当前位置:文档之家› 基于曲面法向量的曲面恢复

基于曲面法向量的曲面恢复

基于曲面法向量的曲面恢复
基于曲面法向量的曲面恢复

曲面的切平面与法线方程

曲面的切平面与法线方程 设上中曲面Σ的方程为F (X , y , Z) = 0 ,函数F (X , y , Z)在曲面Σ上点'一J∣.?.'一'.∣处可微, W t) = 且1加卽龛丿,过点血任意引一条位于曲面Σ上的曲线Γ°设其 ?=Λ(∕) y=y?) 方程为A邛,且对应于点不全为零。由于曲线Γ在Σ上,则有 ? g(x吨)+卩(血吨)+叭(?F(?) 及朮LF 。该方程表示了曲面上任意一条过点「厂的曲线在该点的切线都与向量WO) 垂直,并且这些切线都位于同一平面上,这个 平面就称为曲面Σ在点:处的切平面.点.称为切点.向量二心 2 -l称为曲面Σ在点-处的一个法向量。记为G。 基本方法: 1、设点l l- ■' ■" 1■■在曲面F(x, y, z)=0上,而F(x, y, Z)在点一∣处存在连续偏导数,且三个偏导数 不同时为零,则曲面F(x, y, z)=0在点处的切平面方程为 F:g )(r-r,>+ 兀厲XJ-Λ)÷Eg(H-^) = D 法线方程为 ? _ y~y ti_ X(Jf O)=X^) = 2、设点''■' ' l?' ' ■'在曲面Z = f (x, y)上,且Z = f (x, y)在点M o (χo, y o)处存在连续偏导数,则该 曲面在点Al?, "-" - -■处的切平面方程为 -f E j Ja-心)-力(心小Xy-几)2-齢MD

X = x(u, V) , y = y(u, V) , Z = z(u, V) 给出,∑上的点禺臨片九与UV平面上的点(U o , V0)对应,而X(U , V) , y(u , V) , Z(U , V)在( u o , v o)处 可微.曲面∑在点X o处的切平面方程及法线方程分别为 三、答疑解惑 问题:曲面∑的参数方程为X = X(U , V) , y = y(u , V) , Z = Z(U , V),∑±的点:'I- ■ -,'ι■ ?与u , V平面上的点(U o , VO)对应,怎样确定∑在点X o处的法向量? 注释:设X(U , V) , y(U , V) , Z(U , V)在(U o , VO)处可微,考虑在∑上过点X o的两条曲线. Γ i: X = X(U , V o) , y = y(U , V o) , Z = Z(U , V o); Γ 2 : X = X(U o , V) , y = y(U o , V) , Z = Z(UO, V). 它们在点X o处的切向量分别为 ξ=C?冲"?(?, ?(?,?)) E■(兀(知岭h H(M e Mh 久(%%)) 过X o的法线方程为 注:方法2实际上是方法 1 中取..'l--λ.'<-的情形 3、若曲面∑由参数方程

曲面的切平面与法线方程

曲面的切平面与法线方程 设中曲面Σ的方程为F (x , y , z) = 0,函数F (x , y , z)在曲面Σ上点处可微,且,过点任意引一条位于曲面Σ上的曲线Γ。设其方程为,且对应于点;不全为零。由于曲线Γ在Σ上,则有 及。该方程表示了曲面上任意一条过点的曲线在该点的切线都与向量垂直,并且这些切线都位于同一平面上,这个平面就称为曲面Σ在点处的切平面. 点称为切点. 向量称为曲面Σ在点处的一个法向量。记为。 基本方法: 1、设点在曲面F(x, y, z)=0上,而F(x, y, z)在点处存在连续偏导数,且三个偏导数不同时为零,则曲面F(x, y, z)=0在点处的切平面方程为 . 法线方程为 . 2、设点在曲面z = f (x, y)上,且z = f (x, y) 在点M0 (x0, y0) 处存在连续偏导数,则该曲面在点处的切平面方程为 .

