浮桥中学苏科版九年级上数学期末综合试卷初三数学试题试卷
- 格式:doc
- 大小:368.00 KB
- 文档页数:8
苏科版九年级数学上册 全册期末复习试卷综合测试(Word 版 含答案)一、选择题1.圆锥的底面半径为2,母线长为6,它的侧面积为( ) A .6πB .12πC .18πD .24π2.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .24 3.二次函数y =3(x -2)2-1的图像顶点坐标是( )A .(-2,1)B .(-2,-1)C .(2,1)D .(2,-1)4.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是( )A .团队平均日工资不变B .团队日工资的方差不变C .团队日工资的中位数不变D .团队日工资的极差不变5.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( ) A .相离B .相切C .相交D .无法判断6.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( ) A .15B .25C .35D .457.一元二次方程x 2-x =0的根是( ) A .x =1 B .x =0 C .x 1=0,x 2=1 D .x 1=0,x 2=-1 8.方程2x x =的解是( )A .x=0B .x=1C .x=0或x=1D .x=0或x=-19.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )A.方差B.众数C.平均数D.中位数10.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.11.将二次函数y=x2的图象沿y轴向上平移2个单位长度,再沿x轴向左平移3个单位长度,所得图象对应的函数表达式为()A.y=(x+3)2+2B.y=(x﹣3)2+2C.y=(x+2)2+3D.y=(x﹣2)2+3 12.如图,在⊙O中,AB为直径,圆周角∠ACD=20°,则∠BAD等于()A.20°B.40°C.70°D.80°13.关于二次函数y=x2+2x+3的图象有以下说法:其中正确的个数是()①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y轴的直线;③它与x轴没有公共点;④它与y轴的交点坐标为(3,0).A.1 B.2 C.3 D.414.如图,随意向水平放置的大⊙O内部区域抛一个小球,则小球落在小⊙O内部(阴影)区域的概率为()A.12B.14C.13D.1915.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若B(﹣5,y1)、C(﹣1,y2)为函数图象上的两点,则y1<y2.其中正确结论是()A.②④B.①③④C.①④D.②③二、填空题16.如图,A 、B 、C 是⊙O 上三点,∠ACB =30°,则∠AOB 的度数是_____.17.如图,在△ABC 中,AB =3,AC =4,BC =6,D 是BC 上一点,CD =2,过点D 的直线l 将△ABC 分成两部分,使其所分成的三角形与△ABC 相似,若直线l 与△ABC 另一边的交点为点P ,则DP =________.18.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____.19.某一时刻身高160cm 的小王在太阳光下的影长为80cm ,此时他身旁的旗杆影长10m ,则旗杆高为______.20.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,D 是以点A 为圆心2为半径的圆上一点,连接BD ,M 为BD 的中点,则线段CM 长度的最小值为__________.21.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.22.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.23.某一时刻,测得身高1.6m 的同学在阳光下的影长为2.8m ,同时测得教学楼在阳光下的影长为25.2m ,则教学楼的高为__________m .24.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.25.将抛物线 y =(x+2)2-5向右平移2个单位所得抛物线解析式为_____. 26.如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接 CP ,以 CP 为 边,在 PC 的右侧作等边△CPQ ,连接 AQ 交 BD 延长线于 E ,当△CPQ 面积最小时,QE=____________.27.已知点P (x 1,y 1)和Q (2,y 2)在二次函数y =(x +k )(x ﹣k ﹣2)的图象上,其中k ≠0,若y 1>y 2,则x 1的取值范围为_____.28.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC ∆另一边的交点为点P ,则DP =__________.29.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.30.如图,二次函数y =x (x ﹣3)(0≤x ≤3)的图象,记为C 1,它与x 轴交于点O ,A 1;将C 1点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……若P (2020,m )在这个图象连续旋转后的所得图象上,则m =_____.三、解答题31.如图,在Rt △ABC 中,∠C =90°,矩形DEFG 的顶点G 、F 分别在边AC 、BC 上,D 、E 在边AB 上.(1)求证:△ADG ∽△FEB ;(2)若AD=2GD,则△ADG面积与△BEF面积的比为.32.已知二次函数y=x2-22mx+m2+m-1(m为常数).(1)求证:不论m为何值,该二次函数的图像与x轴总有两个公共点;(2)将该二次函数的图像向下平移k(k>0)个单位长度,使得平移后的图像经过点(0,-2),则k的取值范围是.33.如图,直线y=kx+b(b>0)与抛物线y=14x2相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,于y轴相交于点C,设∆OCD的面积为S,且kS+8=0.(1)求b的值.(2)求证:点(y1,y2)在反比例函数y=16x的图像上.34.已知二次函数y=ax2+bx﹣3的图象经过点(1,﹣4)和(﹣1,0).(1)求这个二次函数的表达式;(2)x在什么范围内,y随x增大而减小?该函数有最大值还是有最小值?求出这个最值.35.如图①,在矩形ABCD中,BC=60cm.动点P以6cm/s的速度在矩形ABCD的边上沿A→D的方向匀速运动,动点Q在矩形ABCD的边上沿A→B→C的方向匀速运动.P、Q两点同时出发,当点P到达终点D时,点Q立即停止运动.设运动的时间为t(s),△PDQ的面积为S(cm2),S与t的函数图象如图②所示.(1)AB=cm,点Q的运动速度为cm/s;(2)在点P、Q出发的同时,点O也从CD的中点出发,以4cm/s的速度沿CD的垂直平分线向左匀速运动,以点O为圆心的⊙O始终与边AD、BC相切,当点P到达终点D时,运动同时停止.①当点O在QD上时,求t的值;②当PQ与⊙O有公共点时,求t的取值范围.四、压轴题36.已知P是⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有动点A、B(不与P,Q重合),连接AP、BP. 若∠APQ=∠BPQ.(1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O的半径;(2)如图2,选接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,若∠NOP+2∠OPN=90°,探究直线AB与ON的位置关系,并证明.37.如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(﹣3,1),点A的坐标为(2,0),点B的坐标为(13D在x轴上,且点D在点A的右侧.(1)求菱形ABCD的周长;(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,菱形ABCD沿x轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当⊙M与AD相切,且切点为AD的中点时,连接AC,求t的值及∠MAC的度数;(3)在(2)的条件下,当点M与AC所在的直线的距离为1时,求t的值.38.平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(2,0),(0,3),点D 是经过点B ,C 的抛物线2y x bx c =-++的顶点. (1)求抛物线的解析式;(2)点E 是(1)中抛物线对称轴上一动点,求当△EAB 的周长最小时点E 的坐标; (3)平移抛物线,使抛物线的顶点始终在直线CD 上移动,若平移后的抛物线与射线..BD 只有一个公共点,直接写出平移后抛物线顶点的横坐标m 的值或取值范围.39.如图,函数y=-x 2+bx +c 的图象经过点A (m ,0),B (0,n )两点,m ,n 分别是方程x 2-2x -3=0的两个实数根,且m <n .(1)求m ,n 的值以及函数的解析式;(2)设抛物线y=-x 2+bx +c 与x 轴的另一交点为点C ,顶点为点D ,连结BD 、BC 、CD ,求△BDC 面积;(3)对于(1)中所求的函数y=-x 2+bx +c , ①当0≤x ≤3时,求函数y 的最大值和最小值;②设函数y 在t ≤x ≤t +1内的最大值为p ,最小值为q ,若p-q =3,求t 的值.40.如图,抛物线y =x 2+bx +c 交x 轴于A 、B 两点,其中点A 坐标为(1,0),与y 轴交于点C (0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P为抛物线上一动点,且满足∠PAB=2∠ACO.求点P的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【详解】根据圆锥的侧面积公式:πrl=π×2×6=12π,故选:B.【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.2.D解析:D【解析】【分析】根据位似图形的性质,再结合点A与点A'的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案.【详解】'''是以坐标原点O为位似中心的位似图形,且A为O A'的中心,解:∵△ABC与△A B C'''的相似比为:1:2;∴△ABC与△A B C∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=. 故答案为:D. 【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.3.D解析:D 【解析】 【分析】由二次函数的顶点式,即可得出顶点坐标. 【详解】解:∵二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ), ∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1). 故选:D . 【点睛】此题考查了二次函数的性质,二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ).4.B解析:B 【解析】 【分析】根据平均数、方差、中位数和众数的定义分别对每一项进行分析,即可得出答案. 【详解】解:调整前的平均数是:26042804300443⨯+⨯+⨯⨯=280;调整后的平均数是:260528023005525⨯+⨯+⨯++=280;故A 正确;调整前的方差是:()()()222142602804280280430028012⎡⎤-+-+-⎣⎦=8003; 调整后的方差是:()()()222152602802280280530028012⎡⎤-+-+-⎣⎦=10003; 故B 错误;调整前:把这些数从小到大排列为:260,260,260,260,280,280,280,280,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,调整后:把这些数从小到大排列为:260,260,260,260,260,280,280,300,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,故C正确;调整前的极差是40,调整后的极差也是40,则极差不变,故D正确.故选B.【点睛】此题考查了平均数、方差、中位数和极差的概念,掌握各个数据的计算方法是关键.5.A解析:A【解析】【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断.【详解】解:∵圆心O到直线l的距离d=6,⊙O的半径R=4,∴d>R,∴直线和圆相离.故选:A.【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..6.B解析:B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.7.C解析:C【解析】【分析】利用因式分解法解方程即可解答.【详解】x2-x=0x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故选C.【点睛】本题考查了一元二次方程的解法——因式分解法,熟知用因式分解法解一元二次方程的方法是解决问题的关键.8.C解析:C【解析】【分析】根据因式分解法,可得答案.【详解】,解:2x x方程整理,得,x2-x=0因式分解得,x(x-1)=0,于是,得,x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.9.D解析:D【解析】【分析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选D.【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.10.B解析:B【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选B.点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.A解析:A【解析】【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【详解】解:将二次函数y=x2的图象沿y轴向上平移2个单位长度,得到:y=x2+2,再沿x轴向左平移3个单位长度得到:y=(x+3)2+2.故选:A.【点睛】解决本题的关键是得到平移函数解析式的一般规律:上下平移,直接在函数解析式的后面上加,下减平移的单位;左右平移,比例系数不变,在自变量后左加右减平移的单位.12.C解析:C【解析】【分析】连接OD,根据∠AOD=2∠ACD,求出∠AOD,利用等腰三角形的性质即可解决问题.【详解】连接OD.∵∠ACD=20°,∴∠AOD=2∠ACD=40°.∵OA=OD,∴∠BAD=∠ADO=12(180°﹣40°)=70°.故选C.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.13.B解析:B【解析】 【分析】直接利用二次函数的性质分析判断即可.【详解】①y =x 2+2x +3,a =1>0,函数的图象的开口向上,故①错误;②y =x 2+2x +3的对称轴是直线x =221-⨯=﹣1, 即函数的对称轴是过点(﹣1,3)且平行于y 轴的直线,故②正确;③y =x 2+2x +3,△=22﹣4×1×3=﹣8<0,即函数的图象与x 轴没有交点,故③正确;④y =x 2+2x +3,当x =0时,y =3,即函数的图象与y 轴的交点是(0,3),故④错误;即正确的个数是2个,故选:B .【点睛】本题考查二次函数的特征,解题的关键是熟练掌握根据二次函数解析式求二次函数的开口方向、对称轴、与坐标轴的交点坐标.14.B解析:B【解析】【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【详解】解:∵如图所示的正三角形,∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°,设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=. 故选:B .【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.15.C解析:C【解析】【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2b a=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确,∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1, ∴﹣2b a=﹣1, ∴2a =b ,即:2a ﹣b =0,故②错误.∵二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1, ∴二次函数与x 轴的另一个交点的坐标为(1,0),∴当x =1时,有a+b+c =0,故结论③错误;④∵抛物线的开口向下,对称轴x =﹣1,∴当x <﹣1时,函数值y 随着x 的增大而增大,∵﹣5<﹣1则y 1<y 2,则结论④正确故选:C .【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左侧;当a 与b 异号时(即ab <0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△=b 2-4ac 决定:△>0时,抛物线与x 轴有2个交点;△= 0时,抛物线与x 轴有1个交点;△<0时,抛物线与x 轴没有交点.二、填空题16.60°【解析】【分析】直接利用圆周角定理,即可求得答案.【详解】∵A、B、C是⊙O上三点,∠ACB=30°,∴∠AOB的度数是:∠AOB =2∠ACB=60°.故答案为:60°.【点解析:60°【解析】【分析】直接利用圆周角定理,即可求得答案.【详解】∵A、B、C是⊙O上三点,∠ACB=30°,∴∠AOB的度数是:∠AOB=2∠ACB=60°.故答案为:60°.【点睛】考查了圆周角定理的运用,同弧或等弧所对的圆周角等于圆心角的一半.17.1,,【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图解析:1,83,32【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,∴PD CDAB BC=,∴236DP=,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.∴PD BDAC BC=,∴446DP=,∴DP=83;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴DP DCAB AC=,∴234DP=,∴DP=32;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。
苏科版数学九年级上册 全册期末复习试卷综合测试(Word 版 含答案)一、选择题1.下列方程中,是关于x 的一元二次方程的为( ) A .2210x x+= B .220x x --=C .2320x xy -=D .240y -=2.如图,AB 为圆O 直径,C 、D 是圆上两点,∠ADC=110°,则∠OCB 度( )A .40B .50C .60D .70 3.下列方程有两个相等的实数根是( )A .x 2﹣x +3=0B .x 2﹣3x +2=0C .x 2﹣2x +1=0D .x 2﹣4=04.在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同.把它们搅匀后从中任意摸出1个球,则摸到红球的概率是( ) A .14B .34C .15D .355.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大. A .2x <B .2x >C .0x <D .0x >6.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月D .1月,2月,3月,12月7.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144 8.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( )A .13B .14C .15D .169.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>10.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .2332π-B .233π- C .32π-D .3π-11.如图,O 的半径为2,弦2AB =,点P 为优弧AB 上一动点,60PAC ∠=︒,交直线PB 于点C ,则ABC 的最大面积是 ( )A .12B .1C .2D .212.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为( ) A .14B .13C .12D .2313.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,连接AB ,若∠B =25°,则∠P 的度数为( )A .25°B .40°C .45°D .50°14.已知一组数据:2,5,2,8,3,2,6,这组数据的中位数和众数分别是( ) A .中位数是3,众数是2 B .中位数是2,众数是3 C .中位数是4,众数是2 D .中位数是3,众数是415.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区域的概率为( )A .12B .14C .13D .19二、填空题16.若m 是方程2x 2﹣3x =1的一个根,则6m 2﹣9m 的值为_____.17.将边长分别为2cm ,3cm ,4cm 的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm .18.将二次函数y =2x 2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.19.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)20.已知扇形的圆心角为90°,弧长等于一个半径为5cm 的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm . 21.如图,ABC ∆是O 的内接三角形,45BAC ∠=︒,BC 的长是54π,则O 的半径是__________.22.若点C 是线段AB 的黄金分割点且AC >BC ,则AC =_____AB (用含无理数式子表示).23.长度等于2的弦所对的圆心角是90°,则该圆半径为_____.24.如图,△ABC 中,AB =AC =5,BC =6,AD ⊥BC ,E 、F 分别为AC 、AD 上两动点,连接CF 、EF ,则CF +EF 的最小值为_____.25.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____. 26.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.27.如图,在⊙O 中,分别将弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,若⊙O 的半径为4,则四边形ABCD 的面积是__________________.28.如图,C 、D 是线段AB 的两个黄金分割点,且CD =1,则线段AB 的长为_____.29.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S 甲、2S 乙,且22S S >甲乙,则队员身高比较整齐的球队是_____.30.如图,⊙O 的内接四边形ABCD 中,∠A=110°,则∠BOD 等于________°.三、解答题31.已知二次函数y =(x -m )(x +m +4),其中m 为常数. (1)求证:不论m 为何值,该二次函数的图像与x 轴有公共点.(2)若A (-1,a )和B (n ,b )是该二次函数图像上的两个点,请判断a 、b 的大小关系. 32.如图,已知直线l 切⊙O 于点A ,B 为⊙O 上一点,过点B 作BC ⊥l ,垂足为点C ,连接AB 、OB .(1)求证:∠ABC =∠ABO ;(2)若AB 10,AC =1,求⊙O 的半径.33.如图,⊙O 为ABC ∆的外接圆,9012ACB AB ∠=︒=,,过点C 的切线与AB 的延长线交于点D ,OE 交AC 于点F ,CAB E ∠=∠.(1)判断OE 与BC 的位置关系,并说明理由; (2)若3tan 4BCD ∠=,求EF 的长. 34.如图,在平面直角坐标系中,一次函数y =12x +2的图象与y 轴交于A 点,与x 轴交于B 点,⊙P 的半径为5,其圆心P 在x 轴上运动.(1)如图1,当圆心P 的坐标为(1,0)时,求证:⊙P 与直线AB 相切;(2)在(1)的条件下,点C 为⊙P 上在第一象限内的一点,过点C 作⊙P 的切线交直线AB 于点D ,且∠ADC =120°,求D 点的坐标;(3)如图2,若⊙P 向左运动,圆心P 与点B 重合,且⊙P 与线段AB 交于E 点,与线段BO 相交于F 点,G 点为弧EF 上一点,直接写出12AG +OG 的最小值 . 35.如图,直线y =x ﹣1与抛物线y =﹣x 2+6x ﹣5相交于A 、D 两点.抛物线的顶点为C ,连结AC .(1)求A ,D 两点的坐标;(2)点P 为该抛物线上一动点(与点A 、D 不重合),连接PA 、PD .①当点P的横坐标为2时,求△PAD的面积;②当∠PDA=∠CAD时,直接写出点P的坐标.四、压轴题36.如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点B的坐标为(3,4),一次函数23y x b=-+的图像与边OC、AB分别交于点D、E,并且满足OD BE=,M是线段DE上的一个动点(1)求b的值;(2)连接OM,若ODM△的面积与四边形OAEM的面积之比为1:3,求点M的坐标;(3)设N是x轴上方平面内的一点,以O、D、M、N为顶点的四边形是菱形,求点N的坐标.37.已知,如图1,⊙O是四边形ABCD的外接圆,连接OC交对角线BD于点F,延长AO 交BD于点E,OE=OF.(1)求证:BE=FD;(2)如图2,若∠EOF=90°,BE=EF,⊙O的半径25AO=ABCD的面积;(3)如图3,若AD=BC ;①求证:22•AB CD BC BD +=;②若2•12AB CD AO ==,直接写出CD 的长. 38.已知,如图Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 为AC 的中点,Q 从点A 运动到B ,点Q 运动到点B 停止,连接PQ ,取PQ 的中点O ,连接OC ,OB . (1)若△ABC ∽△APQ ,求BQ 的长;(2)在整个运动过程中,点O 的运动路径长_____;(3)以O 为圆心,OQ 长为半径作⊙O ,当⊙O 与AB 相切时,求△COB 的面积.39.如图1,已知菱形ABCD 的边长为23,点A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为(−3,3),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上方的部分围成的图形中............(.包括边界....).时,求t 的取值范围.(直接写出答案即可) 40.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m am b--的值为 ;当点M 不在y 轴上时,求证:m am b--为一个定值,并求出这个值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据一元二次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax 2+bx +c =0(a ≠0)的形式,则这个方程就为一元二次方程. 【详解】 解:A.2210x x+=,是分式方程, B.220x x --=,正确,C.2320x xy -=,是二元二次方程,D.240y -=,是关于y 的一元二次方程, 故选B 【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数; ②只含有一个未知数; ③未知数的最高次数是2.2.D【解析】【分析】根据角的度数推出弧的度数,再利用外角∠AOC的性质即可解题.【详解】解:∵ ADC=110°,即优弧ABC的度数是220°,∴劣弧ADC的度数是140°,∴∠AOC=140°,∵OC=OB,∴∠OCB=12∠AOC=70°,故选D.【点睛】本题考查圆周角定理、外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.C解析:C【解析】【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可.【详解】A、x2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意;B、x2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意;C、x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意;D、x2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意;故选:C.【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.4.D解析:D【分析】根据题意即从5个球中摸出一个球,概率为3 5 .【详解】摸到红球的概率=33 235=+,故选:D.