硕士生《数理统计》例题及答案
- 格式:doc
- 大小:1.04 MB
- 文档页数:20
5.1解:首先计算11n i i x x n ==∑=550,11ni i y y n ==∑=57;再计算离差平方和621()x x i i l x x ==-∑=175000,61()()x y i i i l x x y y ==--∑=10300;计算回归系数1ˆ/0.0589x x x y l l β=≈,01ˆˆ24.6286y x ββ=-≈; 从而得到回归方程:ˆ24.62860.0589yx =+。
5.4解:(1)首先计算110.7029n i i x x n ==≈∑,11 1.5782ni i y y n ==≈∑;再计算离差平方和1721()0.7094x x i i l x x ==-≈∑,171()() 1.4682x y i i i l x x y y ==--≈-∑;计算回归系数1ˆ/ 2.0698xx x yl l β=≈-,01ˆˆ 3.0332y x ββ=-≈; 从而得到回归方程:ˆ 3.0332 2.0698yx =-。
下算2DY σ=的无偏估计。
(由P 97性质 5.2.4知:22ˆ/(2)E S n σ=-是2σ的无偏估计)因为1722222212/()/3.0686 1.4682/0.70940.0298ETRy y x yx x i x y x xi S S S l l l y y l l ==-=-=--≈-=∑所以,22ˆ/(172)0.0020E S σ=-=。
(2)用F 检验法检验,取显著水平0.05α=,统计假设为:0111ˆˆ:0,:0H H ββ=≠ 临界值 21ˆ(1,2)0.002 4.540.01280.7094xxF n c l ασ--⨯==≈;拒绝域{}201ˆ0.0128K c β=>=。
由于221ˆ(2.0698)0.0128c β=->=,所以拒绝0H 接受1H ,故认为Y 和X 之间的线性关系显著。
12研究生数理统计习题部分解答第六章 抽样分布1. (1994年、数学三、选择)设),,,(21n X X X 是来自总体),(2σμN 的简单随机样本,X 是样本均值,记22121)(11∑=--=i i X X n S ,22122)(1∑=-=i i X X n S ,22123)(11∑=--=i i X n S μ,22124)(1∑=-=i i X n S μ则服从自由度1-n 的t 分布的随机变量是=T ( )。
A .11--n S X μB .12--n S X μC .nS X 3μ-D .nS X 4μ-[答案:选B ]当2212)(11∑=--=i iX X n S 时,服从自由度1-n 的t 分布的随机变量应为 =T nSX μ-A 、由222121)(11S X X n S i i =--=∑=,111--=--=n S X n S X T μμ 而不是nSX T μ-=B 、由212221221)(111)(1S nn X X n n n X X n S n i ii i -=--⋅-=-=∑∑== nSX n S X n S X T nn μμμ-=--=--=∴-1112。
2. (1997年、数学三、填空)设随机变量Y X ,相互独立,均服从)3,0(2N 分布且91,,X X 与91,,Y Y 分别是来自总体Y X ,的简单随机样本,则统计量292191Y Y X X U ++++= 服从参数为( )的()分布。
[答案:参数为(9)的(t )分布]解:由Y X ,相互独立,均服从)3,0(2N 分布,又91,,X X 与91,,Y Y 分别来自总体Y X ,,可知91,,X X 与91,,Y Y 之间均相互独立,均服从分布)3,0(2N因而)39,0(~291⨯∑=N X i i ,)1,0(~9191N X X i i ∑==,)1,0(~3N Y i ,)9(~32912χ∑=⎪⎭⎫ ⎝⎛i i Y ,且∑==9191i i X X 与∑=⎪⎭⎫⎝⎛9123i i Y 相互独立,因而()292191912919123919191Y Y X X YXXi ii ii Y i ii ++++==∑∑∑∑==== 服从参数为9的t 分布。
