§4.2.2圆与圆的位置关系
- 格式:pptx
- 大小:764.76 KB
- 文档页数:33
4.2.2 圆与圆的位置关系 4.2.3 直线与圆的方程的应用[学习目标] 1.掌握圆与圆的位置关系及判定方法.2.能利用直线与圆的位置关系解决简单的实际问题.3.体会用代数方法处理几何问题的思想.知识点一 圆与圆的位置关系及判定 1.圆与圆的位置关系圆与圆有五种位置关系,分别是外离、外切、相交、内切、内含. 外离和内含统称为相离;外切和内切统称为相切. 如图:2.圆与圆位置关系的判定(1)几何法:若两圆的半径分别为r 1、r 2,两圆的圆心距为d ,则两圆的位置关系的判断方法如下:的关系d >r +r d =r +r|r -r |<d <r +rd =|r -r |d <|r -r |(2)代数法:通过两圆方程组成方程组的公共解的个数进行判断.⎭⎪⎬⎪⎫圆C 1方程圆C 2方程――→消元一元二次方程⎩⎪⎨⎪⎧Δ>0⇒相交Δ=0⇒内切或外切Δ<0⇒外离或内含思考 当两个圆仅有一个公共点时,这两个圆一定外切吗? 答 不一定,也有可能是内切.知识点二 用坐标方法解决平面几何问题的“三步曲”题型一 两圆位置关系的应用例1 已知圆C 1:x 2+y 2-2mx +4y +m 2-5=0,圆C 2:x 2+y 2+2x -2my +m 2-3=0,问:m 为何值时,(1)圆C 1与圆C 2外切?(2)圆C 1与圆C 2内含? 解 将圆C 1、圆C 2的方程配方,得C 1:(x -m )2+(y +2)2=9,C 2:(x +1)2+(y -m )2=4. (1)若圆C 1与圆C 2外切,则有(m +1)2+(-2-m )2=3+2, 即(m +1)2+(m +2)2=25,m 2+3m -10=0, 解得m =-5或m =2. (2)若圆C 1与圆C 2内含,则有(m +1)2+(-2-m )2<3-2, 即(m +1)2+(m +2)2<1,m 2+3m +2<0, 解得-2<m <-1.反思与感悟 判断两圆的位置关系一般用几何法,用几何法判断两圆的位置关系的步骤: (1)分别计算两圆的半径长r ,R ; (2)计算两圆的圆心距d ;(3)根据d 与r ,R 之间的关系得出结论.跟踪训练1 已知圆C 1的方程为x 2+y 2+2x +4y -20=0,圆C 2的方程为x 2+y 2-4x +4y -2=0,试判断圆C 1与圆C 2的位置关系.解 方法一 将圆C 1与圆C 2的方程联立,得到方程组⎩⎪⎨⎪⎧x 2+y 2+2x +4y -20=0,①x 2+y 2-4x +4y -2=0.②两式相减,得6x -18=0,即x =3. 将x =3代入①或②,解得y 1=-5,y 2=1.因此圆C 1与圆C 2有两个不同的公共点,故两圆相交.方法二 把圆C 1的方程化成标准方程,得(x +1)2+(y +2)2=25, ∴圆C 1的圆心坐标为(-1,-2),半径长为r 1=5.把圆C 2的方程化成标准方程,得(x -2)2+(y +2)2=10, ∴圆C 2的圆心坐标为(2,-2),半径长为r 2=10. ∵圆C 1与圆C 2的圆心距为(-1-2)2+(-2+2)2=3, |r 1-r 2|=5-10,r 1+r 2=5+10,且5-10<3<5+10, ∴|r 1-r 2|<3<r 1+r 2,∴两圆相交. 题型二 与两圆相切有关的问题例2 求与圆x 2+y 2-2x =0外切且与直线x +3y =0相切于点M (3,-3)的圆的方程. 解 设所求圆的方程为(x -a )2+(y -b )2=r 2(r >0), 则(a -1)2+b 2=r +1,① b +3a -3=3,② |a +3b |2=r .③ 联立①②③解得a =4,b =0,r =2,或a =0,b =-43,r =6,即所求圆的方程为(x -4)2+y 2=4或x 2+(y +43)2=36.反思与感悟 两圆相切时常用的性质有:①设两圆的圆心分别为O 1、O 2,半径分别为r 1、r 2,则两圆相切⎩⎪⎨⎪⎧内切⇔|O 1O 2|=|r 1-r 2|,外切⇔|O 1O 2|=r 1+r 2.②两圆相切时,两圆圆心的连线过切点(两圆若相交时,两圆圆心的连线垂直平分公共弦). 跟踪训练2 求与圆(x -2)2+(y +1)2=4相切于点A (4,-1)且半径为1的圆的方程. 