【点睛】此题考查事件的简单概率的求法,正确理解题意,明确可能发生的总次数及所求事件发生的次数是求概率的关键.5.C解析:C【解析】【分析】先求函数的对称轴,再根据开口方向确定x的取值范围.【详解】222(1)1y x x x=-+=--+,∵图像的对称轴为x=1,a=-10<,∴当x1<时,y随着x的增大而增大,故选:C.【点睛】此题考查二次函数的性质,当a0a0<时,对称轴左增右减,当>时,对称轴左减右增. 6.D解析:D【解析】【分析】【详解】当-n2+15n-36≤0时该企业应停产,即n2-15n+36≥0,n2-15n+36=0的两个解是3或者12,根据函数图象当n≥12或n≤3时n2-15n+36≥0,所以1月,2月,3月,12月应停产.故选D7.D解析:D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x )2=144,故选D .点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.8.A解析:A【解析】【分析】根据红球的个数以及球的总个数,直接利用概率公式求解即可.【详解】因为共有6个球,红球有2个, 所以,取出红球的概率为2163P ==, 故选A.【点睛】本题考查了简单的概率计算,正确把握概率的计算公式是解题的关键. 9.A解析:A【解析】【分析】根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.10.B解析:B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯ =233π 故选B . 11.B解析:B【解析】【分析】连接OA 、OB ,如图1,由2OA OB AB ===可判断OAB 为等边三角形,则60AOB ∠=︒,根据圆周角定理得1302APB AOB ∠=∠=︒,由于60PAC ∠=︒,所以90C ∠=︒,因为2AB =,则要使ABC 的最大面积,点C 到AB 的距离要最大;由90ACB ∠=︒,可根据圆周角定理判断点C 在D 上,如图2,于是当点C 在半圆的中点时,点C 到AB 的距离最大,此时ABC 为等腰直角三角形,从而得到ABC 的最大面积.【详解】解:连接OA 、OB ,如图1,2OA OB ==,2AB =,OAB ∴为等边三角形, 60AOB ∴∠=︒,1302APB AOB ∴∠=∠=︒, 60PAC ∠=︒90ACP ∴∠=︒2AB =,要使ABC 的最大面积,则点C 到AB 的距离最大,作ABC 的外接圆D ,如图2,连接CD ,90ACB ∠=︒,点C 在D 上,AB 是D 的直径,当点C 半圆的中点时,点C 到AB 的距离最大,此时ABC 等腰直角三角形,CD AB ∴⊥,1CD =,12ABC S ∴=⋅AB ⋅CD 12112=⨯⨯=, ABC ∴的最大面积为1.故选B .【点睛】本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的判断与性质;记住等腰直角三角形的面积公式.12.C解析:C【解析】【分析】画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.【详解】根据题意画图如下:共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,则2次抽出的签上的数字的和为正数的概率为612=12;故选:C.【点睛】本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数,13.B解析:B【解析】【分析】连接OA,由圆周角定理得,∠AOP=2∠B=50°,根据切线定理可得∠OAP=90°,继而推出∠P=90°﹣50°=40°.【详解】连接OA,由圆周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切线,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故选:B.【点睛】本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP的度数.14.A解析:A【解析】【分析】先将这组数据从小到大排列,找出最中间的数,就是中位数,出现次数最多的数就是众数.【详解】解:将这组数据从小到大排列为:2,2,2,3,5,6,8,最中间的数是3,则这组数据的中位数是3;2出现了三次,出现的次数最多,则这组数据的众数是2;故选:A.【点睛】此题考查了众数、中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.15.B解析:B【解析】【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【详解】解:∵如图所示的正三角形,∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°,设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=. 故选:B .【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.二、填空题16.3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,解析:3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,∴2m2﹣3m=1,∴6m2﹣9m=3(2m2﹣3m)=3×1=3.故答案为3.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如解析:13 3【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH为正方形,∴NE GH∴△AEN~△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=20 9同理可求BK=8 9梯形BENK的面积:1208143 2993⎛⎫⨯+⨯=⎪⎝⎭∴阴影部分的面积:1413 3333⨯-=故答案为:13 3.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.18.y=2(x-2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为解析:y=2(x-2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x 2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为y=2(x-2)2+3,故答案为:y =2(x -2)2+3.【点睛】此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.19.或【解析】【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有解析:5 或1555【解析】【分析】根据黄金分割比为12计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有AC=12AB=12×10=5, 当AC<BC 时,则有×10=5-,∴AC=AB-BC=10-(5 )=15-,∴AC 长为5 cm 或1555 cm. 故答案为:55 或1555【点睛】本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.20.【解析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,∴R解析:【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,90=25180R∴R=20,225515 .故答案为:【点睛】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.21.【解析】【分析】连接OB、OC,如图,由圆周角定理可得∠BOC的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB、OC,如图,∵,∴∠BOC=90°,∵的长是,∴,解得:解析:5 2【解析】连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵45BAC ∠=︒,∴∠BOC =90°,∵BC 的长是54π, ∴9051804OB ππ⋅=, 解得:52OB =. 故答案为:52.【点睛】本题考查了圆周角定理和弧长公式,属于基本题型,熟练掌握上述基本知识是解答的关键.22.【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC =AB .故答案为:.【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分51- 【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC =512-AB . 故答案为:51-. 【点睛】 本题考查了黄金分割的定义,点C 是线段AB 的黄金分割点且AC >BC ,则512AC BC -=,正确理解黄金分割的定义是解题的关键. 23.6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =6,∠AOB =90°,且OA =OB ,在中,根据勾股定理得,即∴,故答案为:6.【点睛】解析:6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =62,∠AOB =90°,且OA =OB ,在Rt OAB 中,根据勾股定理得222OA OB AB +=,即2222(62)72OA AB === ∴236OA =,0OA >6OA ∴=故答案为:6.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.24.【解析】【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案解析:24 5【解析】【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案.【详解】作BM⊥AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC边上的中线,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C关于AD对称,∴BF=CF,根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S△ABC=12×BC×AD=12×AC×BM,∴BM=642455 BC ADAC,即CF+EF的最小值是245,故答案为:245.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.25.2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m ﹣1=0,∴2m2﹣3m =1,∴原式=3(2m2﹣3m )+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m 2﹣3m ﹣1=0,∴2m 2﹣3m =1,∴原式=3(2m 2﹣3m )+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.26.2【解析】【分析】根据根与系数的关系确定和,然后代入计算即可.【详解】解:∵∴=-3, =-5∴-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于(a≠解析:2【解析】【分析】根据根与系数的关系确定12x x +和12x x •,然后代入计算即可.解:∵2350x x +-=∴12x x +=-3, 12x x •=-5∴1212x x x x +-•=-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a +=-,12c x x a•=是解答本题的关键. 27.【解析】【分析】作OH⊥AB,延长OH 交于E ,反向延长OH 交CD 于G ,交于F ,连接OA 、OB 、OC 、OD ,根据折叠的对称性及三角形全等,证明AB=CD ,又因AB∥CD,所以四边形ABCD 是平行解析:163【解析】【分析】作OH ⊥AB ,延长OH 交O 于E ,反向延长OH 交CD 于G ,交O 于F ,连接OA 、OB 、OC 、OD ,根据折叠的对称性及三角形全等,证明AB=CD ,又因AB ∥CD ,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH ⊥AB ,垂足为H ,延长OH 交O 于E ,反向延长OH 交CD 于G ,交O 于F ,连接OA 、OB 、OC 、OD ,则OA=OB=OC=OD=OE=OF=4,∵弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,∴OH=HE=1×4=22,OG=GF=1×4=22,即OH=OG , 又∵OB=OD ,∴Rt △OHB ≌Rt △OGD ,∴HB=GD ,同理,可得AH=CG= HB=GD又∵AB ∥CD∴四边形ABCD 是平行四边形,在Rt △OHA 中,由勾股定理得:==∴AB=∴四边形ABCD 的面积=AB ×GH=故答案为:.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD 是矩形.28.2+【解析】【分析】设线段AB =x ,根据黄金分割点的定义可知AD =AB ,BC =AB ,再根据CD =AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点解析:【解析】【分析】设线段AB =x ,根据黄金分割点的定义可知AD 35AB ,BC 35AB ,再根据CD =AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点,∴较小线段AD =BC =32x -,则CD =AB ﹣AD ﹣BC =x ﹣x =1,解得:x =故答案为:【点睛】 本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的352倍.【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵,∴队员身解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵22S S 甲乙,∴队员身高比较整齐的球队是乙,故答案为:乙.【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量30.140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.解析:140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.三、解答题31.(1)见解析;(2) ①当n =-3时,a =b ;②当-3<n <-1时,a >b ;③当n <-3或n >-1时,a <b【解析】【分析】(1)方法一:当y=0时,(x-m )(x-m-4)=0,解得x 1=m ,x 2=-m-4,即可得到结论;方法二:化简得y=x2+4x-m2-4m,令y=0,可得b2-4ac≥0,即可证明;(2)得出函数图象的对称轴,根据开口方向和函数的增减性分三种情况讨论,判断a与b 的大小.【详解】(1)方法一:令y=0,(x-m)(x+m+4)=0,解得x1=m;x2=-m-4.当m=-m-4,即m=-2,方程有两个相等的实数根,故二次函数与x轴有一个公共点;当m≠-m-4,即m≠-2,方程有两个不相等的实数根,故二次函数与x轴有两个公共点.综上不论m为何值,该二次函数的图像与x轴有公共点.方法二:化简得y=x2+4x-m2-4m.令y=0,b2-4ac=4m2+16m+16=4(m+2)2≥0,方程有两个实数根.∴不论m为何值,该二次函数的图像与x轴有公共点.(2)由题意知,函数的图像的对称轴为直线x=-2①当n=-3时,a=b;②当-3<n<-1时,a>b③当n<-3或n>-1时,a<b【点睛】本题考查了二次函数的性质以及与方程的关系,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程,并且注意分情况讨论.32.(1)详见解析;(2)⊙O的半径是132.【解析】【分析】(1)连接OA,求出OA∥BC,根据平行线的性质和等腰三角形的性质得出∠OBA=∠OAB,∠OBA=∠ABC,即可得出答案;(2)根据矩形的性质求出OD=AC=1,根据勾股定理求出BC,根据垂径定理求出BD,再根据勾股定理求出OB即可.【详解】(1)证明:连接OA,∵OB=OA,∴∠OBA =∠OAB ,∵AC 切⊙O 于A ,∴OA ⊥AC ,∵BC ⊥AC ,∴OA ∥BC ,∴∠OBA =∠ABC ,∴∠ABC =∠ABO ;(2)解:过O 作OD ⊥BC 于D ,∵OD ⊥BC ,BC ⊥AC ,OA ⊥AC ,∴∠ODC =∠DCA =∠OAC =90°,∴OD =AC =1,在Rt △ACB 中,AB 10AC =1,由勾股定理得:BC ()22101-=3, ∵OD ⊥BC ,OD 过O ,∴BD =DC =12BC =132⨯=1.5, 在Rt △ODB 中,由勾股定理得:OB ()22131 1.5+=即⊙O 的半径是132. 【点睛】 此题主要考查切线的性质及判定,解题的关键熟知等腰三角形的性质、垂径定理及切线的性质.33.(1)OE ∥BC .理由见解析;(2)125【解析】【分析】(1)连接OC ,根据已知条件可推出E ACO ∠∠=,进一步得出AFO EFC 90ACB ∠∠∠==︒=结论得以证明;(2)根据(1)的结论可得出∠E =∠BCD ,对应的正切值相等,可得出CE 的值,进一步计算出OE 的值,在Rt △AFO 中,设OF =3x ,则AF =4x ,解出x 的值,继而得出OF 的值,从而可得出答案.【详解】解:(1)OE∥BC.理由如下:连接OC,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCE=90︒,∴∠OCA+∠ECF=90︒,∵OC=OA,∴∠OCA=∠CAB.又∵∠CAB=∠E,∴∠OCA=∠E,∴∠E+∠ECF=90︒,∴∠EFC=180O-(∠E+∠ECF) =90︒.∴∠EFC=∠ACB=90︒,∴OE∥BC.(2)由(1)知,OE∥BC,∴∠E=∠BCD.在Rt△OCE中,∵AB=12,∴OC=6,∵tan E=tan∠BCD=OC CE,∴468tan3OCCEDCB==⨯=∠.∴OE2=O C2+CE2=62+82,∴OE=10又由(1)知∠EFC =90︒,∴∠AFO=90︒.在Rt△AFO中,∵tan A =tan E=34,∴设OF=3x,则AF=4x.∵OA2=OF2+AF2,即62=(3x)2+(4x)2,解得:65 x=∴185 OF=,∴18321055 EF OE OF=-=-=.【点睛】本题是一道关于圆的综合题目,涉及到的知识点有切线的性质,平行线的判定定理,三角形内角和定理,正切的定义,勾股定理等,熟练掌握以上知识点是解此题的关键.34.(1)见解析;(2)D(23,3+2);(3)37.【解析】【分析】(1)连接PA,先求出点A和点B的坐标,从而求出OA、OB、OP和AP的长,即可确定点A在圆上,根据相似三角形的判定定理证出△AOB∽△POA,根据相似三角形的性质和等量代换证出PA⊥AB,即可证出结论;(2)连接PA,PD,根据切线长定理可求出∠ADP=∠PDC=12∠ADC=60°,利用锐角三角函数求出AD,设D(m,12m+2),根据平面直角坐标系中任意两点之间的距离公式求出m的值即可;(3)在BA上取一点J,使得BJ=5,连接BG,OJ,JG,根据相似三角形的判定定理证出△BJG∽△BGA,列出比例式可得GJ=12AG,从而得出12AG+OG=GJ+OG,设J点的坐标为(n,12n+2),根据平面直角坐标系中任意两点之间的距离公式求出n,从而求出OJ的长,然后根据两点之间线段最短可得GJ+OG≥OJ,即可求出结论.【详解】(1)证明:如图1中,连接PA.∵一次函数y=12x+2的图象与y轴交于A点,与x轴交于B点,∴A(0,2),B(﹣4,0),。
苏科版数学九年级上册 全册期末复习试卷综合测试(Word 版 含答案)一、选择题1.有一组数据5,3,5,6,7,这组数据的众数为( ) A .3 B .6C .5D .72.若将半径为24cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为( ) A .3cm B .6cmC .12cmD .24cm3.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2015a b -+的值是( ) A .2011 B .2015 C .2019 D .2020 4.两个相似三角形的面积比是9:16,则这两个三角形的相似比是( )A .9︰16B .3︰4C .9︰4D .3︰165.如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,N .则线段BM ,DN 的大小关系是( )A .BM >DNB .BM <DNC .BM=DND .无法确定6.如图,已知正五边形ABCDE 内接于O ,连结,BD CE 相交于点F ,则BFC ∠的度数是( )A .60︒B .70︒C .72︒D .90︒7.如图,在由边长为1的小正方形组成的网格中,点A ,B ,C ,D 都在格点上,点E 在AB 的延长线上,以A 为圆心,AE 为半径画弧,交AD 的延长线于点F ,且弧EF 经过点C ,则扇形AEF 的面积为( )A 5B .58πC .54πD .548.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .12B .13C .14D .159.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤10.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( ) A .45B .35C .43D .3411.二次函数y =x 2﹣2x +1与x 轴的交点个数是( ) A .0B .1C .2D .312.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似D .所有矩形都相似13.“一般的,如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x =1x﹣2实数根的情况是 ( ) A .有三个实数根B .有两个实数根C .有一个实数根D .无实数根14.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是A .(6,0)B .(6,3)C .(6,5)D .(4,2)15.若二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则实数n 的值是( )A.1 B.3 C.4 D.6二、填空题16.将二次函数y=2x2的图像沿x轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.17.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.18.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB的面积为__________.19.如图,边长为2的正方形ABCD,以AB为直径作⊙O,CF与⊙O相切于点E,与AD交于点F,则△CDF的面积为________________20.二次函数y=ax2+bx+c(a≠0)的图像如图所示,当y<3时,x的取值范围是____.21.如图,二次函数y=ax2+bx+c的图像过点A(3,0),对称轴为直线x=1,则方程ax2+bx+c=0的根为____.22.若关于x 的一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.23.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.24.在Rt ABC ∆中,90C ∠=︒,12AC =,9BC =,圆P 在ABC ∆内自由移动.若P 的半径为1,则圆心P 在ABC ∆内所能到达的区域的面积为______.25.抛物线21(5)33y x =--+的顶点坐标是_______.26.一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是______.27.某一时刻,测得身高1.6m 的同学在阳光下的影长为2.8m ,同时测得教学楼在阳光下的影长为25.2m ,则教学楼的高为__________m .28.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.29.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.30.二次函数2y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取值范围是_______.三、解答题31.如图,以AB 边为直径的⊙O 经过点P ,C 是⊙O 上一点,连结PC 交AB 于点E ,且∠ACP =60°,PA =PD .(1)试判断PD 与⊙O 的位置关系,并说明理由; (2)若点C 是弧AB 的中点,已知AB =4,求CE •CP 的值.32.如图,在Rt ABC ∆中,90C ∠=︒,6AC =,60BAC ∠=︒,AD 平分BAC ∠交BC 于点D ,过点D 作DEAC 交AB 于点E ,点M 是线段AD 上的动点,连结BM 并延长分别交DE ,AC 于点F 、G .(1)求CD 的长.(2)若点M 是线段AD 的中点,求EFDF的值. (3)请问当DM 的长满足什么条件时,在线段DE 上恰好只有一点P ,使得60CPG ∠=︒?33.4张相同的卡片分别写有数字﹣1、﹣3、4、6,将这些卡片的背面朝上,并洗匀. (1)从中任意抽取1张,抽到的数字大于0的概率是______;(2)从中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的a ,再从余下的卡片中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的b ,利用树状图或表格的方法,求出这个二次函数图象的对称轴在y 轴右侧的概率.34.如图所示,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧),已知A 点坐标为(0,3). (1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D ,如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴与⊙C 有怎样的位置关系,并给出证明.35.某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下: 甲 10 6 10 6 8 乙79789经过计算,甲进球的平均数为8,方差为3.2. (1)求乙进球的平均数和方差;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?四、压轴题36.问题提出(1)如图①,在ABC 中,2,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.37.已知,如图1,⊙O 是四边形ABCD 的外接圆,连接OC 交对角线BD 于点F ,延长AO 交BD 于点E ,OE=OF.(1)求证:BE=FD ;(2)如图2,若∠EOF=90°,BE=EF ,⊙O 的半径25AO =,求四边形ABCD 的面积; (3)如图3,若AD=BC ;①求证:22•AB CD BC BD +=;②若2•12AB CD AO ==,直接写出CD 的长. 38.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论. 39.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示). (2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明. 40.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P 是抛物线上一动点,过P 作x 轴的垂线,交直线BC 于M .设点P 的横坐标是t .①当PCM ∆是直角三角形时,求点P 的坐标;②当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,求直线解析式y kx b =+(,k b 可用含t 的式子表示).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据众数的概念求解. 【详解】这组数据中5出现的次数最多,出现了2次, 则众数为5. 故选:C . 【点睛】本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.2.C解析:C 【解析】 【分析】易得圆锥的母线长为24cm ,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径. 【详解】解:圆锥的侧面展开图的弧长为:2π24224π⨯÷=, ∴圆锥的底面半径为:()24π2π12cm ÷=. 故答案为:C. 【点睛】本题考查的知识点是圆锥的有关计算,熟记各计算公式是解题的关键.3.C解析:C 【解析】 【分析】根据方程解的定义,求出a-b ,利用作图代入的思想即可解决问题. 【详解】∵关于x 的一元二次方程240ax bx ++=的解是x=−1, ∴a−b+4=0, ∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019. 故选C. 【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.4.B解析:B 【解析】试题分析:根据相似三角形中,面积比等于相似比的平方,即可得到结果. 因为面积比是9:16,则相似比是3︰4,故选B. 