过X0的法线方程为 . 注:方法2实际上是方法1中取的情形. 3、若曲面∑由参数方程 x = x(u, v) , y = y(u, v) , z = z(u, v) 给出,∑上的点与uv平面上的点(u0 , v0)对应,而x(u , v) , y(u , v) , z(u , v)在(u0 , v0)处可微.曲面∑在点X0处的切平面方程及法线方程分别为 和 三、答疑解惑 问题:曲面∑的参数方程为x = x(u , v) , y = y(u , v) , z = z(u , v),∑上的点与u , v平面上的点(u0 , v0)对应,怎样确定∑在点X0处的法向量? 注释:设x(u , v) , y(u , v) , z(u , v) 在(u0 , v0)处可微,考虑在∑上过点X0的两条曲线. Γ1:x = x(u , v0) , y = y(u , v0) , z = z(u , v0); Γ2:x = x(u0, v) , y = y(u0 , v) , z = z(u0 , v). 它们在点X0处的切向量分别为

第二章第三节曲面的切平面和法线计算例题

第二章 曲面的表示与曲面论 第三节 曲面的切平面和法线、光滑曲面 1、 平面曲线的切线与法线 设平面曲线的方程为 0),(=y x F , ),(0 y x P 是其上一定点。在该点的切线斜率为 ) ,() ,()(00000y x F y x F x y y x ''-='. 从而曲线过点),(000y x P 的切线方程为 ) () ,() ,(000000x x y x F y x F y y y x -''- =-, 即0 (,)()(,)()0x y F x y x x F x y y y ''-+-= ,(1) 法线方程为 000000 (,)()(,)()0y x F x y x x F x y y y ''---=,(2)

例1、 求笛卡叶形线09)(23 3 =-+xy y x 在点)1,2(处的切线与法线. 解 xy y x y x F 9)(2),(3 3 -+=, y x F x 962 -=',x y F y 962 -='. 12)1,2(,15)1,2(-='='y x F F , 得到 切线方程 0)1(4)2(5=---y x ,即645=-y x ; 法线方程 0)1(5)2(4=-+-y x ,即1354=+y x .如图(1)所示. 图(1)

2、 空间曲线的切线与法平面 设空间曲线L 的方程为 )(),(),(t z z t y y t x x ===,βα≤≤t . 定点L z y x P ∈),,(0 , )(),(),(0 t z z t y y t x x ===, 动点 L z z y y x x P z y x P ∈?+?+?+=),,(),,(0 . 动割线P P 0 的方程为 t z z z t y y y t x x x ??-=??-=??-0 00, 当0→?t 时,动点P 沿曲线无限接近定点0P , 达到动割线P P 0 的极限位 置l : 0 ()()() x x y y z z x t y t z t ---==''' ,(3) 称之为曲线L 在点0 P 的切线. 其方向向量为 0 {(),(),()}x t y t z t τ'''= 。

曲面的切平面与法线方程

曲面的切平面与法线方程 设*「中曲面工的方程为F(x ,z) = 0,函数F ( x , y , Z)在曲面工上点益-氐丹,环) Wo)= 处可微,且酬(血)前(血)萌(血) # o ,过点」任意引一条位于曲面工上的曲线 r。设其方程为 X ■戎\ * y = XO mW),且f ■冷对应于点-'■ 不全为零。由于曲线『在工 上,则有< -「及□化(孟)确,)+匚僦)HG+胃(兀玄如 。该方程表示 了曲面上任意一条过点的曲线在该点的切线都与向量垂直,并且这些切线都位于同一平面上, 这个平面就称为曲面工在点■'处的切平面.点1 .称为切点.向量」丁 J _1称为曲面工在点].处 的一个法向量。记为厂: 基本方法: 1、设点?-1'■?"在曲面F(x, y, z)=0上,而F(x, y, z)在点‘丨处存在连续偏导数,且三个偏 导数不同时为零,则曲面F(x, y, z)=0在点丄1处的切平面方程为 忙(局)(“忌)4 兀(EXF -刃)+ £(兀-x,)-o 法线方程为 尺%,厂£3■厂£(兀) 2、设点f-' 1' -1'■-在曲面z = f (x, y)上,且z = f (x, y)在点M(x。,y。)处存在连续偏导数, 则该曲面在点上处的切平面方程为

过X的法线方程为 -工外片)-工知片)】 注:方法2实际上是方法1中取■'■ ■1■ ' '■'- ■■' I的情形. 3、若曲面刀由参数方程 x = x(u, v) , y = y(u, v) , z = z(u, v) 给出,刀上的点''''■'-与uv平面上的点(LP, v。)对应,而x(u , v) , y( u , v) , z( u , v)在(u。, v o)处可微.曲面刀在点X)处的切平面方程及法线方程分别为 三、答疑解惑 问题:曲面刀的参数方程为x = x(u , v) , y = y( u , v) , z = z( u , v),刀上的点':_i 1与u , v平面上的点(u o, v o)对应,怎样确定刀在点X)处的法向量? 注释: :设x( u ,v),y(u , v),z(u ,v)在(s, v o)处可微,考虑在刀上过点X o的两条曲线 『1: x = x(u ,v o),y = y(u ,v o),z = z( u , v o); 『2:x = x(u o,v),y = y(u o ,v),z = z( u o , v). 它们在点X。处的切向量分别为 \=a:糾冲,y:(埠咻£(知耳)) E ■(兀(如岭竄和4心知比))

