数理统计研究生【精选】
- 格式:ppt
- 大小:417.01 KB
- 文档页数:19
习 题 三1.正常情况下,某炼铁炉的铁水含碳量()24.55,0.108XN .现在测试了5炉铁水,其含碳量分别为4.28,4.40,4.42,4.35,4.37.如果方差没有改变,问总体的均值有无显著变化?如果均值没有改变,问总体方差是否有显著变化()0.05α=? 解 由题意知,()24.55,0.108XN ,5n =,511 4.3645i i x x ===∑,0.05α=,()5220110.095265i i s x μ==-=∑.1)当00.108σ=时,①设统计假设0010: 4.55,: 4.55H H μμμμ==≠=. ②当0.05α=时,0.975121.96uu α-==,临界值121.960.0947c α-===, 拒绝域为000{}{0.0947}K x c x μμ=->=->.③004.364 4.550.186x K μ-=-=∈,所以拒绝0H ,接受1H ,即认为当方差没有改变时,总体的均值有显著变化.2)当0 4.55μ=时,①设统计假设2222220010:0.108,:0.108H H σσσσ==≠=. ②当0.05α=时,临界值()()()()222210.02520.975122111150.1662,5 2.566655c n c n n n ααχχχχ-======, 拒绝域为222202122220000{}{2.56660.1662}ssssK c c σσσσ=><=><或或.③202200.095268.16700.108sK σ==∈,所以拒绝0H ,接受1H ,即均值没有改变时,总体方差有显著变化.2.一种电子元件,要求其寿命不得低于1000h .现抽取25件,得其均值950x h =.该种元件寿命()2,100XN μ,问这批元件是否合格()0.05α=?解 由题意知,()2,100XN μ,25n =,950x =,0.05α=,0100σ=.①设统计假设0010:1000,:1000H H μμμμ≥=<=. ②当0.05α=时,0.05 1.65u u α==-,临界值()1.6533c α==-=-, 拒绝域为000{}{33}K x c x μμ=-<=-<-.③00950100050x K μ-=-=-∈,所以拒绝0H ,接受1H ,即认为这批元件不合格. 3.某食品厂用自动装罐机装罐头食品,每罐标准质量为500g ,现从某天生产的罐头中随机抽测9罐,其质量分别为510,505,498,503,492,502,497,506,495〔单位:g1)机器工作是否正常()0.05α=?2)能否认为这批罐头质量的方差为25.5()0.05α=?解 设X 表示用自动装罐机装罐头食品每罐的质量〔单位:g 〕.由题意知()2500,XN σ,方差2σ未知. 9n =,911500.88899i i x x ===∑,0.05α=,()()222111133.6111118nni i i i s x x x x n ===-=-=-∑∑,()52201130.66679i i s x μ==-=∑1)①设统计假设0010:500,:500H H μμμμ==≠=.②()()0.9751218 2.306tn t α--==,临界值()121 2.306 4.4564c n α-=-==,拒绝域为000{}{ 4.4564}K x c x μμ=->=->.③00500.88895000.8889x K μ-=-=∉,所以接受0H ,拒绝1H ,即认为机器工作正常.2)当0500μ=时,①设统计假设2222220010: 5.5,: 5.5H H σσσσ==≠=. ②当0.05α=时,临界值()()()()222210.02520.975122111190.3,9 2.113399c n c n n n ααχχχχ-======,拒绝域为222202122220000{}{2.11330.3}ssssK c c σσσσ=><=><或或.③2022030.66671.013785.5sK σ==∉,所以接受0H ,拒绝1H ,即为这批罐头质量的方差为25.5.4.某部门对当前市场的鸡蛋价格情况进行调查,抽查某市20个集市上鸡蛋的平均售价为()3.399元/500克,标准差为()0.269元/500克.往年的平均售价一直稳定 ()3.25元/500克左右,问该市场当前的鸡蛋售价是否明显高于往年()0.05α=?解 由题意知,()23.25,XN σ,20n =, 3.399x =,0.05α=,0.269s =.①设统计假设0010: 3.25,: 3.25H H μμμμ≤=>=. ②当0.05α=时,()()10.95119 1.729t n t α--==,临界值()11 1.7290.1067c n α-=-==, 拒绝域为000{}{0.1067}K x c x μμ=->=->③003.399 3.250.149x K μ-=-=∈,所以拒绝0H ,接受1H ,即认为市场当前的鸡蛋售价是明显高于往年. 5.