考点:本题主要考查了相似三角形的性质点评:解答本题的关键是掌握相似三角形面积的比等于相似比的平方5.C解析:C 【解析】分析:连接BD ,根据平行四边形的性质得出BP=DP ,根据圆的性质得出PM=PN ,结合对顶角的性质得出∠DPN=∠BPM ,从而得出三角形全等,得出答案.详解:连接BD ,因为P 为平行四边形ABCD 的对称中心,则P 是平行四边形两对角线的交点,即BD 必过点P ,且BP=DP , ∵以P 为圆心作圆, ∴P 又是圆的对称中心, ∵过P 的任意直线与圆相交于点M 、N , ∴PN=PM , ∵∠DPN=∠BPM , ∴△PDN ≌△PBM (SAS ), ∴BM=DN .点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于中等难度的题型.理解平行四边形的中心对称性是解决这个问题的关键.6.C解析:C 【解析】 【分析】连接OA 、OB 、OC 、OD 、OE ,如图,则由正多边形的性质易求得∠COD 和∠BOE 的度数,然后根据圆周角定理可得∠DBC 和∠BCF 的度数,再根据三角形的内角和定理求解即可. 【详解】解:连接OA 、OB 、OC 、OD 、OE ,如图,则∠COD =∠AOB =∠AOE =360725︒=︒, ∴∠BOE =144°, ∴1362DBC COD ∠=∠=︒,1722BCE BOE ∠=∠=︒, ∴18072BFC DBC BCF ∠=︒-∠-∠=︒. 故选:C.【点睛】本题考查了正多边形和圆、圆周角定理和三角形的内角和定理,属于基本题型,熟练掌握基本知识是解题关键.7.B解析:B 【解析】 【分析】连接AC ,根据网格的特点求出r=AC 的长度,再得到扇形的圆心角度数,根据扇形面积公式即可求解.【详解】 连接AC ,则r=AC=22251=+扇形的圆心角度数为∠BAD=45°,∴扇形AEF 的面积=()2455360π⨯⨯=58π 故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.8.D解析:D【解析】【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D .【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键. 9.D解析:D【解析】【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴41642t x ±-= ∵15x << ∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.10.A解析:A【解析】 【分析】 先根据勾股定理计算出斜边AB 的长,然后根据正弦的定义求解.【详解】如图,∵∠C =90°,AC =8,BC =6,∴AB 222268BC AC +=+10,∴sin B =84105AC AB ==. 故选:A .【点睛】 本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.11.B解析:B【解析】由△=b 2-4ac=(-2)2-4×1×1=0,可得二次函数y=x 2-2x+1的图象与x 轴有一个交点.故选B .12.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.13.C解析:C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.14.B解析:B【解析】试题分析:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A 、当点E 的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB :BC=CD :DE ,△CDE ∽△ABC ,故本选项不符合题意;B 、当点E 的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB :BC≠CD :DE ,△CDE 与△ABC 不相似,故本选项符合题意;C 、当点E 的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB :BC=DE :CD ,△EDC ∽△ABC ,故本选项不符合题意;D 、当点E 的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB :BC=CD :CE ,△DCE ∽△ABC ,故本选项不符合题意.故选B .15.C解析:C【解析】【分析】二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则240b ac =-=⊿,据此即可求得.【详解】∵1a =,4b =,c n =,根据题意得:2244410b ac n =-=⨯⨯=⊿﹣,解得:n =4,故选:C .【点睛】本题考查了抛物线与x 轴的交点,二次函数2y ax bx c =++(a ,b ,c 是常数,a ≠0)的交点与一元二次方程20ax bx c ++=根之间的关系.24b ac =-⊿决定抛物线与x 轴的交点个数.⊿>0时,抛物线与x 轴有2个交点;0=⊿时,抛物线与x 轴有1个交点;⊿<0时,抛物线与x 轴没有交点.二、填空题16.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.17.红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】解析:红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.18.【解析】【分析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有:,解得所以解析:16【解析】【分析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有:π·4=8180n,解得360πn所以22360S==16360360扇形π4πrπ=n19.【解析】【分析】首先判断出AB、BC是⊙O的切线,进而得出FC=AF+DC,设AF=x,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB、BC是⊙O的切线,∵C解析:3 2【解析】【分析】首先判断出AB、BC是⊙O的切线,进而得出FC=AF+DC,设AF=x,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB、BC是⊙O的切线,∵CF是⊙O的切线,∴AF=EF,BC=EC,∴FC=AF+DC,设AF=x,则,DF=2-x,∴CF=2+x,在RT△DCF中,CF2=DF2+DC2,即(2+x)2=(2-x)2+22,解得x=12,∴DF=2-12=32,∴113322222 CDFS DF DC=⋅=⨯⨯=,故答案为:3 2 .【点睛】本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.20.-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x 的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x <3时,y <3,故答案为:-1<x <3.【点睛解析:-1<x <3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x 的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x <3时,y <3,故答案为:-1<x <3.【点睛】本题考查了二次函数与不等式和二次函数的对称性,此类题目,利用数形结合的思想求解更简便.21.【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得:解析:123;1x x ==-【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得: 抛物线与x 轴交于(3,0)和(-1,0)即当y=0时,x=3或-1∴ax 2+bx +c =0的根为123;1x x ==-故答案为:123;1x x ==-【点睛】本题考查抛物线的对称性及二次函数与一元二次方程,利用对称性求出抛物线与x 轴的交点坐标是本题的解题关键.22.【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,∴ 解析:72【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】 解:∵一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根, ∴2214241402b ac k k ,整理得,22410k k , ∴21+22k k 2221k k k 224k k224k k当21+22k k 时, 224k k142=-+ 72= 故答案为:72. 【点睛】本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.23.【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵,,∴点(-1,0)与(3,0)在抛物线上,∴抛物线的对称轴是直线:x=1,∴点关于直线x=解析:(4,4)【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵0a b c -+=,930a b c ++=,∴点(-1,0)与(3,0)在抛物线2y ax bx c =++上,∴抛物线的对称轴是直线:x =1,∴点(2,4)-关于直线x =1对称的点为:(4,4).故答案为:(4,4).【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于常考题型,根据题意判断出点(-1,0)与(3,0)在抛物线上、熟练掌握抛物线的对称性是解题的关键. 24.24【解析】【分析】根据题意做图,圆心在内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交A C 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根解析:24【解析】【分析】根据题意做图,圆心P 在ABC ∆内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交AC 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根据Rt △AMH 中利用勾股定理求出x 的值,作EK ⊥BC 于K 点,利用△BEK ∽△BHC ,求出BK 的长,即可求出EF 的长,再根据△EFG ∽△BCA 求出FG ,即可求出△EFG 的面积.【详解】如图,由题意点O 所能到达的区域是△EFG ,连接BE ,延长BE 交AC 于H 点,作HM ⊥AB于M ,EK ⊥BC 于K ,作FJ ⊥BC 于J .∵90C ∠=︒,12AC =,9BC =,∴AB=2212915+=根据圆的性质可知BH 平分∠ABC∴故CH=HM,设CH=x=HM ,则AH=12-x ,BM=BC=9,∴AM=15-9=6在Rt △AMH 中,AH 2=HM 2+AM 2即AH 2=HM 2+AM 2(12-x )2=x 2+62解得x=4.5∵EK ∥AC ,∴△BEK ∽△BHC ,∴EK BK HC BC =,即14.59BK = ∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6,∵EG ∥AB ,EF ∥AC ,FG ∥BC , ∴∠EGF =∠ABC ,∠FEG =∠CAB ,∴△EFG ∽△ACB ,故EF FG BC AC =,即6912FG = 解得FG=8 ∴圆心P 在ABC ∆内所能到达的区域的面积为12FG×EF=12×8×6=24, 故答案为24.【点睛】此题主要考查相似三角形的判定与性质综合,解题的关键是熟知勾股定理、相似三角形的判定与性质.25.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3) 故答案为:(5,3). 【点睛】本题考查二次函数性质其顶点坐标为(h ,k ),题目比较解析:(5,3) 【解析】 【分析】根据二次函数顶点式2()y a x h k =-+的性质直接求解. 【详解】解:抛物线21(5)33y x =--+的顶点坐标是(5,3) 故答案为:(5,3). 【点睛】本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单.26.【解析】 【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红解析:58【解析】 【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是55538=+ 故答案为: 58. 【点睛】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 27.4【分析】根据题意可知,,代入数据可得出答案.【详解】解:由题意得出:,即,解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平解析:4【解析】【分析】根据题意可知,1.62.8=身高教学楼高影长教学楼影长,代入数据可得出答案.【详解】解:由题意得出:1.62.8=身高教学楼高影长教学楼影长,即,1.62.825.2=教学楼高解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平行投影,熟记同一时刻物高与影长成正比是解此题的关键.28.74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键.解析:74【解析】利用加权平均数公式计算. 【详解】甲的成绩=70560290374523,故答案为:74. 【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键.29.【解析】 【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧2【解析】 【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,AB ===PAB PBC ∠=∠,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解. 【详解】∵90ACB ∠=︒,3AC =,BC =,∴AB ===∴∠CAB=30°,∠ABC=60°∵PAB PBC ∠=∠,∠PAB+∠PAC=30° ∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小 ∴CO ⊥AB ,∠COB=60°,∠ABO=30° ∴OB=2,∠OBC=90°∴OC ===∴2CP OC OP =-=2.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P 的位置.30.【解析】 【分析】根据,则函数图象在直线的上方,所以找出函数图象在直线的上方的取值范围即可. 【详解】根据二次函数的图象可知: 对称轴为,已知一个点为,根据抛物线的对称性,则点关于对称性对称 解析:20x -<<【解析】 【分析】根据3y >,则函数图象在直线3y =的上方,所以找出函数图象在直线3y =的上方x 的取值范围即可. 【详解】根据二次函数的图象可知:对称轴为1x =-,已知一个点为()03,, 根据抛物线的对称性,则点()03,关于对称性对称的另一个点为()23-,, 所以3y >时,x 的取值范围是20x -<<. 故答案为:20x -<<. 【点睛】本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对称轴求出点()03,的对称点是解题的关键. 三、解答题31.(1)PD 是⊙O 的切线.证明见解析.(2)8. 【解析】试题分析:(1)连结OP ,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD 和∠D 的度数,进而可得∠OPD=90°,从而证明PD 是⊙O 的切线; (2)连结BC ,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC 长,再证明△CAE ∽△CPA ,进而可得,然后可得CE•CP 的值.试题解析:(1)如图,PD 是⊙O 的切线. 证明如下:连结OP ,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP ,∴∠OAP=∠OPA=30°,∵PA=PD ,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD 是⊙O 的切线.(2)连结BC ,∵AB 是⊙O 的直径,∴∠ACB=90°,又∵C 为弧AB 的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C ,∠CAB=∠APC ,∴△CAE ∽△CPA ,∴,∴CP•CE=CA 2=()2=8.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.32.(1)3DC =;(2)23EF DF =;(3)当1637DM =143435DM <<时,满足条件的点P 只有一个. 【解析】 【分析】(1)由角平分线定义得30DAC ∠=︒,在Rt ADC ∆中,根据锐角三角函数正切定义即可求得DC 长.(2)由题意易求得63BC =43BD =ASA 得DFM AGM ∆≅∆,根据全等三角形性质得DF AG =,根据相似三角形判定得~BFE BGA ∆∆,由相似三角形性质得EF BE BDAG AB BC==,将DF AG =代入即可求得答案.(3)由圆周角定理可得CQG ∆是顶角为120°的等腰三角形,再分情况讨论: ①当Q 与DE 相切时,结合题意画出图形,过点Q 作QH AC ⊥,并延长HQ 与DE 交于点P ,连结QC ,QG ,设Q 半径为r ,由相似三角形的判定和性质即可求得DM长; ②当Q 经过点E 时,结合题意画出图形,过点C 作CK AB ⊥,设Q 半径为r ,在Rt EQK ∆中,根据勾股定理求得r ,再由相似三角形的判定和性质即可求得DM 长;③当Q 经过点D 时,结合题意画出图形,此时点M 与点G 重合,且恰好在点A 处,由此可得DM 长. 【详解】(1)解:∵AD 平分BAC ∠,60BAC ∠=︒, ∴1302DAC BAC ∠=∠=︒. 在Rt ADC ∆中,tan 3023DC AC =⋅︒= (2)解:易得,63BC =,43BD =. 由DEAC ,得EDA DAC ∠=∠,DFM AGM ∠=∠.∵AM DM =, ∴DFM AGM ∆≅∆, ∴AG DF =. 由DE AC ,得~BFE BGA ∆∆,∴EF BE BDAG AB BC== ∴432363EF EF BD DF AG BC ==== (3)解:∵60CPG ∠=︒,过C ,P ,G 作外接圆,圆心为Q , ∴CQG ∆是顶角为120°的等腰三角形. ①当Q 与DE 相切时,如图1,过Q 点作QH AC ⊥,并延长HQ 与DE 交于点P ,连结QC ,QG 设Q 的半径QP r =则12QH r =,1232r r +=解得433r =. ∴43343CG =⨯=,2AG =. 易知DFM AGM ∆∆,可得43DM DF AM AG ==,则47DM AD = ∴1637DM =. ②当Q 经过点E 时,如图2,过C 点作CK AB ⊥,垂足为K . 设Q 的半径QC QE r ==,则33-QK r =.在Rt EQK ∆中,()221332r r +-=,解得1439r =, ∴14143393CG =⨯= 易知DFM AGM ∆∆,可得1435DM =③当Q 经过点D 时,如图3,此时点M 与点G 重合,且恰好在点A 处,可得43DM = 综上所述,当1637DM =143435DM <P 只有一个.。
苏科版九年级上册数学期末试题一、单选题1.数据:-2,1,1,2,4,6的中位数是()A.1B.2C.1.5D.1或22.方程x2﹣4x+5=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根3.小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,英语题9个,她从中随机抽取1个,抽中数学题的概率是()A.14B.15C.120D.134.若抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1B.m>0C.m>-1D.-1<m<05.已知圆锥的底面半径为6,母线长为8,圆锥的侧面积为()A.60B.48C.60πD.48π6.抛物线y=a2x+(a-3)x-a-1经过原点,那么a的值等于()A.0B.1C.–1D.37.抛物线y=3(x-2)2+1图象上平移2个单位,再向左平移2个单位所得的解析式为()A.y=3x2+3B.y=3x2-1C.y=3(x-4)2+3D.y=3(x-4)2-1 8.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°二、填空题9.一组数据2,3,3,5,7的众数是_________.10.数据-1,0,1的方差为_______.11.若a是方程3x2-4x-3=0的一个根,则代数式246 3a a-+值为_________.12.要利用一面很长的围墙和100米长的隔离栏建三个如图所示的矩形羊圈,若计划建成的三个羊圈总面积为400平方米,则羊圈的边长AB 为多少米?设AB=x 米,根据题意可列出方程的为_________.13.如图,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠OAD+∠OCD=_______°.14.如果二次函数y=-2x 2-2(k-4)x+4图像的对称轴为直线x=2,那么字母k 的值为_______.15.如图,在平行四边形ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与⊙A 相交于点F .若弧EF 的长为2,则图中阴影部分的面积为_____.16.如图,AB 是⊙O 的弦,AB =4,点C 是⊙O 上的一个动点,且∠ACB =45°.若点M ,N 分别是AB ,BC 的中点,则MN 长的最大值是_____.三、解答题17.解方程:(1)2x(x-2)=5(2-x)(2)x2-5x+3=018.在一次“中国梦”演讲比赛中,将甲、乙两组选手(每组10人)的成绩分别按得分(10分制)进行统计,根据统计数据绘制了如下还不完整的统计图表.分数人数频率7分a0.28分10.19分b c10分50.5合计 1.0(1)a=_______,b=_______,c=________;(2)乙组“10分”所在扇形的圆心角等于_______°.并请你补全条形统计图.19.已知关于x的方程x2-(k+2)x+2k=0.(1)求证:k取任何实数值,方程总有实数根;(2)若等腰△ABC的一腰长为4,另两边长m,n恰好是这个方程的两个根,求△ABC的周长.20.箱子里有4瓶果汁,其中有一瓶是苹果汁,其余三瓶都是橙汁,它们除口味不同外,其他完全相同.现从这4瓶果汁中一次性取出2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶果汁中恰好抽到苹果汁的概率.21.电动自行车已成为市民日常出行的首选工具.据某市品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月销售216辆.(1)求该品牌电动车销售量的月平均增长率;(2)若该品牌电动自行车的进价为2300元,售价2800元,则该经销商1月至3月共盈利多少元.22.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B(1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1;(2)在旋转过程中点B所经过的路径长为______;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.23.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?24.如图,二次函数的图像与x轴交于A(-3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图像上的一对对称点,一次函数的图像过点B、D.(1)求点D的坐标;(2)求二次函数的表达式;(3)根据图像直接写出使一次函数值大于二次函数值的x的取值范围.25.如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判断直线CD和⊙O的位置关系,并说明理由.(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.26.(1)【学习心得】小刚同学在学习完“圆”这一章内容后,感觉到一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且AD=AC,求∠BDC的度数,若以点A为圆心,AB为半径作辅助圆⊙A,则点C、D必在⊙A上,∠BAC 是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC=°.(2)【问题解决】如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的度数.小刚同学认为用添加辅助圆的方法,可以使问题快速解决,他是这样思考的:△ABD的外接圆就是以BD的中点为圆心,12BD长为半径的圆;△ACD的外接圆也是以BD的中点为圆心,12BD长为半径的圆.这样A、B、C、D四点在同一个圆上,进而可以利用圆周角的性质求出∠BAC的度数,请运用小刚的思路解决这个问题.(3)【问题拓展】如图3,在△ABC中,∠BAC=45°,AD是BC边上的高,且BD=4,CD=2,求AD的长.27.如图,直线112y x=+与x,y轴分别交于点B,A,顶点为P的抛物线22y ax ax c=-+过点A .(1)求出点A ,B 的坐标及c 的值;(2)若函数22y ax ax c =-+在34x ≤≤时有最大值为2a +,求a 的值;(3)若0a >,连接AP ,过点A 作AP 的垂线交x 轴于点M .设△BMP 的面积为S .①直接写出S 关于a 的函数关系式及a 的取值范围;②结合S 与a 的函数图象,直接写出18S >时a 的取值范围.参考答案1.C【分析】根据中位数的定义即可得.【详解】解: 将这组数据从小到大排序得-2,1,1,2,4,6,其中最中间的两个数为1,2,∴这组数据的中位数为121.52+=,故选:C .【点睛】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,熟记中位数的定义是解题的关键.2.D【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【详解】解:∵2450x x -+=,∵()2Δ4415--⨯⨯==﹣4<0,∴方程没有实数根.故选:D .【点睛】本题考查了根的判别式,一元二次方程20ax bx c ++=(a≠0)的根与2Δ4b ac -=如下关系:当Δ>0时,方程有两个不相等的两个实数根;当Δ=0时,方程有两个相等的两个实数根;当Δ<0时,方程无实数根,熟练掌握判别式的意义是解题的关键.3.A【分析】先求出总的题数,然后用数学题的提数除以总题数即可.【详解】解:抽中数学题的概率是:551==659204++.故选A.【点睛】本题考查概率的定义.属于比价基础的题型.4.B【分析】利用y=ax 2+bx+c 的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.【详解】顶点坐标(m ,m+1)在第一象限,则有010m m >⎧⎨+>⎩解得:m>0,故选:B .5.D【分析】圆锥的侧面积是一个扇形,扇形的面积就是圆锥的侧面积,根据计算公式计算即可.【详解】解:圆锥的侧面积=12•2π•6×8=48π.故选D .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.C【分析】把(0,0)代入函数解析式,求解关于a 的一元一次方程即可.【详解】∵抛物线y=a 2x +(a-3)x-a-1经过原点,∴-a-1=0,解得a=-1,故选C.【点睛】本题考查了抛物线与点的关系,熟练掌握图像过点,点的坐标满足函数的解析式是解题的关键.7.A【分析】抛物线的平移,实际上就是顶点的平移,先求出原抛物线对顶点坐标,根据平移规律求新抛物线的顶点坐标,确定新抛物线的解析式.【详解】∵y=3(x-2)2+1的顶点坐标为(2,1),∴把抛物线向上平移2个单位,再向左平移2个单位,得新抛物线顶点坐标为(0,3),∵平移不改变抛物线的二次项系数,∴平移后的抛物线的解析式是y=3(x-0)2+3,即y=3x2+3.故选A.【点睛】根据平移规律求新抛物线的顶点坐标,确定新抛物线的解析式.考察抛物线的平移关系.8.D【详解】解:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=12∠AOC=55°.故选D .9.3【详解】解:∵数据2,3,3,5,7中出现次数最多是3∴众数是3故答案为:3.【点睛】本题主要考查了众数的定义,在一组数据中出现次数最多的数据成为这组数据的众数,熟练地掌握众数的概念是解决本题的关键.10.23【分析】先求出3个数的平均数,再根据方差公式计算.【详解】解:数据-1,0,1的平均数:()110103-++=,方差()()()222211000103S ⎡⎤=--+-+-⎣⎦23=,故答案为:23.【点睛】本题考查方差的计算,方差()()()2222121n S x x x x x x n ⎡⎤=-+-++-⎣⎦,熟记方差公式是解题的关键.11.7【分析】由a 是方程3x 2-4x-3=0的一个根,得234=3a a -,利用整体代入,即可求出答案.【详解】解:∵a 是方程3x 2-4x-3=0的一个根∴234=3a a -∴22416=34+6=1+6=733a a a a -+-()故答案为:7.【点睛】本题主要考查了一元二次方程的解的定义,再利用整体代入的方法求代数式的值,找到题目中的倍分关系是解题的关键.12.x (100-4x )=400【分析】由题意,得BC 的长为(100-4x )米,根据矩形面积列方程即可.