子材料的弹性形变能力高弹形变:高分子材料在外力下发生的形变网链:在交联橡胶和处于高弹态的高分子材料内部,分子链之间存在着化学的和物理的交联点,使所有分子链构成一个大网络应变诱导结晶:在大拉伸比下产生诱导结晶,结晶度增大线性粘弹性:符合胡克定律的线性弹性和符合牛顿粘性定律的线性粘性的组合非线性粘弹性:不符合胡克定律的线性弹性和符合牛顿粘性定律的线性粘性的组合应力松弛:在恒温状态下拉伸,保持应变恒定,测试样内应力随时间增长逐渐降低松弛模量:应力松弛时应力与应变之比蠕变:蠕变是指在一定温度和恒定外力作用下,材料的形变随时间增大而逐渐增大的现象蠕变柔量:发生蠕变时形变与应力之比滞后现象:对一般粘弹性材料,应变比应力落后滞后角:滞后现象中应力与应变的相位差储能模量:粘弹性材料复数模量的实部,描述应力应变同位相的弹性形变损耗模量:粘弹性材料复数模量的虚部,描述应变落后应力π/2的粘性应变复数模量:应力与应变之比力学损耗:一个拉伸回缩周期中,单位体积材料所损耗的机械功损耗正切:储能模量与损耗模量之比Mexwell模型:由一个胡克弹簧和一个装有牛顿液体的黏壶串联组成,测量应力松弛Kelvin模型:由一个胡克弹簧和一个装有牛顿液体的黏壶并联组成,测蠕变四原件模型:由弹簧,Kelvin模型,黏壶串联而成,测未交联聚合物的实际蠕变情况广义Mexwell模型:将若干个具有不同松弛时间的Mexwell模型并联广义Kelvin模型:将若干个具有不同推迟时间的Kelvin模型串联松弛时间谱:不同松弛时间Ti的集合等温时效原理:对高分子材料的力学状态转变及力学松弛性能而言,外力作用时间和环境影响有等效作用Boltzmann叠加原理:对时间序列中一系列阶跃式应变或应力的输入,体系在即时t的应力或应变响应可以表示为不同时刻的一系列个别相应的线性叠加破坏:指材料在使用,储存状态下变形,破裂,疲劳乃至失去效用断裂:指外力作用下本体开裂成两个或多个碎片产生新表面疲劳:指长时间动态加载条件下发生的失效屈服:外力作用下,材料发生不可逆形变工程应力:拉力F除以式样原始截面积A真应力:式样拉伸过程中产生的真实应力拉伸强度:应力应变曲线到达断裂点时所受的应力断裂伸长率:应力应变曲线到达断裂点时发生的应变屈服强度:应力应变曲线到达极大值点时对应的应力屈服应变:应力应变曲线到达极大值点时对应的应变应变软化:越过屈服点后式样的应力略有下降细颈:发生应变软化时试样上某一局部会出现颈缩现象断裂能:拉伸试样直至断裂单位体积所消耗的能量脆韧转变温度:拉伸断裂强度和屈服强度两曲线交点对应的温度剪切屈服:试样在拉伸时出现颈缩现象,颈缩处出现45度的剪切屈服带拉伸屈服:在外力作用下,材料内部垂直于外力作用方向出现的微结构的撕裂,挣脱,位移,消耗形变能强迫高弹形变:在软玻璃态发生的大形变称为非晶聚合物的强迫高弹形变冷拉:结晶聚合物发生的强迫高弹变形应变硬化:冷拉伸结束后,再继续拉伸,应力将上升脆性断裂:断裂伸长率很小,拉应力作用下未发生屈服即断裂韧性断裂:断裂伸长率较大,拉应力作用下先发生屈服,而后在更大断裂伸长率下再发生断裂应力集中效应:缺陷的存在影响了材料内部应力分布的均匀性,应力会集中于细微裂纹的尖端理论强度:所有分子链单向有序排列,沿主链方向同时均匀受力,同时被拉断,这样求得的强度为理论强度实际强度:拉伸外力先克服次价键,使局部分子链滑脱,取向,伸直,再克服主价键,拉断分子链增强:使用化学法或物理方法提高材料的力学强度或其它性能临界弹性能释放速率:材料断裂韧性的一种度量抗冲击强度:标准式样在高速冲击作用下发生断裂时,单位断面面积所消耗的能量银纹:聚合物在张应力作用下,于某种材料某些薄弱部