习 题 三1.正常情况下,某炼铁炉的铁水含碳量()24.55,0.108XN .现在测试了5炉铁水,其含碳量分别为4.28,4.40,4.42,4.35,4.37.如果方差没有改变,问总体的均值有无显著变化?如果均值没有改变,问总体方差是否有显著变化()0.05α=? 解 由题意知,()24.55,0.108XN ,5n =,511 4.3645i i x x ===∑,0.05α=,()5220110.095265i i s x μ==-=∑.1)当00.108σ=时,①设统计假设0010: 4.55,: 4.55H H μμμμ==≠=. ②当0.05α=时,0.975121.96uu α-==,临界值121.960.0947c α-===, 拒绝域为000{}{0.0947}K x c x μμ=->=->.③004.364 4.550.186x K μ-=-=∈,所以拒绝0H ,接受1H ,即认为当方差没有改变时,总体的均值有显著变化.2)当0 4.55μ=时,①设统计假设2222220010:0.108,:0.108H H σσσσ==≠=. ②当0.05α=时,临界值()()()()222210.02520.975122111150.1662,5 2.566655c n c n n n ααχχχχ-======, 拒绝域为222202122220000{}{2.56660.1662}ssssK c c σσσσ=><=><或或.③202200.095268.16700.108sK σ==∈,所以拒绝0H ,接受1H ,即均值没有改变时,总体方差有显著变化.2.一种电子元件,要求其寿命不得低于1000h .现抽取25件,得其均值950x h =.该种元件寿命()2,100XN μ,问这批元件是否合格()0.05α=?解 由题意知,()2,100XN μ,25n =,950x =,0.05α=,0100σ=.①设统计假设0010:1000,:1000H H μμμμ≥=<=. ②当0.05α=时,0.05 1.65u u α==-,临界值()1.6533c α==-=-, 拒绝域为000{}{33}K x c x μμ=-<=-<-.③00950100050x K μ-=-=-∈,所以拒绝0H ,接受1H ,即认为这批元件不合格. 3.某食品厂用自动装罐机装罐头食品,每罐标准质量为500g ,现从某天生产的罐头中随机抽测9罐,其质量分别为510,505,498,503,492,502,497,506,495〔单位:g1)机器工作是否正常()0.05α=?2)能否认为这批罐头质量的方差为25.5()0.05α=?解 设X 表示用自动装罐机装罐头食品每罐的质量〔单位:g 〕.由题意知()2500,XN σ,方差2σ未知. 9n =,911500.88899i i x x ===∑,0.05α=,()()222111133.6111118nni i i i s x x x x n ===-=-=-∑∑,()52201130.66679i i s x μ==-=∑1)①设统计假设0010:500,:500H H μμμμ==≠=.②()()0.9751218 2.306tn t α--==,临界值()121 2.306 4.4564c n α-=-==,拒绝域为000{}{ 4.4564}K x c x μμ=->=->.③00500.88895000.8889x K μ-=-=∉,所以接受0H ,拒绝1H ,即认为机器工作正常.2)当0500μ=时,①设统计假设2222220010: 5.5,: 5.5H H σσσσ==≠=. ②当0.05α=时,临界值()()()()222210.02520.975122111190.3,9 2.113399c n c n n n ααχχχχ-======,拒绝域为222202122220000{}{2.11330.3}ssssK c c σσσσ=><=><或或.③2022030.66671.013785.5sK σ==∉,所以接受0H ,拒绝1H ,即为这批罐头质量的方差为25.5.4.某部门对当前市场的鸡蛋价格情况进行调查,抽查某市20个集市上鸡蛋的平均售价为()3.399元/500克,标准差为()0.269元/500克.往年的平均售价一直稳定 ()3.25元/500克左右,问该市场当前的鸡蛋售价是否明显高于往年()0.05α=?解 由题意知,()23.25,XN σ,20n =, 3.399x =,0.05α=,0.269s =.①设统计假设0010: 3.25,: 3.25H H μμμμ≤=>=. ②当0.05α=时,()()10.95119 1.729t n t α--==,临界值()11 1.7290.1067c n α-=-==, 拒绝域为000{}{0.1067}K x c x μμ=->=->③003.399 3.250.149x K μ-=-=∈,所以拒绝0H ,接受1H ,即认为市场当前的鸡蛋售价是明显高于往年. 5.某厂生产的维尼纶纤度()2,0.048XN μ,某日抽测8根纤维,其纤度分别为1.32,1.41,1.55,1.36,1.40,,1.50,1.44,1.39,问这天生产的维尼纶纤度的方差2σ是否明显变大了()0.05α=? 