【详解】解:设AB 为x 米,则BC 的长为(100-4x )米由题意,得x (100-4x )=400故答案为:x (100-4x )=400.【点睛】本题主要考查了一元二次方程的实际问题,解决问题的关键是通过图形找到对应关系量,根据等量关系式列方程.13.60【详解】∵四边形OABC 为平行四边形,∴∠AOC=∠B ,∠OAB=∠OCB ,∠OAB+∠B=180°.∵四边形ABCD 是圆的内接四边形,∴∠D+∠B=180°.又∠D =12∠AOC ,∴3∠D=180°,解得∠D=60°.∴∠OAB=∠OCB=180°-∠B=60°.∴∠OAD+∠OCD=360°-(∠D+∠B+∠OAB+∠OCB )=360°-(60°+120°+60°+60°)=60°.故答案为:60°.【点睛】考点:①平行四边形的性质;②圆内接四边形的性质.14.0【分析】根据y=ax 2+bx+c 的对称轴为x=-2ba,直接代入求k 即可.【详解】解:∵对称轴为x=-2b a=2∴-2422k ---⨯()=2解得k=0故答案为:0.【点睛】本题主要考查二次函数的性质,熟练掌握y=ax 2+bx+c 的对称轴为x=-2ba是解题的关键.15.2-2π【分析】由切线的性质和平行四边形的性质得到BA ⊥AC ,∠ACB =∠B =45°,∠DAC =∠ACB =45°=∠FAE ,根据弧长公式求出弧长,得到半径,即可求得结果.【详解】如图所示,连接AC ,∵CD 与⊙A 相切,∴CD ⊥AC ,在平行四边形ABCD 中,∵AB =DC ,AB ∥CD ,AD ∥BC ,∴BA ⊥AC ,∵AB =AC∴∠ACB =∠B =45°,∵,AD ∥BC∴∠FAE =∠B =45°,∠DAC =∠ACB =45°=∠FAE ,∴ EFEC =,∴ EF的长度=451802R ππ=,解得R =2,∴S 阴影=S △ACD −S 扇形=12×22−2452360π⨯=2−2π.故答案为:2−2π.【点睛】本题考查了切线的性质,平行四边形的性质,弧长的求法,扇形面积的求法,知道S 阴影=S △ACD −S 扇形是解题的关键.16.22【分析】根据中位线定理得到MN 的最大时,AC 最大,当AC 最大时是直径,从而求得直径后就可以求得最大值.【详解】解: 点M ,N 分别是AB ,BC 的中点,12MN AC ∴=,∴当AC 取得最大值时,MN 就取得最大值,当AC 时直径时,最大,如图,45ACB D ∠=∠=︒ ,4AB =,42AD ∴=,122MN AD ∴==,故答案为:22【点睛】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是利用中位线性质将MN 的值最大问题转化为AC 的最大值问题,难度不大.17.(1)1252,2x x ==-(2)12513513,22x x +-==【分析】(1)用因式分解法解方程即可;(2)先计算根的判别式大于零,再利用公式法解方程即可.(1)2(2)5(2)x x x -=--2(2)5(2)0x x x -+-=(2)(25)0x x -+=20x -=或250x +=解得1252,2x x ==-(2)由题意得1,5,3a b c ==-=2(5)413130∴∆=--⨯⨯=>51322b x a -±∆±∴==12513513,22x x +-∴==【点睛】本题考查了因式分解法和公式法解一元二次方程,熟练掌握知识点是解题的关键.18.(1)2;2;0.2;(2)144,补图见解析.【分析】(1)用总人数乘0.2即可得出a 的值,进而得出b 、c 的值;(2)用360°乘“10分”所占比例即可得出“10分”所在扇形的圆心角度数,用10减去其它人数得出“8分”的人数,再补全条形统计图即可.(1)解:(1)由题意得:.10022a =⨯=,101252b =---=,.21002c =÷=,故答案为:2,2,0.2;(2)解:乙组“10分”所在扇形的圆心角等于:17210836013104460---⨯︒︒︒︒=︒,乙组“8分”的人数为:10-1-3-4=2(人),补全条形统计图如下:故答案为:144.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.19.(1)证明见解析;(2)△ABC 的周长为10.【分析】(1)计算其判别式,得出判别式不为负数即可;(2)当边长为4的边为腰时,则可知方程有一个根为4,代入可求得k 的值,则可求得方程的另一根,可求得周长;当边长为4的边为底时,可知方程有两个相等的实数根,可求得k 的值,再解方程即可.(1)证明:∵△=(k +2)2-8k =k 2+4k +4-8k =(k -2)2≥0,∴无论k 取何值,方程总有实数根;(2)解:当腰长为4时,则可知方程有一个实数根为4,∴16-4(k +2)+2k =0,解得k =4,∴方程为x 2-6x +8=0,解得x =4或x =2,∴a 、b 的值分别为2、4,∴△ABC 的周长为2+4+4=10;【点睛】本题主要考查根的判别式,掌握方程根的情况与判别式的关系是解题的关键.20.(1)见解析,12种等可能性(2)12【分析】(1)设A 表示苹果汁,123,,B B B 分别表示橙汁,根据画树状图的基本要求画出正确树状图即可.(2)用确定事件的等可能性除以所有等可能性即可.(1)设A 表示苹果汁,123,,B B B 分别表示橙汁,画树状图如下:,故一共有12种等可能性.(2)根据前面知道,一共有12种等可能性,抽出的2瓶果汁中恰好抽到苹果汁的等可能性有6种,故抽出的2瓶果汁中恰好抽到苹果汁的概率为:61122.21.(1)20%;(2)273000.【分析】(1)设该品牌电动车销售量的月平均增长率为x ,2月份该品牌电动车销售量为150(1+x),则3月份该品牌电动车销售量为150(1+x)(1+x)=150(1+x)2.据此列出方程求解.(2)根据(1)求出增长率后,再计算出二月份的销量,即可得到答案.【详解】解:(1)设该品牌电动车销售量的月平均增长率为x ,根据题意得150(1+x )2=216,解得x 1=0.2,x 2=-2.2(舍去)答:该品牌电动车销售量的月平均增长率为20%.(2)由(1)得该品牌电动车销售量的月平均增长率为20%,∴2月份的销售量为150×(1+20%)=180∴则1-3月份的销售总量为150+180+216=546(辆)∴()28002300546273000-⨯=(元)答:该经销商1月至3月共盈利273000元.22.(1)画图见解析;(2;(3)414π【分析】(1)根据网格结构找出点A 、B 绕点O 逆时针旋转90°后的对应点A 1、B 1的位置,然后顺次连接即可;(2)利用勾股定理列式求OB ,再利用弧长公式计算即可得解;(3)利用勾股定理列式求出OA ,再根据AB 所扫过的面积=S 扇形A 1OA+S △A 1B 1O-S 扇形B 1OB-S △AOB=S 扇形A 1OA-S 扇形B 1OB 求解,再求出BO 扫过的面积=S 扇形B 1OB ,然后计算即可得解.【详解】解:(1)△A 1OB 1如图所示;(2)由勾股定理得,,所以,点B 所经过的路径长=,;(3)由勾股定理得,∵AB 所扫过的面积=S 扇形A 1OA+S △A 1B 1O-S 扇形B 1OB-S △AOB=S 扇形A 1OA-S 扇形B 1OBBO 扫过的面积=S 扇形B 1OB ,∴线段AB 、BO 扫过的图形的面积之和=S 扇形A 1OA-S 扇形B 1OB+S 扇形B 1OB ,=S 扇形A 1OA ,=290··(41)413604ππ=.【点睛】考点:1.作图-旋转变换;2.勾股定理;3.弧长的计算;4.扇形面积的计算.23.她购买了20件这种服装.【分析】根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.【详解】解:设购买了x 件这种服装,根据题意得出:[802(10)]1200x x --=,解得:120x =,230x =,当30x =时,802(3010)40--=50<不合题意舍去;答:她购买了20件这种服装.【点睛】本题主要考查了一元二次方程的应用,解题的关键是根据已知得出每件服装的单价.24.(1)D (-2,3);(2)二次函数的解析式为y=−x2-2x+3;(3)一次函数值大于二次函数值的x 的取值范围是x <-2或x >1.【分析】(1)根据抛物线的对称性来求点D 的坐标;(2)设二次函数的解析式为y=ax 2+bx+c (a≠0,a 、b 、c 常数),把点A 、B 、C 的坐标分别代入函数解析式,列出关于系数a 、b 、c 的方程组,通过解方程组求得它们的值即可;(3)根据图象直接写出答案.(1)解:∵如图,二次函数的图象与x 轴交于A (-3,0)和B (1,0)两点,∴对称轴是31231x =-+-=-.又点C (0,3),点C 、D 是二次函数图象上的一对对称点,∴D (-2,3);(2)解:设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),根据题意得,9303a b ca b cc++⎧⎪++⎨⎪⎩===,解得a=-1,b=-2,c=3,所以二次函数的解析式为y=−x2-2x+3;(3)解: 一次函数值与二次函数值相交于D(-2,3)、B(1,0),如图,∴一次函数值大于二次函数值的x的取值范围是x<-2或x>1.【点睛】本题考查了待定系数法求二次函数解析式以及二次函数与不等式组,利用数形结合的数学思想是解题的关键.25.(1)直线CD和⊙O的位置关系是相切,理由见解析;(2)BE=6.【分析】(1)连接OD,可知由直径所对的圆周角是直角可得∠DAB+∠DBA=90°,再由∠CDA=∠CBD可得∠CDA+∠ADO=90°,从而得∠CDO=90°,根据切线的判定即可得出;(2)由已知利用勾股定理可求得DC的长,根据切线长定理有DE=EB,根据勾股定理得出方程,求出方程的解即可.【详解】(1)直线CD和⊙O的位置关系是相切,理由是:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD⊥CE,∴直线CD是⊙O的切线,即直线CD和⊙O的位置关系是相切;(2)∵AC=2,⊙O的半径是3,∴OC=2+3=5,OD=3,在Rt△CDO中,由勾股定理得:CD=4,∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90°,设DE=EB=x,在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,则(4+x)2=x2+(5+3)2,解得:x=6,即BE=6.26.(1)45;(2)∠BAC=25°,(3)+3.【分析】(1)如图1,由已知易得点B,C,D在以点A为圆心,AD为半径的圆上,则由“圆周角定理”可得∠BDC=12∠BAC=23°;(2)如图2,由已知易得A、B、C、D在以BD的中点O为圆心,OB为半径的圆上,由此可由“圆周角定理”可得∠BAC=∠BDC=28°;(3)如图3,由已知易得点A、C、D、F在以AC为直径的同一个圆上,由此可得∠EFC=∠DAC;同理可得:∠DFC=∠CBE;由已知易得∠DAC=∠EBC,这样即可得到∠EFC=∠DFC.【详解】(1)如图1,∵AB=AC=AD,∴点B、C、D在以A为圆心,AB为半径的圆上,∴∠BDC=12∠BAC=23°;(2)证明:取BD中点O,连接AO、CO,∵在Rt△BAO中,∠BAD=90°,∴AO=12BD=BO=DO,同理:CO=12 BD,∴AO=DO=CO=BO,∴点A、B、C、D在以O为圆心、OB为半径的同一个圆上,∴∠BAC=∠BDC=28°(3)∵CF⊥AB,AD⊥BC,∴∠AFC=∠ADC=90°,∴点A、C、D、F在以AC为直径的同一个圆上,∴∠EFC=∠DAC,同理可得:∠DFC=∠CBE,∵在△ADC中,∠DAC+∠ACD=90°,在△BEC中,∠EBC+∠ACD=90°,∴∠DAC=∠EBC,∴∠EFC=∠DFC.27.(1)A (0,1),B (-2,0),1c =(2)17a =(3)①222131(01)22131(12)22131(2)22a a a S a a a a a a ⎧-+<<⎪⎪⎪-+-<<⎨⎪⎪-+>⎪⎩;②3202a <<或322a +>【分析】(1)先求出点A(0,1),点B(−2,0),将点A 坐标代入解析式可求c 的值;(2)分a >0,a <0两种情况讨论,由二次函数的性质可求解;(3)①分四种情况讨论,由“AAS”可证△AOM ≌△PNA ,可得OM =AN ,由三角形的面积公式可求解;②分三种情况讨论,解不等式可求解.【详解】解:(1)∵直线112y x =+与x ,y 轴分别交于点B ,A ,∴点A (0,1),点B (-2,0),∵抛物线22y ax ax c =-+过点A ,∴1c =;(2)∵()222111y ax ax a x a =-+=-+-,∴对称轴为直线1x =,当0a >,34x ≤≤时,y 随x 的增大而增大∴当4x =时,y 有最大值,∴912a a a +-=+,解得:17a =;当a<0,34x ≤≤时,y 随x 的增大而减小,∴当3x =时,y 有最大值,∴412a a a +-=+,解得:12a =(不合题意舍去),综上所述:17a =(3)①当0a >,10a ->时,即01a <<,如图2,过点P 作PN y ⊥轴于N ,∴1PN OA ==,1(1)AN a a =--=,同理可得AOM PNA ∆≅∆,∴OM AN a ==,∴2BM a =-,∴()()2113211222S a a a a =⨯--=-+;当0a >,110a -<-<时,即12a <<,如图3,过点P 作PN y ⊥轴于N ,∴1PN OA ==,1ON a =-,11AN a a =+-=,同理可得AOM PNA ∆≅∆,∴OM AN a ==,∴2BM a =-,∴()()2113211222S a a a a =⨯--=-+-;当2a =时,点B 与点M 重合,不合题意,当0a >,11a -<-时,即2a >,如图4,过点P 作PN y ⊥轴于N,∴1PN OA ==,1ON a =-,11AN a a =+-=,同理可得AOM PNA ∆≅∆,∴OM AN a ==,∴2BM a =-,∴()()2113211222S a a a a =⨯--=-+;综上所述:222131(01)22131(12)22131(2)22a a a S a a a a a a ⎧-+<<⎪⎪⎪-+-<<⎨⎪⎪-+>⎪⎩②当12a <<时,221313111222288S a a ⎛⎫=-+-=--+≤ ⎪⎝⎭,∴当12a <<时,不存在a 的值使18S >;当01a <<时,开口向上,对称轴为直线32a =,S 随a 的增大而减小当18S =时,解得a =∴0a <<当2a >时,开口向上,对称轴为直线32a =,S 随a 的增大而增大,∴32a >,综上所述:302a <<或32a >。
苏科版九年级上册数学期末试题一、单选题1.方程24x =的解是()A .2x =B .2x =-C .0x =D .2x =或2x =-2.学校组织才艺表演比赛,前5名获奖.有11位同学参加比赛且他们所得的分数互不相同.某同学知道自己的比赛分数后,要判断自己能否获奖,在这11名同学成绩的统计量中只需知道一个量,它是()A .众数B .方差C .中位数D .平均数3.下列各组中的四条线段成比例的是()A .a =3b =,2c =,d =B .4a =,6b =,5c =,10d =C .2a =,b =,c =,d D .2a =,3b =,4c =,1d =4.当x 取一切实数时,函数223y x x =++的最小值为()A .-2B .2C .-1D .15.如图,下列条件中不能判定△ACD ∽△ABC 的是()A .AB AC BC CD =B .∠ADC =∠ACB C .∠ACD =∠B D .AC 2=AD·AB 6.如图,AB 是O 的直径,PA 切O 于点A ,PO 交O 于点C ,连接BC .若20B ∠=︒,则P ∠等于()A .20︒B .30︒C .40︒D .50︒7.如图,在ABC 中,两条中线BE 、CD 相交于点O ,则DOE S :COB S (= )A .1:4B .2:3C .1:3D .1:28.对于二次函数2610y x x =-+,下列说法不正确的是()A .其图象的对称轴为过(3,1)且平行于y 轴的直线.B .其最小值为1.C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.9.如图,点A 、B 、C 都在⊙O 上,若∠ABC =60°,则∠AOC 的度数是()A .100°B .110°C .120°D .130°10.在同一坐标系内,一次函数y ax b =+与二次函数28y ax x b =++的图像可能是A .B .C .D .二、填空题11.若13b a =,则a b a-=__.12.若关于x 的方程250x x k -+=的一个根是3,则另一个根是___.13.将抛物线23y x =-向右平移3个单位后得到的抛物线为__.14.如图,在正六边形ABCDEF 中,连接AE ,DF 交于点O ,则AOD ∠=________°.15.一台机器原价50万元,如果每年的折旧率是x ,两年后这台机器的价格为y 万元,则y 与x 的函数关系式为____________________.16.如图,抛物线()20y ax bx c a =++>的对称轴是过点(1,0)且平行于y 轴的直线,若点(4,0)P 在该抛物线上,则42a b c -+的值为____.三、解答题17.(1)计算:10123π-⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭;(2)解方程:2420x x -+=.18.把函数2342y x x =--写成2()y a x m k =++的形式,并写出函数图象的开口方向、顶点坐标和对称轴.19.如图,在△ABC 中,AB=AC=1,AC 边上截取AD=BC ,连接BD .(1)通过计算,判断AD 2与AC•CD 的大小关系;(2)求∠ABD 的度数.20.已知二次函数的图象的对称轴是直线1x =,它与x 轴交于A 、B 两点,与y 轴交于点C ,点A 、C 的坐标分别是()1,0-、30,2⎛⎫ ⎪⎝⎭.(1)请在平面直角坐标系内画出示意图;(2)求此图象所对应的函数关系式;(3)若点P 是此二次函数图象上位于x 轴上方的一个动点,求ABP 面积的最大值.21.定义新运算:对于任意实数m ,n 都有m ★2nm n n =+,等式右边是常用的加法、减法、乘法及乘方运算.例如:3-★()2232220=-⨯+=.根据以上知识解决问题:(1)若(1)x +★315=,求x 的值.(2)若2★a 的值小于0,请判断关于x 的方程:220x bx a -+=的根的情况.22.已知:如图,AB 为O 的直径,AB AC ⊥,BC 交O 于D ,E 是AC 的中点,ED 与AB 的延长线相交于点F .(1)求证:DE 为O 的切线;(2)求证:AB DF AC BF ⋅=⋅.23.如图,正方形ABCD 中,点M 是BC 边上的任一点,连接AM 并将线段AM 绕点M 顺时针旋转90︒得到线段MN ,在CD 边上取点P 使CP BM =,连接,NP BP .(1)求证:四边形BMNP 是平行四边形;(2)线段MN 与CD 交于点Q ,连接AQ ,若Q MCQ AM ∆∆∽,则BM 与MC 存在怎样的数量关系?请说明理由.24.某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y 1(元/台)与采购数量x 1(台)满足y 1=﹣20x 1+1500(0<x 1≤20,x 1为整数);冰箱的采购单价y 2(元/台)与采购数量x 2(台)满足y 2=﹣10x 2+1300(0<x 2≤20,x 2为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的119,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.25.如图,抛物线2(0)y ax bx c a =++≠的顶点为(1,1)A --,与x 轴交点(1,0)M .C 为x 轴上一点,且90CAO ∠=︒,线段AC 的延长线交抛物线于B 点,另有点(1,0)F -.(1)求抛物线的解析式;(2)求直线AC 的解析式及B 点坐标;(3)过点B 做x 轴的垂线,交x 轴于Q 点,交过点(0,2)D -且垂直于y 轴的直线于E 点,若P 是∆BEF 的边EF 上的任意一点,是否存在BP EF ⊥?若存在,求出P 点的坐标,若不存在,请说明理由.26.计划开设以下课外活动项目:A 一版画、B 一机器人、C 一航模、D 一园艺种植.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查(每位学生必须选且只能选一个项目),并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;扇形统计图中,选“D 一园艺种植”的学生人数所占圆心角的度数是°;(2)请你将条形统计图补充完整;(3)若该校学生总数为1500人,试估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数27.如图,二次函数y =ax 2-2ax +c(a <0)与x 轴交于A 、C 两点,与y 轴交于点B ,P 为抛物线的顶点,连接AB ,已知OA :OC=1:3.(1)求A 、C 两点坐标;(2)过点B 作//BD x 轴交抛物线于D ,过点P 作//PE AB 交x 轴于E ,连接DE ,①求E 坐标;②若tan ∠PED=25,求抛物线的解析式.参考答案1.D【分析】两边同时开方即可得到答案.【详解】解:24x = ,2x ∴=±,12x ∴=,22x =-.故选:D .【点睛】本题考查了解一元二次方程-直接开平方法,即形如20(0)ax c a +=≠的方程可变形为2c x a=-,当a 、c 异号时,可利用直接开平方法求解.2.C【分析】根据中位数的概念判断即可.【详解】解:因为5位获奖者的分数肯定是11名参赛选手中最高的,而且11个不同的分数按从小到大排序后,中位数及中位数之后的共有5个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选:C .【点睛】本题考查了统计的相关知识,解题的关键是掌握平均数、众数、中位数、方差的概念.3.C【分析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【详解】解:AB .4×10≠5×6,故本选项错误;C .D .4×1≠3×2,故本选项错误;故选C .【点睛】此题考查了比例线段,理解成比例线段的概念,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.4.B【分析】把二次函数转化为顶点式形式,然后根据二次函数的最值问题解答即可.【详解】y=x 2+2x+3=x 2+2x+1+2=(x+1)2+2.∵a=1>0,∴二次函数有最小值,最小值为2.故选B .【点睛】本题考查了二次函数的最值问题,把函数解析式转化为顶点式形式是解题的关键.5.A【分析】根据相似三角形的判定即可求出答案.【详解】解:A .添加AB AC BC CD=不能证明△ACD ∽△ABC ,故A 符合题意;B. ∠ADC =∠ACB ,∠A=∠A ∴△ACD ∽△ABC ,故B 不符合题意;C. ∠ACD =∠B ,∠A=∠A ∴△ACD ∽△ABC ,故C 不符合题意;D. AC 2=AD·AB 即AC AB AD AC=,∠A=∠A ∴△ACD ∽△ABC ,故D 不符合题意,故选:A .【点睛】本题考查相似三角形的判定,属于基础题,是重要考点,掌握相关知识是解题关键.6.D【分析】先由OC OB =,20B ∠=︒,求得AOC ∠的度数,再结合AB 是O 的直径,PA 切O 于点A ,即可得到结论.【详解】解:OC OB =Q ,20BCO B ∴∠=∠=︒40AOC ∴∠=︒AB 是O 的直径,PA 切O 于点A ,OA PA ∴⊥,即90PAO ∠=︒,9050P AOC ∴∠=︒-∠=︒故选:D .【点睛】本题考查了切线的性质、等腰三角形的性质,熟练掌握知识点是解题的关键.7.A【分析】根据三角形的中位线得出DE //BC ,1DE BC 2=,根据平行线的性质得出相似,根据相似三角形的性质求出即可.【详解】BE 和CD 是ABC 的中线,1DE BC 2∴=,DE //BC ,DE 1BC 2∴=,DOE ∽COB ,22DOE COB S DE 11()()S BC 24∴=== .故选A .【点睛】本题考查了相似三角形的性质和判定,三角形的中位线的应用,注意:相似三角形的面积比等于相似比的平方,三角形的中位线平行于第三边,并且等于第三边的一半.8.D【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案.【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x=3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意.故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键.9.C【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC 和∠AOC 所对的弧为 AC ,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.C【分析】x=0,求出两个函数图像在y 轴上相交于同一点,再根据抛物线开口方向向上确定出a >0,然后确定出一次函数图像经过第一、三象限,从而得解.【详解】x=0时,两个函数的函数值y=b ,所以,两个函数图像与y 轴相交于同一点,故B 、D 选项错误;由A 、C 选项可知,抛物线开口方向向上,所以,a >0,所以,一次函数y=ax+b 经过第一三象限,所以,A 选项错误,C 选项正确.故选:C .【点睛】本题考查了二次函数图像,一次函数的图像,熟练掌握一次函数和二次函数图像特征和系数的关系是解题的关键.11.23【分析】根据已知条件和比例的基本性质可设b k =,3a k =,然后代入化简求值即可.【详解】解: 13b a =,∴设b k =,3a k =,322333a b k k k a k k --∴===故答案为:23.【点睛】本题考查比例的基本性质,能够根据题意设出未知数b k =,3a k =是解题的关键.12.2【分析】设a 是方程250x x k -+=的另一个根,由根与系数的关系得到35a +=,即可得到答案.【详解】解:设a 是方程250x x k -+=的另一个根,则35a +=,即2a =.故答案为:2.【点睛】本题考查一元二次方程根与系数的关系,即如果方程20(0)ax bx c a ++=≠的两个实数根是12,x x ,那么12b x x a+=-,12c x x a =;也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.13.2(3)3y x =--【分析】根据二次函数平移的规律进行改写即可.【详解】解:将抛物线23y x =-向右平移3个单位后得到的抛物线为2(3)3y x =--.故答案是:2(3)3y x =--.【点睛】本题考查了二次函数的平移规律,即“上加下减,左加右减”,熟练掌握知识点是解题的关键.14.120【分析】由正六边形的性质得出∠AFE=∠DEF=120°,AF=EF=DE,由等腰三角形的性质得出∠FAE=∠FEA=∠EFD=∠EDF=30°,求出∠AFD=90°,由三角形的外角性质可求出∠AOD 的度数.【详解】解:∵六边形ABCDEF 是正六边形∴∠AFE=∠FED=()621806-×=120°,AF=EF=DE∴∠FAE=∠FEA=1801202- =30°,∠EFD=∠EDF=1801202- =30°∴∠AFD=∠AFE-∠EFD=120°-30°=90°∴∠AOD=∠FAE+∠AFD=30°+90°=120°故答案为120【点睛】本题考查了正六边形的性质,等腰三角形的性质,三角形的内角和定理,三角形的外角性质,明确正六边形的每条边相等,每个角相等是解答此题的关键.15.y =50(1−x )2【分析】原价为50万元,一年后的价格为50×(1−x ),两年后的价格为:50×(1−x )×(1−x )=50(1−x )2,故可得函数关系式.【详解】解:由题意得:两年后的价格为:50×(1−x )×(1−x )=50(1−x )2,故y 与x 的函数关系式是:y =50(1−x )2.故答案为:y =50(1−x )2.【点睛】本题考查了根据实际问题列二次函数关系式,需注意第二年的价位是在第一年价位的基础上降价的.16.0【分析】根据对称性确定抛物线与x 轴的另一个交点为(2,0)Q -,代入解析式求解即可;【详解】如解图,设抛物线与x 轴的另一个交点是Q ,∵抛物线的对称轴是过点(1,0)的直线,与x 轴的一个交点是(4,0)P ,∴与x 轴的另一个交点(2,0)Q -,把(2-,0)代入解析式得:042a b c =-+,420a b c ∴-+=.故答案为:0【点睛】本题主要考查了抛物线与坐标轴的交点,准确分析计算是解题的关键.17.(1)5;(2)1222x x =+=-【分析】(1)根据负整数指数幂的运算法则,零指数幂的运算法则,立方根的概念求解即可;(2)根据配方法求解即可.【详解】解:(1)原式212=++5=;(2)2420x x -+= ,242x x ∴-=-,24424x x ∴-+=-+,即2(2)2x -=,2x ∴-=12x ∴=22x =-.【点睛】本题考查了负整数指数幂,零指数幂,立方根的概念,解一元二次方程等知识,正确运用以上知识进行运算是解题的关键.18.开口向下;顶点坐标为()1,5-;对称轴方程为1x =-.【分析】利用配方法将函数y=3﹣4x ﹣2x 2写成y=a (x+m )2+k 的形式,根据a 的符号判断函数图象的开口方向,顶点坐标是(﹣m ,k ),对称轴是x=﹣m .【详解】由y=3﹣4x ﹣2x 2,得:y=﹣2(x+1)2+5.因为﹣2<0,所以开口向下,顶点坐标为(﹣1,5),对称轴方程为x=﹣1.【点睛】本题考查了二次函数的性质、二次函数的三种形式.二次函数的解析式有三种形式:(1)一般式:y=ax 2+bx+c (a≠0,a 、b 、c 为常数);(2)顶点式:y=a (x ﹣h )2+k ;(3)交点式(与x 轴):y=a (x ﹣x 1)(x ﹣x 2).19.(1)AD 2=AC•CD .(2)36°.【分析】(1)通过计算得到2AD AC·CD ,比较即可得到结论;(2)由2AD AC CD =⋅,得到2BC AC CD =⋅,即BC CD AC BC =,从而得到△ABC ∽△BDC ,故有AB AC BD BC=,从而得到BD=BC=AD ,故∠A=∠ABD ,∠ABC=∠C=∠BDC .设∠A=∠ABD=x ,则∠BDC=2x ,∠ABC=∠C=∠BDC=2x ,由三角形内角和等于180°,解得:x=36°,从而得到结论.