位出现应力集中而产生局部的塑性形变和取向,光线照射下呈现银白色光泽裂纹:材料在应力或环境(或两者同时)作用下产生的裂隙剪切屈服带:材料内部具有高度剪切应变的薄层,在应力作用下材料内部局部区域产生应变软化形成的环境应力开裂:指在外力与环境气氛共同作用下材料内部出现银纹,裂缝,空隙以至于性能下降而失效增韧:聚合物的增韧就是把聚合物的断裂方式由脆性断裂转变为韧性断裂溶胀:溶剂小分子渗透,扩散到高分子中间,削弱大分子间相互作用力,使体积膨胀溶解:大多数线型或支化高分子材料置于适当溶剂中并给予适当条件,就可溶解而成为高分子溶液溶胀比:溶胀后与溶胀前的体积之比溶胀平衡:当溶剂的渗入,膨胀作用与交联网的弹性回缩作用相等时,达到溶胀平衡内聚能密度:摩尔内聚能与摩尔体积之比溶解度参数:内聚能密度的平方根溶剂化作用:广义酸和碱相互作用产生溶剂化,使聚合物溶解理想溶液:溶液中各分子之间的相互作用能相等,溶解时无体积变化,与外界无热量交换无热溶液:溶解时与外界无热量交换Flory-Huuggins参数X12:高分子-溶剂相互作用参数,相当于把一个溶剂分子放到高分子体系中引起的能量变化偏摩尔自由能:在一定的温度压力和浓度下,向溶液中再加入1mol溶剂或溶质,体系中自由能的改变溶剂的稀释自由能:溶剂在溶液中的化学势与纯溶剂化学势的差值超额化学势:高分子溶液与理想溶液相比多出的化学势θ状态:某种条件下高分子溶液满足理想溶液的条件,称该状态为θ状态θ温度:θ状态时的温度θ溶剂:θ状态时的溶剂排除体积:高分子或链段在溶液中可有效地排除所有其他高分子或链段的体积数均分子量:按各级分分子的数量分数求平均重均分子量:按各级分分子的质量分数求平均粘均分子量:用粘度法测得的聚合物的分子量渗透压:用半透膜把溶剂与溶液隔开时发生渗透现象,到达平衡时半透膜两侧溶液产生的压力差第二virial系数:表征高分子稀溶液性质,判断溶剂优劣流变性:高分子液体流动时不同程度的发生弹性形变和弹性恢复,出现如挤出胀大,熔体破裂,法向应力差等弹性效应,称为流变性。
高分子物理pdf高分子物理:1.什么是高分子物理?高分子物理是一门学科,它的目的是研究高分子物质的性质、结构以及它们之间的相互作用,例如发生在分子链和高分子组成部分之间的交互作用和它们与周围环境之间的作用。
它是一门综合性研究,它研究高分子物质惯性运动性质、晶体结构和热运动以及分子链形态和柔性行为。
高分子物理学还研究如何改变高分子物质及其组成结构,以及这些结构可以以何种方式在机器、人类和环境中发挥作用。
2. 高分子物理的基础理论高分子物理的基础理论包括分子结构理论、热力学理论、量子理论等。
分子结构理论旨在研究高分子物质的构成,以及不同分子类型如何相互作用。
热力学理论致力于研究热天然动力如何释放和重新收集热能,以及不同物质如何相互影响、协同作用以及出现显著变化。
量子理论试图研究高分子的分子结构和属性,如分子的动力学作用不同的储能状态在不同条件下的表现,及其控制这些能量状态的机理。
3. 高分子物理的作用在科学、技术和工程的发展中,高分子物理至关重要。
它为各种工程应用,如产品开发、新材料的制造和维护提供理论指导。
此外,高分子物理也为其它领域增添了深厚的理论基础,例如医学和生物技术。
高分子物理有助于绘制和选择用于产品开发的特点,以及研究产品性能有效调整参数以及制造过程中会发生的差异和不确定性等。
4. 高分子物理的研究方法高分子物理的研究方法覆盖了从分子结构理论到实验学习的范畴。
实验研究方法可以为理论提供验证和宝贵的实验数据,而已有的理论研究则可以帮助整合实验结构的差异、提高理论的精确度、拓展理论的有效性并帮助准确描述实验结果。