解 设所求圆的圆心为P (a ,b ),则 (a -4)2+(b +1)2=1.①(1)若两圆外切,则有(a -2)2+(b +1)2=1+2=3,② 联立①②,解得a =5,b =-1,所以,所求圆的方程为 (x -5)2+(y +1)2=1;(2)若两圆内切,则有(a -2)2+(b +1)2=|2-1|=1,③ 联立①③,解得a =3,b =-1,所以,所求圆的方程为 (x -3)2+(y +1)2=1. 综上所述,所求圆的方程为(x -5)2+(y +1)2=1或(x -3)2+(y +1)2=1. 题型三 与两圆相交有关的问题例3 已知圆C 1:x 2+y 2+2x -6y +1=0,圆C 2:x 2+y 2-4x +2y -11=0,求两圆的公共弦所在的直线方程及公共弦长.解 设两圆交点为A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标是方程组⎩⎪⎨⎪⎧x 2+y 2+2x -6y +1=0, ①x 2+y 2-4x +2y -11=0 ②的解,①-②得:3x -4y +6=0. ∵A ,B 两点坐标都满足此方程,∴3x -4y +6=0即为两圆公共弦所在的直线方程. 易知圆C 1的圆心(-1,3),半径r 1=3.又C 1到直线AB 的距离为d =|-1×3-4×3+6|32+(-4)2=95.∴|AB |=2r 21-d 2=232-⎝⎛⎭⎫952=245.即两圆的公共弦长为245.反思与感悟 1.两圆相交时,公共弦所在的直线方程若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在直线的方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0. 2.公共弦长的求法(1)代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长.(2)几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.跟踪训练3 已知圆C 的圆心为(2,1),若圆C 与圆x 2+y 2-3x =0的公共弦所在直线过点(5,-2),求圆C 的方程.解 设圆C 的半径长为r ,则圆C 的方程为(x -2)2+(y -1)2=r 2, 即x 2+y 2-4x -2y +5=r 2, 两圆的方程相减,得公共弦所在的直线的方程为x +2y -5+r 2=0. 因为该直线过点(5,-2),所以r 2=4, 则圆C 的方程为(x -2)2+(y -1)2=4. 题型四 直线与圆的方程的实际应用例4 设有半径长为3 km 的圆形村落,甲、乙两人同时从村落中心出发,甲向东前进而乙向北前进,甲离开村后不久,改变前进方向,斜着沿切于村落边界的方向前进,后来恰好与乙相遇.设甲、乙两人的速度都一定,且其速度比为3∶1,问:甲、乙两人在何处相遇?解 如图所示,以村落中心为坐标原点,以东西方向为x 轴,南北方向为y 轴建立平面直角坐标系. 设甲向东走到D 转向到C 恰好与乙相遇,CD 所在直线的方程为x a +yb=1(a >3,b >3),乙的速度为v ,则甲的速度为3v .依题意,有⎩⎪⎨⎪⎧|ab |a 2+b 2=3,a 2+b 2+a 3v=bv .解得⎩⎪⎨⎪⎧a =5,b =3.75.所以乙向北前进3.75km 时甲、乙两人相遇.反思与感悟 坐标法是研究与平面图形有关的实际问题的有效手段,因此要建立适当的平面直角坐标系,用直线与圆的方程解决问题.建立平面直角坐标系时要尽可能有利于简化运算.跟踪训练4 已知一个圆形的公园,其半径为2 km ,有两个村庄A 和B ,其中村庄A 在公园的正东方向4 km 处,村庄B 在公园的西北方向22km 处(A ,B 相对于公园的位置都是指相对于公园的中心位置).现在要修一条连接村庄A 和村庄B 的公路,但公路不能穿过公园,现有两种方案可供选择:方案一:分别从A ,B 沿与公园相切的方向修路,直至两公路相交;方案二:分别从A ,B 沿与公园相切的方向修路,至切点处,再环绕公园修路,直至连接两个切点.两种方案哪种更好?解 如图所示,以公园中心O 为坐标原点,以连接公园中心与村庄A 的直线为x 轴建立平面直角坐标系.