【详解】(1)∵AD=BC=12,∴2AD =2∵AC=1,∴CD=1∴2AD AC CD =⋅;(2)∵2AD AC CD =⋅,∴2BC AC CD =⋅,即BC CD AC BC=,又∵∠C=∠C ,∴△ABC ∽△BDC ,∴AB AC BD BC=,又∵AB=AC ,∴BD=BC=AD ,∴∠A=∠ABD ,∠ABC=∠C=∠BDC .设∠A=∠ABD=x ,则∠BDC=∠A+∠ABD=2x ,∴∠ABC=∠C=∠BDC=2x ,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.考点:相似三角形的判定与性质.20.(1)详见解析;(2)21322y x x =-++;(3)ABP 面积的最大值为4.【分析】(1)根据对称性可求得B 点坐标为(3,0),再根据描点法,可画出图象;(2)设抛物线的解析式为y=ax 2+bx+c ,把A 、B 、C 三点的坐标代入可求得解析式;(3)根据题意AB 长度不变,则当点P 离x 轴远则△ABP 的面积越大,可知点P 为顶点,可求得顶点坐标,再计算出△APB 的面积即可.【详解】(1)∵对称轴为x=1,A 为(﹣1,0),∴B 为(3,0),∴抛物线图象示意图如图所示:(2)设抛物线的解析式为y=ax 2+bx+c .∵图象过A 、B 、C 三点,∴把三点的坐标代入可得:093032a b c a b c c ⎧⎪-+=⎪++=⎨⎪⎪=⎩,解得:12132a b c ⎧=-⎪⎪=⎨⎪⎪=⎩,∴抛物线解析式为y=﹣12x 2+x+32;(3)根据题意可知当P 为顶点时△ABP 的面积最大.∵y=﹣12x 2+x+32=21(1)22x --+,∴其顶点坐标为(1,2),且AB=4,∴S △ABP=12×4×2=4,即△ABP 面积的最大值为4.【点睛】本题考查了待定每当法求函数解析式,掌握应用待定系数法的关键是点的坐标,在(3)中知道当P 为顶点时△ABP 的面积最大是关键.21.(1)11x =,23x =-(2)见解析【分析】(1)根据新运算得出3(x+1)2+3=15,解之可得到答案;(2)由2★a 的值小于0知22a+a =5a <0,解之求得a <0.再在方程2x 2﹣bx+a =0中由Δ=(﹣b )2﹣8a≥﹣8a >0可得答案.(1)解:∵(x+1)★3=15,∴3(x+1)2+3=15,即(x+1)2=4,解得:x 1=1,x 2=﹣3;(2)解:∵2★a 的值小于0,∴22a+a =5a <0,解得:a <0.在方程2x 2﹣bx+a =0中,∵Δ=(﹣b )2﹣8a≥﹣8a >0,∴方程2x 2﹣bx+a =0有两个不相等的实数根.【点睛】本题主要考查根的判别式,一元二次方程的解法,实数的运算,解一元一次不等式,正确理解新运算是解决问题的关键.22.(1)见解析(2)见解析【分析】(1)连接AD ,OD ,圆周角定理得到90ADB ∠=︒,求出EDA EAD ∠=∠,EDO EAO ∠=∠,根据切线的判定定理即可得到答案;(2)证明ABD CBA ∆∆∽,推出AB BD AC AD =,证明ΔΔFDB FAD ∽,推出BD BF AD DF=,即可推出结论.(1)连接AD ,OD ,AB为O的直径,90ADB ADC∴∠=∠=︒,E是AC的中点,EA ED∴=,EDA EAD∴∠=∠,OD OA=Q,ODA OAD∴∠=∠,EDO EAO∴∠=∠,AB AC⊥90∴∠=︒EAO,90EDO∴∠=︒,DE∴为O的切线;(2)90BAC ADC∠=∠=︒ ,C BAD∴∠=∠,ABD CBA∠=∠,ABD CBA∴∆∆∽,∴AB BDAC AD=,90 FDB BDO BDO ADO∠+∠=∠+∠=︒,FDB ADO OAD∴∠=∠=∠,F F∠=∠,ΔΔFDB FAD∴∽,∴BD BF AD DF =,∴AB BF AC DF=,AB DF AC BF ∴⋅=⋅.【点睛】本题考查了切线的判定、圆周角定理、相似三角形的性质和判定,恰当添加辅助线、熟练掌握知识点是解题的关键.23.(1)见解析;(2)BM=MC .理由见解析.【分析】(1)根据正方形的性质可得AB=BC ,∠ABC=∠C ,然后利用“边角边”证明△ABM 和△BCP 全等;根据全等三角形对应边相等可得AM=BP ,∠BAM=∠CBP ,再求出AM ⊥BP ,从而得到MN ∥BP ,然后根据一组对边平行且相等的四边形是平行四边形证明即可;(2)根据同角的余角相等求出∠BAM=∠CMQ ,然后得出△ABM 和△MCQ 相似,根据相似三角形对应边成比例可得AB AM MC MQ =,再证得△AMQ ∽△ABM ,根据相似三角形对应边成比例可得AB AM BM MQ =,从而得到AB AB MC BM=,即可得解.【详解】解:(1)如图,在正方形ABCD 中,AB=BC ,∠ABC=∠C=90°,在△ABM 和△BCP 中,AB BC ABC C CP BM =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△BCP (SAS ).∴AM=BP ,∠BAM=∠CBP ,∵∠BAM+∠AMB=90°,∴∠CBP+∠AMB=90°,∴AM ⊥BP ,∵AM 并将线段AM 绕M 顺时针旋转90°得到线段MN ,∴AM⊥MN,且AM=MN∴MN∥BP,MN=BP∴四边形BMNP是平行四边形;(2)BM=MC.理由如下:∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°,∴∠BAM=∠CMQ,又∵∠ABC=∠C=90°,∴△ABM∽△MCQ,AB AM∴=MC MQ∵△MCQ∽△AMQ,∴△AMQ∽△ABM,AB AM∴=BM MQAB AB∴=MC BM∴BM=MC.【点睛】本题考查了相似三角形的判定与性质,正方形的性质,全等三角形的判定与性质,平行四边形的判定,旋转的性质.(1)证出两个三角形全等是解题的关键,(2)根据相似于同一个三角形的两个三角形相似得出△AMQ∽△ABM是解题的关键.24.(1)5(2)采购空调15台时,获得总利润最大,最大利润值为10650元.【详解】试题分析:(1)由题意可设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,根据题中的不等量关系可列出关于x的不等式组,求解得到x的取值范围,再根据空调台数是正整数确定进货方案;(2)按常规可设总利润为W元,根据总利润等于空调和冰箱的利润之和整理得到W与x 的函数关系式,整理成顶点式形式,然后根据二次函数的性质求出最大值即可.试题解析:(1)设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,由题意得,,解不等式①得,x≥11,解不等式②得,x≤15,所以,不等式组的解集是11≤x≤15,∵x 为正整数,∴x 可取的值为11、12、13、14、15,所以,该商家共有5种进货方案;(2)设总利润为W 元,y 2=﹣10x 2+1300=﹣10(20﹣x )+1300=10x+1100,则W=(1760﹣y 1)x 1+(1700﹣y 2)x 2,=1760x ﹣(﹣20x+1500)x+(1700﹣10x ﹣1100)(20﹣x ),=1760x+20x 2﹣1500x+10x 2﹣800x+12000,=30x 2﹣540x+12000,=30(x ﹣9)2+9570,当x >9时,W 随x 的增大而增大,∵11≤x≤15,∴当x=15时,W 最大值=30(15﹣9)2+9570=10650(元),答:采购空调15台时,获得总利润最大,最大利润值为10650元.考点:1、一元一次不等式组的应用;2、二次函数的应用25.(1)()21114y x =+-(2)直线AC 的解析式为:2y x =--,B 点坐标为:()5,3-;(3)(3,1)P --【分析】(1)将抛物线解析式设为顶点式,然后用待定系数法求解即可;(2)方法一:先利用两点距离公式求出点C 的坐标,从而求出直线AC 的解析式,由此即可求出点B 的坐标;方法二:根据1AO AC K K ⨯=-,先求出直线OA 的解析式,即可求出直线AC 的解析式,由此即可求出点B 的坐标;(3)方法一:过点B 作BP EF ⊥于点P ,先求出E 点坐标,从而求出EF 的解析式,从而可以求出直线BP 的解析式,由此即可求出点P ;方法二:先求出直线EF 的解析式,根据1BP EF K K ⨯=-求出直线BP 的解析式,即可求出点P .(1)解:设抛物线解析式为:2(1)1y a x =+-,将(1,0)代入得:()20111a =+-,解得;14a =,∴抛物线的解析式为:()21114y x =+-;(2)解:方法一:设点C 的坐标为(m ,0),∴22OC m =,()22211AC m =++,222112OA =+=,∵∠CAO=90°,∴222AC AO OC +=,∴()222112=m m +++,解得2m =-,∴点C 的坐标为(-2,0)设直线AC 的解析式为:y kx b =+,将A ,C 点代入得出:120k b k b -+=-⎧⎨-+=⎩,解得:12k b =-⎧⎨=-⎩,∴直线AC 的解析式为:2y x =--,将()21114y x =+-和2y x =--联立得:()211142y x y x ⎧=+-⎪⎨⎪=--⎩,解得:1111x y =-⎧⎨=-⎩(舍去)或2253x y =-⎧⎨=⎩,∴直线AC 的解析式为:2y x =--,B 点坐标为:()5,3-;方法二:90CAO ∠=︒ ,1AO AC K K ∴⨯=-,(1,1)A -- ,(0,0)O ,1AO K ∴=,∴1AC K =-,2AC l y x ∴=--∶,∴()221114y x y x =--⎧⎪⎨=+-⎪⎩,11x ∴=-(舍),25x =-,(5,3)B ∴-.(3)解:方法一:过点B 作BP EF ⊥于点P ,由题意可得出:(5,2)E --,设直线EF 的解析式为:y dx c =+,则052d c d c -+=⎧⎨-+=-⎩,解得:1212d c ⎧=⎪⎪⎨⎪=⎪⎩,∴直线EF 的解析式为:1122y x =+,直线BP EF ⊥,∴设直线BP 的解析式为:2y x e =-+,将(5,3)B -代入得出:()325e =-⨯-+,解得:7e =-,∴直线BP 的解析式为:27y x =--,∴将27y x =--和1122y x =+联立得:271122y x y x =--⎧⎪⎨=+⎪⎩,解得:31x y =-⎧⎨=-⎩,故存在P 点使得BP EF ⊥,此时(3,1)P --.方法二:BE DE ⊥ 且(0,2)D -,(5,2)E ∴--,设直线EF 的解析式为:EF l y sx t =+,∴520s t s t -+=-⎧⎨-+=⎩,∴1212s t ⎧=⎪⎪⎨⎪=⎪⎩11:22EF l y x ∴=+,BP EF ⊥ ,1BP EF K K ∴⨯=-,2BP K ∴=-,(5,3)B - ,∴同理可以求出:27BP l y x =--,联立112227y x y x ⎧=+⎪⎨⎪=--⎩,∴31x y =-⎧⎨=-⎩,【点睛】本题主要考查一次函数与二次函数综合,待定系数法求函数解析式,两点距离公式、解二元一次方程组等知识,熟练掌握相关知识是解题的关键.26.(1)200;72(2)60(人),图见解析(3)1050人.【分析】(1)由A 类有20人,所占扇形的圆心角为36°,即可求得这次被调查的学生数,再用360°乘以D 人数占总人数的比例可得;(2)首先求得C 项目对应人数,即可补全统计图;(3)总人数乘以样本中B 、C 人数所占比例可得.【详解】(1)∵A 类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷36360=200(人);选“D 一园艺种植”的学生人数所占圆心角的度数是360°×40200=72°,故答案为:200、72;(2)C 项目对应人数为:200−20−80−40=60(人);补充如图.(3)1500×8060200+=1050(人),答:估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数为1050人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.27.(1)A(-1,0),则C (3,0);(2)①E (13-,0);②212133y x x =-++或27147993y x x =-++.【分析】(1)设A(-x ,0),则C (3x ,0),由根与系数的关系得32x x -+=,即可求解;(2)①先求得顶点P 的坐标为(1,c a -),证明△AOB ~△EMP ,利用相似三角形的性质求解即可;②得到四边形BAEF 为平行四边形,求得,AE=BF=23,DF 43=,利用正切值结合勾股定理求得,在Rt △DFG 中,利用勾股定理列方程求解即可.【详解】解:(1)∵OA :OC=1:3,∴设A(-x ,0),则C (3x ,0),由根与系数的关系:232ax x a --+=-=,解得:1x =,∴A(-1,0),C (3,0);(2)①∵P 为抛物线的顶点,∴顶点P 的横坐标为:1312-+=,纵坐标为2y a a c c a =-+=-,∴顶点P 的坐标为(1,c a -),过点P 作PM ⊥AC 于点M ,∵//PE AB ,∴∠BAO=∠PEM ,∵∠AOB=∠EMP=90°,∴△AOB ~△EMP ,∴AOOBEM PM =,∵AO=1,OB=c ,EM=1+OE ,PM=c a -,∴11cOE c a =+-,即OE=ac -,将A(-1,0)代入y =ax 2-2ax +c 得:30a c +=,∴3c a =-,∴OE=13ac -=,∴E (13-,0);②过点F 作FG ⊥ED 于点G ,过点D 作DN ⊥AC 于点N ,由BD ∥x 轴交抛物线于D ,则D (2,c),∵A(-1,0),B (0,c),E (13-,0),∴B (0,3a -),D (2,3a -),∴219a +,AE=12133-+=,∵//BD x 轴,//PE AB ,∴四边形BAEF 为平行四边形,∴219a +AE=BF=23,∴DF=24233-=,在Rt △EFG 中,2tan 5PED ∠=,∴25FGEG =,由勾股定理得:29FGEF =,29EGEF =∴21929a +,21929a +,在Rt △EDN 中,222DN EN DE +=,∵D (2,3a -),E (13-,0),∴N (2,0),DN=3a -,EN=73,∴24999a +∴DG=2249919929a a ++在Rt △DFG 中,222DF FG GD =+,∴22221649(19)919)992929a a a =+++-⋅+,整理得:22(91)(8149)0a a --=,解得13a =±或79a =±,a <0,13a ∴=-或79a =-,∴212133y x x =-++或27147993y x x =-++.。
-第一学期初三数学期末考试综合试卷(3)一、选择题:(本大题共10小题,每小题3分,共30分)1. 已知在Rt△ABC 中,∠ C=90°,BC =1,AC=2,则tanA 的值为………………………( ) A .2B .12C .5D .252.(•苏州)根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示: 则这30户家庭该用用水量的众数和中位数分别是………………………………………( ) A .25,27; B .25,25; C .30,27; D .30,25;3.(•贺州)从分别标有数-3,-2,-1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是…………………………( ) A .17;B .27;C .37;D .47; 4.如图,PA 切⊙O 于A ,PO 交⊙O 于B ,PA =6,PB =4,则⊙O 的半径为………………( ) A .5; B .3; C .2.5; D .5;5.如图,扇形OAB 是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个侧锥的底面半径为………………………………………………………………………( ) A .12; B .2; C .2; D .226.(•临沂)二次函数2y ax bx c =++,自变量x 与函数y 的对应值如表:下列说法正确的是…………………………………………………………………( ) A .抛物线的开口向下; B .当x >-3时,y 随x 的增大而增大;用水量(吨)15 20 25 30 35 户数36795x… -5 -4 -3 -2 -1 0 … y…4-2-24…第4题图第5题图 第9题图第10题C .二次函数的最小值是-2;D .抛物线的对称轴是52x =-; 7.点P 是⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,∠P =70º, 点C 是⊙O 上的点(不与点A 、B 重合),则∠ACB 等于………………………………………………………………( ) A .70º ;B .55º;C .70º或110º ;D .55º或125º; 8.(•衡阳)随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止底某市汽车拥有量为16.9万辆.己知底该市汽车拥有量为10万辆,设底至底该市汽车拥有量的年平均增长率为x ,根据题意列方程得…………( )A .()210116.9x +=;B .10()101216.9x +=;C .()210116.9x -=;D .()101216.9x -=;9.(•台湾)如图,坐标平面上,二次函数24y x x k =-+-的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且k >0.若△ABC 与△ABD 的面积比为1:4,则k 值为…………………( ) A .1; B .12;C .43;D .45; 10. 已知二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论:①c <0,②0abc >,③0a b c -+>,④230a b -=,⑤40c b ->.其中正确结论的个数有…………( )A.1个;B.2个;C.3个;D.4个; 二、填空题:(本大题共8小题,每小题3分,共24分) 11.使31x -有意义的x 的取值范围是 .12.(•钦州)某校甲乙两个体操队队员的平均身高相等,甲队队员身高的方差是2S 甲=1.9,乙队队员身高的方差是2S 乙=1.2,那么两队中队员身高更整齐的是 队.(填“甲”或“乙”)13.如图,一人乘雪橇沿坡比1:3的斜坡笔直滑下,滑下的距离10米,则此人下降的高度为 _ 米.14.关于x 的一元一二次方程2210mx x -+=有两个实数根,则m 的取值范围是 ___.15.已知二次函数2365y x x =-+-图象上两点1P ()11,x y ,2P ()22,x y ,当101x ≤<,第13题图 第16题图 第17题图 第18题图223x ≤<时,1y 与2y 的大小关系为1y ____2y .16.如图,在平行四边形ABCD 中,AB=3,AD=42,AF 交BC 于E ,交DC 的延长线于F ,且CF=1,则CE 的长为 .17.如图,OAB 是半径为6、圆心角∠AOB =30º的扇形,AC 切弧AB 于点A 交半径OB 的延长线于点C ,则图中阴影部分的面积为 ____(答案保留π).18.如图,△ABC 内接于⊙O ,AD ⊥BC 于点D ,AD =2 cm ,AB =4 cm., AC =3 cm ,则⊙O 的直径是 ____. 三、解答题:(本大题共10大题,满分76分) 19.(本题满分6分) 计算:221sin 30cos 45tan 6023︒-︒+︒;20. (本题满分6分)解不等式:23(1)2151424233x x x x --≤+⎧⎪-⎨-≥⎪⎩;21.(本题6分)如图,抛物线223y x x =--与x 轴交于A 、B 两点,与y 轴交于点C . (1)点A 的坐标为________,点B 的坐标为________,点C 的坐标为________. (2)设抛物线223y x x =--的顶点为M ,求四边形ABMC 的面积.22.(本题满分6分)如图,在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= °,AC= ;(2)判断:△ABC 与△DEF 是否相似,并证明你的结论;23.(•黔南州)已知二次函数2y x bx c =++的图象与y 轴交于点C (0,-6),与x 轴的一个交点坐标是A (-2,0).(1)求二次函数的解析式,并写出顶点D 的坐标; (2)将二次函数的图象沿x 轴向左平移52个单位长度,当 y <0时,求x 的取值范围.24.(•安顺)某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名? (2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数. (3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A 、B 、C 、D 、E ).25.(•徐州)如图,为了测出旗杆AB的高度,在旗杆前的平地上选择一点C,测得旗杆顶部A的仰角为45°,在C、B之间选择一点D(C、D、B三点共线),测得旗杆顶部A的仰角为75°,且CD=8m(1)求点D到CA的距离;(2)求旗杆AB的高.(注:结果保留根号)26.(•鄂州)某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x元(x为整数).(1)直接写出每天游客居住的房间数量y与x的函数关系式.(2)设宾馆每天的利润为W元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?(3)某日,宾馆了解当天的住宿的情况,得到以下信息:①当日所获利润不低于5000元,②宾馆为游客居住的房间共支出费用没有超过600元,③每个房间刚好住满2人.问:这天宾馆入住的游客人数最少有多少人?27.(•威海)如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.(1)求证:CB是⊙O的切线;(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.28.(•威海)如图,抛物线2y ax bx c =++的图象经过点A (-2,0),点B (4,0),点D (2,4),与y 轴交于点C ,作直线BC ,连接AC ,CD . (1)求抛物线的函数表达式;(2)E 是抛物线上的点,求满足∠ECD=∠ACO 的点E 的坐标;(3)点M 在y 轴上且位于点C 上方,点N 在直线BC 上,点P 为第一象限内抛物线上一点,若以点C ,M ,N ,P 为顶点的四边形是菱形,求菱形的边长.-学年第一学期初三数学期末考试综合试卷(3)参考答案一、选择题:1.B ;2.D ;3.D ;4.C ;5.B ;6.D ;7.D ;8.A ;9.D ;10.D ; 二、填空: 11. 1x 3≥;12.乙;13.5;14. 1m ≤且0m ≠;15. ≥;16.;17.3π;18.6; 三、解答题:19.1;20. 26x -≤≤;21.(1)(-1,0);(3,0),(0,-3);(2)9; 22.(1)135°,(2)略; 23. (1)26y x x =--,顶点D 125,24⎛⎫-⎪⎝⎭;(2)9122x -<<; 24.(1)280名;(2)108°;(3)110; 25. (1);(2)4+; 26.(1)50y x =-;(2)当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是9000元;(3)由()()21020900050002050600x x ⎧-+≥⎪⎨-≤⎪⎩;解得20≤x ≤40∵房间数y=50-x ,又∵-1<0,∴当x=40时,y 的值最小,这天宾馆入住的游客人数最少,最少人数为2y=2(-x+50)=20(人). 27.(1)略;(2)32π;28.(1)2142y x x =-++;(2)E 91,2⎛⎫ ⎪⎝⎭或E 53,2⎛⎫⎪⎝⎭;(3)4;。
苏科版数学九年级上册 全册期末复习试卷综合测试卷(word 含答案)一、选择题1.若点()10,A y ,()21,B y 在抛物线()213y x =-++上,则下列结论正确的是( )A .213y y <<B .123y y <<C .213y y <<D .213y y <<2.如图,点A ,B ,C 在⊙O 上,∠A=36°,∠C=28°,则∠B=( )A .100°B .72°C .64°D .36°3.如图,点I 是△ABC 的内心,∠BIC =130°,则∠BAC =( )A .60°B .65°C .70°D .80° 4.若关于x 的一元二次方程x 2-2x -k =0没有实数根,则k 的取值范围是( ) A .k >-1 B .k≥-1 C .k <-1 D .k≤-1 5.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( ) A .(0,﹣1) B .(﹣2,﹣1)C .(2,﹣1)D .(0,1)6.如图,已知正五边形ABCDE 内接于O ,连结,BD CE 相交于点F ,则BFC ∠的度数是( )A .60︒B .70︒C .72︒D .90︒7.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积为4,则△ABC 的面积为( )A .8B .12C .14D .168.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( ) A .()2241y x =-- B .()2241y x =+- C .()2241y x =-+ D .()2241y x =++9.sin60°的值是( ) A .B .C .D .10.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( ) A .平均分不变,方差变大 B .平均分不变,方差变小 C .平均分和方差都不变 D .平均分和方差都改变 11.二次函数y =3(x +4)2﹣5的图象的顶点坐标为( )A .(4,5)B .(﹣4,5)C .(4,﹣5)D .(﹣4,﹣5)12.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,连接AB ,若∠B =25°,则∠P 的度数为( )A .25°B .40°C .45°D .50°13.如图,△AOB 为等腰三角形,顶点A 的坐标(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103) B .(16345) C .(20345) D .(163,3 14.下表是二次函数y =ax 2+bx +c 的部分x ,y 的对应值:x … ﹣1 ﹣120 121322523 …y … 2 m﹣1﹣74 ﹣2 ﹣74﹣1 142 …可以推断m 的值为( )A .﹣2B .0C .14D .215.下列方程中,是一元二次方程的是( )A .2x +y =1B .x 2+3xy =6C .x +1x=4D .x 2=3x ﹣2二、填空题16.已知∠A =60°,则tan A =_____.17.若记[]x 表示任意实数的整数部分,例如:[]4.24=,21⎡⎤=⎣⎦,…,则123420192020⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤-+-+⋅⋅⋅⋅⋅⋅+-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(其中“+”“-”依次相间)的值为______.18.如图,边长为2的正方形ABCD ,以AB 为直径作⊙O ,CF 与⊙O 相切于点E ,与AD 交于点F ,则△CDF 的面积为________________19.如图,在△ABC 中,AB =3,AC =4,BC =6,D 是BC 上一点,CD =2,过点D 的直线l 将△ABC 分成两部分,使其所分成的三角形与△ABC 相似,若直线l 与△ABC 另一边的交点为点P ,则DP =________.20.当a ≤x≤a+1时,函数y=x 2﹣2x+1的最小值为1,则a 的值为_____. 21.如图,平行四边形ABCD 中,60A ∠=︒,32AD AB =.以A 为圆心,AB 为半径画弧,交AD于点E,以D为圆心,DE为半径画弧,交CD于点F.若用扇形ABE围成一个圆维的侧面,记这个圆锥的底面半径为1r;若用扇形DEF围成另一个圆锥的侧面,记这个圆锥的底面半径为2r,则12rr的值为______.22.某校五个绿化小组一天的植树的棵数如下:9,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是_____.23.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm=,扇形的圆心角120θ=,则该圆锥的母线长l为___cm.24.数据8,8,10,6,7的众数是__________.25.把抛物线22(1)1y x=-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.26.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶的高度为________m.27.二次函数2y ax bx c=++的图像开口方向向上,则a______0.(用“=、>、<”填空) 28.如图,在Rt ABC∆中,90ACB∠=,6AC=,8BC=,D、E分别是边BC、AC上的两个动点,且4DE=,P是DE的中点,连接PA,PB,则14PA PB+的最小值为__________.29.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.30.如图,C 、D 是线段AB 的两个黄金分割点,且CD =1,则线段AB 的长为_____.三、解答题31.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求两辆车经过这个十字路口时,下列事件的概率: (1)两辆车中恰有一辆车向左转; (2)两辆车行驶方向相同.32.⊙O 中,直径AB 和弦CD 相交于点E ,已知AE =1cm ,EB =5cm ,且60DEB ∠=︒,求CD 的长.33.已知二次函数y =2x 2+bx ﹣6的图象经过点(2,﹣6),若这个二次函数与x 轴交于A .B 两点,与y 轴交于点C ,求出△ABC 的面积.34.如图,在△ABC 中,BC 的垂直平分线分别交BC 、AC 于点D 、E ,BE 交AD 于点F ,AB =AD .