2019年数学复习经验总结.doc
- 格式:doc
- 大小:42.03 KB
- 文档页数:6
如何做好中考数学复习?首先,作为考生必须了解中考方面的有关政策,避免复习走弯路、走错路。
考生要认真研读《中考考试说明》,领会、看清考试范围,重点研究样题的参考答案中的评分标准,对于每一个给分点要牢记于心,避免解题中出现“跳步”现象。
第二,认识自我,建立自信。
中考毕竟不是高考,它的主要职能是了解学生在义务教育阶段的数学学习历程,评价学生的基本数学水平,其次才是作为高中招生的主要依据。
纵观近年全国各地中考试题,其试卷的难度分布大多控制在4:5:1或5:4:1(容易题:中等题:难题)。
所以,考生大可不必因为不会解部分数学题而怀疑自己的数学能力和水平,甚至可以这样说,只要在这学期的复习阶段奋发努力,中考也不会走大样。
第三,制定复习计划,合理安排复习时间。
一般来说,中考复习可安排三轮复习。
第一轮,摸清初中数学内容的脉络,开展基础知识系统复习,按初中数学的知识体系,可以把二十一章内容归纳成八个单元:①数与式{实数,整式,分式,二次根式}②方程(组)与不等式(组){一次方程(组),一元一次不等式(组),一元二次方程,分式方程,简单二元二次方程(组)}③函数与统计{一次函数,二次函数,反比例函数,统计}④三角形⑤四边形⑥相似形⑦解直角三角形⑧圆。
中考试题中属于学生平时学习常见的“双基”类型题约占60%还多,要在这部分试题上保证得分,就必须结合教材,系统复习,对必须掌握的内容要心中有数,胸有成竹。
在此我建议各位考生首先一定要配合你的老师进行复习,切忌走马观花,好高骛远,不要另行一套;其次,复习应配备适量的练习,习题的难度要加以控制,以中、低档为主,另外,对于你觉得较难的题,或者易错的题,应养成做标记的好习惯,以便在第二阶段进行再回头复习。
注意:套题训练不易过早,参考资料应以单元为主,本阶段复习宜细不宜粗。
第二轮,针对热点,抓住弱点,开展难点知识专项复习。
学数学的目的是为了用数学,近年来各地中考涌现出了大量的形式活跃、趣味有益、启迪智慧的好题目,各位考生应在老师的指导下,对这些热点题型认真复习,专项突破。
第二章:代数式基础知识点:一、代数式1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。
单独一个数或者一个字母也是代数式。
2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。
3、代数式的分类:⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧无理式分式多项式单项式整式有理式代数式 二、整式的有关概念及运算1、概念(1)单项式:像x 、7、y x 22,这种数与字母的积叫做单项式。
单独一个数或字母也是单项式。
单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。
单项式的系数:单项式中的数字因数叫单项式的系数。
(2)多项式:几个单项式的和叫做多项式。
多项式的项:多项式中每一个单项式都叫多项式的项。
一个多项式含有几项,就叫几项式。
多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。
不含字母的项叫常数项。
升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
(3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。
2、运算(1)整式的加减:合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。
去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。
添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“–”号,括到括号里的各项都变号。
整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。
(2)整式的乘除:幂的运算法则:其中m 、n 都是正整数同底数幂相乘:n m n m a a a +=⋅;同底数幂相除:n m n m a a a -=÷;幂的乘方:mn n m a a =)(积的乘方:n n n b a ab =)(。
单项式乘以单项式:用它们系数的积作为积的系数,对于相同的字母,用它们的指数的和作为这个字母的指数;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
浅谈初中数学课复习复习可以使学生所学知识得到巩固和深化,还可以解决一些听课时未能解决的问题。
及时复习还可以使学生的知识系统逐步明了,更深刻地理解知识的来龙去脉以及知识间的相互联系,为今后的学习打下坚实的基础。
复习要抓住知识的核心问题,形成知识结构系统。
1 要有复习目标1.1 目标要全面所谓全面,就是指按照数学课程标准上的要求,有针对性地在知识、能力和思想品德三方面提出复习要求,不能厚此薄彼,甚至只提出知识方面的复习要求,把能力与思想品德丢在一边。
例如,统计表和统计图的复习,除了应当掌握的知识外,学生的观察能力和应变能力也要得到发展,同时还要注意训练学生一丝不苟的认真态度、追求美观整洁的爱美情操和习惯等。