许多研究者采用多重实验研究和理论研究的多学科视角,以深入探索和研究高分子物理。
最终,来自不同学科背景的研究者可以在一起为高分子物理的发展做出贡献。
名词解释1.构型:分子中由化学键所固定的原子在空间中的排列2.构象:由于单键内旋转而产生的分子在空间不同形态成为构象。
3.构造:指链中原子的种类和排列,取代基和端基的种类,单体单元的排列顺序,支链的类型和长度等。
4.支化度:以支化点密度或亮相邻支化点之间的链平均分子量来表示支化度的程度。
5.交联度:通常用相邻两个交联点之间的链的平均分子量来表示。
6.邦联结构:高分子链之间通过支链连接成一个三维空间网型大分子时即称为交联结构。
7.立构方式(3种):无规立构:两种旋光异构单位完全无规则检接。
间同立构:由两种旋光异构单位交替键接。
全同立构:高分子全部由一种旋光异构单位键接而成。
8.等规高聚物:全同立构和间同立构难道高聚物有时通常称为等规高聚物9.等规度:指高聚物中含有全同立构和间同立构的总的百分数。
10.等效自由结构链:我们就把有若干个键组成的一段链算作一个独立的单位,称他为链段,令链段与链段自由结合,并且无规取向,这种链称为~~~11.高斯链:因为等效自己结合链的链段分布符合高斯分布函数,故称为~~~~~~~12.链段:把由若干个键组成的一段链作为一个独立运动的单元,称为链段。
13.高分子柔顺性:高分子链能够改变其构象的性质。
14.无规线团:单链的内旋转是导致高分子链成蜷曲构象的原因,内旋转越是自由,蜷曲的趋势就越大。
我们称这种不规则的蜷曲的高分子链的构象为无规线团。
15.聚集态结构:高分子的聚集态结构是指高分子链之间的排序和堆砌结构,也称为超分子结构。
16.内聚能密度:克服分子间作用力,把1mol液体或固体分子地道其间分子间的引力范围之外所需要的能量。
17.结晶度:结晶高聚物中通常总是包含结晶区和非结晶区两个部分,为了对这种状态做出定量描述,提出结晶度的概念,作为结晶部分含量的得量度,通常以重量百分数或体积百分数俩表示。
18.取向:当线形高分子充当伸展的时候,其长度是其宽度的几百,几万倍,这种结构上悬殊的不对称性,使他们在某些情况下很容易沿某特定方向做占优势的平行排列,称为取向。
高分子物理和高分子化学的区别高分子物理与高分子化学是两个相关但又不同的学科领域。
尽管它们都涉及研究高分子材料,但它们的研究方向和方法有所不同。
高分子物理主要关注高分子材料的物理性质和行为。
它涉及到高分子材料的结构、力学性能、热学性质、电学性质、光学性质等方面的研究。
通过对高分子材料的物理性质进行分析和实验研究,高分子物理学家可以揭示高分子材料的内部结构和性能之间的关系,从而为高分子材料的设计、合成和应用提供理论依据。
与高分子物理不同,高分子化学更注重高分子材料的合成、结构和化学性质。
高分子化学家致力于研究如何通过不同的合成方法和反应条件来制备具有特定结构和性能的高分子材料。
他们关注高分子材料的分子结构、官能团的引入、交联度、分子量等方面的变化对材料性能的影响。
通过对高分子材料的化学性质进行分析和实验研究,高分子化学家可以改变材料的性能,以满足特定的应用需求。
在实际应用中,高分子物理和高分子化学经常相互结合,共同推动高分子材料的研究和发展。
高分子材料的物理性质和化学性质之间存在密切的关联,二者相互影响。
例如,高分子材料的分子结构和分子量对其力学性能、热学性质以及导电性能等有重要影响。
因此,高分子物理和高分子化学的研究结果可以相互参考,互相验证,以获得更全面和准确的材料性能描述。
高分子物理和高分子化学还在不同的实验方法和表征技术上有所不同。