(1)判断△FDB 与△ABC 是否相似,并说明理由; (2)BC =6,DE =2,求△BFD 的面积.35.如图,点P 是二次函数21(1)14y x =--+图像上的任意一点,点()10B ,在x 轴上.(1)以点P 为圆心,BP 长为半径作P .①直线l 经过点()0,2C 且与x 轴平行,判断P 与直线l 的位置关系,并说明理由.②若P 与y 轴相切,求出点P 坐标;(2)1P 、2P 、3P 是这条抛物线上的三点,若线段1BP 、2BP 、3BP的长满足12323BP BP BP BP ++=,则称2P 是1P 、3P 的和谐点,记做()13,T P P .已知1P 、3P 的横坐标分别是2,6,直接写出()13,T P P 的坐标_______.四、压轴题36.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°. ①若AD =6,BD =8,求弦CD 的长为 ;②若AD+BD =14,求2AD BD CD 2⎛⎫⋅+ ⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.37.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的外延矩形.点A ,B ,C 的所有外延矩形中,面积最小的矩形称为点A ,B ,C 的最佳外延矩形.例如,图中的矩形,,都是点A ,B ,C 的外延矩形,矩形是点A ,B ,C 的最佳外延矩形.(1)如图1,已知A (-2,0),B (4,3),C (0,). ①若,则点A ,B ,C 的最佳外延矩形的面积为 ;②若点A ,B ,C 的最佳外延矩形的面积为24,则的值为 ; (2)如图2,已知点M (6,0),N (0,8).P (,)是抛物线上一点,求点M,N,P的最佳外延矩形面积的最小值,以及此时点P的横坐标的取值范围;(3)如图3,已知点D(1,1).E(,)是函数的图象上一点,矩形OFEG是点O,D,E的一个面积最小的最佳外延矩形,⊙H是矩形OFEG的外接圆,请直接写出⊙H的半径r的取值范围.38.如图,函数y=-x2+bx+c的图象经过点A(m,0),B(0,n)两点,m,n分别是方程x2-2x-3=0的两个实数根,且m<n.(1)求m,n的值以及函数的解析式;(2)设抛物线y=-x2+bx+c与x轴的另一交点为点C,顶点为点D,连结BD、BC、CD,求△BDC面积;(3)对于(1)中所求的函数y=-x2+bx+c,①当0≤x≤3时,求函数y的最大值和最小值;②设函数y在t≤x≤t+1内的最大值为p,最小值为q,若p-q=3,求t的值.39.如图,一次函数122y x=-+的图象交y轴于点A,交x轴于点B点,抛物线2y x bx c=-++过A、B两点.(1)求A,B两点的坐标;并求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.40.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m am b--的值为 ;当点M 不在y 轴上时,求证:m am b--为一个定值,并求出这个值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】将x=0和x=1代入表达式分别求y 1,y 2,根据计算结果作比较. 【详解】当x=0时,y 1= -1+3=2, 当x=1时,y 2= -4+3= -1, ∴213y y <<. 故选:A. 【点睛】本题考查二次函数图象性质,对图象的理解是解答此题的关键.2.C解析:C 【解析】 【分析】 【详解】试题分析:设AC 和OB 交于点D ,根据同弧所对的圆心角的度数等于圆周角度数2倍可得:∠O=2∠A=72°,根据∠C=28°可得:∠ODC=80°,则∠ADB=80°,则∠B=180°-∠A-∠ADB=180°-36°-80°=64°,故本题选C .3.D解析:D 【解析】 【分析】根据三角形的内接圆得到∠ABC=2∠IBC ,∠ACB=2∠ICB ,根据三角形的内角和定理求出∠IBC+∠ICB ,求出∠ACB+∠ABC 的度数即可; 【详解】解:∵点I 是△ABC 的内心, ∴∠ABC =2∠IBC ,∠ACB =2∠ICB , ∵∠BIC =130°,∴∠IBC +∠ICB =180°﹣∠CIB =50°, ∴∠ABC +∠ACB =2×50°=100°,∴∠BAC =180°﹣(∠ACB +∠ABC )=80°. 故选D .本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.4.C解析:C 【解析】试题分析:由题意可得根的判别式,即可得到关于k 的不等式,解出即可. 由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.5.C解析:C 【解析】 【分析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可. 【详解】解:∵顶点式y =a (x ﹣h )2+k ,顶点坐标是(h ,k ), ∴y =2(x ﹣2)2﹣1的顶点坐标是(2,﹣1). 故选:C . 【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.6.C解析:C 【解析】 【分析】连接OA 、OB 、OC 、OD 、OE ,如图,则由正多边形的性质易求得∠COD 和∠BOE 的度数,然后根据圆周角定理可得∠DBC 和∠BCF 的度数,再根据三角形的内角和定理求解即可. 【详解】解:连接OA 、OB 、OC 、OD 、OE ,如图,则∠COD =∠AOB =∠AOE =360725︒=︒, ∴∠BOE =144°, ∴1362DBC COD ∠=∠=︒,1722BCE BOE ∠=∠=︒, ∴18072BFC DBC BCF ∠=︒-∠-∠=︒.故选:C.【点睛】本题考查了正多边形和圆、圆周角定理和三角形的内角和定理,属于基本题型,熟练掌握基本知识是解题关键.7.D解析:D【解析】【分析】直接利用三角形中位线定理得出DE ∥BC ,DE=12BC ,再利用相似三角形的判定与性质得出答案.【详解】解:∵在△ABC 中,点D 、E 分别是AB 、AC 的中点,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC , ∵DE BC =12, ∴14ADE ABC S S ∆∆=, ∵△ADE 的面积为4,∴△ABC 的面积为:16,故选D .【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE ∽△ABC 是解题关键.8.B解析:B【解析】【分析】根据题意直接利用二次函数平移规律进而判断得出选项.【详解】解:22y x =的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:()2241y x =+-.故选:B .【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 9.C解析:C【解析】【分析】根据特殊角的三角函数值解答即可.【详解】sin60°=,故选C.【点睛】本题考查特殊角的三角函数值,熟记几个特殊角的三角函数值是解题关键. 10.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.11.D解析:D【解析】【分析】根据二次函数的顶点式即可直接得出顶点坐标.【详解】∵二次函数()2345y x +=-∴该函数图象的顶点坐标为(﹣4,﹣5),故选:D .【点睛】本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式()2y a x h k =-+的顶点坐标为(h ,k ). 12.B解析:B【解析】【分析】连接OA ,由圆周角定理得,∠AOP =2∠B =50°,根据切线定理可得∠OAP =90°,继而推出∠P =90°﹣50°=40°.【详解】 连接OA ,由圆周角定理得,∠AOP =2∠B =50°,∵PA 是⊙O 的切线,∴∠OAP =90°,∴∠P =90°﹣50°=40°,故选:B .【点睛】本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP 的度数.13.C解析:C【解析】【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F ⊥x 轴于点F ,过A 作AE ⊥x 轴于点E ,∵A 的坐标为(25∴5OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt △ABE 中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得OB AE A'B O'F 22⋅⋅=453O'F 2⋅⋅=,∴O′F=453.在Rt△O′FB中,由勾股定理可求BF=22458433⎛⎫-=⎪⎪⎝⎭,∴OF=820433+=.∴O′的坐标为(2045,3).故选C.【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.14.C解析:C【解析】【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(12,﹣74)和(32,﹣74),所以对称轴为x=13222+=1,∵511122⎛⎫-=--⎪⎝⎭,∴点(﹣12,m)和(52,14)关于对称轴对称,∴m=14,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.15.D解析:D【解析】利用一元二次方程的定义判断即可.【详解】解:A、原方程为二元一次方程,不符合题意;B、原式方程为二元二次方程,不符合题意;C、原式为分式方程,不符合题意;D、原式为一元二次方程,符合题意,故选:D.【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.二、填空题16.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A=tan60°.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.17.-22【解析】【分析】先确定的整数部分的规律,根据题意确定算式的运算规律,再进行实数运算. 【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数解析:-22【解析】2020的整数部分的规律,根据题意确定算式-+-+⋅⋅⋅⋅⋅⋅+-的运算规律,再进行实数运算.【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数据1,2,3,4 (2020)中,算术平方根是1的有3个,算术平方根是2的有5个,算数平方根是3的有7个,算数平方根是4的有9个,…其中432=1849,442=1936,452=2025,所以在、⋅⋅⋅⋅⋅⋅中,算术平方根依次为1,2,3……43的个数分别为3,5,7,9……个,均为奇数个,最大算数平方根为44的有85个,所以-+-+⋅⋅⋅⋅⋅⋅+-=1-2+3-4+…+43-44= -22【点睛】本题考查自定义运算,通过正整数的算术平方根的整数部分出现的规律,找到算式中相同加数的个数及符号的规律,方能进行运算.18.【解析】【分析】首先判断出AB、BC是⊙O的切线,进而得出FC=AF+DC,设AF=x,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB、BC是⊙O的切线,∵C解析:3 2【解析】【分析】首先判断出AB、BC是⊙O的切线,进而得出FC=AF+DC,设AF=x,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB、BC是⊙O的切线,∵CF是⊙O的切线,∴AF=EF,BC=EC,∴FC=AF+DC,设AF=x,则,DF=2-x,∴CF=2+x,在RT△DCF中,CF2=DF2+DC2,即(2+x)2=(2-x)2+22,解得x=12,∴DF=2-12=32,∴113322222 CDFS DF DC=⋅=⨯⨯=,故答案为:3 2 .【点睛】本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.19.1,,【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图解析:1,83,32【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,∴PD CDAB BC=,∴236DP=,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.∴PD BDAC BC=,∴446DP=,∴DP=83;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴DP DCAB AC=,∴234DP=,∴DP=32;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。
2022-2023年苏科版数学九年级上册期末考试测试卷及答案(一)一.选择题1.已知关于x的方程(m2﹣3m+2)x2+(1﹣2m)x﹣m(m+1)=0的根是整数,其中m是实数,则m可取的值有()A.3个B.4个C.5个D.6个2.若方程2x n﹣1﹣5x+3=0是关于x的一元二次方程,则n的值为()A.2B.1C.0D.33.下列说法错误的是()A.长度相等的两条弧是等弧B.直径是圆中最长的弦C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧4.若⊙O的直径为8cm,点A到圆心O的距离为3cm,则点A与⊙O的位置关系是()A.点A在圆内B.点A在圆上C.点A在圆外D.不能确定5.已知⊙O的半径为3,圆心O到直线L的距离为4,则直线L与⊙O的位置关系是()A.相交B.相切C.相离D.不能确定6.学校小组5名同学的身高(单位:cm)分别为:147,156,151,152,159,则这组数据的中位数是()A.147B.151C.152D.1567.从一副扑克牌中任意抽取1张,下列事件:①抽到“K”;②抽到“黑桃”;③抽到“大王”;④抽到“黑色的,其中,发生可能性最大的事件是()A.①B.②C.③D.④8.抛掷一枚质地均匀、六个面上分别刻有1、2、3、4、5、6六个数字的方体骰子一次,则向上一面的数字小于3的概率是m()A.B.C.D.9.下列选项中,能使关于x的一元二次方程ax2﹣5x+c=0一定有实数根的是()A.a=0B.c=0C.a>0D.c>010.如图,有一个边长为4cm的正六边形,若要剪一张圆形纸片完全盖住这个图形,则这个圆形纸片的最小半径是()A.4cm B.8cm C.2cm D.4cm11.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.8 12.如图,在半圆O中,AB为直径,CD是一条弦,若△COD的最大面积是12.5,则弦CD 的值为()A.B.5C.5D.12.5二.填空题13.某校规定学生的学期体育成绩由三部分组成:体育课外活动成绩占学期成绩的20%,理论测试占30%,体育技能测试占50%,一名同学上述的三项成绩依次为90、70、80,则该同学这学期的体育成绩为.14.从、、、、0.中,任取一个数,取到无理数的概率是.15.如图,在⊙O中,AB是直径,AC是弦,连接OC,若∠BOC=50°,则∠C=度.16.如图,在扇形OAB中,∠AOB=100°30′,OA=20,将扇形OAB沿着过点B的直线折叠,点O恰好落在弧AB的点D处,折痕交OA于点C,则弧AD的长为(结果保留π).17.已知关于x的方程x2﹣4x+n=0的一个根是2+,则它的另一根为.三.解答题18.解方程:(1)=(2)x2﹣4x+1=019.已知一个纸箱中放有大小相同的10个白球和若干个黄球.从箱中随机地取出一个是白球的概率是,再往箱中放进20个白球,求随机地取出一个黄球的概率.20.如图,一个可以自由转动的转盘被均匀的分成了20个扇形区域,其中一部分被阴影覆盖.(1)转动转盘,当转盘停止时,指针落在阴影部分的概率是多少?(2)试再选一部分扇形涂上阴影,使得转动转盘,当转盘停止时,指针落在阴影部分的概率变为.21.在小明、小红两名同学中选拔一人参加2018年张家界市“经典诗词朗诵”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:小明:80,85,82,85,83小红:88,79,90,81,72.回答下列问题:(1)求小明和小红测试的平均成绩;(2)求小明和小红五次测试成绩的方差.22.如图,AB为半⊙O的直径,弦AC的延长线与过点B的切线交于点D,E为BD的中点,连接CE.(1)求证:CE是⊙O的切线;(2)过点C作CF⊥AB,垂足为点F,AC=5,CF=3,求⊙O的半径.23.如图所示,PA,PB是⊙O的两条切线,A,B为切点,连接PO,交⊙O于点D,交AB于点C,根据以上条件,请写出三个你认为正确的结论,并对其中的一个结论给予证明.24.△ABC中,∠B=90°,AB=9,BC=12,点P从点A开始沿边AB向点B以1cm/s的速度移动,与此同时,点Q从点B开始沿边BC向点C以2cm/s的速度移动.如果P.Q分别从A.B同时出发,当点Q运动到点C时,两点停止运动,问:(1)填空:BQ=,PB=(用含t的代数式表示)(2)经过几秒,PQ的长为6cm?(3)经过几秒,△PBQ的面积等于8cm2?参考答案一.选择题1.【解答】解:A、长度相等的弧的度数不一定相等,故错误;B、直径是圆中最长的弦,正确;C、面积相等的两个圆是等圆,正确;D、半径相等的两个半圆是等弧,正确,故选:A.2.【解答】解:①当m2﹣3m+2≠0时,即m≠1和m≠2时,由原方程,得[(m﹣1)x+m][(m﹣2)x﹣(m+1)]=0解得,x=﹣1﹣或x=1+,∵关于x的方程(m2﹣3m+2)x2+(1﹣2m)x﹣m(m+1)=0的根是整数,∴m=0.5,m=1.5,m=1.25;②当m2﹣3m+2=0时,m=1,m=2,分别可得x=0,x=2,因此m=1,m=2也可以;综上所述,满足条件的m值共有5个.故选:C.3.【解答】解:∵方程2x n﹣1﹣5x+3=0是关于x的一元二次方程,∴n﹣1=2,解得:n=3.故选:D.4.【解答】解:∵OA=3cm<4cm,∴点A在⊙O内.故选:A.5.【解答】解:∵圆半径r=3,圆心到直线的距离d=4.故r=3<d=4,∴直线与圆的位置关系是相离.故选:C.6.【解答】解:由于此数据按照从小到大的顺序排列为147,151,152,156,159,发现152处在第3位.所以这组数据的中位数是152,故选:C.7.【解答】解:∵从一副扑克牌中任意抽取1张,共有54种等可能结果,∴①抽到“K”的概率为=;②抽到“黑桃”的概率为;③抽到“大王”的概率为;④抽到“黑色”的概率为=,故选:D.8.【解答】解:掷一枚质地均匀的骰子,骰子向上的一面点数共有6种可能,而向上一面的数字小于3的有1、2两种,所以向上一面的数字小于3的概率是=;故选:B.9.【解答】解:当a=0时,方程ax2﹣5x+c=0不是一元二次方程,故选项A错误;当a>0,ac>时,方程ax2﹣5x+c=0没有实数根,故选项C错误;当c>0,ac>时,方程ax2﹣5x+c=0没有实数根,故选项D错误;当c=0时,△=b2﹣4ac=(﹣5)2=25>0一元二次方程ax2﹣5x+c=0一定有实数根.故选:B.10.【解答】解:∵正六边形的边长是4cm,∴正六边形的半径是4cm,∴这个圆形纸片的最小半径是4cm.故选:A.11.【解答】解:将数据重新排列为0,3,3,4,5,则这组数的众数为3,中位数为3,平均数为=3,方差为×[(0﹣3)2+2×(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.8,故选:B.12.【解答】解:如图,作DH⊥CO交CO的延长线于H.∵S=•OC•DH,△COD∵DH≤OD,∴当DH=OD时,△COD的面积最大,此时△COD是等腰直角三角形,∠COD=90°,∴CD=OC,∵•OC2=12.5,∴OC=5,∴CD=5.故选:C.二.填空题13.【解答】解:该同学这学期的体育成绩为90×20%+70×30%+80×50%=79,故答案为:79.14.【解答】解:无理数有、、所以取到无理数的概率是,故答案为:.15.【解答】解:∵AB是⊙O的直径,∴∠BOC=2∠A=2×25°=50°.∵OA=OC,∴∠A=∠ACO=25°,故答案为:25.16.【解答】解:连结OD,∵△BCD是由△BCO翻折得到,∴∠CBD=∠CBO,∠BOD=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠ODB=2∠DBC,∵∠ODB+∠DBC=90°,∴∠ODB=60°,∵OD=OB∴△ODB是等边三角形,∴∠DOB=60°,∵∠AOB=100.5°,∴∠AOD=∠AOB﹣∠DOB=40.5°.∴弧AD的长==π.故答案为:π.17.【解答】解:设方程的另一个根为x,2 +2+=4,则x2=2﹣,解得:x2故答案为:2﹣.三.解答题18.【解答】解:(1)=,方程两边同乘以(x+1)(x﹣1)得,2(x ﹣1)=x +1,解整式方程得,x =3,检验:当x =3时,(x +1)(x ﹣1)≠1,∴x =3是原方程的解;(2)x 2﹣4x +1=0,x 2﹣4x +4=﹣1+4,(x ﹣2)2=3,∴x ﹣2=±,∴x 1=2+,x 2=2﹣.19.【解答】解:设黄球有x 个,根据题意得:=,解得:x =15,则再往箱中放进20个白球,随机地取出一个黄球的概率为=.20.【解答】解:(1)指针落在阴影部分的概率是;(2)当转盘停止时,指针落在阴影部分的概率变为.如图所示:21.【解答】解:(1)小明成绩的平均数为×(80+85+82+85+83)=83(分),小红成绩的平均数为×(88+79+90+81+72)=82(分);(2)S 小明2=×[(80﹣83)2+2×(85﹣83)2+(82﹣83)2+(83﹣83)2]=,S 小红2=×[(88﹣82)2+(79﹣82)2+(90﹣82)2+(81﹣82)2+(72﹣82)2]=42.22.【解答】(1)证明:连接CO 、EO 、BC ,∵BD 是⊙O 的切线,∴∠ABD =90°,∵AB是直径,∴∠BCA=∠BCD=90°,∵Rt△BCD中,E是BD的中点,∴CE=BE=ED,∵OC=OB,OE=OE,则△EBO≌△ECO(SSS),∴∠ECO=∠EBO=90°,∵点C在圆上,∴CE是⊙O的切线;(2)解:Rt△ACF中,∵AC=5,CF=3,∴AF=4,设BF=x,由勾股定理得:BC2=x2+32,BC2+AC2=AB2,x2+32+52=(x+4)2,x=,则r==,则⊙O的半径为.23.【解答】解:如图所示,结论:①∠3=∠4;或∠7=∠8;或∠1=∠5;或∠2=∠6;②OP ⊥AB ;③AC =BC .证明②:∵PA 、PB 是⊙O 的切线,∴OA ⊥PA ,OB ⊥PB ,∴∠OAP =∠OBP =90°.在Rt△OAP 与Rt△OBP 中,∵,∴△OAP ≌△OBP (HL ),∴PA =PB ,∠3=∠4,∴OP ⊥AB .24.【解答】解:(1)根据题意得:BQ =2t ,PB =9﹣t .故答案为:2t ;9﹣t .(2)根据题意得:(9﹣t )2+(2t )2=72,解得:t 1=,t 2=3,∴经过秒或3秒,PQ 的长为6cm .(3)根据题意得:×(9﹣t )×2t =8,解得:t 1=8,t 2=1.∵0≤t ≤6,∴t =1.答:经过1秒,△PBQ 的面积等于8cm 2.2022-2023年苏科版数学九年级上册期末考试测试卷及答案(二)一、选择题(每小题2分,共12分)1.用公式法解一元二次方程2x2+3x=1时,化方程为一般式当中的a、b、c依次为() A.2,-3,1B.2,3,-1C.-2,-3,-1D.-2,3,12.已知一组数据1,0,3,-1,x,2,3的平均数是1,则这组数据的众数是() A.-1B.3C.-1和3D.1和33.如图,AB是半圆的直径,C、D是半圆上的两点,∠ADC=106°,则∠CAB等于() A.10°B.14°C.16°D.26°4.一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是() A.8cm B.12cm C.16cm D.24cm5.在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为() A.6B.9C.12D.156.如图,正方形ABCD的边长为4cm,以正方形的一边BC为直径在正方形ABCD内作半圆O,过点A作半圆的切线,与半圆相切于点F,与DC相交于点E,则△ADE的面积为() A.12cm2B.24cm2C.8cm2D.6cm2二、填空题(每小题2分,共20分)7.若关于x的一元二次方程x2-kx-2=0的一个根为x=1,则这个一元二次方程的另一个根为x=________.8.一个不透明的袋子中装有5个红球和1个黄球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸出红球的概率等于________.9.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x (单位:千克)及方差s 2(单位:千克2)如表所示:明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是________.10.某校招聘教师,其中一名教师的笔试成绩是80分,面试成绩是60分,综合成绩笔试占60%,面试占40%,则该教师的综合成绩为________分.11.有一人患了流感,经过两轮传染后,共有121人患了流感,每轮传染中平均每人传染了________人.12.如图,△ABC 是⊙O 的内接正三角形,点O 是圆心,点D 、E 分别在边AC 、AB 上,若DA=EB ,则∠DOE 的度数是________度.13.从数-2,-12,0,4中任取一个数记为m ,再从余下的三个数中,任取一个数记为n ,若k =mn ,则正比例函数y =kx 的图像经过第一、三象限的概率是________.14.已知△ABC 的三边a 、b 、c 满足b +|c -3|+a 2-8a =4b -1-19,则△ABC 的内切圆半径=________.15.如图,四边形ABCD 是正方形,曲线DA 1B 1C 1D 1A 2…是由一段段90°的弧组成的.其中:DA 1︵的圆心为点A ,半径为AD ;A 1B 1︵的圆心为点B ,半径为BA 1;B 1C 1︵的圆心为点C ,半径为CB 1;C 1D 1︵的圆心为点D ,半径为DC 1;…;DA 1︵、A 1B 1︵、B 1C 1︵、C 1D 1︵…的圆心依次按点A 、B 、C 、D 循环.若正方形ABCD 的边长为1,则A 2020B 2020的长是________.16.如图,在等腰直角三角形ABC 中,∠BAC =90°,AB =AC ,BC =42,点D 是AC 边上一动点,连接BD ,以AD 为直径的圆交BD 于点E ,则线段CE 长度的最小值为________.三、解答题(17~19题每题7分,20~25题每题8分,26题9分,27题10分,共88分)17.解方程:2x 2-5x +3=0.18.如图,AB ︵的半径OA =2,OC ⊥AB 于点C ,∠AOC =60°.(1)求弦AB 的长.(2)求AB ︵的长.19.为增强学生垃圾分类意识,推动垃圾分类进校园,某初中组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析.(1)学校设计了以下三种抽样调查方案:方案一:从七、八、九年级中指定部分学生成绩作为样本进行调查分析;方案二:从七、八年级中随机抽取部分男生成绩及在九年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是________.(填“方案一”“方案二”或“方案三”)(2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):样本容量平均分及格率优秀率最高分最低分10093.5100%70%10080分数段统计(学生成绩记为x )分数段0≤x <8080≤x <8585≤x <9090≤x <9595≤x ≤100频数5253040请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;②估计该校1200名学生中达到“优秀”的学生总人数.20.智慧的中国古代先民发明了抽象的符号来表达丰富的含义.例如,符号“”有刚毅的含义,符号“”有愉快的含义.符号中的“”表示“阴”,“”表示“阳”,类似这样自上而下排成的三行符号还有其他的含义.所有这些三行符号中,每一行只有一个阴或一个阳,且出现阴、阳的可能性相同.(1)所有这些三行符号共有________种;(2)若随机画一个这样的三行符号,求“画出含有一个阴和两个阳的三行符号”的概率.21.已知关于x 的一元二次方程x 2+(2m +1)x +m -2=0.(1)求证:无论m 取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根x 1、x 2,且x 1+x 2+3x 1x 2=1,求m 的值.22.一个不透明的盒子里装有除颜色外其余均相同的2个黑球和n 个白球,搅匀后从盒子里随机摸出一个球,摸到白球的概率为1 3 .(1)求n的值;(2)所有球放入盒中,搅匀后随机从中摸出一个球,放回搅匀,再随机摸出一个球,求两次摸球摸到一个白球和一个黑球的概率.请用画树状图或列表的方法进行说明.23.如图,⊙O是△ABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB.(1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.24.阅读下列“问题”与“提示”后,将解方程的过程补充完整,求出x的值.【问题】解方程:x2+2x+4x2+2x-5=0.【提示】可以用“换元法”解方程.解:设x2+2x=t(t≥0),则有x2+2x=t2.原方程可化为:t2+4t-5=0.25.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少?26.如图①,AB 是半圆O 的直径,AC 是一条弦,D 是AC ︵上一点,DE ⊥AB 于点E ,交AC 于点F ,连接BD 交AC 于点G ,且AF =FG .(1)求证:点D 平分AC ︵;(2)如图②,延长BA 至点H ,使AH =AO ,连接DH .若点E 是线段AO 的中点,求证:DH 是⊙O 的切线.27.定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图①,在损矩形ABCD 中,∠ABC =∠ADC =90°,则该损矩形的直径是线段________.