1.2 目标要准确即针对性要强,一是目标中知识、能力、思想品德各方面的要求要准确;二是三者之间不能混淆。
在复习课上制定复习目标时,应注意和这些新授课后发现的问题结合起来,以利于解决学生的实际问题。
1.3 目标要具体不要提一些抽象或空泛的口号,诸如“通过复习培养学生良好的学习习惯”,粗一听很具体,细一想太空泛,到底培养学生的哪些习惯不得而知。
其实一堂课只能按实际教学内容培养学生某一方面的素质,太多会适得其反。
教学目标不仅是向学生提出的,也是对教师提出的。
复习课上教师应紧紧围绕目标组织教学,就像写文章不能跑题一样,复习课也不能“离标”,而应有的放矢。
2 梳理是复习中的重点梳理要完成两项任务,第一是将知识点联接起来(求同),第二是把各知识点分化开来(求异)。
梳理往往同板书联系起来,使视、听融为一体,增强复习效果。
根据复习内容的异同,通常采用:边梳理边板书;先梳理再板书;先板书后梳理。
梳理过程,实质上是将知识条理化、系统化的思考过程,其间应用的思考方法主要是“分类”,即根据一定的标准将知识分化。
如四边形根据对边关系可分成两类:两组对边分别平行的四边形(平行四边形),只有一组对边平行的四边形(梯形)。
分类是将已学过的知识分类,而不是将学生还没有学过的知识分类。
初一数学上册重要知识点总结归纳(前三章) 今天小编就为大家精心整理了一篇有关初一数学重要知识点总结归纳的相关内容,以供大家阅读!初一数学(上)知识点第一章有理数一、知识框架二,知识概念1.有理数:(1)凡能写成形式的数,都是有理数 .正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数. 注意:0即不是正数,也不是负数;a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类:①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3 .相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0?a+b=0?a、b互为相反数.4 .绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示奥数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;5 .有理数比大小:(1)正数的绝对值越大,这个数越大;(2) 正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4) 两个负数比大小,绝对值大的反而小;(5)数轴上的两个数, 右边的数总比左边的数大;(6)大数小数0,小数大数0.6 .互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;假设a0,那么的倒数是;假设ab=1?a、b互为倒数;假设ab=1?a、b 互为负倒数.7 .有理数加法法那么:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3) 一个数与0相加,仍得这个数.8 .有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9 .有理数减法法那么:减去一个数,等于加上这个数的相反数;即ab=a+(b).10有理数乘法法那么:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12 .有理数除法法那么:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13 .有理数乘方的法那么:(1)正数的任何次事都是正数;(2)负数的奇次哥是负数;负数的偶次哥是正数;注意:当n为正奇数时:(a)n=an或(ab)n=(ba)n,当n为正偶数时:(a)n=an 或(ab)n=(ba)n.14 .乘方的定义:(1)求相同因式积的运算,叫做乘方;⑵ 乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做事;15 .科学记数法:把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16 .近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17 .有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18 .混合运算法那么:先乘方,后乘除,最后加减.本章内容要求学生正确熟悉有理数的概念,在实际生活和学习数轴的根底上,理解正负数、相反数、绝对值的意义所在. 重点利用有理数的运算法那么解决实际问题.体验数学开展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的水平, 使学生建立正确的数感和解决实际问题的水平.教师在讲授本章内容时,应该多创设情境,充分表达学生学习的主体性地位.第二章整式的加减一.知识框架二.知识概念1 .单项式:在代数式中,假设只含有乘法〔包括乘方〕运算.或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2 .单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3 .多项式:几个单项式的和叫多项式.4 .