在含溶解氧丰富的氧化水环境与缺氧的还原水环境中,常见变价元素的主要存在形态列于表5-1。由表5-1可知,变价元素可同时以多种价态形式存在于水环境中,但在不同的水环境中,其主要的存在价态形式不同。如氮元素,在富含溶氧水的氧化环境中,主要以最高价(5+)的NO-3形态存在,即其含量最高;在溶氧量极低、甚至缺氧的还原性水环境中,NH4+(NH3)的含量较高,即氮以最低价(3-)的NH3(NH4+)为主要存在形态,NO-3含量很低,甚至可能无法检出。
(9)1/8SO42-+5/4H++e = 1/8H2S(g) +1/2H2O
(10) 1/8SO42-+9/8H++e = 1/8HS-+1/2H2O
(11)1/4CH2O(有机物)+ H++e = 1/4CH4(g) = 1/4H2O
水环境中物质氧化能力的强弱取决于其夺取电子的能力与浓度。显然,在天然水域中上述氧化还原半反应中O2/H2O电对反应的氧化能力最强,因氧夺取电子的能力仅次于氟,且在水中又具有较高的浓度。因此,在富含溶氧水中,H2S、Fe2+、Mn2+等均可被氧化,这也是在含溶氧丰富的天然水中,大部分元素以高价氧化态存在的原因。如碳主要以高价(4+)的形态:CO2, HCO3-, CO32-存在,硫主要以高价(6+)的形态:SO42-存在;氮主要以高价(5+)的形态:NO3-存在;Fe以高价(3+)的形态:FeOOH或Fe2O3形态存在;Mn以高价(4+)的形态:MnO2存在;同时N2和有机物可在含溶解氧丰富的水环境中存在。
天然水域中的许多氧化还原反应是缓慢的,海洋或湖泊中,在与大气相接触的表层水和沉积物的最深层之间,氧化还原环境有着显著的差别。在两者之间存有一系列的局部中间区域,这是由于各水层中均存有这样或那样的化学反应和各种生物的代谢活动,而各水层之间难以及时得到彻底或充分地混合,此势必导致不同水层存有不同的氧化还原环境,而且基本均未处于平衡状态。在天然水体中,所遇到的大多数氧化还原过程都需要有生物作媒介,这意味着达到平衡状态也强烈地依赖于生物体活动。但是,尽管某水体总的氧化还原平衡难以达到,但部分平衡却时常可接近于达到。通过对水体氧化还原平衡的研究,可以了解水体的环境状况,了解水环境中物质的存在形态、迁移转化机理与过程等,因此研究水体的氧化还原平衡仍具有实际意义。