(2)在线段AC 上确定一点P ,使损矩形的四个顶点都在以点P 为圆心的同一个圆上(即损矩形的四个顶点在同一个圆上),请作出这个圆,并说明你的理由.(尺规作图不要求写作法,但要保留作图痕迹)(3)如图②,在△ABC 中,∠ABC =90°,以AC 为一边向三角形外作菱形ACEF ,D 为菱形ACEF 的中心,连接BD ,当BD 平分∠ABC 时,判断四边形ACEF 为何种特殊的四边形?请说明理由.若此时AB =3,BD =42,求BC 的长.答案一、1.B 2.C 3.C 4.B 5.C 6.D二、7.-28.569.甲10.7211.1012.12013.1614.115.4039π16.25-2【点拨】连接AE,如图①,∵∠BAC=90°,AB=AC,BC=42,∴AB=AC=4.∵AD为直径,∴∠AED=90°,∴∠AEB=90°,∴点E 在以AB 为直径的⊙O 上.∴⊙O 的半径为2,当点O 、E 、C 共线时,CE 最小,如图②,在Rt△AOC 中,∵OA =2,AC =4,∴OC =OA 2+AC 2=25,∴CE =OC -OE =25-2,即线段CE 长度的最小值为25-2.故答案为25-2.三、17.解:原方程可变形为(2x -3)(x -1)=0,∴2x -3=0或x -1=0,解得x 1=32,x 2=1.18.解:(1)∵AB ︵的半径OA =2,OC ⊥AB 于点C ,∠AOC =60°,∴∠OAC =30°,∴OC =1,∴AC =OA 2-OC 2=22-12=3,∴AB =2AC =2 3.(2)∵OC ⊥AB ,∠AOC =60°,∴∠AOB =120°.∵OA =2,∴AB ︵的长是120π×2180=4π3.19.解:(1)方案三(2)①样本100人中,成绩从小到大排列后,处在最中间位置的两个数都在90≤x <95内,因此估计该校1200名学生竞赛成绩的中位数落在90≤x <95内.②由题意得,1200×70%=840,答:估计该校1200名学生中达到“优秀”的学生总人数为840.20.解:(1)8(2)总共有8种等可能的结果,一个阴、两个阳的共有3种,则“画出含有一个阴和两个阳的三行符号”的概率是38.21.(1)证明:∵b 2-4ac =(2m +1)2-4×1×(m -2)=4m 2+4m +1-4m +8=4m 2+9>0,∴无论m 取何值,此方程总有两个不相等的实数根.(2)解:由根与系数的关系得1+x 2=-(2m +1),1x 2=m -2,∵x 1+x 2+3x 1x 2=1,∴-(2m +1)+3(m -2)=1,解得m =8.22.解:(1)由题意可得,n 2+n =13,解得n =1,经检验,n =1符合题意.答:n 的值为1.(2)用列表法表示所有可能出现的结果情况如下:黑1黑2白黑1黑1,黑1黑2,黑1白,黑1黑2黑1,黑2黑2,黑2白,黑2白黑1,白黑2,白白,白共有9种等可能出现的结果,其中两次摸球摸到一个白球和一个黑球的有4种,∴P (两次摸球摸到一个白球和一个黑球)=49.23.解:(1)连接OA ,∵AE 是⊙O 的切线,∴∠OAE =90°.∵AB =AE ,∴∠ABE =∠AEB .∵OA =OB ,∴∠ABO =∠OAB ,∴∠OAB =∠ABE =∠E .∵∠OAB +∠ABE +∠E +∠OAE =180°,∴∠OAB =∠ABE =∠E =30°,∴∠AOB =180°-∠OAB -∠ABO =120°,∴∠ACB =12∠AOB =60°.(2)设⊙O 的半径为r ,则OA =OD =r ,OE =r +2.∵∠OAE =90°,∠E =30°,∴2OA =OE ,即2r =r +2,∴r =2,故⊙O 的半径为2.24.解:(t +5)(t -1)=0,t +5=0或t -1=0,∴t 1=-5,t 2=1.当t =-5时,x 2+2x =-5,此方程无解;当t =1时,x 2+2x =1,则x 2+2x =1,配方得(x +1)2=2,解得x 1=-1+2,x 2=-1-2.经检验,原方程的解为x 1=-1+2,x 2=-1- 2.25.解:(1)设y 与x 之间的函数关系式为y =kx +b ,将(22.6,34.8)、(24,32)代入y =kx +b ,k +b =34.8,k +b =32,=-2,=80.∴y 与x 之间的函数关系式为y =-2x +80.当x =23.5时,y =-2x +80=33.答:当天该水果的销售量为33千克.(2)由题意,得(x -20)(-2x +80)=150,解得x 1=35,x 2=25.∵20≤x ≤32,∴x =25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元/千克.26.证明:(1)连接AD 、BC ,∵AB 是半圆O 的直径,∴∠ADB =90°.∵DE ⊥AB ,∴∠DEB =90°,易知∠ADE =∠ABD .又∵AF =FG ,即点F 是Rt△AGD 的斜边AG 的中点,∴DF =AF ,∴∠DAF =∠ADF =∠ABD .∴DC ︵=AD ︵,即点D 平分AC ︵.(2)连接OD 、AD ,∵点E 是线段OA 的中点,∴OE =12OA =12OD ,∴∠AOD =60°,∴△OAD 是等边三角形,∴AD =AO =AH ,∠ADO =∠DAO =60°.∴∠AHD =∠HDA =30°,∴∠HDO =∠HDA +∠ADO =90°,∴DH 是⊙O 的切线.27.解:(1)AC (2)作图如图.理由:如图,连接PB 、PD .∵P 为AC 的中点,∴PA =PC =12AC .∵∠ABC =∠ADC =90°,∴BP =DP =12AC .∴PA =PB =PC =PD .∴点A 、B 、C 、D 在以点P 为圆心,12AC 长为半径的同一个圆上.(3)四边形ACEF 为正方形.理由如下:∵四边形ACEF 是菱形,∴∠ADC =90°,AE =2AD ,CF =2CD .∴四边形ABCD 为损矩形.∴由(2)可知,点A 、B 、C 、D 在同一个圆上.∵BD 平分∠ABC ,∴∠ABD =∠CBD =45°.∴AD ︵=CD ︵.∴AD =CD .∴AE =CF .∴四边形ACEF 为正方形.由BD 平分∠ABC ,BD =42,易求得点D 到AB 、BC 的距离h 相等,且h =4,∴S △ABD =12AB ×h =6,S △ABC =12AB ×BC =32BC ,S △BDC =12BC ×h =2BC ,S △ACD =14S 正方形ACEF =14AC 2=14(BC 2+9).∵S 四边形ABCD =S △ABC +S △ADC =S △ABD +S △BCD ,∴32BC +14(BC 2+9)=6+2BC ,解得BC =5或BC =-3(舍去).∴BC 的长为5.2022-2023年苏科版数学九年级上册期末考试测试卷及答案(三)一.选择题(共10小题,满分30分,每小题3分)1.方程x 2﹣4=0的根是()A .x 1=2,x 2=﹣2B .x =4C .x =2D .x =﹣22.下列命题中,真命题是()A .邻边之比相等的两个平行四边形一定相似B .邻边之比相等的两个矩形一定相似C .对角线之比相等的两个平行四边形一定相似D .对角线之比相等的两个矩形一定相似3.在Rt △ABC 中,AC =8,BC =6,则cos A 的值等于()A .B .C .或D .或4.一组数据的方差为1.2,将这组数据扩大为原来的2倍,则所得新数据的方差为()A .1.2B .2.4C .1.44D .4.85.已知关于x 的一元二次方程3x 2+4x ﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定6.如图是二次函数y=ax2+bx+c的部分图象,使y≥﹣1成立的x的取值范围是()A.x≥﹣1B.x≤﹣1C.﹣1≤x≤3D.x≤﹣1或x≥3 7.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.32x+2×20x﹣2x2=570B.32x+2×20x=32×20﹣570C.(32﹣2x)(20﹣x)=32×20﹣570D.(32﹣2x)(20﹣x)=5708.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为()A.πB.πC.25D.209.二次函数y=(2x﹣1)2+2的顶点的坐标是()A.(1,2)B.(1,﹣2)C.(,2)D.(﹣,﹣2)10.如图,A(12,0),B(0,9)分别是平面直角坐标系xOy坐标轴上的点,经过点O 且与AB相切的动圆与x轴、y轴分别相交于点P、Q,则线段PQ长度的最小值是()A.B.10C.7.2D.二.填空题(共8小题,满分24分,每小题3分)11.已知α为锐角,且满足sin(α+15°)=,则tanα=.12.如图,网格中小正方形边长为1,点A、O、P均为格点,⊙O过点A,请过点P做⊙O 的一条切线PM,切⊙O于M(1)求切线PM的长为.(2)描述PM的作法.13.如图,正方形ABCD内接于⊙O,E为DC的中点,直线BE交⊙O于点F,若⊙O的半径为,则BF的长为.14.掷一枚质地均匀的硬币,前9次都是反面朝上,则掷第10次时反面朝上的概率是.15.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为.16.如图,一天,我国一渔政船航行到A处时,发现正东方向的我领海区域B处有一可疑渔船,正在以12海里/时的速度向西北方向航行,我渔政船立即沿北偏东60°方向航行,1.5小时后,在我航海区域的C处截获可疑渔船,问我渔政船的航行路程是海里(结果保留根号).17.如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=53°,则∠BAC的度数等于.18.若二次函数y=x2+x+1的图象,经过A(﹣3,y1),B(2,y2),C(,y3),三点y1,y2,y3大小关系是(用“<”连接)三.解答题(共10小题,满分76分)19.(4分)计算:4sin60°﹣|﹣1|+(﹣1)0+20.(8分)解方程:x2﹣5x+6=021.(6分)如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,求DE的长.22.(6分)2017年3月27日是全国中小学生安全教育日,某校为加强学生的安全意识,组织了全校学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计,绘制了图中两幅不完整的统计图.(1)a=,n=;(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?23.(7分)小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A,B是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形.同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请说明理由.24.(7分)宜春三中学校团委爱心社组织学生为高三学生进行献爱心活动,学生踊跃捐款.初三年级第一天收到捐款1000元,第三天收到1210元.(1)求这两天收到捐款的平均增长率.(2)按照(1)中的增长速度,第四天初三年级能收到多少捐款?25.(8分)如图,以AB为直径作半圆O,点C是半圆上一点,∠ABC的平分线交⊙O于E,D为BE延长线上一点,且DE=FE.(1)求证:AD为⊙O切线;(2)若AB=20,tan∠EBA=,求BC的长.26.(10分)如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC(1)求证:①EF是⊙O的切线;②AC2=AD•AB.(2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的周长.27.(10分)如图,在正方形ABCD中,AB=4,动点P从点A出发,以每秒2个单位的速度,沿线段AB方向匀速运动,到达点B停止.连接DP交AC于点E,以DP为直径作⊙O交AC于点F,连接DF、PF.(1)求证:△DPF为等腰直角三角形;(2)若点P的运动时间t秒.①当t为何值时,点E恰好为AC的一个三等分点;②将△EFP沿PF翻折,得到△QFP,当点Q恰好落在BC上时,求t的值.28.(10分)抛物线C1:y=ax2+bx+3与x轴交于A(﹣3,0)、B两点,与y轴交于点C,点M(﹣2,3)是抛物线上一点.(1)求抛物线C1的表达式.(2)若抛物线C2关于C1关于y轴对称,点A、B、M关于y轴的对称分别为A′、B′、M′.过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵x2=4,∴x=±=±2,∴x1=2,x2=﹣2.故选:A.2.解:A、邻边之比相等的两个平行四边形不一定相似,所以A选项错误;B、邻边之比相等,则四条边对应成比例,又四个角都是直角,所以两矩形相似,故本选项正确;C、对角线之比相等的两个平行四边形不一定相似,所以C选项错误;D、对角线之比相等的两个矩形不一定相似,所以D选项错误;故选:B.3.解:当△ABC为直角三角形时,存在两种情况:①当AB为斜边,∠C=90°,∵AC=8,BC=6,∴AB===10.∴cos A===;②当AC为斜边,∠B=90°,由勾股定理得:AB===2,∴cos A==;综上所述,cos A的值等于或.故选:C.4.解:根据方差的性质可知:数据中的每个数据都扩大2倍,方差变为4s2,则这组数据扩大为原来的2倍后方差为4×1.2=4.8.故选:D.5.解:∵△=42﹣4×3×(﹣5)=76>0,∴方程有两个不相等的实数根.故选:B.6.解:由函数图象可知,当y≥﹣1时,二次函数y=ax2+bx+c不在y=﹣1下方部分的自变量x满足:﹣1≤x≤3,7.解:设道路的宽为xm,则草坪的长为(32﹣2x)m,宽为(20﹣x)m,根据题意得:(32﹣2x)(20﹣x)=570.故选:D.8.解:由题意=CD+BC=10,S扇形ADB=••AB=×10×5=25,故选:C.9.解:由y=(2x﹣1)2+2=4(x﹣)2+2,可知抛物线顶点坐标为(,2).故选:C.10.解:如图,设QP的中点为F,圆F与AB的切点为D,连接FD、OF、OD,则FD⊥AB.∵A(12,0)、B(0,9),∴AO=12,BO=9,∴AB=15,∴∠AOB=90°,FO+FD=PQ,∴FO+FD≥OD,当点F、O、D共线时,PQ有最小值,此时PQ=OD,∴OD===7.2.故选:C.二.填空题(共8小题,满分24分,每小题3分)11.解:∵sin60°=,∴α+15°=60°,∴tanα=tan45°=1,故答案为:1.12.解:(1)PM==.(2)以OP为直径作圆交⊙O于M,则AM为⊙O的切线.故答案为;以OP为直径作圆交⊙O于M.13.解:连接BD,DF,过点C作CN⊥BF于点N,∵正方形ABCD内接于⊙O,⊙O的半径为,∴BD=2,∴AD=AB=BC=CD=2,∵E为DC的中点,∴CE=1,∴BE=,∴CN×BE=EC×BC,∴CN×=2,∴CN=,∴BN=,∴EN=BE﹣BN=﹣=,∵BD为⊙O的直径,∴∠BFD=90°,∴△CEN≌△DEF,∴EF=EN,∴BF=BE+EF=+=,故答案为.14.解:第10次掷硬币,出现反面朝上的机会和朝下的机会相同,都为;故答案为:.15.解:圆锥的侧面展开图的弧长为2π×10÷2=10π(cm),∴圆锥的底面半径为10π÷2π=5(cm),∴圆锥的高为:=5(cm).故答案是:5cm.16.解:作CD⊥AB于点D,垂足为D,在Rt△BCD中,∵BC=12×1.5=18(海里),∠CBD=45°,∴CD=BC•sin45°=18×=9(海里),则在Rt△ACD中,AC==9×2=18(海里).故我渔政船航行了18海里.故答案为:18.17.解:∵AB为⊙O直径,∴∠ACB=90°,∵∠ADC=53°,∴∠ABC=53°,∴∠BAC=180°﹣90°﹣53°=37°,故答案为:37°.18.解:∵y=x2+x+1=(x+)2+,∴图象的开口向上,对称轴是直线x=﹣,A(﹣3,y1)关于直线x=﹣的对称点是(2,y1),∵<2,∴y3<y1=y2,故答案为y3<y1=y2.三.解答题(共10小题,满分76分)19.解:原式=4×﹣1+1+4=2+4=6.20.解:∵x2﹣5x+6=0,∴(x﹣2)(x﹣3)=0,则x﹣2=0或x﹣3=0,解得x1=2,x2=3.21.解:∵DE∥BC,∴∠AED=∠C,==.又∵∠ADE=∠EFC,∴△ADE∽△EFC,∴=,即=,∴DE=10.22.解:(1)∵本次调查的总人数为30÷10%=300(人),∴a=300×25%=75,D组所占百分比为×100%=30%,所以E组的百分比为1﹣10%﹣20%﹣25%﹣30%=15%,则n=360°×15%=54°,故答案为:75、54;(2)B组人数为300×20%=60(人),补全频数分布直方图如下:(3)2000×(10%+20%)=600,答:该校安全意识不强的学生约有600人.23.解:这个游戏公平,理由如下:用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中配成紫色的有3种,配不成紫色的有3种,==,∴P(小颖)P(小亮)==,因此游戏是公平.24.解:(1)捐款增长率为x,根据题意得:1000(1+x)2=1210,解得:x1=0.1,x2=﹣2.1(舍去).则x=0.1=10%.答:捐款的增长率为10%.(2)根据题意得:1210×(1+10%)=1331(元).答:第四天该校能收到的捐款是1331元.25.(1)证明:∵BE平分∠ABC,∴∠1=∠2,∵AB为直径,∴AE⊥BD,∵DE=FE,∴∠3=∠4,∵∠1=∠3,∴∠4=∠2,∵AB为直径,∴∠AEB=90°,∵∠2+∠BAE=90°∴∠4+∠BAE=90°,即∠BAD=90°,∴AD⊥AB,∴AD为⊙O切线;(2)解:∵AB为直径,∴∠ACB=90°,在Rt△ABC中,∵tan∠EBA=,∴设AE=3k,BE=4k,则AB=5k=20,∴AE=12,BE=16,连接OE交AC于点G,如图,∵∠1=∠2,∴=,∴OE⊥AC,∵∠3=∠2,∴tan∠EBA=tan∠3=,∴设AG=4x,EG=3x,∴AE=5x=12,∴x=,∴AG=,∵OG∥BC,∴AC=2AG=,∴BC==.26.解:(1)①连接OC,∵OA=OC,∴∠BAC=∠OCA,∠DAC=∠BAC,∴∠OCA=∠DAC,∴OC∥AD,∵AD⊥EF,∴OC⊥EF,∵OC为半径,∴EF是⊙O的切线;②连接BC,∵AB为⊙O的直径,AD⊥EF,∴∠BCA=∠ADC=90°,∵∠DAC=∠BAC,∴△ACB∽△ADC,∴=,即AC2=AD•AB;(2)∵∠ACD=30°,∠OCD=90°,∴∠OCA=60°,∵OC=OA,∴△OAC是等边三角形,∴AC=OA=OC=2,∠AOC=60°,∵在Rt△ACD中,AD=AC=1,由勾股定理可知:DC=,∴阴影部分的周长为:+AD+CD=+1+=+1+;27.证明:(1)∵四边形ABCD是正方形,AC是对角线,∴∠DAC=45°,∵在⊙O中,所对的圆周角是∠DAF和∠DPF,∴∠DAF=∠DPF,∴∠DPF=45°,又∵DP是⊙O的直径,∴∠DFP=90°,∴∠FDP=∠DPF=45°,∴△DFP是等腰直角三角形;(2)①当AE:EC=1:2时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴,∴,解得,t=1;当AE:EC=2:1时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴,∴,解得,t=4,∵点P从点A到B,t的最大值是4÷2=2,∴当t=4时不合题意,舍去;由上可得,当t为1时,点E恰好为AC的一个三等分点;②如右图所示,∵∠DPF=90°,∠DPF=∠OPF,∴∠OPF=90°,∴∠DPA+∠QPB=90°,∵∠DPA+∠PDA=90°,∴∠PDA=∠QPB,∵点Q落在BC上,∴∠DAP=∠B=90°,∴△DAP∽△PBQ,∴,∵DA=AB=4,AP=2t,∠DAP=90°,∴DP==2,PB=4﹣2t,设PQ=a,则PE=a,DE=DP﹣a=2﹣a,∵△AEP∽△CED,∴,即,解得,a=,∴PQ=,。
苏科版九年级数学上册期末专题:期末综合检测试题一、单选题(共10题;共30分)1.一元二次方程3x 2−x =0的解是( )A. x =0B. x 1=0,x 2=3C. x 1=0,x 2=13D. x =13 2.在九年级体育中考中,某校某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):44,45,42,48,46,43,47,45.则这组数据的极差为( )A. 2B. 4C. 6D. 83.一元二次方程 2x 2−5x −4=0 的二次项系数、一次项系数及常数项分别是( )A. 2 , 5 , −4B. 2 , 5 , 4C. 2 , −5 , −4D. 2 , −5 , 4 4.若四边形ABCD 是⊙O 的内接四边形,且∠A ︰∠B ︰∠C=1︰3︰8,则∠D 的度数是( )A. 10°B. 30°C. 80°D. 120°5.学生经常玩手机游戏会影响学习和生活,某校调查了20名同学某一周玩手机游戏的次数,调查结果如表所示,那么这20名同学玩手机游戏的平均数为( )A. 5B. 5.5C. 6D. 6.56.将方程 x 2+2x -3=0 化为 (x -m )2=n 的形式,m 和n 分别是( )A. 1,3B. -1,3C. 1,4D. -1,47.一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同。
若从中任意摸出一个球,则下列叙述正确的是( )A. 摸到红球是必然事件B. 摸到白球是不可能事件C. 摸到红球与摸到白球的可能性相同D. 摸到红球比摸到白球的可能性大8.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子 ( )A. 1颗B. 2颗C. 3颗D. 4颗9.正六边形的内切圆与外接圆面积之比是( )A. 34B. √32C. 12D. 14 10.以下说法中,①如果一组数据的标准差等于零,则这组中的每个数据都相等;②分别用一组数据中的每一个数减去平均数,再将所得的差相加.若和为零,则标准差为零;③在一组数据中去掉一个等于平均数的数,这组数据的平均数不变;④在一组数据中去掉一个等于平均数的数,这组数据的标准差不变,其中正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题(共10题;共30分)11.圆锥底面半径为 6cm ,母线长为 10cm ,则圆锥的侧面积为________cm 2 .12.在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是S 2=1.2,S乙2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定的________. (填“甲或乙”)甲13.(2022•荆门)已知方程x2+5x+1=0的两个实数根分别为x1、x2,则x12+x22=________.14.方程x2-3x-10=0的根为x1=5,x2=-2.此结论是:________的.15.已知⊙O的半径为3cm,圆心O到直线l的距离是4cm,则直线l与⊙O的位置关系是________ .16.经研究发现,若一人患上甲型流感,经过两轮传染后,共有144人患上流感,按这样的传染速度,若3人患上流感,则第一轮传染后患流感的人数共有________ 人.17.已知关于x的方程x2-(a+b)x+ab-1=0,x1,x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③ x12+x22<a2+b2.则正确结论的序号是________(填序号).18.如图,△ABC为⊙O的内接三角形,O为圆心,OD⊥AB,•垂足为D,OE⊥AC,垂足为E,若DE=3,则BC=________.19.某种型号的电脑,原售价7200元/台,经连续两次降价后,现售价为4608元/台,则平均每次降价的百分率为________%。
九年级(上)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣4 B.x≥﹣4 C.x≤4 D.x≥42.如图,在△ABC中,∠C=90°,AB=13,BC=5,则sinA的值是()A.B.C.D.3.若两圆的半径分别为5和7,圆心距为2,则这两圆的位置关系是()A.内含 B.内切 C.相交 D.外切4.OA,OB是⊙O的两条半径,且∠C=40°,点C在⊙O上,则∠AOB的度数为()A.80° B.40° C.50° D.20°5.已知圆锥的底面半径为9cm,母线长为30cm,则圆锥的侧面积为()cm2.A.270πB.360πC.450πD.540π6.将抛物线y=x2沿y轴向下平移2个单位,得到的抛物线的解析式为()A.y=x2+2 B.y=x2﹣2 C.y=(x+2)2D.y=(x﹣2)27.关于x的方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k<﹣1 D.k>﹣18.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>5二、填空题(本大题共有10小题,每小题3分,共30分)9.化简:×= .10.直角三角形的两直角边分别3,4;则它的外接圆半径R= .11.已知y=++,则x= .12.菱形的两条对角线的长分别为6和8,则它的面积是.13.如图,AB是⊙O的弦,OC⊥AB于C.若AB=,OC=1,则半径OB的长为.14.如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为.15.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是.16.甲、乙两名射击运动员在一次训练中,每人各打10发子弹,根据命中环数求得方差分别是=0.6, =0.8,则运动员的成绩比较稳定.17.二次函数y=2(x﹣1)2+3的图象的顶点坐标是18.已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2),试比较y1和y2的大小:y1y2.(填“>”,“<”或“=”)三、解答题(本大题共有10小题,共96分)19.计算:2cos45°+(﹣1)0﹣()﹣1.20.解方程:x2﹣7x+10=0.21.如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BE=DF,连接AE、CF.请你猜想:AE与CF有怎样的数量关系?并对你的猜想加以证明.22.(10分)盱眙第一山景区为提高某景点的安全性,决定将到达景点的步行台阶进行改善,把倾角由45°减至30°,已知原台阶坡面AB的长为5m(BC所在地面为水平面)(1)改善后的台阶坡面会加长多少?(就是问AD比AB长多少?)(2)改善后的台阶多占多长一段水平地面?(结果精确到0.1m,参考数据:≈1.41,≈1.73)(就是求BD的长)23.如图,4张背面完全相同的纸牌(用①、②、③、④表示),在纸牌的正面分别写有四个不同的条件,小明将这4张纸牌背面朝上洗匀后,先随机摸出一张(不放回),再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌出现的所有可能结果;(2)以两次摸出牌上的结果为条件,求能判断四边形ABCD是平行四边形的概率.24.①如图1,在每个小方格都是边长为1个单位长度的正方形方格纸中有△OAB,请将△OAB绕O 顺时针旋转90°,画出旋转后的△OA′B′.②折纸:有一张矩形纸片ABCD如图2,要将点D沿某条直线翻转180°,恰好落在BC边上的点D′处,请在图中作出该直线.25.某区对参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:视力频数(人)频率4.0≤x<4.3 20 0.14.3≤x<4.6 40 0.24.6≤x<4.9 70 0.354.9≤x<5.2 a 0.35.2≤x<5.5 10 b(1)本次调查的样本容量为;在频数分布表中,a的值为,b的值为,并将频数分布直方图补充完整;(2)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是;(3)根据上述信息估计全区初中毕业生中视力正常的学生有多少人?26.如图,AB为⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,已知∠D=30°.(1)求∠A的度数;(2)若点F在⊙O上,CF⊥AB,垂足为E,CF=,求图中阴影部分的面积.27.我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x (元/件)… 20 30 40 50 60 …每天销售量(y 件) … 500 400 300 200 100 … (1)把上表中x 、y 的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)市物价部门规定,该工艺品销售单价最高不能超过35元/件,那么销售单价在什么范围时,工艺厂试销该工艺品每天获得的利润不低于5000元?28.如图,已知抛物线y=﹣x 2+bx+c 与一直线相交于A (﹣1,0),C (2,3)两点,与y 轴交于点N .其顶点为D .(1)抛物线及直线AC 的函数关系式;(2)若抛物线的对称轴与直线AC 相交于点B ,E 为直线AC 上的任意一点,过点E 作EF ∥BD 交抛物线于点F ,以B ,D ,E ,F 为顶点的四边形能否为平行四边形?若能,求点E 的坐标;若不能,请说明理由;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.-学年江苏省淮安市楚州区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣4 B.x≥﹣4 C.x≤4 D.x≥4【考点】二次根式有意义的条件.【分析】二次根式有意义,被开方数是非负数.【解答】解:依题意知,x﹣4≥0,解得x≥4.故选:D.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.如图,在△ABC中,∠C=90°,AB=13,BC=5,则sinA的值是()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【分析】本题可以利用锐角三角函数的定义求解,sinA为∠A的对边比上斜边,求出即可.【解答】解:∵在△ABC中,∠C=90°,AB=13,BC=5,∴sinA===.故选A.【点评】此题主要考查了锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.若两圆的半径分别为5和7,圆心距为2,则这两圆的位置关系是()A.