多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数.通过本章学习,应使学生到达以下学习目标:1 .理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系.2 .理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号.在准确判断、正确合并同类项的根底上,进行整式的加减运算.3 .理解整式中的字母表示数,整式的加减运算建立在数的运算根底上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立.4 .能够分析实际问题中的数量关系,并用还有字母的式子表示由来.在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维水平和应用意识.第三章一元一次方程本章内容是代数学的核心,也是所有代数方程的根底.丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升水平,体会数学思想方法.一.知识框架二,知识概念1 .一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.2 .一元一次方程的标准形式:ax+b=0(x是未知数,a、b是数,且a0).3 .一元一次方程解法的一般步骤:整理方程……去分母…… 去括号……移项……合并同类项……系数化为1……(检验方程的解).4 .列一元一次方程解应用题:(1)读题分析法:....... 多用于“和,差,倍,分问题〞仔细读题,找由表示相等关系的关键字,例如:“大,小, 多,少,是,共,合,为,完成,增加,减少,配套“,禾I」用这些关键字列由文字等式,并且据题意设由未知数,最后利用题目中的量与量的关系填入代数式,得到方程^(2)画图分析法:....... 多用于“行程问题〞利用图形分析数学问题是数形结合思想在数学中的表达,仔细读题,依照题意画由有关图形,使图形各局部具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做量),填入有关的代数式是获得方程的根底.11.列方程解应用题的常用公式:⑴行程问题:距离=速度时间;(2)工程问题:工作量=工效工时;(3)比率问题:局部=全体比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度静水速度水流速度⑸ 商品价格问题:售价=定价折,利润=售价本钱,(6)周长、面积、体积问题:C圆=2R, S/=R2,C长方形=2(a+b), S长方形=ab, C正方形=4a,S正方形=a2, S环形=(R2r2),V 长方体=abc, V正方体=a3,V圆柱=R2h, V圆锥=R2h.今天的内容就介绍到这里了.。
整式的加减考点图解技法透析1.代数式代数式是用基本的运算符号(运算包括:加、减、乘、除、乘方、开方)把数或字母连接而成的式子.用字母表示数,是代数的基本特征,在同一个问题中,一个字母只能表示同一个数量,字母不仅可表示具体的数,还可以表示带运算符号的式子,它表示了数量间的关系,括号不是运算符号,它是表示运算顺序的符号.代数式的书写要规范,字母与字母相乘、数与字母相乘,乘号通常写作“·”,或省略不写;数字因数要写在字母因数的前面,但数与数相乘,仍要用乘号;带分数与字母相乘时,若省略乘号,应把带分数写成假分数.如2315a b 应写成:285a b 或285a b . 2.整式整式是最基本的代数式,分为单项式和多项式,只含有数与字母的积的代数式叫单项式,单独的一个数或字母也叫单项式.单项式由数字因数和字母因数两部分组成,其中数字因数部分叫单项式的系数,字母因数部分中所有字母的指数和叫单项式的次数.如:在单项式-23a2b5中,其系数为-23,次数为7.几个单项式的和叫多项式.多项中,次数最高项的次数叫多项式的次数,如在多项式:-2x3y+12xy2-xy-2019中,多项式的项有:-2x3y,12xy2,-xy,-2019,次数为:4次,这个多项式为四次四项式,单项式和多项式统称为整式.3.与同类项有关的知识(1)同类项的意义:在多项式中,所含字母相同,且相同字母的指数也分别相同的项叫同类项,几个常数项也是同类项,同类项的判定可概括为“两同两无关”.即:所含字母相同,且相同字母指数也分别相同,与系数无关,与字母顺序无关,如-12a2b3和2b3a2是同类项.(2)合并同类项法则:在合并同类项时,把同类项的系数相加,字母和字母指数保持不变.合并同类项的依据是逆用乘法分配律,即:ab+ac=a(b+c).4.去括号法则(1)括号前面是“+”号,去掉括号及括号前面的“+”号,括号内各项都不改变符号;括号前面是“-”号,去掉括号及括号前面的“-”号,括号内各项都改变符号.(2)去括号时要注意:①去括号时,应将括号及括号前面的符号一起去掉;②注意括号前面的符号,若括号前面是“-”号时,括号内各项都变号,不能只变第一项或某几项;③若括号前面有数字因数时应利用乘法分配律,先将该数与括号内各数分别相乘,再去掉括号;④遇到多重括号时,其方法一般是由里到外,逐层去括号,也可由外向里,应灵活运用.5.整式的加减法的一般步骤整式的加减法是考查学生运算能力的重要途径之一,其实质是去括号和合并同类项,其一般步骤为:(1)如果有括号,按去括号法则先去括号;(2)运用合并同类项的法则,合并同类项,并将其结果按某一字母的降幂或升幂排列.