由已知得圆的方程为x 2+y 2=4,A (4,0),B (-2,2),由A 向圆作切线,切点为D ,过B 向圆作切线,切点为E ,两切线相交于C ,易知E (0,2), 直线BC 的方程为y =2.连接OD ,则OD ⊥AC ,在Rt △OAD 中,OD =2,OA =4. ∴∠OAD =30°,∴直线AC 的斜率为k =tan 150°=-33,直线AC 的方程为y =-33(x -4). 由⎩⎪⎨⎪⎧y =2,y =-33(x -4),解得⎩⎨⎧x =4-23,y =2, 即C 点的坐标为(4-23,2), ∴|BC |=6-23,|AC |=4.如果按方案一修路,那么公路的长度为l 1=|BC |+|AC |=10-23(km).过D 作DF ⊥x 轴,垂足为F ,可求得|DF |=3,|OF |=1,即D (1,3),∴|AD |=2 3. 由题意知∠AOD =60°,∴∠DOE =30°, ∴DEl=30180·π·2=π3. 如果按方案二修路,那么公路的长度为l 2=|AD |+DEl +|BE |=23+π3+2(km).∵l 1-l 2>0,∴采用方案二更好.利用圆系方程求圆的方程例5 求过两圆x 2+y 2-1=0和x 2+y 2-4x =0的交点,且与直线x -3y -6=0相切的圆的方程.分析 过两圆x 2+y 2-1=0和x 2+y 2-4x =0的交点的圆的方程可设为x 2+y 2-1+λ(x 2+y 2-4x )=0,通过整理,利用直线与此圆相切,则该圆的圆心到此直线的距离等于半径长,求得λ. 解 设所求圆的方程为x 2+y 2-1+λ(x 2+y 2-4x )=0(λ≠-1), 整理,得x 2+y 2-4λ1+λx -11+λ=0,配方,得⎝⎛⎭⎫x -2λ1+λ2+y 2=4λ2+λ+1(1+λ)2,因为圆与直线x -3y -6=0相切,所以⎝ ⎛⎭⎪⎪⎫⎪⎪⎪⎪2λ1+λ-3×0-61+32=4λ2+λ+1(1+λ)2.化简得11λ+8=0,λ=-811.所以所求圆的方程为3x 2+3y 2+32x -11=0. 经检验x 2+y 2-4x =0也与直线x -3y -6=0相切.所以所求圆的方程为3x 2+3y 2+32x -11=0或x 2+y 2-4x =0.解后反思 因为过两圆x 2+y 2-1=0和x 2+y 2-4x =0的交点的圆系方程x 2+y 2-1+λ(x 2+y 2-4x )=0(λ≠-1)中不包含圆x 2+y 2-4x =0,所以解答此题时容易漏掉圆x 2+y 2-4x =0也适合的条件.因此,在解答完后,应专门对圆系之外的圆x 2+y 2-4x =0进行检验.1.两圆x 2+y 2=9和x 2+y 2-8x +6y +9=0的位置关系是( ) A.相离 B.相交C.内切 D.外切 答案 B解析 圆C 1:x 2+y 2=9的圆心为C 1(0,0),半径长为r 1=3;圆C 2:x 2+y 2-8x +6y +9=0化为(x -4)2+(y +3)2=16,圆心为C 2(4,-3),半径长为r 2=4,圆心距|C 1C 2|=42+(-3)2=5. 因为|r 1-r 2|<|C 1C 2|<3+4=r 1+r 2,所以两圆相交.2.圆x 2+y 2=1与圆x 2+y 2+2x +2y +1=0的交点坐标为( ) A.(1,0)和(0,1) B.(1,0)和(0,-1) C.(-1,0)和(0,-1) D.(-1,0)和(0,1)答案 C解析 由⎩⎪⎨⎪⎧x 2+y 2=1,x 2+y 2+2x +2y +1=0,解得⎩⎪⎨⎪⎧ x =-1,y =0或⎩⎪⎨⎪⎧x =0,y =-1.3.若直线y =ax +b 通过第一、二、四象限,则圆(x -a )2+(y -b )2=r 2(r >0)的圆心位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限答案 B解析 因为直线通过第一、二、四象限,所以a <0,b >0,故圆心位于第二象限. 4.圆x 2+y 2=50与圆x 2+y 2-12x -6y +40=0的公共弦长为( ) A. 5 B.6C.2 5 D.2 6 答案 C解析 x 2+y 2=50与x 2+y 2-12x -6y +40=0作差,得两圆公共弦所在的直线方程为2x +y -15=0.