解 由题意知()2,0.048XN μ,8n =,811 1.421258i i x x ===∑,0.05α=,()()22211110.0122118nni i i i s x x x x n ===-=-=-∑∑.①设统计假设2222220010:0.048,:0.048H H σσσσ==>=. ②当0.05α=时,临界值()()2210.951117 2.0117c n n αχχ-=-==-,拒绝域为2202200{}{ 2.01}s s K c σσ=>=>.③202200.012215.29950.048s K σ==∈,所以拒绝0H ,接受1H ,即这天生产的维尼纶纤度的方差2σ明显变大了.6.某种电子元件,要求平均寿命不得低于2000h ,标准差不得超过130h .现从一批该种元件中抽取25个,测得寿命均值为1950h ,标准差148s h =.设元件寿命服从正态分布。
数理统计试题(工程硕士,2008)一、填空题(每空4分,共32分)1.母体是指: .2.简单随机样本: .3.无偏估计量是指 .4.假设检验的基本思想: .5.如何检验一元线性回归模型成立否: .6. 设母体2(,)X N μσ ,12(,,,)n X X X分布, 分布, 2211()ni i Xμσ=-∑ 分布,三、(8分)设总体X 的概率密度为()()0x e x f x x θθθ--⎧≥=⎨<⎩ 其中0θ>是未知参数,n X X X ,,,21 是来自总体的一个样本,求:参数θ 的最大似然估计量.四、(8分)设总体X 的概率密度为⎩⎨⎧<<+=其它010)1()(x x x f θθ其中1->θ是未知参数,n X X X ,,,21 是来自总体的一个样本,求:参数θ 的矩估计量.五、(8分)某工厂某日生产的某种零件中随机地抽取9个测得长度(单位:毫米)如下:14.6、14.7、15.1、14.9、14.8、15.0、15.1、15.2、14.8,如果该零件长度服从正态分布,且已知标准差为0.15毫米,求零件长度均值的置信水平为0.95的置信区间.六、(8分)统计两个文学家马克.吐温的8篇小说以及斯诺特格拉斯的10篇小说中由3个字母组成的词的比例得:马克.吐温: 10.231875x = *210.000212s =斯诺特格拉斯: 20.2097x = *220.000093344s = 设两组数据分别来自正态总体,且两总体方差相等,两样本相互独立.问: 两个作家小说中由3个字母组成的词的比例是否有显著差异.2(0.05, (16) 2.1199)t αα==.七、(12分)检查一本书的100页,记录各页中的印刷错误的个数,其结果如下:错误个数X 0 1 2≥3 含X 个错误的页数36 40 19 5问:能否认为一页的印刷错误的个数服从泊松分布{}, 1,2,3,!kP X k e k k λλ-=== . 2(0.05, () 5.991)ααχα==. 提示: (0)(1)(2)(3)1p X p X p X p X =+=+=+≥=.七、(12分)下表给出在三台搅拌机中采用两种不同搅拌速度获得的混凝土强度数据。
数理统计试题及答案一、选择题1. 在一次试验中,事件A和事件B是互斥事件,概率分别为0.4和0.3。
则事件“A或B”发生的概率是多少?A. 0.1B. 0.2C. 0.3D. 0.7答案:D. 0.72. 一批产品的重量服从正态分布,均值为100g,标准差为5g。
若随机抽取一件产品,其重量大于105g的概率是多少?A. 0.6827B. 0.1587C. 0.3413D. 0.0228答案:B. 0.15873. 一家量化投资公司共有1000名员工,调查结果显示,有700人拥有股票,400人拥有债券,300人既拥有股票又拥有债券。
随机选择一名员工,问其既拥有股票又拥有债券的概率是多少?A. 0.3B. 0.4C. 0.2D. 0.15答案:A. 0.34. 设X和Y为两个随机变量,已知X的期望为2,方差为4;Y的期望为5,方差为9,且X与Y的协方差为6。
则X + Y的期望为多少?A. 5B. 7C. 6D. 9答案:B. 7二、计算题1. 一箱产品中有10个次品,从中随机抽取3个,求抽到1个次品的概率。
解答:总共的可能抽取组合数为C(10,3) = 120。
抽取到1个次品的组合数为C(10,1) * C(90,2) = 4005。
所以,抽到1个次品的概率为4005/120 = 33.375%。
2. 已知某城市的男性身高服从正态分布,均值为172cm,标准差为5cm;女性身高也服从正态分布,均值为160cm,标准差为4cm。
问男性身高高于女性身高的概率是多少?解答:需要计算男性身高大于女性身高的概率,可以转化为计算两个正态分布随机变量之差的概率。
