拱坝基本参数应力分析毕业论文
- 格式:doc
- 大小:1.96 MB
- 文档页数:72
某大跨度钢管混凝土拱桥拱座局部应力分析摘要:拱座是钢管混凝土拱桥中受力较为复杂部位之一,本文采用两步有限元法,对某大跨钢管混凝土拱桥拱座的受力情况进行了分析,得到其应力分布规律,对应力集中部位提出了构造改进建议,给类似结构的设计和施工提供参考。
关键词:大跨度钢管混凝土拱桥;拱座;局部应力;圣维南原理;两步有限元法Abstract: The force acting on arch abutment is complex of concrete filled steel tube arch bridge. The arch abutment of a long-span concrete filled steel tube arch bridge is analyzed based on the second-order finite element method. The stress distribution is obtained and some suggestions for design and construction are recommended.Keyword: long-span concrete filled steel tube arch bridge; arch abutment; local stress; Saint-Venantprinciple; second-order finite element method1 引言钢管混凝土拱桥是一种造型美观,受力合理的结构形式。
在近十几年间,该结构形式在我国得到迅速的发展。
大跨度钢管混凝土拱桥的拱肋由钢管和内灌混凝土构成,钢管混凝土拱肋需插入到拱座中,拱座需要承受拱肋传来的巨大轴力和弯矩,在拱肋与拱座相接的范围内,受力复杂,往往会出现应力集中的现象。
目前在结构设计中,对该部位理论计算相对较少,对其应力分布情况掌握得不够明确。
中里坪浆砌石拱坝坝体应力分析和评价水利水电技术第4l卷2010年第12期中里坪浆砌石拱坝坝体应力分析和评价赵寿刚,张俊霞,兰雁'(1.水利部堤防安全及病害防治工程技术研究中心,河南郑州450003;2.黄河水利科学研究院,河南郑州450003)摘要:针对中里坪拱坝实际工程情况,运用多拱梁法进行了应力计算和分析,以便掌握坝体在不同荷栽组合工况的应力分布状况,为大坝可行性评价及蓄水过程提供理论依据.计算结果表明:(1)中里坪拱坝的主压应力在三种组合工况下均满足规范要求,拱坝结构有一定的安全裕度;(2)主拉应力也都在规范允许范围内.关键词:浆砌石拱坝;坝体应力;荷载组合;拱梁分载法;中里坪浆砌石拱坝中图分类号:TV642.4(261)文献标识码:A文章编号:1000—0860(2010)l2—0038—04 AnalysisandevaluationondambodystressforZhonglipingMasonryArchDam ZHAOShougang,ZHANGJunxia,LANYan,(1.ResearchCenteronLeveeSafetyandDisasterPrevention,MWR,Zhengzhou450003,He nan,China;2.YellowRiverInstituteofHydraulicResearch,Zhengzhou450003,Henan,China) Abstract:FortheactualoperationconditionofZhonglipingMasonryArchDam,thestresscal culationandanalysisaremadewiththemuhi—archbeammethod,SOastoknowthestressdistributionsundertheoperationconditionsofvari ousloadingcombina—tions,andthenprovidesatheoreticalbasisforthefeasibilityevaluationonthedambodyandth eimpoundmentprocess.Thecal—culationshowsthatnotonlytheprincipalcompressivestressesofZhonglipingMasonryArch Damunderthreeloadingcombination conditionscanallmeetthespecificationsconcernedwithacertainsafetyallowanceforthearc hstructure,butalltheprincipal tensilestressesarealsowithintheallowableareaspecified.Keywords:masonryarchdam;dambodystresses;loadingcombination;arch—cantilevermethod;ZhonglipingMasonryArchDam1引言中里坪水电站位于丹江支流老灌河上,是河南卢氏境内水能开发的龙头水电站工程,坝址以上控制流域面积358km,多年平均径流量8234万1TI.