某厂生产的维尼纶纤度()2,0.048XN μ,某日抽测8根纤维,其纤度分别为1.32,1.41,1.55,1.36,1.40,,1.50,1.44,1.39,问这天生产的维尼纶纤度的方差2σ是否明显变大了()0.05α=? 解 由题意知()2,0.048XN μ,8n =,811 1.421258i i x x ===∑,0.05α=,()()22211110.0122118nni i i i s x x x x n ===-=-=-∑∑.①设统计假设2222220010:0.048,:0.048H H σσσσ==>=. ②当0.05α=时,临界值()()2210.951117 2.0117c n n αχχ-=-==-,拒绝域为2202200{}{ 2.01}s s K c σσ=>=>.③202200.012215.29950.048s K σ==∈,所以拒绝0H ,接受1H ,即这天生产的维尼纶纤度的方差2σ明显变大了.6.某种电子元件,要求平均寿命不得低于2000h ,标准差不得超过130h .现从一批该种元件中抽取25个,测得寿命均值为1950h ,标准差148s h =.设元件寿命服从正态分布。
数理统计考研复试题库及答案一、选择题1、设随机变量 X 的概率密度为 f(x) = 2x, 0 < x < 1,则 P{02 <X < 08} =()A 06B 04C 032D 016答案:C解析:P{02 < X < 08} =∫02,08 2x dx = x^2|02,08 = 064 004 =062、设 X₁, X₂,, Xₙ 是来自正态总体 N(μ, σ²) 的样本,样本均值为X,样本方差为 S²,则()A Xμ ~ N(0, 1)B n(Xμ) /σ ~ N(0, 1)C (Xμ) /(S /√n) ~ t(n 1)D (n 1)S²/σ² ~χ²(n 1)答案:D解析:根据抽样分布的性质,(n 1)S²/σ² ~χ²(n 1)3、设总体 X 服从参数为λ 的泊松分布,X₁, X₂,, Xₙ 是来自总体 X 的样本,则λ 的矩估计量为()A XB S²C 2XD 1 /X答案:A解析:由 E(X) =λ ,且样本矩等于总体矩,可得λ 的矩估计量为X。
4、对于假设检验问题 H₀: μ =μ₀,H₁: μ ≠ μ₀,给定显著水平α ,若检验拒绝域为|Z| >zα/2 ,其中 Z 为检验统计量,当 H₀成立时,犯第一类错误的概率为()A αB 1 αC α/2D 1 α/2答案:A解析:第一类错误是指 H₀为真时拒绝 H₀,犯第一类错误的概率即为显著水平α 。
5、设随机变量 X 和 Y 相互独立,且都服从标准正态分布 N(0, 1) ,则 Z = X²+ Y²服从()A 正态分布B 自由度为 2 的χ² 分布C 自由度为 1 的χ² 分布D 均匀分布答案:B解析:因为 X 和 Y 相互独立且都服从标准正态分布,所以 Z = X²+ Y²服从自由度为 2 的χ² 分布。
12研究生数理统计习题部分解答第六章 抽样分布1. (1994年、数学三、选择)设),,,(21n X X X 是来自总体),(2σμN 的简单随机样本,X 是样本均值,记22121)(11∑=--=i i X X n S ,22122)(1∑=-=i i X X n S ,22123)(11∑=--=i i X n S μ,22124)(1∑=-=i i X n S μ则服从自由度1-n 的t 分布的随机变量是=T ( )。
A .11--n S X μB .12--n S X μC .nS X 3μ-D .nS X 4μ-[答案:选B ]当2212)(11∑=--=i i X X n S 时,服从自由度1-n 的t 分布的随机变量应为 =T nSX μ-A 、由222121)(11S X X n S i i =--=∑=,111--=--=n S X n S X T μμ 而不是nSX T μ-=B 、由212221221)(111)(1S nn X X n n n X X n S n i ii i -=--⋅-=-=∑∑== nSX n S X n S X T nn μμμ-=--=--=∴-1112。
2. (1997年、数学三、填空)设随机变量Y X ,相互独立,均服从)3,0(2N 分布且91,,X X 与91,,Y Y 分别是来自总体Y X ,的简单随机样本,则统计量292191Y Y X X U ++++= 服从参数为( )的()分布。
[答案:参数为(9)的(t )分布]解:由Y X ,相互独立,均服从)3,0(2N 分布,又91,,X X 与91,,Y Y 分别来自总体Y X ,,可知91,,X X 与91,,Y Y 之间均相互独立,均服从分布)3,0(2N因而)39,0(~291⨯∑=N X i i ,)1,0(~9191N X X i i ∑==,)1,0(~3N Y i ,)9(~32912χ∑=⎪⎭⎫ ⎝⎛i i Y ,且∑==9191i i X X 与∑=⎪⎭⎫⎝⎛9123i i Y 相互独立,因而()292191912919123919191Y Y X X YXXi ii ii Y i ii ++++==∑∑∑∑==== 服从参数为9的t 分布。