需注意的是:不是同类项的不能合并.6.与整式的加减法有关的竞赛题的主要类型(1)先化简再求值;(2)整体代入法,如:若2a-b=7,则5+18a-9b=_______.(3)特殊值法,如:设(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a.求a0+a1+a2+a3+a4+a5的值.名题精讲考点1 用字母表示代数式例1 某商店经销一批衬衣,进价为每件m元,零售价比进价高a%,后因市场变化,该店把零售价调整为原来的零售价的b%出售,那么调价后每件衬衣的零售价为 ( ) A.m(1+a%)(1-b%)元B.m·a%(1-b%)元C.m(1+a%)·b%元D.m(1+a%·b%)元【切题技巧】零售价比进价高a%,即零售价为m(1+a%)元,因市场变化再将零售价调整为原来零售价的b%出售,则调价后的零售价为m(1+a%)·b%元.【规范解答】 C【借题发挥】要深入生活实际,了解相关常识,理解相关词语的意义,熟悉基本关系式,善于理顺数量关系.如本例中原来的零售价为m(1+a%)元,而不号ma%元,m·a%元是比进价高出的价格数,当零售价再次调整为原零售价的b%出售,则调价后的零售价为:m(1+a%)·b%元,而不是m(1+a%)(1-b%)元.【同类拓展】1. a的两倍与b的一半之和的平方减去a、b两数平方和的4倍,用代数式表示应为_______.考点2 用代数式揭示规律例2 一根绳子弯曲成如图①所示的形状,当用剪刀像图②那样沿虚线a把绳子剪断时,绳子被剪为5段,当用剪刀像图③那样沿虚线b(b∥a)把绳子再剪一次时,绳子被剪为9段,若用剪刀在虚线a、b之间把绳子再剪(n-2)次(剪口的方向与a平行)这样一共剪n次时,绳子的段数为 ( )A.4n+1 B.4n+2 C.4n+3 D.4n+5【切题技巧】本题其实就是找规律,当用剪刀剪1次时,绳子就被剪成5段,而原来的绳子只有1段,增加了5-1-4段,当用剪刀剪2次时,绳子被剪成9段,比剪1次多剪9-5=4段,……这样我们可以发现每多剪1次就多增加4段绳子,那么剪n次,就应该增加4n段,所以剪n次时,绳子的段数共为(4n+1)段.【规范解答】 A【借题发挥】用字母表示代数式更能简洁地揭示数与式之间的数量关系,准确地抽象出数与式的内在联系,而用代数式表达的数量关系,实质上反映的是算式的一般规律,它是对满足条件的各个数量之间的通用公式.【同类拓展】2.托运行李p千克(p为整数)的费用为c,已知托运第1个1千克付费2元,以后每增加1千克(不足1千克按1千克计)需加费用0.5元,则计算托运行李费用c的公式为_______考点3 与整式有关的概念例3 若单项式-4x m-2y3与23x3y7-2n的和仍是单项式,求m2+n2-(2m-2n)的值.【切题技巧】单项式与单项式的和仍为单项式,则说明这两个单项式可以合并同类项,即这两个单项式为同类项,所以本例中的两个单项式-4x m-2y3和23x3y7-2n是同类项,再由同类项的定义,相同字母的指数相同建立m与n之间的等量关系,从而求出m、n的值.【规范解答】【借题发挥】若n个单项式的和仍为单项式,则这n个单项式为同类项,因为不是同类项的不能合并.因此要理解题意,理解单项式及同类项的概念,再由同类项的定义找到相应的相等关系.【同类拓展】3.已知多项式a(x3-x2+3x)+b(2x2+x)+x3-5是关于x的二次三项式,当x=2时,多项式的值为-17,那么当x=-2时,多项式的值为多少?考点4 整式的加减例4 若代数式(x2+ax-2y+7)-(bx2-2x+9y-2002)的值与字母x的取值无关,求(a+b)2019的值.【切题技巧】先将代数式经过去括号、合并同类项后,再讨论多项式的值与x的取值无关,说明该多项式中含有x项的系数为0,进而得到关于a、b的两个相等关系,求出a、b的值.【规范解答】【借题发挥】一个多项式的值与某一字母的取值无关,先要将该多项式整理化简后,再说明含该字母的项的系数为0;同样的一个多项式中缺哪一项,也是先要将该多项式按某一字母的升幂或降幂排列并整理化简后,再说明该项的系数为0,从而建立相应的相关关系,如当k=_______时,多项式2x2-2kxy+3y2+12xy-4中不含xy项,先合并同类项整理为:3x2+(-2k+12)xy+3y2-4,于是有-2k+12=0 ∴k=14.【同类拓展】4.已知有理数a、b满足多项式A和B,其中A=(-2x5+3x4+2x3+2019)-(ax4+bx3-2x+1)缺四次项和三次项,且x<-2,B=x a x b-++,试化简B=x a x b-++.例5 已知(2x-1)5=a5x5+a4x4+a3x4+a3x3+a2x2+a1x+a. (1)当x=0时,有何结论; (2)当x=1时,有何结论;(3)当x=-1时,有何结论; (4)求a5+a3+a1的值.【切题技巧】【规范解答】【借题发挥】求一个多项式展开式中的各项系数之和或部分系数之间的关系,要消去多项式中所含未知数,因此可令未知数为一些特殊值代人多项式展开式中,可得到相应的结论.【同类拓展】5.已知ax4+bx3+cx2+dx+e=(x-2)4(1)求a+b+c+d+e的值. (2)试求a+c的值.参考答案1.(2a+12b)2-4(a2+b2 ) 2.c=2+0.5(p-1) 3.-1. 4.-2x+1. 5.252019-2020学年数学中考模拟试卷一、选择题1.