曲面法向量的余弦

空间曲面某点法向量的求法 曲面方程F(x,y,z)=0 的一个法向量可以为n = { ?F/?x, ?F/?y, ?F/?z} 特别的,若曲面方程能表示成F(x,y,z)=z-f(x,y)=0 那么法向量可以为n = ±{ -?f/?x, -?f/?y, 1},+表示法向量向上,-表示法向量向下 单位化之后就是n。= ±{ -?f/?x, -?f/?y, 1}(1/|n|) , 其中|n|= [1+(?f/?x)2+(?f/?y)2]^(1/2) 至于为什么有负号 ?F/?x=?[z-f(x,y)]/?x=?z/?x-?f(x,y)/?x=-?f/?x 这里注意这里在求?F/?x时要将y,z都看成常数 1 对曲面而言,求各变量在某一点的偏导数,即为这一点的法向量。 切向量我们假设以x为变量(参数),则切向量为(1,0,Zx)。以y为变量,则切向量为(0,1,Zy)。 验证以x为参数的切向量(1,0,Zx):因为Zx = -Fx/Fz,而法向量为(Fx,Fy,Fz)。所以1*Fx + 0 * Fy + (-Fx/Fz) * Fz = 0,所以两者正交,证毕。 其余同理。 2 而对于平面曲线而言,我们可以考虑其为,缺少的那一维向量的无限延伸,这样无论是封闭曲线还是不封闭曲线都可以抽象成一个曲面,这样求各变量的在某一点的偏导数既为这一点的法向量。(内外法向加一个正负进行区分) 而平面曲线的切向量可以按照这种方法去考虑:把x看做变量,y为因变量,然后求y对x的偏导数,则切向量即为(1,Yx)。 3 对于空间曲线,只考虑两个曲面给出一个方程组的形式。F1(x,y,z) = 0, F2(x,y,z) = 0。 切线求法1:可以将x理解为自变量,y和z为x的因变量(自变量可以随便去选),然后分别求因变量关于自变量的偏导数,然后得出一点的切线向量(1,Yx, Zx)。(三种形式) 切线求法2:求出两个曲面的法向量,然后做差乘(向量积),结果也是切线向量。 ----关于空间曲线法线向量的求法我个人建议,如果你题目已经知道了切向量的情况下,个人建议可以利用Schimidt正交化一下,立马得出法向量。但是如果

8.5.2 曲面的切平面与法线

8.5.2曲面的切平面与法线 过曲面Σ上一点M,在曲面Σ上的曲线 有无数多条,每一条曲线点M处都有一条 切线,在下面的讨论中将会发现,在一定 的条件下,这些切线位于同一平面,我们 称这个平面为曲面Σ在点M处的切平面。 设曲面Σ的方程为F(x,y,z)=0,M(x0, y0,z0)是曲面上一点,函数F(x,y,z)在 点M处有连续的偏导数,且三个偏导数不 全为零,另设曲线Γ是过点M且在曲面Σ 上的任意一条曲线,它的方程为 t=t0是点M0所对应的参数 , 不全为零。 由于曲线Γ在曲面Σ上,于是曲线Γ上 任意一 点的坐标满足曲面Σ的 方程,即有恒等式 图8-22 又由于函数F(x,y,z)在点M处有连续的偏导数,函 数 在t=t0处可导,所以复合函 数在t=t0 处可导,且全导数为

恒等式=0两边在t0处对t求全导数,有 上式说明向量 与向量 垂直。向量是曲线Γ在点M处的切向量,故曲线Γ在点M处 的切线与向量垂直,由曲线Γ的任意性知,所有过点M,且在曲 面Σ上的曲线在M处的切线都与向量垂直,也就是这些切线都在 以向量为法向量,并通过点M的平面上。所以,曲面Σ在点M处的切平面方程为 过点M(x0,y0,z0)且垂直于该点处的切平面的直线称为曲面Σ在点M处的法线,显然,切平面的法向量就是法线的方向向量,所以曲面Σ在点M处的法线方程为 如果曲面Σ的方程为z=f(x,y),则只需设 那么曲面Σ的方程就可化成F(x,y,z)=0的形式,而且 , 此时曲面Σ在点M0(x0,y0,z0)处的切平面方程为