圆x 2+y 2=50的圆心(0,0)到2x +y -15=0的距离d =|2×0+0-15|22+12=35,因此,公共弦长为250-(35)2=2 5.故选C.5.已知两圆x 2+y 2=10和(x -1)2+(y -3)2=20相交于A 、B 两点,则直线AB 的方程是_____. 答案 x +3y =0解析 ⎩⎪⎨⎪⎧x 2+y 2=10,x 2+y 2-2x -6y =10⇒2x +6y =0,即x +3y =0.1.判断圆与圆位置关系的方式通常有代数法和几何法两种,其中几何法较简便易行、便于操作.2.直线与圆的方程在生产、生活实践以及数学中有着广泛的应用,要善于利用其解决一些实际问题,关键是把实际问题转化为数学问题;要有意识用坐标法解决几何问题,用坐标法解决平面几何问题的思维过程:一、选择题1.圆x 2+y 2-4x +6y =0和圆x 2+y 2-6x =0交于A ,B 两点,则AB 的垂直平分线的方程是( ) A.x +y +3=0 B.2x -y -5=0 C.3x -y -9=0 D.4x -3y +7=0答案 C解析 根据题意作出图形,由图可知两圆圆心所在直线即为所求.圆x 2+y 2-4x +6y =0的圆心的坐标是(2,-3),圆x 2+y 2-6x =0的圆心坐标是(3,0),则所求直线方程为y -0-3-0=x -32-3,即3x -y -9=0.2.集合M={(x,y)|x2+y2≤4},N={(x,y)|(x-1)2+(y-1)2≤r2,r>0},且M∩N=N,则r的取值范围是()A.(0,2-1)B.(0,1]C.(0,2-2]D.(0,2]答案 C解析由已知M∩N=N,知N⊆M,∴圆x2+y2=4与圆(x-1)2+(y-1)2=r2内切或内含,∴2-r≥2,∴0<r≤2- 2.3.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m等于()A.21B.19C.9D.-11答案 C解析圆C2的标准方程为(x-3)2+(y-4)2=25-m.又圆C1:x2+y2=1,∴|C1C2|=5.又∵两圆外切,∴5=1+25-m,解得m=9.4.已知方程x2+y2+4x-2y-4=0,则x2+y2的最大值是()A.9B.14C.14-6 5D.14+6 5答案 D解析方程化为(x+2)2+(y-1)2=9,所以圆心为(-2,1),r=3,而x2+y2=((x-0)2+(y-0)2)2.所以x2+y2的最大值为((-2-0)2+(1-0)2+3)2=14+6 5.5.设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|等于()A.4B.4 2C.8D.8 2答案 C解析因为两圆C1,C2都和两坐标轴相切,且都过点(4,1),所以两圆C1,C2的圆心都在y=x上.设圆C1,C2的圆心坐标分别为(x1,x1),(x2,x2),则(4-x1)2+(1-x1)2=x21,(4-x2)2+(1-x2)2=x22,即x1,x2是方程(x-4)2+(x-1)2=x2的两根.即x2-10x+17=0.所以x1+x2=10,x1x2=17.所以|C1C2|=2|x1-x2|=2(x1+x2)2-4x1x2=8.6.一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬蓬顶距地面的高度不得超过()A.1.4米B.3.5米C.3.6米D.2米答案 B解析建立如图所示的平面直角坐标系.如图设蓬顶距地面高度为h,则A(0.8,h-3.6),半圆所在圆的方程为:x2+(y+3.6)2=3.62把A(0.8,h-3.6).代入得0.82+h2=3.62.∴h=40.77≈3.5(米).7.已知半径为1的动圆与圆(x-5)2+(y+7)2=16相切,则动圆圆心的轨迹方程是()A.(x -5)2+(y -7)2=25B.(x -5)2+(y -7)2=17或(x -5)2+(y +7)2=15C.(x -5)2+(y -7)2=9D.(x -5)2+(y +7)2=25或(x -5)2+(y +7)2=9 答案 D解析 设动圆圆心为(x ,y ),若动圆与已知圆外切,则(x -5)2+(y +7)2=4+1,∴(x -5)2+(y +7)2=25;若动圆与已知圆内切,则(x -5)2+(y +7)2=4-1, ∴(x -5)2+(y +7)2=9. 