数字电子负载电线电缆曲挠试验机示波器的电流探头
- 格式:doc
- 大小:71.00 KB
- 文档页数:6
示波器电流探头的相关指标介绍示波器电流探头是一种用于测量电路中电流值的仪器,它能够将电路中的电流信号转换为示波器能够显示的电压信号。
这种探头通常由感应环、步进补偿器、衰减电阻和输出端口等部分组成。
在使用示波器电流探头时,我们需要了解相关的指标以确保其能够满足测量需求。
1.带宽:带宽是指示波器电流探头可信度范围内的最高频率。
当电流的频率高于探头的带宽时,探头的输出信号会出现衰减和失真。
因此,带宽是一个非常重要的指标。
通常,带宽的标称值是指探头能够提供准确输出的频率范围。
2.输入电阻:输入电阻是指示波器电流探头对电流信号的负载能力,它决定了电路中电流的测量精度。
输入电阻越大,对电路产生的影响越小,测量结果越准确。
常见的示波器电流探头的输入电阻通常在几十到几千欧姆之间。
3.磁场抗干扰能力:示波器电流探头在测量电流时,通常会受到周围磁场的干扰。
磁场抗干扰能力是指探头对磁场的抗干扰能力,它影响着示波器电流探头的测量精度。
较好的示波器电流探头应该具有较高的磁场抗干扰能力,以保证测量结果的准确性。
4.隔离:示波器电流探头与示波器之间需要有一定的隔离,以保护仪器和操作人员的安全。
隔离通常通过传输电流信号的光纤或者磁性屏蔽来实现。
较好的示波器电流探头应该具有较高的隔离性能,以确保在测量中不会发生电源泄漏等问题。
5.准确度:准确度是指示波器电流探头的输出信号与被测电流的真实值之间的偏差程度。
准确度包括静态准确度和动态准确度两个方面。
静态准确度是指在稳态工作条件下的准确度,动态准确度是指在电流变化较快的瞬态工作条件下的准确度。
通常,准确度是示波器电流探头的重要指标之一,较好的示波器电流探头应该具有较高的准确度。
6.输出灵敏度:输出灵敏度是指示波器电流探头的输出信号与被测电流的变化关系。
输出灵敏度越高,表示探头能够感测到较小的电流变化。
常见的输出灵敏度有几个级别,如1mV/A、10mV/A等。
输出灵敏度需要根据具体的测量要求来确定。
示波器探头基础系列之一《示波器探头浅谈之无源探头》作为一名专业的硬件设计及测试工程师,我们每天都在使用各种不同的数字示波器进行相关电气信号量的量测。
与这些示波器相配的探头种类也非常多,包括无源探头(包括高压探头,传输线探头)、有源探头(包括有源单端探头、有源差分探头等),电流探头、光探头等。
每种探头各有其优缺点,因而各有其适用的场合。
其中,有源探头因具有带宽高,输入电容小,地环路小等优点从而被广泛使用在高速数字量测领域,但有源探头的价位高,动态范围小,静电敏感,校准麻烦,因此,每个工程师使用示波器的入门级探头通常是无源探头。
最常见的500Mhz 的无源电压探头适用于一般的电路测量和快速诊断,可以满足大多数的低速数字信号、TV、电源和其它的一些典型的示波器应用。
本文我们将集中讨论无源电压探头的模型和参数设定以及使用校准原理。
一、10 倍无源探头的模型以及输入负载设定图1.探头原理图图1 是工程师常用的10 倍无源电压探头的原理图,其中,Rp (9 MΩ)和Cp 位于探头尖端内,Rp 为探头输入阻抗, Cp 为探头输入电容, R1 (1 MΩ)表示示波器的输入阻抗,C1 表示示波器的输入电容和同轴电缆等效电容以及探头补偿箱电容的组合值。
为了精确地测量,两个RC 时间常量(RpCp 和R1C1)必须相等;任何不平衡都会带来测量波形的失真,从来引起使一些参数如上升时间、幅度的测量结果不准确。
因此,在测量前需要校准示波器的探头的工作以保证测量结果的准确性。
从探头的信号模型我们可以分析,对于信号的DC 量测,输入容性Cp 和C1 等效为开路。
信号通过Rp 和R1 进行分压,最终示波器的输入为:Vout=[R1/Rp+R1]*Vin=1/10* Vin 示波器输入信号衰减为待测输入信号的1/10。