法线方程为 例1:求曲面在点M (3,1,1)处的切平面方程和法线方程。 解: 例2:求圆锥面在点M(1,0,1)处的切平面方程和法线方程。 解: 例3:在椭圆抛物面上求一点,使它的切平面与平 面平行,并求该点的切平面及法线方程。 解:

曲面的切平面与法线方程讲课讲稿

曲面的切平面与法线 方程

曲面的切平面与法线方程设中曲面Σ的方程为F (x , y , z) = 0,函数F (x , y , z)在曲面Σ上点处可微,且,过点任意引一条位于曲面Σ上的曲线Γ。设其方程为,且对应于点;不全为零。由于曲线Γ在Σ上,则有及。该方程表示了曲面上任意一条过点的曲线在该点的切线都与向量垂直,并且这些切线都位于同一平面上,这个平面就称为曲面Σ在点处的切平面. 点称为切点. 向量称为曲面Σ在点 处的一个法向量。记为。 基本方法: 1、设点在曲面F(x, y, z)=0上,而F(x, y, z)在点处存在连续偏导数,且三个偏导数不同时为零,则曲面F(x, y, z)=0在点处的切平面方程为 . 法线方程为 . 2、设点在曲面z = f (x, y)上,且z = f (x, y) 在点M0 (x0, y0) 处存在连续偏导数,则该曲面在点处的切平面方程为

. 过X0的法线方程为 . 注:方法2实际上是方法1中取的情形. 3、若曲面∑由参数方程 x = x(u, v) , y = y(u, v) , z = z(u, v) 给出,∑上的点与uv平面上的点(u0 , v0)对应,而x(u , v) , y(u , v) , z(u , v)在(u0 , v0)处可微.曲面∑在点X0处的切平面方程及法线方程分别为 和 三、答疑解惑 问题:曲面∑的参数方程为x = x(u , v) , y = y(u , v) , z = z(u , v),∑上的点与u , v平面上的点(u0 , v0)对应,怎样确定∑在点X0处的法向量? 注释:设x(u , v) , y(u , v) , z(u , v) 在(u0 , v0)处可微,考虑在∑上过点X0的两条曲线. Γ1:x = x(u , v0) , y = y(u , v0) , z = z(u , v0); Γ2:x = x(u0, v) , y = y(u0 , v) , z = z(u0 , v). 它们在点X0处的切向量分别为

曲面的切平面和法线计算例题

第二章 曲面的表示与曲面论 第三节 曲面的 切平面和法线、 光滑曲面 1、 平面曲线的切线与法线 设平面曲线的方程为 0),(=y x F , ),(0 y x P 是其上一定点。在该点的切线斜率为 ) ,() ,()(00000y x F y x F x y y x ''- ='. 从而曲线过点),(000y x P 的 切线方程为 ) () ,() ,(000000x x y x F y x F y y y x -''-=-, 即0 (,)()(,)()0x y F x y x x F x y y y ''-+-= ,(1) 法线方程为 (,)()(,)()0y x F x y x x F x y y y ''---=,

(2) 例1、 求笛卡尔叶形线09)(23 3 =-+xy y x 在点)1,2(处的切线与法线. 解 xy y x y x F 9)(2),(3 3 -+=, y x F x 962 -=',x y F y 962 -='. 12)1,2(,15)1,2(-='='y x F F , 得到 切线方程 0)1(4)2(5=---y x ,即645=-y x ; 法线方程 0)1(5)2(4=-+-y x ,即1354=+y x .如图(1)所示.

图(1)

2、 空间曲线的切线与法平面 设空间曲线L 的方程为 )(),(),(t z z t y y t x x ===,βα≤≤t . 定点L z y x P ∈),,(0 , )(),(),(0 t z z t y y t x x ===, 动点 L z z y y x x P z y x P ∈?+?+?+=),,(),,(0 . 动割线P P 0 的方程为 t z z z t y y y t x x x ??-=??-=??-0 00, 当0→?t 时,动点P 沿曲线无限接近定点0P , 达到动割线P P 0 的极限位 置l : 0 ()()() x x y y z z x t y t z t ---==''' ,(3) 称之为曲线L 在点0 P 的切线. 其方向向量为

曲面的切平面与法线方程

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 曲面的切平面与法线方程设中曲面Σ的方程为F (x , y , z) = 0,函数F (x , y , z)在曲面Σ上点处可微,且,过点任意引一条位于曲面Σ上的 曲线Γ。设其方程为,且对应于点;不全为零。由于曲线Γ在Σ上,则有及 。该方程表示了曲面上任意一条过点 的曲线在该点的切线都与向量垂直,并且这些切线都位于同一平面上,这个平面就称为曲面Σ在点处的切平面. 点称为切点. 向量称为曲面Σ在点处的一个法向量。记为。 基本方法: 1、设点在曲面F(x, y, z)=0上,而F(x, y, z)在点处存在连续偏导数,且三个偏导数不同时为零,则曲面F(x, y, z)=0在点处的切平面方程为 .