水库电站开发的目标是以发电为主,兼顾防洪,水产养殖,生态等综合利用,最大限度为当地经济与社会发展服务.根据坝址区的地形地质条件和建筑材料分布情况…,大坝设计为浆砌石单曲拱坝.设计最大坝高59.3m,坝顶厚度7.04in,最大坝底厚度22.0ITI,顶拱中心角为105.,底拱中心角49.94..河床溢流段净宽70.5Ill,堰顶高程925.0m,堰面曲线方程Y=0.135X,挑流消能,鼻坎高程916.85m,反弧半径R=10.0ITI,挑射角20ol.为了掌握坝体在不同荷载组合工况的应力分布状况,为大坝可行性评价及蓄水过程提供理论依据,运用多拱梁法对中里坪浆砌石拱坝坝体进行了应力计算和分析.2荷载计算及荷载组合2.1坝体荷载计算(1)坝体自重:浆砌石容重按23.0kN/m.(2)静水压力:正常蓄水位929.00m;设计洪水收稿日期:基金项目:作者简介:2010—08.12科技部公益性科研院所长基金资助项目(HKY—JBYW-20O9—20);国家重点基础研究发展计划"973"计划(2(X3qCB714103). 赵寿刚(1971--),男,高级工程师. WaterResourcesandHydropowerEngineeringV o1.4INo.12位929.93nl;校核洪水位931.82m.水的容重采用9.81kN/m.(3)扬压力:设坝基排水,排水孔处渗透压力折减系数取0.45;扬压力按相应水位计算.(4)泥沙压力强度:按下式计算泥沙压力强度标准值Ph,tan2(45.一-5-1(1),,淤沙浮容重采用=8kN/m.,淤沙内摩擦角取l4.,淤沙高程按910.85m.(5)温度荷载:拱坝运行期温度作用的标准值按下式计算△=Tm+一(2)△=.+一(3)荷载计算所用公式均取于《水工建筑物荷载设计规范》(DL5077--1997)中所列公式,式中的符号意义均同于规范.(6)地震力.地震荷载一般包括坝体惯性力,地震动水压力和动土压力.通常在6度及6度以下的地震区可不考虑地震荷载.2.2荷载组合根据工程实际情况,中里坪拱坝坝体应力分析的荷载组合按表1采用.3坝体应力计算分析及评价3.1计算方法拱坝是一种外形复杂的空间壳体结构,目前国际上计算拱坝坝体应力广泛采用拱梁分载法和有限元法,我国现行规范规定拱坝应力分析以"拱梁分载法"作为衡量强度安全的主要标准J.多拱梁分载法是在拱坝中取若干条单宽悬臂梁和单高水平拱,把荷载分配给这些梁和拱的单元,并要求在这样的荷载分赵寿刚,等∥中里坪浆砌石拱坝坝体应力分析和评价致.以拱梁上的外载和切割面上内力的合成力系为未知量,按拱梁交点变形协调条件求解拱梁荷载,变形,内力及应力.表1荷载组合荷载荷载主要温度荷载考虑计算条件静泥组合自水扬沙情况重压压压温温力升降力力上游水位929.00m正常蓄水位下游水位880.00m,/,/,/,/,/基本泥沙高程910.85m组合上游水位929.93m设计洪水位下游水位887.53m,/,/,/,/,/泥沙高程910.85m上游水位931.82I13特殊校核洪水位下游水位888.95m,/,/,/,/,/组合泥沙高程910.85m计算分析采用黎展眉研制的ARTH多拱梁法三向调整程序卜,总共划分为7拱13梁(见图1);温度荷载按《砌石坝设计规范》(SL25—2006)规定的公式计算,采用黎展眉研制的程序进行计算.图中计算节点为梁(I)与拱(J)的交点,计算分析中,梁编号从中心拱冠梁分别向左拱端及右拱端对称编为左6~1梁和右6一1梁,拱层号从顶层至底层依次为N=0—6号.从分布图中可以看出,梁,拱交点中共计49个内结点.3.2基本计算参数取值根据中里坪水库地质勘探和试验资料,坝体应力计算参数具体指标见表2.3.3荷载及拱坝几何参数各种组合情况下的水沙压力如表3所列,温度荷配下,梁系和拱系在其交点处指定方向的变位都一载如表4所列. ,寸卜卜n∞000+..\\右岸!.I旱——————一0左\12345右6.左654321心793130,\625955.50..4437N=029*******-42—/r'rr',r_r●『1r,'/,,N=I.60565l45383023.17.12..8.5_r!:!口9\一'.575246.39N=2.31.24.1813.9.\rrr1:N=3534740.322519J458'『rr48.41N=4332620.