对于较高频率的输入信号,容抗对于信号的影响会大于阻抗。
例如,一个。
示波器电流探头原理
示波器电流探头是一种用于测量电流的仪器,它通过将电流
信号转换为电压信号,并将其输入示波器进行显示和分析。
其
工作原理主要包括磁性、电阻性和电感性三种类型。
1.磁性电流探头原理:磁性电流探头利用安培定律,通过电
流在导线周围产生的磁场感应来测量电流。
当电流通过被测导
线时,磁性电流探头放置在导线周围,探头内部的磁芯感应到
磁场并产生感应电势,该电势与电流成正比。
感应电势经由传
感器传递到示波器上,经过放大和滤波后,示波器上显示出与
原始电流信号相关的波形。
2.电阻性电流探头原理:电阻性电流探头采用电流感应原理,通过导线内部的电阻产生的电势差来测量电流。
探头内部包含
一个电阻元件,当电流通过被测导线时,一部分电流会通过探
头内的电阻元件,产生电势差。
电势差将被放大并传递到示波
器上,示波器通过计算电势差和电阻之间的关系来确定电流大小。
3.电感性电流探头原理:电感性电流探头利用电流在线圈内
引起的感应电势来测量电流。
探头内部包含一个线圈,当电流
通过被测导线时,线圈内部会产生磁场,导线中的电流和线圈
中的磁场之间会相互作用,从而在线圈两端产生感应电势。
该
感应电势经由传感器传递到示波器上,并经过放大和滤波处理后,示波器上显示出与原始电流信号相关的波形。
总之,示波器电流探头通过不同的原理将电流信号转换为电压信号,从而在示波器上显示出电流的波形。
这种测量方法广泛应用于电子电路测试、电力系统分析和工业自动化等领域。
示波器探头用途示波器探头是示波器系统的一个重要组成部分,用于在电子电路测试和测量中获取并测量电信号。
它通过将电信号连接到示波器的输入通道,将电信号转换成示波器能够显示和分析的波形。
示波器探头的主要用途是测量电路中的电压和电流。
在电子电路的设计、开发、测试和故障排除过程中,探头是非常重要的工具。
下面将详细介绍示波器探头的用途和工作原理。
1. 电压测量:示波器探头最常见的用途是测量电压信号。
示波器通过探头将待测电路的电压连接到示波器的输入通道,然后显示电压随时间变化的波形图。
这样就可以观察电信号的幅值、频率、相位等特征,从而对电路进行分析和调试。
2. 电流测量:除了电压测量外,示波器探头也可以用于测量电路中的电流信号。
为了测量电流,探头通常需要与一个电阻器(称为测量电阻或电流夹)一起使用。
电流信号在通过测量电阻时会产生一个电压信号,然后通过示波器探头测量和显示出来。
这种测量方法称为电流探头(Current Probe),常用于测量高频电流、交流电流等特殊应用。
3. 高频测量:示波器探头可用于高频测量。
高频信号在传输过程中容易产生衰减和信号失真,因此示波器探头必须具有快速的响应速度和良好的频率响应特性。
一些高频示波器探头还配备了阻抗匹配调节器,可以在不同频率下匹配待测电路的阻抗,提高测量精度。
4. 差分信号测量:示波器探头还可以用于测量差分信号。
差分信号是由两个相互干扰的信号组成,常见于许多电路和系统中。
示波器探头的差分测量功能允许用户同时测量并显示两个信号之间的差异,从而帮助分析噪声、干扰、共模电压等问题。
5. 逻辑信号测量:除了模拟信号测量外,示波器探头也可以用于逻辑信号测量。
逻辑信号是数字系统中常见的信号形式,通常表示为0和1。
示波器探头可以将逻辑信号转换成模拟信号,并显示出信号的高电平和低电平状态以及信号的变化情况。
这对于分析和调试数字电路非常有用。
总结起来,示波器探头是示波器系统中的一个重要工具,主要用于测量电压和电流信号。
ScopeArt先生”团队成员示波器探头是示波器使用过程中不可或缺的一部分,它主要是作为承载信号传输的链路,将待测信号完整可靠的传输至示波器,以进一步进行测量分析。
很多工程师很看重示波器的选择,却容易忽略对示波器探头的甄别。
试想如果信号经过前端探头就已经失真,那再完美的示波器所测得的数据也会有误。