某工厂现在平均每天比原计划多生产50台机器,现在生产800台机器所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.80060050x x=+B.80060050x x=-C.80060050x x=+D.80060050x x=-2.钓鱼是一项特别锻炼心性的运动,如图,小南在江边垂钓,河堤AB的坡度为1:2.4,AB长为3.9米,钓竿AC与水平线的夹角是60°,其长为4.5米,若钓竿AC与钓鱼线CD 的夹角也是60°,则浮漂D与河堤下端B之间的距离约为( )米.(参考数据:A.1.732 B.1.754 C.1.766 D.1.8233.统计数据显示,2018年绍兴市进出口贸易总额达2200亿元,其中2200亿元用科学记数法表示为()A.2.2×103元B.22×108元C.2.2×1011元D.0.22×1012元4.将如图所示的图形绕中心按逆时针方向旋转120°后可得到的图形是()A.B.C.D.5.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①③④B.②④C.①②③D.①②③④6.某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm ,则根据题意可得方程( )A .240024008(120%)x x-=+ B .240024008(120%)x x -=+ C .240024008(120%)x x -=- D .240024008(120%)x x-=- 7.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”,规定:用电量不超过200度按第一阶梯电价收费,用电量超过200度,超过200度的部分按第二阶梯电价收费.图是李博家2018年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为( )A .0.4元,0.8元B .0.5元,0.6元C .0.4元,0.6元D .0.5元,0.8元8.Rt ABC 中,C 90∠=,若BC 2=,AC 3=,下列各式中正确的是 ( )A .2sinA 3=B .2cosA 3=C .2tanA 3=D .2cotA 3= 9.如图,一次函数1y ax b =+和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >10.某城区青年在“携手添绿,美丽共创”植树活动中,共栽植、养护树木15000株将15000用科学计数法表示为( )A.41.510⨯B.31510⨯C.51.510⨯D.60.1510⨯11.如图, 甲乙两城市相距600千米,一辆货车和一辆客车均从甲城市出发匀速行驶至乙城市,已知货车出发1小时后客车再出发,先到终点的车辆原地休息,在汽车行驶过程中,设两车之间的距离为s (千米),客车出发的时间为t (小时),它们之间的关系如图所示,则下列结论:①货车的速度是60千米/小时;②离开出发地后,两车第一次相遇时,距离出发地150千米;③货车从出发地到终点共用时7小时;④客车到达终点时,两车相距180千米.正确的有( )A .1B .2C .3D .412.如图,在△ABC 中,∠C =90°,AB 的垂直平分线交AB 于D ,交BC 于E ,连接AE ,若CE =5,AC =12,且△ACE 的周长为30,则BE 的长是( )A .5B .10C .12D .13二、填空题 13.如图,AD 和BE 分别为三角形ABC 的中线和角平分线,AD BE ⊥,若4AD BE ==,则AC 的长__________.14.当a<1且a≠0=________.15.若式子x有意义,则实数x的取值范围是_______.16.如图,AB∥CD,CB平分∠ACD,∠ABC=35°,则∠BAE=__________度.17.(2017云南省)如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,ADAB=13,则AD DE AEAB BC AC++++=______.18.计算:12- =_________。
全等三角形1已知:AB=4, AC=2, D 是BC 中点,AD 是整数,求AD3 已知:Z1=Z2, CD=DE, EF//AB,求证:EF=AC4 已知:AD 平分ZBAC, AC=AB+BD,求证:ZB=2ZC5 已知:AC 平分ZBAD, CE 丄AB, ZB+ZD=180° ,求证:AE=AD+BEZC=ZD, F 是 CD 中点,求证:Z1=Z22 已知:BC=DE, ZB=ZE,6如图,四边形ABCD中,AB〃DC, BE、CE分别平分ZABC、ZBCD,且点E在AD上。
求证:BC=AB+DC。
7 已知:AB=CD, ZA=ZD,求证:ZB=ZC&P 是ZBAC 平分线AD 上一点,AC>AB,求证:PC-PB<AC-AB9 已知,E 是AB 中点,AF=BD, BD=5, AC=7,求DC13已知:如BD1AC ,分别为D、E, BD、CE相交于点F。
求证:BE=CD. 图,AB=AC, CEXAB,垂足10.如图,已知AD/7BC, ZPAB的平分线与ZCBA的平分线相交于E, CE的连线交AP于D.求证:AD+BC=AB. 11如图,AABC中,AD是ZCAB的平分线,且AB=AC+CD,求证:ZC=2ZB12 如图:AE、BC 交于点M, F 点在AM 上,BE/7CF, BE=CF。
求证:AM是△ABC的中线。