法线方程为 . 2、设点在曲面z = f (x, y)上,且z = f (x, y) 在点M0 (x0, y0) 处存在连续偏导数,则该曲面在点处的切平面方程为 . 过X0的法线方程为 . 注:方法2实际上是方法1中取的情形. 3、若曲面∑由参数方程 x = x(u, v) , y = y(u, v) , z = z(u, v) 给出,∑上的点与uv平面上的点(u0 , v0)对应,而x(u , v) , y(u , v) , z(u , v)在(u0 , v0)处可微.曲面∑在点X0处的切平面方程及法线方程分别为 和 三、答疑解惑

问题:曲面∑的参数方程为x = x(u , v) , y = y(u , v) , z = z(u , v),∑上的点与u , v 平面上的点(u0 , v0)对应,怎样确定∑在点X0处的法向量? 注释:设x(u , v) , y(u , v) , z(u , v) 在(u0 , v0)处可微,考虑在∑上过点X0的两条曲线. Γ1:x = x(u , v0) , y = y(u , v0) , z = z(u , v0); Γ2:x = x(u0, v) , y = y(u0 , v) , z = z(u0 , v). 它们在点X0处的切向量分别为 当时,得∑在点X0处的法向量为 则∑在点X0处的法向量为 . 四、典型例题 例1 求椭球面x2+2y2+3z2 = 6在(1, 1, 1)处的切平面方程与法线方程. 解设F(x, y, z) = x2+2y2+3z2-6,由于在全平面上处处连续,在(1, 1, 1)处,椭球面在点(1, 1, 1)处的法向量为(2, 4, 6). 则所求切平面方程为 , 即x + 2y + 3z = 6.

曲面的切平面与法线方程

曲面的切平面与法线方程 处可微,且z)在曲面Σ上点(x , y , , 设中曲面Σ的方程为F (xy , z) = 0,函数F Γ。设其方程为任意引一条位于曲面Σ上的曲线,过点 Γ则有由于曲线不全为零。在Σ上,,且对应于点; 的曲线在该点的切。该方程表示了曲面上任意一条过点及 点线都与向量处的切平面垂直,并且这些切线都位于同一平面上,这个平面就称为曲面Σ在点. 称

处的一个法向量。记为。称为曲面Σ在点. 为切点向量 基本方法: 且三个偏导数不同时为零,, ()=0, 在曲面F(x1、设点y, z上,而Fx, yz)在点处存在连续偏导数, 处的切平面方程为x(, 在点zy, )=0F则曲面 . 法线方程为 . 处存在连续偏导数,则该曲面在点(= 上,且yxf z 在曲面、2设点= (, )z f x) x () y, 在点M, y 0 00 处的切平面方程为 . 的法线方程为过 X0. . .的情形2实际上是方法1中取注:方法 若曲面∑由参数方程3、) vz(u, y(u, v) , z = x = x(u, v) , y = 曲面∑在v)处可微. , v)在(u, ) , x(u , v) , y(u , vz(u, 给出,∑上的点与uv平面上的点(uv)对应,而0 0 0 0处的切平面方程及法线方程分别为X点0和三、答疑解惑

)v平面上的点(u, vu = z( , v),∑上的点与u , uu 问题:曲面∑的参数方程为x = x(, v) , y = y( , v) , z00 处的法向量?对应,怎样确定∑在点X0.的两条曲线)处可微,考虑在∑上过点, v) 在(u, vXux注释:设(u , v) , y( , v) , z(u000 Γ);z(uv , v) , u , vy = y(u , ) , z = (:x = x0001Γ). , ) , z = z(uv , yvux := x( , ) , y = (uv0200处的切向量分别为它们在点X0 处的法向量为当时,得∑在点X0 处的法向量为X则∑在点0 . 四、典型例题 222.)处的切平面方程与法线方程1, 1, 1在(= 6z+3y+2x求椭球面1 例 222)处在全平面上处处连续,在(1, 1, 1-) = x6+2y,由于+3z, 解设F(xy, z 则所求切平面方程为(1, 1, 1)处的法向量为(2, 4, 6). ,椭球面在点 ,= 6.z + 2即x y + 3 ,所求法线方程为 . 即 .的切平面方程y 例2求曲面平行于z = 2x+2 .,因此. 解设切点为曲面

相关主题
文本预览
相关文档 最新文档