高分子物理学家通常使用一些物理手段,如拉伸实验、动态力学分析、热重分析等来研究材料的物理性质。
而高分子化学家则更多地使用化学手段,如聚合反应、官能团修饰、质谱分析等来研究材料的化学性质。
通过综合应用这些实验方法和技术,可以全面地了解高分子材料的性质和行为。
高分子物理和高分子化学是两个相互关联但又有所区别的学科领域。
高分子物理关注高分子材料的物理性质和行为,而高分子化学则关注高分子材料的合成、结构和化学性质。
尽管存在差异,但两者的研究成果相互映衬,共同促进了高分子材料的发展与应用。
高分子的热学性能引言高分子是一类由大量重复单元组成的大分子化合物。
由于其特殊的结构和性质,高分子在热学性能上表现出一系列的特点。
本文将从热学性能的角度探讨高分子的特点。
1. 玻璃化转变温度高分子在加热过程中会经历玻璃化转变。
玻璃化转变温度是指在高分子加热过程中,高分子从固态转变为类似于玻璃的非结晶态的临界温度。
玻璃化转变温度是高分子的重要热学指标之一,其数值与高分子材料的应用温度范围密切相关。
2. 熔点和熔融热高分子在加热过程中,当温度达到熔点时会发生熔化,形成液态高分子。
熔点是指高分子从固态到液态转变的温度,熔融热则是指单位质量高分子在熔解过程中释放或吸收的热量。
3. 热膨胀系数高分子的热膨胀系数是指高分子在单位温度变化时长度或体积的变化程度。
热膨胀系数对于高分子材料在热学应用中的变形和热应力具有重要影响。
不同高分子材料的热膨胀系数差异较大,因此在设计高分子制品时需要考虑其热膨胀系数的影响。
4. 热导率高分子的热导率是指高分子材料在温度梯度下传导热量的能力。
热导率是衡量高分子热学性能的重要指标之一,它对高分子材料的导热性能和热传导过程有着直接影响。
不同高分子材料的热导率差异较大,因此在选择高分子材料时需要考虑其热导率的要求。
5. 热稳定性高分子的热稳定性是指在高温条件下高分子材料自身是否发生热分解的能力。
热稳定性对于高分子材料在高温环境下的应用具有重要影响,直接影响其使用寿命和性能表现。
6. 热膨胀系数和热导率的关系高分子的热膨胀系数和热导率之间存在一定的关系。
通常情况下,热导率和热膨胀系数呈反相关关系。
热膨胀系数大的高分子材料常常具有较低的热导率,而热导率高的高分子材料往往具有较低的热膨胀系数。
7.高分子材料在热学性能上具有一系列的特点,包括玻璃化转变温度、熔点和熔融热、热膨胀系数、热导率以及热稳定性。
这些热学性能对高分子材料的应用和性能表现具有重要影响,因此在选择和设计高分子材料时需要考虑这些因素。
高分子物理学高分子物理学是研究高分子物质的物理性质及其相互作用的学科。
高分子物质广泛存在于自然界和工业中,如塑料、橡胶、纤维素等,因此高分子物理学的研究对于材料科学和工程领域具有重要意义。
一、高分子物理学简介高分子物理学是物理学的一个分支,主要研究高分子物质的物理性质及其内部结构、动力学行为和相互作用。
高分子物质通常由数个重复单元组成,分子量较大,其性质与低分子物质有很大差异。
高分子物理学的研究对象包括高分子材料的结构、力学性能、热力学性质、电学性质等。
二、高分子物理学的研究方法高分子物理学研究常用的方法包括理论计算、实验研究和数值模拟。
理论计算是通过建立高分子物理学模型,运用物理学原理和数学方法,对高分子物质的性质进行定量描述和预测。
实验研究是通过设计合适的实验方案,利用物理学实验仪器和设备对高分子物质的性质进行测量和分析。
数值模拟是运用计算机技术,通过数值计算和模拟实验,对高分子物质的性质进行模拟和预测。
三、高分子物理学的重要性高分子物理学的研究对于材料科学和工程领域有重要意义。