14 在AABC 中,ZACB = 90°, AC = BC ,直线MV 经过点C ,且AD 丄MZV 于D , BE L MN 于E . (1) 当直线MN绕点C旋转到图1的位置时,求证:① ^ADC竺ACEB;② DE = AD + BE ;(2)当直线MV绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明; 若不成立,说明理由.15如图所示,已知AE丄AB, AF丄AC, AE=AB, AF=AC。
求证:16.如图,已知AC〃BD, EA、EB分别平分ZCAB和ZE,则AB与AC+BD相等吗?请说明理由DBA, CD过点(1) EC=BF; (2) EC丄BFB C17.如图9所示,AABC是等腰直角三角形,ZACB=90° , AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:ZADC=ZBDE.图9全等三角形证明经典(答案)1. 延长AD到E,使DE=AD,则三角形ADC全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE即:10-2<2AD<10+2 4<AD<6又AD是整数,则AD=52证明:连接BF和EF。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==五年级数学教学工作总结篇一:五年级数学上册教学工作总结 (人教版)201X—201X学年五年级数学上册学科工作总结XXXX小学教师:xxx这个学期由我担任五年级(1)班的数学教学工作。
这学期来,我认真执行学校教育教学工作计划,并以认真、严谨的教学态度,勤恳、坚持不懈的精神从事数学学科的教学工作;现总结本学期以来的教学工作以便今后的教学方法再上一个新的台阶:一、学科成绩简析。
本学期期末考试五(1)有学生 46人,参考人数 46 人,实考人数 46人,及格人数屈指可数,很多简单的题目在复习阶段都有加强练习,但还是考得不理想。
二、取得的经验1、要提高教学质量,关键是上好课督促好学生完成作业。
为了上好课,我做了下面的工作:⑴课前准备:备好课。
①熟悉教材:对教材的基本概念每句话、每个字都弄清楚,了解教材的结构,重点与难点,掌握知识的逻辑,能运用自如,知道应补充哪些资料,怎样才能教好。
②了解学生水平:他们的兴趣、方法、习惯,学习新知识可能会有哪些困难,采取相应的预防措施。
③考虑教法,解决如何把已掌握的教材传授给学生,包括如何组织教材、如何安排每节课的活动。
⑵课堂上的情况。
组织好课堂教学,关注全体学生,注意信息反馈,调动学生的有意注意,激发学生的学习兴趣,课堂上讲练结合,布置好家庭作业,作业少而精,减轻学生的负担。
2、要提高教学质量,还要做好课后辅导工作,小学生爱动、好玩,缺乏自控能力,常在学习上不能按时完成作业,有的学生抄袭作业。
针对这种问题,抓好学生的思想教育,并使这一工作贯彻到对学生的学习指导中去,还要做好对学生学习的辅导和帮助工作,尤其在差生的转化上,对差生努力做到以讲解基础为主,关键是要让他能够学到基本的知识。
3、积极参与听课、评课,虚心向通过学科教师学习教学方法,提高教学水平。
2019年高考数学第一轮复习知识点:幂函数定义与性质查字典数学网高中频道收集和整理了2019年高考数学第一轮复习知识点:幂函数定义与性质,以便高三学生更好的梳理知识,轻松备战。
掌握幂函数的内部规律及本质是学好幂函数的关键所在,下面是中华考试网为大家整理的幂函数公式大全,希望对广大朋友有所帮助。
定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x 不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当x 为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q 次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+)。
当指数n是负整数时,设a=-k,则x=1/(x^k),显然x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x0,则a可以是任意实数;排除了为0这种可能,即对于x0和x0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
以上就是高考频道2019年高考数学第一轮复习知识点:幂函数定义与性质的全部内容,查字典数学网会在第一时间为大家提供,更多相关信息欢迎大家持续关注!。
三年级数学复习工作总结
在过去的一段时间里,我们三年级的同学们经过了一段紧张而充实的数学复习工作。
在老师的指导下,我们认真复习了加法、减法、乘法、除法等基础知识,并且学习了一些简单的数学问题解决方法。
现在,让我来总结一下这段时间的学习成果和收获。
首先,通过这段时间的复习,我们对基础知识有了更深入的理解。
我们不仅能够熟练地进行加减乘除运算,还能够灵活运用这些知识解决实际生活中的问题。
比如在购物时计算价格、在做作业时解决数学题等,我们都能够游刃有余地完成。
其次,我们还学会了一些数学问题的解决方法。
比如通过画图、列式、找规律等方法来解决一些复杂的数学问题。
这些方法不仅帮助我们更好地理解问题,还能够提高我们的解题效率。
另外,通过这段时间的学习,我们也养成了良好的学习习惯。