设随机变量X表示男性身高,Y表示女性身高,则X - Y服从正态分布,其均值为172cm - 160cm = 12cm,方差为5cm^2 + 4cm^2 =41cm^2。
要计算男性身高高于女性身高的概率,即计算P(X - Y > 0)。
首先,标准化X - Y,得到标准正态分布的随机变量Z:Z = (X - Y - 12) / sqrt(41)所以,P(X - Y > 0) = P(Z > (0 - 12) / sqrt(41)) = P(Z > -2.464)查标准正态分布表可知,P(Z > -2.464) ≈ 0.9937所以,男性身高高于女性身高的概率约为99.37%。
1、 离散型随机变量X 的分布律为P (X=x i )=p i ,i=1.2…..,则11=∑=ni ip2、 设两个随机变量X ,Y 的联合分布函数F (x ,y ),边际分布Fx (x ),Fy (y ),则X 、Y相互独立的条件是)()(),(y F x F y x F Y X •=3、 X 1,X 2,….X 10是总体X~N (0,1)的样本,若2102221X X X +⋅⋅⋅++=ξ,则ξ的上侧分位数025.0ξ=解:因为X~N (0,1),所以2102221X X X +⋅⋅⋅++=ξ~)10(2χ,查表得025.0ξ=20.54、 设X~N (0,1),若Φ(x )=0.576,则Φ(-x )= 解:Φ(-x )=1-Φ(x )=1-0.576=0.4245、设X 1,X 2,….X n 是总体),(~2σμN X 的样本,∑=-=ni iXY 122)(1μσ,则EY=n解:∑=-=ni iXY 122)(1μσ~)(2n χ,E 2χ=n ,D 2χ=2n二、设设X 1,X 2,….X n 是总体),(~2σμN X 的样本,∑=-=6122)(51i i X X s ,试求)5665.2(22σ≤s P 。
解:因为),(~2σμN X ,所以有)5(~)(126122χσ∑=-i i X X ,则⎪⎪⎪⎪⎭⎫ ⎝⎛≤-=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-=≤=≤∑∑==8325.12)(5665.25)()5665.2()5665.2(261226122222σσσσi ii i X X P X X P s P s P 查2χ分布表得=≤)5665.2(22σs P ⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=8325.12)(2612σi i X X P =1-α=1-0.0248=0.9752 三.设总体X 的概率密度为f(x)= (1),(01)0a x x α⎧+<<⎨⎩,其他,其中α>0,求参数α的矩估计和极大似然估计量。
研究生课程数理统计习题及答案数理统计习题答案 第一章1.解: ()()()()()()()12252112222219294103105106100511100519210094100103100105100106100534n i i n i i i i X x n S x x x n ===++++====-=-⎡⎤=-+-+-+-+-⎣⎦=∑∑∑2. 解:子样平均数 *11l i i i X m x n ==∑()118340610262604=⨯+⨯+⨯+⨯=子样方差 ()22*11l i i i S m x x n ==-∑()()()()222218144034106422646018.67⎡⎤=⨯-+⨯-+⨯-+⨯-⎣⎦=子样标准差4.32S ==3. 解:因为i i x ay c-=所以 i i x a cy =+11ni i x x n ==∑()1111ni i ni i a cy n na cy n ===+⎛⎫=+ ⎪⎝⎭∑∑1nii c a y n a c y==+=+∑ 所以 x a c y =+ 成立()2211n x i i s x x n ==-∑()()()22122111ni i ini i nii a cy a c y n cy c yn c y y n====+--=-=-∑∑∑因为 ()2211nyi i s y yn ==-∑ 所以222x ys c s = 成立()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--====4. 