高分子材料广泛应用于塑料、橡胶、纤维素等领域,对于改善人类生活和推动社会经济发展起到了重要作用。
高分子物理学的研究可以为高分子材料的设计、合成和应用提供理论依据和技术支持。
研究高分子物质的内部结构和性质有助于优化材料的性能,并开发出新型的高分子材料。
同时,高分子物理学的研究还可以揭示高分子物质的物理本质和行为规律,为其他学科的发展提供新的思路和方法。
四、高分子物理学的应用领域高分子物理学的研究成果在工程和科学领域得到了广泛应用。
在材料工程领域,高分子物理学的研究成果使得高分子材料的性能得到提升,如增加抗拉强度、耐磨性、耐候性等,满足不同领域的需求。
在能源领域,高分子物理学的研究有助于开发新型的高分子电池材料、储能材料等,为能源存储和转换提供解决方案。
在生物医学领域,高分子物理学的研究为生物材料的设计和制备提供了理论指导,如生物可降解材料、药物载体等。
高分子物理知识点高分子物理是研究聚合物分子在物理场中的行为和性质的学科。
聚合物是由一些单体分子通过化学键结合而成的巨大分子,其分子量多数达到百万或以上。
高分子物理的研究范围主要包括聚合物的物理结构、热力学性质、电学性质、机械性质、输运性质、光学性质等方面。
一、聚合物的物理结构聚合物的物理结构是指聚合物高分子链的构象状态。
聚合物高分子链的构象状态受到其化学结构、聚合反应的条件、处理温度等多种因素的影响。
根据高分子链形态的不同,可将聚合物的物理结构分为直线型、支化型和交联型。
1. 直线型聚合物物理结构直线型聚合物是高分子链结构较为简单、规则的聚合物。
它通常由一根直线型链构成,其中的结构单元重复出现,链端没有分支或交联结构。
高分子的线密度、分子量和分子结构对其物理性质有很大的影响。
2. 支化型聚合物物理结构支化型聚合物指非直线型、分子链有分支结构的聚合物。
分支结构对于聚合物的物理性质有很大的影响,由于支化结构的存在,使得聚合物高分子链的平均距离更大,聚合物的分子间距离变大,导致其性能发生变化。
支化型聚合物化学结构和分支类型的不同,会对聚合物的物理性质产生巨大的影响。
3. 交联型聚合物物理结构交联型聚合物是由互相交联的高分子链构成的聚合物。
它们通常具有三维结构,分子间有交联点连接。
交联型聚合物的物理性质比支化型聚合物更为复杂。
不同交联密度、交联桥、交联方式等会对其物理性质产生很大的影响。
二、热力学性质聚合物的热力学性质主要包括相变、热力学函数、相平衡、玻璃化转变等方面。
1. 相变相变是指物质从一个物理状态到另一个物理状态的变化。
聚合物相变通常指聚合物高分子间和高分子和外界环境间的相变。
聚合物的相变通常与聚合物的物理结构、温度和压强等相关。
2. 热力学函数热力学函数是描述物质宏观性质的基本物理量,它包括熵、焓、自由能等,具体热力学函数的选择取决于所研究的问题和体系。
3. 相平衡聚合物在不同温度和压强下处于不同的相态平衡中,可以通过研究相平衡来揭示聚合物的热力学性质。
一.名词解释1. 链段:高分子链上能独立运动(或自由取向)最小单元。
2. 溶胀:高聚物溶解前吸收溶剂而体积增大的现象。
3. 蠕变:在恒温下施加一定的恒定外力时,材料的形变随时间而逐渐增大的力学现象。
4. 介电损耗:在交变电场的作用下,电介质由于极化而消耗的电能。
5. 构象:由于单键的内旋转而产生的分子中原子在空间位置上的变化叫构象。
6. 分子量分布宽度指数:描述聚合物分子量分布宽度的常用参数之一,是实验中各个分子量与平均分子量之间差值的平方平均值,可简明地描述聚合物试样分子量的多分散性。
有重均和数均之分。
其数值越大,表明其分子量分布越宽。