我们能够按时完成老师布置的作业,认真听课,积极参与课堂讨论,主动向老师请教问题等。
这些习惯不仅对我们的数学学习有帮助,对我们的整个学习生活也是非常有益的。
总的来说,这段时间的数学复习工作让我们受益匪浅。
我们不仅学会了更多的数学知识,还培养了良好的学习习惯和解决问题的能力。
希望在接下来的学习中,我们能够继续努力,取得更好的成绩。
得数学者得天下,数学的重要性不言自明,一定要好好准备,我高中,大学数学底子还不错,自己也努力了,感觉数学里面最容易的还是线性代数和概率论和数理统计,因为题型有限,变化不大,对比历年真题就会发现。
真正难的是高数,因为花样太多了,虽然考点有限,但是怎么个综合法,你就不知道了,所以高数题目要多见识,今年考研高数证明题我就看过很类似的,所以很快就做出来了,没见过的同学都不知道怎么下手。
我今年数学考得不够好的原因是我线性代数和概率论各算错一道题目,后悔死了,所以大家在准备考研时,别忘记提醒自己时刻细心做题。
数学的辅导书我比较反感陈文登的,蛮支持李永乐的,蔡遂林的也不错。
我数学资料做了一大批。
要不我把做过的辅导书点评下,仅供参考!2008数学大纲解析:由于2009没出版,只能用2008的,这是本好书,都是真题,分析透彻,建议买。
轻轻松松考高分线代概率历年真题分类解析——李永乐,这本书对历年真题对比分析,让你知道考研真正考什么?该准备什么。
强烈推荐。
2006考研数学历年真题解析与指导--高教,图书馆借的,现在不出版了,也是分析真题,很像大纲解析,如果图书馆有的话,可以看看。
2009数学考试分析--高教,近3年的试题分析,数一到数四都包括,花2天时间琢磨出题的变化,觉得不错,你会发现一些规律。
武钟祥的历年真题分析,这是我认为真题分析最全面最好的书,里面涵盖了所以年份的试题,数一到数四的都有,大家要知道,数学题目经常是今年数学一考了,明年后年可能数学三考,只是变换出题的方式,大家不要只看数学一的题目。
强烈推荐。
其实上面这么多书我觉得最好的还是这本,有一本就够了。
线性代数辅导讲义--李永乐,这本书要多看几遍,越看越好,越看越懂,然后做真题。
强烈推荐。
概率论与数理统计辅导讲义--龚兆仁,还可以,有些地方有些繁琐,有些根本不会考的也作了详细介绍。
数学基础过关660题--李永乐。
不是很必要买,做了没什么感觉。
陈文登的复习指南,我不推荐买,原因就不说了,你们在网上搜搜看评价,本人用过,的确不怎么样。
李永乐的全书,贴合实际,但是稍显繁琐,很多同学到了11月底才看完,根本没时间去想,思考。
感觉知识点是全,是细,但是你记起来就不容易了。
数学的记不像政治,数学要练习,多思考才能有体会,才能记得深刻,最后才能灵活用。
如果买全书的话,要注意时间安排好,多花点时间去思考,不要只顾看题目了。
蔡遂林,胡金德,王式安的考试虫考研数学基础教程,我用过高数部分,还不错,线代部分用李永乐的足以,概率是王式安编的,还过得去吧,毕竟他们都是老一辈命题专家,讲的深入浅出。
经典400题---李永乐,这算是很不错的模拟题了,虽然难度不小,但是综合性大,对你整合知识查缺补漏很有好处,而且每年有新题目出现,虽然10套题有8套左右和往年会一样的,但是至少有2套是新的啊。
最后冲刺135分---前提是你时间充足,这本书比较系统的对题型分类了,都是选了些偏难的题目。
考研模拟考场15套--陈文登,说是15套,去除一些垃圾题目和凑数的真题,完全可以搞个8套嘛,我们几个哥们一起用,大家反映都极其很一般。
合肥工业大学最后5套--比较好的题目,规范,大家可以考虑。
鉴于我的2次考研经历,对辅导书可谓又爱又恨,爱是因为里面不乏真正的好书,让我们学习数学有条不紊,他们详实的编写使我们对重难点各个击破;恨是因为其实很多辅导书并不会起到预期的作用,甚至让我们愈加烦躁不堪,他们的题目太陈旧,太刁钻,太没个性了,他们就是拼凑试题数目,他们的盈利是建立在我们这些考研学子的痛苦挣扎上的。
于是有了我上面刚说到的有些书很多题目是多余是累赘,太浪费时间了。
因此我在自己看辅导书的时候养成了把有价值有创意的题目整理,归类,对比,久而久之,我把以上做过的资料里认为有创意的题目,容易混淆的概念的题目,考查知识点的广度和难度均适度的题目,还有总结很多个专题用以把思维理顺,题型归纳。
我把我呕心沥血整理的数学复习笔记的框架介绍如下(笔记总共180页):1.常用的公式和结论:掌握这些我们做题时能节省不少时间,比如我掌握了第10个结论,我今年考研的一个填空题我直接写答案,这就证明,我做过这么多题目总结下来的常用结论很可能在考试中能用到,有必要记住!2高数部分:(1):不管是求积分,求极限还是判断间断点,这种因子的存在必然要使你去进行分类讨论,所以这个专题主要列举了9道这样的题目,让大家知道一般怎么考你们。
(2)渐近线专题:考求渐近线本质上是考我们怎么求极限,而且还要知道分为几种情况讨论,这是非常重要的,鉴于此,我把12道相关的题目总结对比,里面使用了规律性的判断方法,让你有章可循,也介绍了一些比较精辟的解法值得借鉴,大家看后一定了然于心,让你面对渐近线题时再也不会胆怯了。
(3)几个易混概念的专题:连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系式怎么样的?存在极限,导函数连续,左连续,右连续,左极限,右极限,左导数,右导数,导函数的左极限,导函数的右极限。
我将通过19道题目把这些概念怎么出题分析清楚,大家对待这些概念一定很模糊,而且考研经常考,真题的数目很有限,我参考了很多的辅导书,总结对比得到这些笔记,觉得价值不低。