解:变换 2000i i y x =-11n i i y y n ==∑()61303103042420909185203109240.444=--++++-++= ()2211n y i i s y y n ==-∑()()()()()()()()()222222222161240.444303240.4441030240.4449424240.44420240.444909240.444185240.44420240.444310240.444197032.247=--+--+-+⎡⎣-+-+-+⎤--+-+-⎦=利用3题的结果可知2220002240.444197032.247x y x y s s =+===5. 解:变换 ()10080i i y x =-13111113n i i i i y y y n ====∑∑[]12424334353202132.00=-++++++-+++++=()2211nyi i s y y n ==-∑()()()()()()22222212 2.0032 2.005 2.0034 2.001333 2.003 2.005.3077=--+⨯-+-+⨯-⎡⎣⎤+⨯-+--⎦=利用3题的结果可知2248080.021005.30771010000yx yx s s -=+===⨯ 6. 解:变换()1027i i y x =-11li i i y m y n ==∑()13529312434101.5=-⨯-⨯+⨯+=-2710yx =+=26.85 ()2211lyi i i s m y y n ==-∑()()()()22221235 1.539 1.5412 1.534 1.510440.25⎤=⨯-++⨯-++⨯+++⎡⎣⎦= 221 4.4025100x y s s ==170 170174178*11li i i x m x n ==∑()1156101601416426172121682817681802100166=⨯+⨯+⨯+⨯+⨯+⨯+⨯=()22*11l i i i s m x x n ==-∑()()()()()()()2222222110156166141601662616416628168166100121721668176166218016633.44=⨯-+⨯-+⨯-+⨯-⎡⎣⎤+⨯-+⨯-+⨯-⎦= 8解:将子样值重新排列(由小到大)-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,3.2,3.21()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--====9解: 121211121211n n i ji j n x n x n n x n n ==+=+∑∑112212n x n xn n +=+()12221121n n ii s x x n n +==-+∑试写出子样的频数分布,再写出经验分布函数并作出其图形。
1 《数理统计》考试题及参考答案一、填空题(每小题3分,共15分)1,设总体X 和Y 相互独立,且都服从正态分布2(0,3)N ,而129(,,)X X X 和129(,,)Y Y Y 是分别来自X 和Y 的样本,则192219X X U Y Y++=++ 服从的分布是服从的分布是_______ ._______ .解:(9)t .2,设1ˆq 与2ˆq 都是总体未知参数q 的估计,且1ˆq 比2ˆq 有效,则1ˆq 与2ˆq 的期望与方差满足的期望与方差满足_______ . _______ .解:1212ˆˆˆˆ()(), ()()E E D D q q q q =<.3,“两个总体相等性检验”的方法有“两个总体相等性检验”的方法有_______ _______ _______ 与与____ ___.解:秩和检验、游程总数检验.4,单因素试验方差分析的数学模型含有的三个基本假定是_______ .解:正态性、方差齐性、独立性.5,多元线性回归模型=+Y βX e 中,β的最小二乘估计是ˆβ=_______ .解:1ˆ-¢¢X Y β=()X X .二、单项选择题(每小题3分,共15分)1,设12(,,,)(2)nX X X n ³ 为来自总体(0,1)N 的一个样本,X 为样本均值,2S 为样本方差,则____D___ .(A )(0,1)nX N ;(B )22()nS n c;(C )(1)()n X t n S- ;(D )2122(1)(1,1)ni i n X F n X =--å .2,若总体2(,)X N m s ,其中2s 已知,当置信度1a -保持不变时,如果样本容量n 增大,则m 的置信区间信区间____B___ . ____B___ .(A )长度变大;(B )长度变小;(C )长度不变;(D )前述都有可能)前述都有可能. .3,在假设检验中,分别用a ,b 表示犯第一类错误和第二类错误的概率,则当样本容量n 一定时,下列说法中正确的是下列说法中正确的是____C___ . ____C___ .