所以正确了解探头性能,有效规避探头使用误区对我们日常使用示波器来说至关重要!1对于DCL,寄图1探头等。
?图2 无源探头示意图无源探头一般使用通用型BNC接口与示波器相连,所以大多数厂家的无源探头可以在不同品牌的示波器上通用(某些厂家特殊接口标准的探头除外),但由于示波器一般无法自动识别其他品牌的探头类型,所以此时需要手动在示波器上设置探头衰减比,以保证示波器在测量时正确补偿探头带来的信号衰减。
图3所示为日常最为常见的一类无源探头原理示意图,它由输入阻抗Rprobe、寄生电容Cprobe、传输导线(一般1至1.5米左右)、可调补偿电容Ccomp组成。
此类无源探头一般输入阻抗为10M?,衰减比因子为10:1。
?图3Vscope衰减因子?图4 R&S RT-ZH10高压探头还有一类无源探头,其衰减比为1:1,信号未经衰减直接经过探头传输至示波器,其耐压能力不及其它无源探头,但它具备测试小信号的优势。
由于不像10:1 衰减比探头那样信号需要示波器再放大10倍显示,所以示波器内部噪声未放大,测量噪声更小,此类更适用于测试小信号或电源纹波噪声。
图5 R&S HZ-154 1:1/10:1可调衰减比无源探头无源传输线探头是另一类特殊的无源探头,其特点是输入阻抗相对较低,一般为几百欧姆,支持带图650??图需要注意的是,由于传输线探头的低阻抗,它的负载效应会比较明显。
因此,此类探头仅适用于与低输出阻抗(几十至100欧姆)的电路测试。
对于更高输出阻抗的电路,我们可以选择使用高阻有源探头的方案,将在后续详述。
示波器探头的类型示波器探头是电子工程师在实际工作中最常用的工具之一。
探头的作用是将电路中的信号转换成示波器可接受的信号,这样工程师可以观察电路中的信号波形,分析电路的性能,并进一步优化电路设计。
本文将介绍示波器探头的类型,以便读者在选择和使用探头时能够更加得心应手。
被动探头被动探头是最常见的一种示波器探头,它主要由一个测量针和一个保护壳组成。
被动探头的测量针可以插入电路中,对信号进行测量,并将测量结果发送给示波器。
这种探头的主要特点是信号转换过程中不需要外部电源或电池,所以可以减少电路中的干扰。
被动探头还有一些不同的类型,包括:直接接地探头直接接地探头的测量针接地,这个接地位置是基准位置或者是地线。
示波器会将这个位置作为参照,进一步测量其他信号的变化。
这种探头常用于测试简单电路,如直流电源或低频信号。
非直接接地探头非直接接地探头的测量针与地无关,它仅测量电路中的信号并将其传递给示波器。
这种探头适用于测量高压或高频信号。
高压探头高压探头可以测量高电压信号,一般用于测试高压直流电源或HVAC电路。
这种探头的特点是绝缘性好,防止电击。
主动探头主动探头需要一定的电源或电池驱动。
这种探头的主要优点是可以缓存测量数据,提高示波器测量的分辨率,进而更好地分析信号波形。
下面介绍两种常用的主动探头。
高阻探头高阻探头的内部电路由保护电路、缓存器和前置放大器组成。
由于内部电路的特殊设计,高阻探头阻值很大,接在电路中不会对电路造成“负担”,可以减少电路本身的误差。
差分探头差分探头有两个测量针,它可以同时测量两个信号,并计算这两个信号的差值。
差分探头的主要应用是测量噪音或干扰信号。
由于计算的是信号差,这种探头可以减少瞬时噪音,提高测量精度。
总结本文介绍了示波器探头的常见类型。
被动探头通常适用于简单电路或低频信号,而主动探头则可以提供更好的测量精度和分辨率。
在使用探头时,应根据电路的类型和要求选择合适的探头,以充分利用示波器的功能,优化电路性能。
示波器探头的种类划分及适用范围选择示波器是电子工程师必不可少的工具之一,它能够将肉眼不可见的电信号转化为可见的图像,将被测量的信号的变化情况显示在屏面上,方便人们进行电路设计及错误定位。
在构成示波器的器件当中,探头的重要性自是不必多说,其质量直接关系到示波器测量结果的准确性。