7. 时温等效原理:指升高温度和延长观察时间对于聚合物的分子运动是等效的,对于聚合物的粘弹行为也是等效的。
8. 高分子链:单体通过聚合反应连接而成的链状分子,称为高分子链,高分子中的重复结构单元的数目称为聚合度。
9. 构型:指分子中由化学键所固定的原子在空间的几何排列,或指分子中原子的键接方式。
这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。
构型不同的异构体有旋光、几何、键接三种。
10. 链段:由于分子内旋受阻而在高分子链中能够自由旋转的单元长度,称为链段。
作为一个独立运动的单元,是描述柔性的尺度。
11. 内聚能密度:把1mol 的液体或固体分子移到其分子引力范围之外所需要的能量为内聚能。
单位体积的内聚能称为内聚能密度,一般用CED 表示。
12. 溶解度参数:内聚能密度的平方根称为溶解度参数,一般用δ 表示。
13. 等规度:等规度是高聚物中含有全同立构和间同立构总的百分数。
14. 结晶度:结晶度即高聚物试样中结晶部分所占的质量分数(质量结晶度)或者体积分数(体积结晶度)。
15. 介电性:包括介电系数、介电损耗、介电击穿等,介电性的本质是物质在外场(电场、力、温度等)作用下的极化。
16. 海岛结构:两种高聚物相容性差,共混后形成非均相体系,分散相分散在连续相中,像小岛分散在海洋中一样,称为海岛结构。
名词解释:
链结构:单个高分子的结构和形态
凝聚态结构:高分子链凝聚在一起形成的高分子材料本体的内部结构
高分子链:由单体通过聚合物反应链接而成的链状分子
聚合度:高分子链中重复的结构单元的数目
均聚物:高分子主链由一种重复结构单元组成
共聚物:高分子链由几种结构单元组成
构型:分子中由化学键所固定的原子在空间的几何排列
构象:高分子的各种形状
不对称中心原子:正四面体的中心原子上的4个取代基或原子如果是不对称的,则可能产生异构体
全同立构:取代基全部处于主链平面的一侧
间同立构:取代基相间的分布于主链平面的两侧
无规立构:取代基在平面两侧作不规则分布
几何异构体:由于内双键上的基团在双键两侧排列方式不同而有顺势构型和反式构型之分键接异构:结构单元在高分子链中的链接方式
交联高分子:高分子链之间通过化学键相连或链段连接成一个三维空间网状大分子
网链长度:两个相邻交联点之间链节的数目或平均分子量
交联点的密度:交联的单体单元的物质的量与所有单体单元的总物质的量之比
链段:把若干个键组成的一段链作为一个独立的运动单元
高分子链柔性:分子链能改变其构象的性质
动态柔性:在外界条件影响下从一种平衡态构象向另一种平衡态构象转变的难易程度
末端距:线性高分子链的一端至另一端的直线距离
自由连接链:键长l固定,键角不固定,内旋转自由的理想化模型
自由旋转链:键长l固定,键角固定,内旋转自由的理想化模型
等效自由链接链:一个原来含有几个键长为l的自由链接链视为一个含有z个长度b的链段高斯链:链末端距分布可以用具有高斯函数形成描述的高分子链
无扰链:只受进程作用,不受远程作用的分子链
无扰尺寸:在某特定条件下测得的高分子尺寸
范德华半径:原子或基团范德华吸引力作用的范围
高分子凝聚态:高分子链之间的几何排列和堆砌状态
内聚能:克服分子间作用力,1mol的凝聚体汽化时所用的能量e
内聚能密度:单位体积凝聚体汽化时所需要的能量
晶体:物质内部质点在三维空间呈周期性的重复排列
晶胞:在三维空间中具有周期性排列的最小单位
晶格:很多结晶聚合物中高分子链确实堆砌成具有三维远程有序的点阵结构
单晶:结晶体内部的微粒在三维空间呈有规律的周期性排列