(A )a 减小时b 也减小;(B )a 增大时b 也增大;(C ),a b 其中一个减小,另一个会增大;(D )(A )和()和(B B )同时成立)同时成立. .4,对于单因素试验方差分析的数学模型,设T S 为总离差平方和,e S 为误差平方和,A S 为效应平方和,则总有和,则总有___A___ . ___A___ .(A )T e A S S S =+;(B )22(1)A S r c s- ;(C )/(1)(1,)/()AeS r F r n r S n r ---- ; ((D )A S 与e S 相互独立相互独立. . 5,在一元回归分析中,判定系数定义为2T S R S=回,则,则___B____ . ___B____ . (A )2R 接近0时回归效果显著;时回归效果显著; ((B )2R 接近1时回归效果显著;时回归效果显著; (C )2R 接近¥时回归效果显著;时回归效果显著; ((D )前述都不对)前述都不对. .三、(本题10分)设总体21(,)X N m s 、22(,)Y N m s ,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,且两个样本相互独立,X Y 、和22XYS S 、分别是它们的样本均值和样本方差,分别是它们的样本均值和样本方差,证明证明证明12121211()()(2)n n X Y t n n S w m m ---+-+ ,其中2221212(1)(1)2X Y n S n S S n n w -+-=+-. 证明:易知易知221212(,)X Y N n n s s m m --+ , 1212()()(0,1)11X Y U N n nm m s ---=+ .由定理可知由定理可知22112(1)(1)Xn S n c s-- ,22222(1)(1)Yn S n c s-- .由独立性和2c 分布的可加性可得分布的可加性可得222121222(1)(1)(2)XYn Sn SV n n c ss--=++- .由U 与V 得独立性和t 分布的定义可得分布的定义可得1212121112()()(2)/(2)n n X Y Ut n n V n n Swm m ---=+-+-+.四、(本题10分)已知总体X 的概率密度函数为1, 0(),0, xe xf x qq -ì>ï=íïî其它其中未知参数0q >, 12(,,,)n X X X 为取自总体的一个样本,求q 的矩估计量,并证明该估计量是无偏估计量.的矩估计量,并证明该估计量是无偏估计量.解:(1)()11()xv E Xxf x dxxe dx q q q-¥¥-¥-¥====òò,用111ni i vX X n ===å 代替,所以代替,所以å===ni i X X n11ˆq .(2)11ˆ()()()()ni i E E X E X E X n q q =====å,所以该估计量是无偏估计.,所以该估计量是无偏估计. 五、(本题10分)设总体X 的概率密度函数为(;)(1),01f x x x q q q =+<<,其中未知参数1q >-,12(,,)n X X X 是来自总体X 的一个样本,试求参数q 的极大似然估计.的极大似然估计.解:1 (1)() , 01() 0 , nniii x x L qq q =ì+P <<ï=íïî其它 当01i x <<时,1ln ()ln(1)ln n i i L n x q q q ==++å,令1ln ()ln 01ni i d L n x d q q q ==+=+å,得,得 1ˆ1ln nii n x q==--å.六、(本题10分)设总体X 的密度函数为e,>0;(;)0,0,xx f x x l l l -ì=í£î未知参数0l >,12(,,)n X X X 为总体的一个样本,证明X 是1l的一个UMVUE UMVUE..证明:由指数分布的总体满足正则条件可得由指数分布的总体满足正则条件可得222211()ln (;)I E f x E l l l l l éù¶-æö=-=-=ç÷êú¶èøëû, 1l的的无偏估计方差的C-R 下界为下界为2221221[()]11()nI n n l l l l l-éùêú¢ëû==.另一方面另一方面()1E X l =, 21V a r ()X n l=,即X 得方差达到C-R 下界,故X 是1l的UMVUE UMVUE..七、(本题10分)合格苹果的重量标准差应小于0.005公斤.在一批苹果中随机取9个苹果称重, 得其样本标准差为007.0=S 公斤, 试问:(1)在显著性水平05.0=a 下, 可否认为该批苹果重量标准差达到要求 (2)如果调整显著性水平0.025a =,结果会怎样?,结果会怎样?