顾名思义,探头起到探测的作用。
它是连接被测试电路和示波器输入端的重要媒介。
最简单的探头是连接被测电路与电子示波器输入端的一根导线,复杂的探头由阻容元件和有源器件组成。
简单的探头没有采取屏蔽措施很容易受到外界电磁场的干扰,而且本身等效电容较大,造成被测电路的负载增加,使被测信号失真。
当使用不合适的探头时,就会对测量的结果产生比较大的影响,大体能够分为两个方面。
第一种情况,探头改变了波形的原本形状,所观察到的波形产生偏差。
第二种情况,导致示波器运行异常。
正常的设备变得无法工作。
探头的选择要避免这些情况,就要熟悉示波器探头的类型,然后根据实际情况有针对性的选择使用。
常用的探头分为多种,无源探头、有源探头、差分探头、电流探头、低电容探头、高压探头等等,下面就对这些探头的适用范围进行介绍,方便大家进行选择。
有源电压探头:一般适用于带宽大于500M Hz,幅度小于正负3 伏的单端信号。
泰克公司的有源电压探头型号有:P7260、P7240、TAP1500 等。
一些型号可以测量3dB 带宽最高可以达到6G。
无源探头:一般用于测试带宽小于500M Hz 的单端信号。
它是比较经济的一类探头。
比如P6139A,线长是1.3 米、带宽500M Hz、系统输入阻抗10M 欧、典型输入电容8pF、最高电压为300 Vrms,补偿范围为8 到12 pF。
示波器探头1. 简介示波器探头(也称为测量探头)是示波器电子设备中的一个重要组成部分,用于连接被测电路和示波器,将电路上的信号转换为示波器可以显示和分析的电压波形。
探头的设计与性能直接影响着示波器的测量准确性和灵敏度。
本文将介绍示波器探头的基本原理、结构和使用方法,并介绍一些常见的示波器探头类型及其特点。
2. 基本原理示波器探头的基本原理是通过在被测电路上插入一个高阻抗的输入电路,将电路上的信号采集到探头中,并通过电缆传输到示波器输入端。
探头在信号采集过程中应尽量不改变被测电路的特性,避免对被测电路造成影响。
为了满足高阻抗和低串扰的要求,示波器探头通常采用共模抑制和差模传输技术。
共模抑制可以抑制干扰信号对被测信号的影响,而差模传输可以将两个相等但反向的信号进行差分处理,提高信号的传输质量。
3. 结构和类型示波器探头的结构通常包括探头头部、探头主体和连接线。
探头头部是用于与被测电路接触的部分,需要具有良好的接触性能和适配不同电路的能力。
探头主体包含信号采集电路和阻抗转换电路,用于将被测信号转换为示波器可以接收的电压波形。
连接线负责将采集到的信号传输到示波器输入端。
根据不同的应用场景和测量需求,示波器探头可以分为以下几种常见类型:3.1 被动探头被动探头是最常用的示波器探头类型之一,也是最基本的探头类型。
它采用被动元件(如电阻、电容和电感等)作为信号采集电路,主要用于测量幅值较小的低频信号。
被动探头具有简单、易用和低成本的特点,但在高频和大幅值信号测量时,性能可能会受到限制。
3.2 主动探头主动探头是专门用于测量高频和大幅值信号的示波器探头。
它通过在探头主体中增加放大器电路,将被测信号放大后再传输到示波器输入端。
主动探头具有较高的输入阻抗和增益,可以在保持信号完整性的同时提高测量精度和灵敏度。
3.3 差分探头差分探头是用于测量差分信号的示波器探头。
它通常由两个采样通道和一个差分放大器组成,将两个信号进行差分放大后传输到示波器输入端。
示波器常用的探头有哪些(电压、电流、逻辑、差分详解)示波器探头种类比较多,那么常用示波器探头种类有哪些?示波器探头的种类大体上可以分为电压、电流、逻辑等几大类,如下图所示:1 无源电压探头1.1 无源探头无源探头由导线和连接器制成,在需要补偿或衰减时,还包括电阻器和电容器。
探头中没有有源器件(晶体管或放大器),因此不需为探头供电。
无源探头一般是最坚固、最经济的探头,它们不仅使用简便,而且使用广泛。