(4)罗尔定理的辅助函数的简便推导及应用:这是我自认为这份笔记的最大闪光点,因为这是我自己做很多题,不断摸索,最后总结然后又应用到考题中的的全过程。
只要记住2条规律,稍加变换,就能把几乎所有的考罗尔定理的题目所要用的辅助函数看出来,注意,是看出来!不要你算!我举了16道题目,印证我总结的规律的正确性,里面有考研真题,也有各种很出名的考研辅导书上的题目。
虽然这部分页数不多,但是个人觉得这是精华部分之一。
(5)柯西中值定理应用时所具有的形式性:往往从题目的已知条件中就可以看出他要考你柯西中值定理,怎么看出来?我将用10道题目来让你以后见到题目有这些形式,你就会立马反应到用柯西中值定理,这就是举一反三的学习方法,不要做了就忘记了!(6)应用多次中值定理的专题:大部分的考研题,一般要考查你应用多次中值定理,最重要的就是要培养自己对这种题目很敏感,要很快反映老师出这题考哪几个中值定理,我的敏感性是靠我总结的21道综合题培养出来的,我会经常会去复习,那样我对中值定理的题目早已没有那种刚学高数时的胆怯心理。
要想对微分中值定理这块的题目有条理的掌握,看我这个总结定会事半功倍的。
(7)泰勒展开的应用专题:我以前,以及我所有的同学,看到泰勒公式就哆嗦,因为咋一看很长很恐怖,瞬间大脑空白,身体失重的感觉。
其实在我搞明白以下几点后,原来的症状就没有了。
第一:什么情况下要进行泰勒展开;第二:以哪一点为中心进行展开;第三:把谁展开;第四:展开到几阶?我将通过15道题目告诉诸位,以前那种面对中值定理的题目时不知所措,毫无思绪的状态是可以通过系统的复习和有针对性的练习来克服的。
(8)不等式,积分不等式的证明专题:大家翻翻历年真题,可以知道,考不等式证明还是比较常见的。
通过不等式证明这种方式可以考查大家对中值定理,函数的单调性,高阶导数,放缩法,积分的一些性质的掌握程度。
这部分我总结了27道题目让大家对考查不等式的证明的方式一览无余。
(9)唯一性,实根个数,零点,极值点,拐点的判断专题:这种题目他考的不仅是选择填空还可能在大题的某一问出现,这些看起来小小的知识点,往往是你最易忽视的角落,通过这个专题就是要把一些零碎的知识点对比,利于在杂乱中建立联系,那样掌握起来比较顺手,为此我准备了21道题目进行分析。
(10)对称性,轮换性,奇偶性在积分(重积分,线,面积分)中的综合应用:这几乎每年必考,要么小题中考,要么大题中要用,这是必须掌握的知识,但是往往不是那么容易就靠做3,4个题目就能了解这知识点的应用到底有多广泛。
我们做积分题,尤其多重积分和线面积分,死算也许能算出结果,但是要是能用以上性质,那可真是三下五除二搞定,这方面的感觉相信大家有过,可是或许仅仅是昙花一现,因为你做出来了以为以后就一定会在相似的题目中用,其实不然,因为仅仅靠几道题目很大程度上不能给你留下太深刻的印象,下次轮到的时候或许就是考场上了,你可能顿时苦思冥想,最终还是选择了最傻的办法,浪费了宝贵时间。
说这些其实就是说明,考场上的正常或超常发挥是建立在平时踏实做,见识广,严要求的基础上。
鉴于此,我举了20道题目供大家慢慢品味。
(11)积分中值定理的应用:这是个比较生僻的问题,但是往往在一些特殊形式的积分中很有用,我列举了7道题目来说明,大家可能看这种题目比较少,但是说不定就会考,考研经常这样,你自以为不是重点往往就考个措手不及。
我第一年考研忽视傅里叶级数哪一章节,结果考个12分的大题,我快哭了!(12)斯托克斯公式的应用及两类曲线,曲面积分的关系:曲线与曲面积分基本是隔一年考一种,所以必须掌握牢固,里面的第5题其实和今年2009考研数学一基本一样,我不到10分钟搞定。
这就是为什么做题要总结对比,思维清晰的原因,要不然干了活还不知道自己能拿多少钱,亏呀!我总结了7道极为经典的题目让你把那几种考题方式烂熟于心,它没得变了。
(13)多元微分,积分综合题集锦:选取了9道多元微分与多元积分在一起考查的题目,并综合了梯度,散度,方向导数,这是综合性比较强的题目,推荐给大家熟悉一下这种题型。
(14)级数的收敛点,收敛域,收敛性的判断:这是每年必考内容,也是我们同学的老大难问题,它可以考小题,也有时在大题中的一问考查。
对于收敛性的考查,其实考过几次大题的,而且难度不小。
还有就是数列的收敛和级数的收敛很容易混淆,这一点我在笔记中将用题目分析清楚,因为这些概念的模糊直接导致你面对题目束手无策。
我下大工夫,总结了33道大题来对这些知识点的考查方式做了深层次的整理。
(15)幂级数的展开及求和专题:经常考大题,这是级数很关键的部分,这其中包括哪些级数展开的公式要熟记熟用,哪些题目的变式经常考,我将从所有历年真题这部分考题中做出总结对比,并在此基础上把一些个人觉得很有考查价值和新颖考查方式的题目做出分析,一共整理了22道题目。
(16)傅里叶级数的展开和应用专题:这部分考题就那么几种,变化很少,但是计算比较繁琐,但是奉劝大家一定要搞懂,说不定在2008考完一个大题后,2010会出一道小题考考,也很正常!我通过8道大题把这部分的题型总结完毕。
(17)举反例综合分析专题:大家可能一看到选择题那种选项都差不多的就头晕,举反例又不知从何下手,今年数学一的选择题中就有一道级数的题目,反例全在我下面的笔记中,所以我看到题目不到一分钟就做完了,这就是经验,大家学数学一定要注意积累,不要做了就忘了,那样就等于你白做了呀。
我总结了36道举反例的题目,大家看完后,说不定会对举反列产生兴趣的,这些题目我参考了太多资料了,网上的资料也找过,所以我觉得极有价值。