参考数据参考数据: : 02319)9(2025.0=c , 91916)9(205.0=c, 53517)8(2025.0=c, 50715)8(205.0=c .解:(1)()()2222021:0.005,~8n SH s c c s-£=,则应有:,则应有:()()2220.050.0580.005,(8)15.507P c cc >=Þ=,具体计算得:22280.00715.6815.507,0.005c ´==>所以拒绝假设0H ,即认为苹果重量标准差指标未达到要求.求.(2)新设)新设 20:0.005,H s £ 由2220.025280.00717.535,15.6817.535,0.005cc ´=Þ==< 则接受假设,即可以认为苹果重量标准差指标达到要求.即可以认为苹果重量标准差指标达到要求.八、(本题10分)已知两个总体X 与Y 独立,211~(,)X m s ,222~(,)Y m s ,221212, , , m m s s未知,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,求2122s s的置信度为1a -的置信区间的置信区间.. 解:设22, XY S S分别表示总体X Y ,的样本方差,由抽样分布定理可知的样本方差,由抽样分布定理可知221121(1)(1)Xn S n c s -- , 222222(1)(1)Yn S n c s-- , 由F 分布的定义可得分布的定义可得211222121222221222(1)(1)(1,1)(1)(1)XX Y Yn Sn S F F nn n SS n ss s s--==---- . 对于置信度1a -,查F 分布表找/212(1,1)F n n a --和1/212(1,1)F n n a ---使得使得[]/2121/212(1,1)(1,1)1P F n n F Fn n a a a---<<--=-,即22222121/2122/212//1(1,1)(1,1)X Y X Y S S S S P F n n F n n a a s a s-æö<<=-ç÷----èø, 所求2221s s 的置信度为a -1的置信区间为的置信区间为 22221/212/212//, (1,1)(1,1)X Y XY S S S S F n n F n n a a -æöç÷----èø.九、(本题10分)试简要论述线性回归分析包括哪些内容或步骤.试简要论述线性回归分析包括哪些内容或步骤.解:建立模型、参数估计、回归方程检验、回归系数检验、变量剔除、预测.建立模型、参数估计、回归方程检验、回归系数检验、变量剔除、预测.。
数理统计考试题及答案一、选择题1. 下列哪个选项是中心极限定理的主要内容?A. 样本均值的分布趋近于正态分布B. 样本方差的分布趋近于正态分布C. 样本中位数的分布趋近于正态分布D. 样本最大值的分布趋近于正态分布答案:A2. 假设检验中的两类错误是什么?A. 第一类错误和第二类错误B. 系统误差和随机误差C. 测量误差和估计误差D. 抽样误差和非抽样误差答案:A二、填空题1. 总体均值的估计量是_________。
答案:样本均值2. 在进行假设检验时,如果原假设被拒绝,则我们犯的是_________错误。
答案:第一类三、简答题1. 简述什么是置信区间,并说明其在统计分析中的作用。
答案:置信区间是指在一定置信水平下,用于估计总体参数的一个区间范围。
它的作用是在统计分析中提供对总体参数估计的不确定性度量,帮助我们了解估计值的可信度。
2. 解释什么是点估计和区间估计,并给出它们的区别。
答案:点估计是用样本统计量来估计总体参数的单个值。
区间估计是在一定置信水平下,给出总体参数可能落在的区间范围。
它们的区别在于点估计提供了一个具体的数值,而区间估计提供了一个包含该数值的区间,反映了估计的不确定性。
四、计算题1. 某工厂生产的零件长度服从正态分布,样本均值为50mm,样本标准差为1mm,样本容量为100。
求95%置信水平下的总体均值的置信区间。
答案:首先计算标准误差:\( SE = \frac{\sigma}{\sqrt{n}} =\frac{1}{\sqrt{100}} = 0.1 \)。
然后根据正态分布的性质,95%置信水平下的置信区间为:\( \bar{x} \pm 1.96 \times SE \)。
计算得到:\( 50 \pm 1.96 \times 0.1 = (49.84, 50.16) \)。
2. 假设某公司员工的日均工作时长服从正态分布,样本均值为8小时,样本标准差为0.5小时,样本容量为36。