1.2 高阻无源电压探头从实际需要出发,使用最多的是电压探头,其中高阻无源电压探头占最大部分。
无源电压探头为不同电压范围提供了各种衰减系数1,10和100。
在这些无源探头中,10无源电压探头是最常用的探头。
对信号幅度是1V峰峰值或更低的应用,1探头可能要比较适合,甚至是必不可少的。
在低幅度和中等幅度信号混合(几十毫伏到几十伏)的应用中,可切换1/10探头要方便得多。
但是,可切换1/10探头在本质上是一个产品中的两个不同探头,不仅其衰减系数不同,而且其带宽、上升时间和阻抗(R和C)特点也不同。
因此,这些探头不能与示波器的输入完全匹配,不能提供标准10探头实现的最优性能。
1.3 低阻无源电压探头大多数高阻无源探头的带宽范围在小于100MHz到500MHz或更高的带宽之间。
而低阻无源电压探头(又称为50欧姆探头、Zo探头、分压器探头)的频率特性很好,采用匹配同轴电缆的探头,带宽可达10GHz和100皮秒或更快的上升时间。
这种探头是为用于50欧姆环境中设计的,这些环境一般是高速设备检定、微波通信和时域反射计(TDR)。
1.4 无源高压探头高压是相对的概念。
从探头角度看,我们可以把高压定义为超过典型的通用10无源探头可以安全处理的电压的任何电压。
高压探头要求具有良好的绝缘强度,保证使用者和示波。
有关示波器探头的使用介绍什么是示波器探头示波器探头是一种用于测量电子设备和电路的工具。
它可以将电路上的信号引出,放大并转化为示波器可读取的信号。
使用示波器探头可以非常方便地查看电路中的电压、电流和频率等参数,为工程师的电路设计和故障排查提供了关键性的帮助。
示波器探头的种类被动探头被动探头是最常见的示波器探头,由一个尖锐的金属探针和一条导线组成。
被动探头的工作原理是通过探针接触电路上的信号点,将信号引入示波器中。
由于被动探头没有功率放大功能,因此它不会对电路的电性能造成负面影响。
被动探头适用于大多数普通的测量工作,其带宽范围通常在100MHz以下,可以满足大多数基本电路设计和维护所需的测量需求。
高阻探头高阻探头是一种比较特殊的示波器探头,通常用于测量高电阻的电路。
它采用了高阻电路设计,可以确保在测量高电阻电路时不会对电路产生负面影响。
高阻探头的带宽范围通常在几十MHz以下,适用于需要测量高电阻电路的测量工作。
差分探头差分探头适用于测量差分信号,它由两个探针组成,能够同时测量两个信号并将其相减。
差分探头采用了特殊的设计以便保持双向电路的平衡,同时消除来自电源线和环境干扰产生的噪音。
差分探头主要用于测量信号源之间的差异,特别适用于对高精度、低噪声的测量需求。
当前探头当前探头适用于测量电路中的电流,通常由夹子和测量头两部分组成。
电流探头通过夹住电路中的线圈来测量电流。
当前探头通常用于测量高电流电路中的电流,其带宽通常在几十MHz以下,但它的测量精度非常高。
示波器探头的使用技巧示波器探头在使用过程中需要注意一些技巧,以确保测量结果的准确性:1.确保探头正确接地。
示波器的地线一定要接到被测电路的地线上才能进行准确的测量。
2.确认探头接触点。
要确保探头与被测点接触良好,避免探针和接触点之间出现接触干扰。
3.确认测量范围。
在测量之前,要确定要测量的电压范围和频率范围,选择合适的探头才能够测量出精确的结果。
4.选择合适的探头。
数字电子负载\电线电缆曲挠试验机\示波器的电流探头
网上竞价采购需求文件
竞价人的竞价文件应满足以下要求,否则将被视为无效报价。
一、设备要求
二、竞价要求
(一)竞价人应在其竞价文件中如实、客观描述所投产品的技术性能及参数。
采购人一经发现竞价人存有与事实不符的虚假性能描述等情形的,将取消该竞价人的中标资格;存有虚假行为的中标商将承担所有的经济损失及相应责任。
(二)竞价人在竞价文件中,应就采购人的“技术要求”及相应的“设备配置要求”详细阐述其所投产品的“投标技术规格”,对偏离情况作出填写和明确说明(技术规格偏离表的格式如下),并应附所投产品“产品说明书”及“仪器彩页”对其所投产品的“技术参数”进行佐证。