多晶:无数微小的单晶体无规则的聚集而成的晶体物质
片晶:高分子链规则的近邻折叠,进而形成片状晶体
结晶度:试样中结晶部分所占的质量分数或者体积分数
取向:在某种外力作用下,分子链或其他结构单元沿着外力作用方向择优排列的结构
取向角:分子链主轴方向与取向方向之间的夹角
多组分聚合物:体系中存在两种或两种以上的不同的聚合物组分,不论组分之间是否以化学键相连
相容性:热力学的相容性
高分子溶液:聚合物以分子状态分散在溶剂中所形成的均相体系
溶度参数:内聚能密度开方
凝胶:交联聚合物的溶胀体,不能溶解,不能熔融
冻胶:由范德华力交联而成的固体
分子量的分布:聚合物的分子量仅为统计平均值
填空,选择
1.高分子分为天然高分子,合成高分子,生物高分子
2.高分子结构分为链结构和凝聚态
3.高分子链结构是决定聚合物基本性质的主要因素
4.化学组成同样是表征共聚物,天然高分子,生物高分子
5.改变构型必须经过化学键的断裂和重组
6.构型不同的异构体有旋光异构体,几何异构体,链接异构体
7.链接取代基的定向和异构主要是由合成方法决定
8.研究空间立构的主要方法为红外光谱和核磁共振法
9.支化高分子根据支链的长短,分为短支链支化(低聚物分子水平)和长支链支化(达到
聚合物水平)
支化高分子根据支链链接不同分为无规(树状)、梳形、星形
10.共聚物类型包括无规共聚物,交替共聚物,接枝共聚物,嵌段共聚物
11.分子结构不同,内旋转位垒也不同,取代基越多,双键三键少,碳-杂原子少,位垒越大,
不易旋转
12.内旋转单键数目越多,内旋转阻力越小,构象数越大,链段越短,支化越低,交联性越
差,极性越低,分子间作用力越小,分子间规整性越差,氢键越少,柔性越好
13.内聚能在300j/cm3以下,可用作橡胶,300-400 塑料,400以上纤维
14.结晶条件,具有规整的结构与适宜的条件(温度)
15.结晶聚合物是部分结晶的或半结晶的多晶体,既有晶体部分又有非晶部分
16.晶体结构=点阵+结构单元
17.晶胞的类型:立方、四方、斜方,单斜,三斜,六方,三方
18.单晶特点:一定外形,长程有序
19.影响晶体形态的因素:晶体生长条件和晶体内部结构
20.极稀的溶液得到的片晶是单层的,稍浓的溶液得到的片晶是多层的
21.球晶呈现黑十字图像,呈圆形,双折射效应,球晶越大,材料的抗冲击强度越小,越容
易破裂,透明性越差
22.结晶聚合物的结构模型,樱状胶束,折叠链,插线板模型
23.取向条件不同,非晶态聚合物的取向单元也不同
24.高分子合金的制备方法有两类,化学共混和物理共混
25.无规线团是先溶胀后溶解,结晶体先熔融后溶解,交联体先溶胀后达到平衡
26.溶解度与聚合物的分子量有关,分子量大,交联度大,溶胀度小
27.溶度参数:需要实验方法(黏度法与溶胀度法)
28.溶剂对聚合物溶解能力三个原则,极性相近,内聚能密度或者溶度参数相近,huggins
参数小于1/2
29.高分子溶液与理想溶液产生偏差的原因在于分子量大,有柔性,一个高分子可以在溶液
中起到许多小分子的作用
30.A2>0 x<1/2 超额化学位小于0为良溶剂
A2=0 x=1/2 超额化学位=0为无扰体系
A2<0 x>1/2 超额化学位大于0为良溶剂
31.增塑剂使温度下降,流动性上升,抗拉强度下降,抗冲击性上升
32.聚合物分子量具有两个特点:1.分子量比低分子大几个数量级,2.多分散性
33.统计分子量,有数均分子量,重均分子量,Z均分子量,黏均分子量
34.相容性的测定方法:直接观察透光性,扫描电镜观察分散粒子大小,玻璃化温度
35.MZ>Mw>Mη>Mn
36.聚合物分子量测定方法分为绝对法,等价法和相对法。