二、填空题8.过两圆x 2+y 2-x -y -2=0与x 2+y 2+4x -4y -8=0的交点和点(3,1)的圆的方程是________. 答案 x 2+y 2-133x +y +2=0解析 设所求圆的方程为(x 2+y 2-x -y -2)+λ(x 2+y 2+4x -4y -8)=0,将(3,1)代入,得λ=-25,故所求圆的方程为x 2+y 2-133x +y +2=0.9.台风中心从A 地以每小时20 km 的速度向东北方向移动,离台风中心30 km 内的地区为危险地区,城市B 在A 地正东40 km 处,B 城市处于危险区内的时间为________. 答案 1 h解析 如图,以A 为原点,正东和正北方向为x 轴、y 轴正方向,则B (40,0).台风中心在直线y =x 上移动.则问题转化成以点B 为圆心,30 km 为半径的圆与直线y =x 相交的弦长就是B 处在危险区内台风中心走过的距离.则圆B 的方程为(x -40)2+y 2=302,圆B 与直线y =x 截得弦长为CD =2·302-⎝⎛⎭⎫4022=20(km).故B 城市处于危险区的时间为t =2020=1(h).10.若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度为________. 答案 4解析 如图所示,在Rt △OO 1A 中,OA =5,O 1A =25,∴OO 1=5,∴AC =5×255=2,∴AB =4.11.与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是______________.答案 (x -2)2+(y -2)2=2解析 曲线化为(x -6)2+(y -6)2=18,其圆心C 1(6,6)到直线x +y -2=0的距离为d =|6+6-2|2=5 2.过点C 1且垂直于x +y -2=0的直线为y -6=x -6,即y =x ,所以所求的最小圆的圆心C 2在直线y =x 上,如图所示,圆心C 2到直线x +y -2=0的距离为52-322=2,则圆C 2的半径长为 2.设C 2的坐标为(x 0,y 0),则|x 0+y 0-2|2=2,解得x 0=2(x 0=0舍去),所以圆心坐标为(2,2), 所以所求圆的标准方程为(x -2)2+(y -2)2=2. 三、解答题12.已知圆C 1:x 2+y 2=4和圆C 2:x 2+(y -8)2=4,直线y =52x +b 在两圆之间穿过且与两圆无交点,求实数b 的取值范围.解 直线方程是5x -2y +2b =0. 当直线与圆C 1相切时,|2b |5+4=2, 解得b =±3.当直线与圆C 2相切时,|-16+2b |5+4=2,解得b =5或b =11. 结合图,知3<b <5.13.求圆心在直线x -y -4=0上,且过两圆x 2+y 2-4x -6=0和x 2+y 2-4y -6=0的交点的圆的方程. 解 方法一 设经过两圆交点的圆系方程为 x 2+y 2-4x -6+λ(x 2+y 2-4y -6)=0(λ≠-1),即x 2+y 2-41+λx -4λ1+λy -6=0,所以圆心坐标为(21+λ,2λ1+λ).又圆心在直线x -y -4=0上,所以21+λ-2λ1+λ-4=0,即λ=-13.所以所求圆的方程为x 2+y 2-6x +2y -6=0.方法二 由⎩⎪⎨⎪⎧ x 2+y 2-4x -6=0,x 2+y 2-4y -6=0得两圆公共弦所在直线的方程为y =x ,由⎩⎪⎨⎪⎧y =x ,x 2+y 2-4y -6=0,解得⎩⎪⎨⎪⎧x 1=-1,y 1=-1,⎩⎪⎨⎪⎧x 2=3,y 2=3. 所以两圆x 2+y 2-4x -6=0和x 2+y 2-4y -6=0的交点分别为A (-1,-1)、B (3,3),线段AB 的垂直平分线所在直线的方程为y -1=-(x -1).第11页 共11页 由⎩⎪⎨⎪⎧ y -1=-(x -1),x -y -4=0得⎩⎪⎨⎪⎧x =3,y =-1, 所以所求圆的圆心为(3,-1),半径为(3-3)2+[3-(-1)]2=4. 所以所求圆的方程为(x -3)2+(y +1)2=16.。