内含 B.内切 C.相交 D.外切【考点】圆与圆的位置关系.【分析】本题直接告诉了两圆的半径及圆心距,根据数量关系与两圆位置关系的对应情况便可直接得出答案.【解答】解:根据题意,得R﹣r=7﹣5=2=圆心距,∴两圆内切.故选B.【点评】本题主要考查圆与圆的位置关系,①外离,则P>R+r;②外切,则P=R+r;③相交,则R ﹣r<P<R+r;④内切,则P=R﹣r;⑤内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径).4.OA,OB是⊙O的两条半径,且∠C=40°,点C在⊙O上,则∠AOB的度数为()A.80° B.40° C.50° D.20°【考点】圆周角定理.【分析】直接根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,求解即可求得答案.【解答】解:∵∠C=40°,∴∠AOB=2∠C=80°.故选A.【点评】此题考查了圆周角定理.注意熟记定理是解此题的关键.5.已知圆锥的底面半径为9cm,母线长为30cm,则圆锥的侧面积为()cm2.A.270πB.360πC.450πD.540π【考点】圆锥的计算.【分析】利用圆锥的侧面积=底面周长×母线长÷2求出即可.【解答】解:∵底面半径=9cm,底面周长=18πcm,∴圆锥的侧面积=×18π×30=270π(cm2).故选:A.【点评】此题主要考查了圆锥的有关计算,关键是熟练记忆圆锥的侧面积公式.6.将抛物线y=x2沿y轴向下平移2个单位,得到的抛物线的解析式为()A.y=x2+2 B.y=x2﹣2 C.y=(x+2)2D.y=(x﹣2)2【考点】二次函数图象与几何变换.【分析】根据抛物线平移的规律(左加右减,上加下减)求解.【解答】解:抛物线y=x2沿y轴向下平移2个单位长度,得到的抛物线解析式为y=x2﹣2.故选B.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.关于x的方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k<﹣1 D.k>﹣1【考点】根的判别式.【专题】计算题.【分析】利用根的判别式进行计算,令△>0即可得到关于k的不等式,解答即可.【解答】解:∵关于x的方程x2﹣2x+k=0有两个不相等的实数根,∴△>0,即4﹣4k>0,k<1.故选A.【点评】本题考查了根的判别式,要知道一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>5【考点】二次函数与不等式(组).【专题】压轴题.【分析】利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出ax2+bx+c <0的解集.【解答】解:由图象得:对称轴是x=2,其中一个点的坐标为(5,0),∴图象与x轴的另一个交点坐标为(﹣1,0).利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴x<﹣1或x>5.故选:D.【点评】此题主要考查了二次函数利用图象解一元二次方程根的情况,很好地利用数形结合,题目非常典型.二、填空题(本大题共有10小题,每小题3分,共30分)9.化简:×= 8 .【考点】二次根式的乘除法.【分析】把被开方数相乘即可.【解答】解:原式===8.故答案为:8.【点评】本题考查的是二次根式的乘除法,熟知二次根式的乘法法则是解答此题的关键.10.直角三角形的两直角边分别3,4;则它的外接圆半径R= 2.5 .【考点】三角形的外接圆与外心;勾股定理.【分析】根据勾股定理求出斜边,根据直角三角形外接圆的半径=斜边的一半求出即可.【解答】解:∵由勾股定理得:斜边==5,∴直角三角形的外接圆的半径R=×5=2.5,故答案为:2.5.【点评】本题考查了三角形的外接圆,勾股定理的应用,解此题的关键是求出AB的长和得出外接圆半径=斜边的一半.11.已知y=++,则x= 2 .【考点】二次根式有意义的条件.【分析】根据二次根式有意义可得,解不等式组可得x的值.【解答】解:由题意得:,解得:x=2,故答案为:2.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.12.菱形的两条对角线的长分别为6和8,则它的面积是24 .【考点】菱形的性质.【专题】计算题.【分析】菱形的面积等于对角线乘积的一半.【解答】解:∵菱形的面积等于对角线乘积的一半,∴面积S=×6×8=24.故答案为 24.【点评】此题考查菱形的面积计算方法,属基础题.菱形的面积=底×高=对角线乘积的一半.13.如图,AB是⊙O的弦,OC⊥AB于C.若AB=,OC=1,则半径OB的长为 2 .【考点】垂径定理;勾股定理.【专题】压轴题;探究型.【分析】先根据垂径定理得出BC的长,再在Rt△OBC中利用勾股定理求出OB的长即可.【解答】解:∵AB是⊙O的弦,OC⊥AB于C,AB=,∴BC=AB=∵0C=1,∴在Rt△OBC中,OB===2.故答案为:2.【点评】本题考查的是垂径定理及勾股定理,先求出BC的长,再利用勾股定理求出OB的长是解答此题的关键.14.如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为∠ABC=90°.【考点】切线的判定.【专题】开放型.【分析】根据切线的判定方法知,能使BC成为切线的条件就是能使AB垂直于BC的条件,进而得出答案即可.【解答】解:当△ABC为直角三角形时,即∠ABC=90°时,BC与圆相切,∵AB是⊙O的直径,∠ABC=90°,∴BC是⊙O的切线,(经过半径外端,与半径垂直的直线是圆的切线).故答案为:∠ABC=90°.【点评】此题主要考查了切线的判定,本题是一道典型的条件开放题,解决本类题目可以是将最终的结论当做条件,而答案就是使得条件成立的结论.15.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是3200(1﹣x)2=2500 .【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】本题可根据:原售价×(1﹣降低率)2=降低后的售价得出两次降价后的价格,然后即可列出方程.【解答】解:依题意得:两次降价后的售价为3200(1﹣x)2=2500,故答案为:3200(1﹣x)2=2500.【点评】本题考查降低率问题,由:原售价×(1﹣降低率)2=降低后的售价可以列出方程.16.甲、乙两名射击运动员在一次训练中,每人各打10发子弹,根据命中环数求得方差分别是=0.6, =0.8,则运动员甲的成绩比较稳定.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,即可求出答案.【解答】解:∵ =0.6, =0.8,∴<,甲的方差小于乙的方差,∴甲的成绩比较稳定.故答案为:甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.二次函数y=2(x﹣1)2+3的图象的顶点坐标是(1,3)【考点】二次函数的性质.【专题】应用题.【分析】首先知二次函数的顶点坐标根据顶点式y=a+,知顶点坐标是(﹣,),把已知代入就可求出顶点坐标.【解答】解:y=ax2+bx+c,配方得y=a+,顶点坐标是(﹣,),∵y=2(x﹣1)2+3,∴二次函数y=2(x﹣1)2+3的图象的顶点坐标是(1,3).【点评】解此题的关键是知二次函数y=ax2+bx+c的顶点坐标是(﹣,),和转化形式y=a+,代入即可18.已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2),试比较y1和y2的大小:y1>y2.(填“>”,“<”或“=”)【考点】二次函数图象上点的坐标特征.【分析】由于二次函数y=ax2+bx+c的图象的开口向上,对称轴为直线x=1,然后根据点A(﹣1,y 1)和点B(2,y2)离对称轴的远近可判断y1与y2的大小关系.【解答】解:∵二次函数y=ax2+bx+c的图象的对称轴为直线x=1,而1﹣(﹣1)=2,2﹣1=1,∴点(﹣1,y1)离对称轴的距离比点(2,y2)要远,∴y1>y2.故答案为>.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足解析式y=ax2+bx+c(a、b、c为常数,a≠0).三、解答题(本大题共有10小题,共96分)19.计算:2cos45°+(﹣1)0﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据45°角的余弦等于,任何非0数的0次幂等于1,有理数的负整数指数次幂等于正整数指数次幂的倒数,进行计算即可得解.【解答】解:2cos45°+(﹣1)0﹣()﹣1=2×+1﹣2=﹣1.【点评】本题考查了实数的运算,主要利用了零指数幂,负整数指数幂,以及特殊角的三角函数值,是基础题,熟记性质以及特殊角的三角函数值是解题的关键.20.解方程:x2﹣7x+10=0.【考点】解一元二次方程-因式分解法.【分析】把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).【解答】解:x2﹣7x+10=0,(x﹣2)(x﹣5)=0,x﹣2=0或x﹣5=0,x 1=2,x2=5.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.21.如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BE=DF,连接AE、CF.请你猜想:AE与CF有怎样的数量关系?并对你的猜想加以证明.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】探究型.【分析】由四边形ABCD是平行四边形,即可得AB∥CD,AB=CD,然后利用平行线的性质,求得∠ABE=∠CDF,又由BE=DF,即可证得△ABE≌△CDF,继而可得AE=CF.【解答】解:猜想:AE=CF.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.【点评】此题考查了平行四边形的性质与全等三角形的判定与性质.此题比较简单,注意掌握平行四边形的对边平行且相等,注意数形结合思想的应用.22.盱眙第一山景区为提高某景点的安全性,决定将到达景点的步行台阶进行改善,把倾角由45°减至30°,已知原台阶坡面AB的长为5m(BC所在地面为水平面)(1)改善后的台阶坡面会加长多少?(就是问AD比AB长多少?)(2)改善后的台阶多占多长一段水平地面?(结果精确到0.1m,参考数据:≈1.41,≈1.73)(就是求BD的长)【考点】解直角三角形的应用-坡度坡角问题.【专题】探究型.【分析】(1)要求改善后的台阶坡面会加长多少,只要求出AD的长,然后AD与AB作差即可,要求AD的长,根据AB和∠ABC可以求得AC的长,然后根据AC和∠ADC的度数即可求得AD,本题得以解决;(2)要求改善后的台阶多占多长一段水平地面,只要求的DC和BC的长,然后DC和BC作差即可,要求BC,根据AB和∠ABC可以求得,要求DC可以根据第一问求得的AC的长和∠ADC求得,本题得以解决.【解答】解:(1)∵由题意可得,AB=5m,∠ABC=45°,∠ADC=30°,∴AC=AB•sin45°=5×,∴AD=,∴AD﹣AB=()m,即改善后的台阶坡面会加长()m;(2)∵由题意可得,AB=5m,∠ABC=45°,∠ADC=30°,∴BC=AB•cos45°=5×,AC=AB•sin45°=5×,∴CD=,∴CD﹣BC==≈≈2.6m,即改善后的台阶多占2.6m长的一段水平地.【点评】本题考查解直角三角形的应用﹣﹣坡度坡角问题,解题的关键是明确题意,找出所求问题需要的条件,利用特殊角的三角函数值进行解答.23.(10分)(2012•遵义)如图,4张背面完全相同的纸牌(用①、②、③、④表示),在纸牌的正面分别写有四个不同的条件,小明将这4张纸牌背面朝上洗匀后,先随机摸出一张(不放回),再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌出现的所有可能结果;(2)以两次摸出牌上的结果为条件,求能判断四边形ABCD是平行四边形的概率.【考点】列表法与树状图法;平行四边形的判定.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)求得能判断四边形ABCD是平行四边形的情况,利用概率公式即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵能判断四边形ABCD是平行四边形的有:①②,①③,②①,②④,③①,③④,④②,④③共8种情况,∴能判断四边形ABCD是平行四边形的概率为: =.【点评】此题考查的是用列表法或树状图法求概率的知识.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.24.①如图1,在每个小方格都是边长为1个单位长度的正方形方格纸中有△OAB,请将△OAB绕O 顺时针旋转90°,画出旋转后的△OA′B′.②折纸:有一张矩形纸片ABCD如图2,要将点D沿某条直线翻转180°,恰好落在BC边上的点D′处,请在图中作出该直线.【考点】作图-旋转变换;作图-轴对称变换.【专题】压轴题.【分析】(1)根据旋转角度为90°,旋转方向为顺时针,旋转中心为点O可找到各点的对应点,顺次连接即可得出△A′B′O即可;(2)连接DD′,再作出DD′的垂直平分线即可.【解答】解:(1)如图所示:△A′B′O即为所求;(2)如图所示:直线MN即为所求.25.某区对参加2014年中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:视力频数(人)频率4.0≤x<4.3 20 0.14.3≤x<4.6 40 0.24.6≤x<4.9 70 0.354.9≤x<5.2 a 0.35.2≤x<5.5 10 b(1)本次调查的样本容量为200 ;在频数分布表中,a的值为60 ,b的值为0.05 ,并将频数分布直方图补充完整;(2)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是35% ;(3)根据上述信息估计全区初中毕业生中视力正常的学生有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)用第1组的频数除以第1组的频率可得到样本容量,然后用样本容量分别减去各组的频数可得到第4组的频数,用第5组的频数除以样本容量可得到该组的频率;(2)第4、5组的视力正常,所以视力正常的人数占被统计人数的百分比可计算出,(3)由(2)中的视力正常人数的百分比乘以5000即可.【解答】解:(1)∵抽样调查的总人数=20÷0.1=200,∴a=200﹣20﹣40﹣70﹣10=60,b=10÷200=0.05;如图所示:(2)视力正常的人数占被统计人数的百分比=×100%=35%;故答案为35%;(3)全区初中毕业生中视力正常的学生有35%×5000=1750人.【点评】本题考查了频(数)率分布直方图:频率分布表列出的是在各个不同区间内取值的频率,频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.直角坐标系中的纵轴表示频率与组距的比值,即小长方形面积=组距×频数组距=频率.②各组频率的和等于1,即所有长方形面积的和等于1.也考查了用样本估计总体.26.如图,AB为⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,已知∠D=30°.(1)求∠A的度数;(2)若点F在⊙O上,CF⊥AB,垂足为E,CF=,求图中阴影部分的面积.【考点】切线的性质;扇形面积的计算.【分析】(1)连接OC,则△OCD是直角三角形,可求出∠COD的度数;由于∠A与∠COD是同弧所对的圆周角与圆心角.根据圆周角定理即可求得∠A的度数;(2)由图可知:阴影部分的面积是扇形OCB和Rt△OEC的面积差;那么解决问题的关键是求出半径和OE的长;在Rt△OCE中,∠OCE=∠D=30°,已知了CE的长,通过解直角三角形,即可求出OC、OE的长,由此得解.【解答】解:(1)连接OC,∵CD切⊙O于点C∴∠OCD=90°(1分)∵∠D=30°∴∠COD=60°(2分)∵OA=OC∴∠A=∠ACO=30°;(4分)(2)∵CF⊥直径AB,CF=∴CE=(5分)∴在Rt△OCE中,tan∠COE=,OE===2,∴OC=2OE=4(6分)∴S 扇形BOC =,∴S 阴影=S 扇形BOC ﹣S △EOC =.(10分)【点评】本题主要考查了切线的性质、垂径定理以及扇形面积的计算方法.不规则图形的面积,可以转化为几个规则图形的面积的和或差来求.27.我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x (元/件)… 20 30 40 50 60 …每天销售量(y 件) … 500 400 300 200 100 … (1)把上表中x 、y 的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)市物价部门规定,该工艺品销售单价最高不能超过35元/件,那么销售单价在什么范围时,工艺厂试销该工艺品每天获得的利润不低于5000元?【考点】二次函数的应用;一元二次方程的应用;一次函数的应用.【分析】(1)设y与x的函数关系式为y=kx+b,由待定系数法求出其解即可;(2)设工艺厂试销该工艺品每天获得的利润为W元,根据利润=销售总价﹣成本总价表示出W与x 的数量关系,由二次函数的性质就可以求出结论;(3)由(2)的解析式建立不等式,求出其解即可.【解答】解:(1)描点,如图.设y与x的函数关系式为y=kx+b,由题意,得,解得:.故y与x的函数关系式为y=﹣10x+700;(2)设工艺厂试销该工艺品每天获得的利润为W元,由题意,得W=(﹣10x+700)(x﹣10),W=﹣10(x﹣40)2+9000,∵a=﹣10<0,=9000元.∴x=40时,W最大答:销售单价定为40时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元;(3)由题意,得﹣10(x﹣40)2+9000≥5000,(x﹣20)(x﹣60)≤0,则或,解得:①无解;②20≤x≤60.∵x≤35,∴20≤x≤35.答:销售单价20≤x≤35时,工艺厂试销该工艺品每天获得的利润不低于5000元.【点评】本题考查了待定系数法求一次函数的解析式的运用,由利润率问题的数量关系求二次函数的解析式的运用,一元二次不等式的解法的运用,解答时求出函数的解析式是关键.28.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)利用待定系数法求二次函数解析式、一次函数解析式;(2)需要分类讨论:①当点E在线段AC上时,点F在点E上方,则F(x,x+3)和②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1),然后利用二次函数图象上点的坐标特征可以求得点E的坐标;(3)方法一:过点P作PQ⊥x轴交AC于点Q;过点C作CG⊥x轴于点G,如图1.设Q(x,x+1),则P(x,﹣x2+2x+3).根据两点间的距离公式可以求得线段PQ=﹣x2+x+2;最后由图示以及三角形的面积公式知S△APC=﹣(x﹣)2+,所以由二次函数的最值的求法可知△APC的面积的最大值;方法二:过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,如图2.设Q(x,x+1),则P(x,﹣x2+2x+3).根据图示以及三角形的面积公式知S△APC =S△APH+S直角梯形PHGC﹣S△AGC═﹣(x﹣)2+,所以由二次函数的最值的求法可知△APC的面积的最大值.【解答】解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,,解得,故抛物线为y=﹣x2+2x+3;又设直线为y=kx+n过点A(﹣1,0)及C(2,3),。
第5题图第7题图第8题图第9题图2016-2017学年第一学期初三数学期末考试综合试卷(2)命题:汤志良;试卷分值130分;知识涵盖:苏科新版九年级上下册;一、选择题:(本大题共10小题,每小题3分,共30分)1.已知α为锐角,且()sin102α-︒=,则α等于……………………………………()A.45°;B.55°;C.60°;D.65°;2.(2016•六盘水)用配方法解一元二次方程2430x x+-=时,原方程可变形为……()A.()221x+=;B.()227x+=;C.()2213x+=;D.()2219x+=;3.二次函数2(1)2y x=--图象的对称轴是………………………………………()A.直线1x=- B.直线1x= C.直线2x=- D.直线2x=4.(2016•湖北襄阳)一组数据2,x,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是()A.3,3,0.4;B.2,3,2 C.3,2,0.4;D.3,3,2;5.(2016•随州)如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若:DOE COAS S=1:25,则:BDE CDES S的比是…………………………………()A.1:3 ;B.1:4;C.1:5;D.1:25;6.将二次函数22y x=的图象向左移1个单位,再向上移2个单位后所得函数的关系式为()A.22(1)2y x=+-;B.22(1)2y x=--;C.22(1)2y x=++; D.22(1)2y x=-+;7.(2016•贺州)抛物线2y ax bx c=++的图象如图所示,则一次函数y ax b=+与反比例函数cyx=在同一平面直角坐标系内的图象大致为…………………………………()8.(2016•苏州)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为…………()A.B.m;C.()2m;D.()2m;第10题图第13题第14题图第16题图第17题图第18题图 9.如图,在△ABC 中,∠A=50°,内切圆I 与边BC 、CA 、AB 分别相切于点D 、E 、F ,则∠EDF 的度数为……………………………………………………………( ) A .55°; B .60°;C .65°; D .70°;10. (2015•莱芜)如图,在直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,以BC 为直径的⊙O 与AD 相切,点E 为AD 的中点,下列结论正确的个数是………………………( ) (1)AB+CD=AD ;(2)BCEABE DCE S S S =+ ;(3)AB •CD=214BC ;(4)∠ABE=∠DCE .A .1;B .2;C .3;D .4;二、填空题:(本大题共8小题,每小题3分,共24分) 11x 的取值范围是 .12.方程24x x =的解是 . 13.二次函数22y x x k =-++的部分图象如图所示,若关于x 的一元二次方程220x x k -++=的一个解为1x =3,则另一个解2x = .14.(2016•宁波)如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为 . 15.(2016•眉山)设m 、n 是一元二次方程2270x x +-=的两个根,则23m m n ++= .16.(2015•乐山)如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为 . 17. (2015•安顺)如图,在▱ABCD 中,AD=2,AB=4,∠A=30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则阴影部分的面积是 (结果保留π).18.(2016•通辽)如图是二次函数2y ax bx c =++图象的一部分,图象过点A (-3,0),对称轴为直线x=-1,给出以下结论:①abc <0 ;②240b ac ->;③4b+c <0; ④若B 15,2y ⎛⎫- ⎪⎝⎭、C 21,2y ⎛⎫- ⎪⎝⎭为函数图象上的两点,则12y y >;⑤当-3≤x ≤1时,y ≥0,其中正确的结论是(填写代表正确结论的序号) .三、解答题:(本题满分76分)19. (本题满分10分)(1)解不等式组313112123x x x x +<-⎧⎪++⎨+⎪⎩≤ (2)解方程:()()2234x x x ++=-;20. (本题满分5分)2sin3060cos45tan 45︒-︒︒+︒;21. (本题满分6分)(2016•湘潭)如图,CD 为⊙O 的直径,弦AB 交CD 于点E ,连接BD 、OB . (1)求证:△AEC ∽△DEB ;(2)若CD ⊥AB ,AB=8,DE=2,求⊙O 的半径.22.(本题满分6分)如图,在平面直角坐标内,O 为原点,点A 的坐标为(10,0),点B 在第一象限内,BO=5,sin ∠BOA=35. (1)求点B 的坐标; (2)求tan ∠BAO 的值.23. (本题满分6分)(2016•苏州)在一个不透明的布袋中装有三个小球,小球上分别标有数字-1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ; (2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M 的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M 的纵坐标,请用树状图或表格列出点M 所有可能的坐标,并求出点M 落在如图所示的正方形网格内(包括边界)的概率.24.(本题满分8分)如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6,AE=的半径;(3)在第(2)小题的条件下,则图中阴影部分的面积为.25.(本题满分6分)如图,一艘货轮在A处发现其北偏东45°方向有一海盗船,立即向位于正东方向B处的海警舰发出求救信号,并向海警舰靠拢,海警舰立即沿正西方向对货轮实施救援,此时距货轮200海里,并测得海盗船位于海警舰北偏西60°方向的C处.(1)求海盗船所在C处距货轮航线AB的距离.(2)若货轮以45海里/时的速度在A处沿正东方向海警舰靠拢,海盗以50海里/时的速度由C处沿正南方向对货轮进行拦截,问海警舰的速度应为多少时才能抢在海盗之前去救货轮?(结果保留根号)26.(本题满分8分)某商场以每件42元的价格购进一批服装,由试销知,每天的销量t(件)与每件的销售价x元之间的函数关系为t=204-3x.(1)试写出每天销售这种服装的毛利润y(元)与每件销售价x(元)之间的函数表达式(每件服装毛利润=销售价-进货价);(2)每件销售价为多少元,才能使每天的毛利润最大,最大的毛利润是多少?(3)商场欲在保证毛利润不低于480元的情况下,尽可能地增加销量,减少库存,试问每件服装的销售价格应为多少元?27.(本题满分9分)已知:如图,⊙A与y轴交于C、D两点,圆心A的坐标为(1,0),⊙A C作⊙A的切线交x于点B(-4,0).(1)点B的坐标是为(,),切线BC的解析式为;(2)若点P是第一象限内⊙A上一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点G的坐标;(3)向左移动⊙A(圆心A始终保持在x上),与直线BC交于E、F,在移动过程中是否存在点A,使得△AEF是直角三角形?若存在,求出点A 的坐标,若不存在,请说明理由。
28.(本题满分9分)如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?2016-2017学年第一学期初三数学期末考试综合试卷(2)参考答案一、选择题:1.B ;2.B ;3.B ;4.A ;5.B ;6.C ;7.B ;8.B ;9.C ;10.D ; 二、填空题:11. 2x ≥;12.0或4;13.-1;14. 60π;15.5;17. 33π-;18.②③⑤; 三、解答题:19.(1) 52x -≤<-;(2)112x =-,22x =-;20. 2;21.(1)略;(2)5;22.B (4,3);(2)12;23.(1)13;(2)树状图略,概率为23; 24.(1)解:(1)连接OD ,∵OA=OD ,∴∠OAD=∠ODA ,∵AD 平分∠CAM ,∠OAD=∠DAE , ∴∠ODA=∠DAE ,∴DO ∥MN ,∵DE ⊥MN ,∴DE ⊥OD ,∵D 在⊙O 上,∴DE 是⊙O 的切线;(2)3)8π- 25.(1)100;(2);26. 解:(1)由题意,销售利润y (元)与每件的销售价x (元)之间的函数关系为y=(x-42)(-3x+204),即233308568y x x =-+-. 故商场卖这种服装每天的销售利润y (元)与每件的销售价x (元)之间的函数关系式为233308568y x x =-+-;(2)配方,得()2355507y x =--+.故当每件的销售价为55元时,可取得最大利润,每天最大销售利润为507元.(3)由题意()2355507480x --+≥,解得52≤x ≤58,为了尽可能地增加销量,减少库存,又销量t=204-3x ,t 随着x 的增加而减小,所以销售价格应为52元时销量最大.27.(1)(-4,0),122y x =+;(2)G ,233⎛⎫+ ⎪ ⎪⎝⎭;(3)A4⎛⎫- ⎪⎝⎭或4⎛⎫- ⎪⎝⎭; 28. (1)证明:∵A 、D 关于点Q 成中心对称,HQ ⊥AB , ∴∠HQD=∠C=90°,HD=HA , ∴∠HDQ=∠A ,∴△DHQ ∽△ABC .(2)解:①如图1,当0<x ≤2.5时,ED=10-4x ,QH=AQtanA=34x ,此时y=1210-4x )×34x = 231524x x -+, 当x=54时,最大值y=7532,②如图2,当2.5<x ≤5时,ED=4x-10,QH=AQtanA=34x 此时y=12(4x-10)×34x =223153575242432x x x ⎛⎫-=-- ⎪⎝⎭. 当2.5<x ≤5时,y 有最大值,当x=5时,最大值为y=754, 则当2.5<x ≤5时,y 有最大值,其最大值是y=754. 综上可得,y 的最大值为754. (3)解:①如图1,当0<x <2.5时, 若DE=DH ,∵DH=AH=cos QA A =54x ,DE=10-4x ,∴10-4x=54x ,x=4021. ∵∠EDH >90°,∴EH >ED ,EH >DH ,即ED=EH ,HD=HE 不可能; ②如图2,当2.5<x ≤5时,若DE=DH ,4x-10=54x ,x=4011; 若HD=HE ,此时点D ,E 分别与点B ,A 重合,x=5;若ED=EH ,则∠ADH=∠DHE ,又∵点A 、D 关于点Q 对称,∴∠A=∠ADH ,∴△EDH ∽△HDA ,∴DE DH DH AD ,x=320103,∴当x 的值为4021,4011,5,320103时,△HDE 是等腰三角形.。