采购人的仪器设备技术参数表中打“★”部分为重要参数,投标人必须完全满足,否则视为未实质性响应竞价要求。
技术规格偏离表
(三)竞价文件需详细列出所投标产品的全套配置清单(包括品牌、型号及数量)、设备或核心部件的制造厂商、原产地及价格。
竞
价文件的总报价为货物送达采购人指定地点,经采购人验收合格并交货完毕所有可能发生的费用,包括设备费、运输、保险费、含相关进出口环节税的税费、码头装卸等杂费、仓储保管费、安装调试、产品验收的检验检测费、操作人员培训以及售后服务等费用。
(四)竞价人应在竞价文件中详细列出所投的同一型号产品近年来的用户名单表。
(五)为保证报价的准确性,如供应商认为必要可到实地了解项目实施环境,中标后如有遗漏项目供应商应予以补充,并免费提供。
三、交货期要求
竞价人提供的交货期不得超过合同签订后50个工作日内全部交付并安装调试验收至合格完毕的交货期时间。
竞价人予以特别注意:如出现未能到期供货的情况,采购人有权单方终止合同的执行,所有的经济损失由逾期供货商单方承担。
四、验收条件要求
(一)中标供应商设备供货、安装施工、调试、工程验收、货物运输、售后服务等均应符合国家相关法律、法规以及国家标准、相关行业标准。
中标供应商提供设备的制造标准、安装标准及技术规范等有关资料必须符合国家相应的有关标准、规范要求。
(二)中标供应商应向采购人提供完整的设备技术资料、货物制造商的出厂检验报告、合格证书、产品保证书、认证书、及政府许可证明、说明书等,保证产品和安装材料是新生产、未经过使用的原装原厂正品。
如在交付使用前发生设备损坏和不合格,采购人有权要求退货,因此造成的一切损失由供应商承担。
(三)中标供应商根据合同要求进行系统安装、调试后,由采购人进行使用性能方面的验收,确保在使用过程内具有满意的性能。
如质量不符合要求,供应商应无条件及时更换并不得以任何原因拖延。
(四)中标供应商须提供产品的原厂技术文件以及验收要求的校准文件或计量证书。
属于中华人民共和国强制检定计量器具,中标供应商须负责提供法定计量证书。
(五)采购人根据招标文件、中标供应商的竞标文件、合同、制造厂商的产品验收标准及中华人民共和国有关标准进行验收。
采购人有权委托中国具权威资质机构对设备的灵敏度、测量精度等技术性能进行验收。
因中标供应商所提供的产品未达到招标文件中技术性能指标的,一律拒收,不予付款,采购人有权因此终止合同的执行,中标商将自行承担所有经济损失;同时,采购人将保留向中标供应商因设备延迟到位而造成对口岸检验业务的不良影响追索相应“违约”责任的权利。
五、售后服务与培训要求
(一)竞价人应提供原产商质量保证和售后服务承诺书。
本项目的质量保证期为设备验收合格后2年,并提供仪器终身维修服务。
在质量保证期内设备发生故障,中标供应商应免费提供原厂商售后维修和更换零件服务。
(二)竞价人投标产品在福建省设有常驻维保机构,并能响应故障处理请求和电话咨询,提供5x8小时,48小时内响应和72小时内派人到现场维修的售后服务。
竞价人应提供常驻福建维保人员名单、联系电话等。
(三)中标供应商负责将设备运至采购人指定的地点,免费负责安装,免费现场培训及技术应用培训。
六、付款要求
合同款项支付方式为:合同签订后,中标供应商交纳70%合同金额保证金后我局三个工作日内支付100%,设备全部抵达指定地点安装调试最终验收合格并交纳5%质保金后贰周内退还70%保证金,5%质保金在质保期满后设备正常运行、无出现质量问题贰周内退还。
七、资质要求
(一)为便于安装、调试、维护、培训,限福建供应商或在福建有销售服务网点的外地供应商参与竞标。
(二)竞价人竞价时必须提供企业法人营业执照(有效年检)、税务登记证等扫描件,并随附件上传。
原件备查。
附表
备注:表中打“★”部分为重要参数,投标人必须完全满足,否则视为未实质性响应竞价要求。