口882舞\一'r1N=5rr.423427/49\:N=635[图1拱冠梁法坝体应力拱,梁及计算结点分布(高程单位:n1)水利水电技术第41卷2010年第12期赵寿刚,等∥中里坪浆砌石拱坝坝体应力分析和评价表2基本计算参数项目计算参数正常蓄水位929.0llfl设计洪水位(P=2%)929.93m上游水位死水位911.0In校核洪水位(P=0.2%)931.82m下游水位正常蓄水位880.0m设计洪水位887.53m校核洪水位888.95rfl 泥沙淤沙高程910.85m浮容重8kN/m内摩擦角18.C10细石混凝土灌浆泊松比0.2坝体材料弹L0xlo4MPa线胀系数8X10一/℃容重2l~23kN/m3基岩弹性模量0.8X10NPa泊松比0.29多年平均最高月气多年平均最低月气温多年平均气温15.1℃温27.0℃气温一1.2℃说明坝基当量矩形长宽比采用设计值为王75,取坝体容重为23kN/m3表3各种组合情况下的水沙压力拱圈拱淤沙混沙水沙压力强度/t.m一高程层深度力强度正常水位设计洪校核洪说明水位水位/m号^/m/t.m2929.0In993m931.82m929.0O_——O0.932.82淤沙高程910.85m,916.38l,——l2.6213.5515.44淤沙浮容重8kN/,907.523.351.6423.1424.0725.96淤沙内摩擦角=897.5313.356.5238.0238.9540.8414.,泥沙压力强889.0421.8510.6750.6751.6O53.49度为Ps=htan882.0528.8514.0961.o962.0263.9l(4s.-孚)876.0634.85l7.0270.0270.9572.84 表4温升,温降情况温度荷载拱圈拱层封拱温温升/℃温降/℃说明高程/m号度/℃929.001412.360.13—6.16—0.13多年平均气温15.1℃,916.38l21—0.558.2l—1Q45—1.81多年平均月平均气温:907.527l1.12l1.904.43—2.59多年1月份平均气温为897.53151.73l3.94—3.31—2.38一1.2℃;多年7月份889.046lO.O214.575.74一1.69平均气温为27.0℃.882.052O—4.4114.70—8.23一1.O2计算时1月份气温修正为n0℃876.0692.O34.59一O.O3—4.59表4中,为截面平均温度,等效线性温差的合成结果,包括以下三个温度场:(1)封拱温度场的截面平均温度及等效线性温差;(2)年平均温度场的截面平均温度及等效线性温差;(3)变化温度场的截面平均温度及等效线性温差.中里坪拱坝体几何参数如表5所列.3.4主应力计算成果对中里坪浆砌石拱坝应力分析,荷载组合包括:①正常水位+温降;②设计洪水位+温升;③校核洪水位+温升.其中,①,②为基本组合,③为特殊组合.各种组合的主应力计算成果见表6.40表5拱坝体几何参数拱圈拱层拱厚拱圈平均左岸中心右岸中心中心距相邻拱圈高程/m号r/rfl半径R/m角/(.)角/(.)/nl高差/m929.008.3O98.2059.5254.24012.62916.3819.5O97.6O5O.9644.90O8.889O7.52lO.8296.9443.1237.1601O.oo897.53l3.2895.7137.4233.4908.5O889.0416.0594.3332.6230.31O7.00882.05l8.4093.1522.5324.2706.00876.0620.3492.18l5.4215.840注:中心距为各层拱中心与顶层拱中心的水平距离,对于定圆心的单曲拱坝,一般中心距都应为0.表6主应力计算成果①正常水位②设计洪水位③校核洪水位荷载组合+温降+温升+温升最大主压应力/MPa第1主发生部位应力最大主拉应力/MPa上发生部位游坝面最大主压应2.001.511.55力/MPa第2主发生部位拱冠梁2层拱冠梁底层拱冠梁底层应力最大主拉应一0.62一O.86一0.90力/MPa发生部位左拱5梁底层右拱6梁底层右拱6梁底层最大主压应2.092.1O2.24力/MPa左拱6梁底左拱6梁底左拱6梁底层第1主发生部位层层应力最大主拉应力/MPa下发生部位游坝面最大主压应力/NPa第2主发生部位一O.3l应力最大主拉应一1.13一0.31力/MPa拱冠梁5层右拱6梁底右拱6梁底层发生部位层最大径向位移/mm一21.7l2—9.943一l1.3l3注:梁编号从拱冠梁分别从左拱向右拱对称编为左,右6~1梁,拱层号从顶层至底层为0~6(见图1);最大径向位移向下游为负. 最大径向位移①组合发生在拱冠梁顶层;②,③组合发生在拱冠梁2 层.3.5分析和评价3.5.1允许应力取值允许主拉应力883.0m高程以上根据《砌石坝设计规范》(sL25—2006),粗料石,块石砌体取拱坝周边1.20MPa,其他部位为1.00MPa.883.0m高程以下的允许主拉应力参照《混凝土拱坝设计规范》水利水电技术第4l卷2010年第12期(SL282--2003),基本组合取为1.2MPa,特殊组合取为1.5MPa.允许主压应力883.0m高程以上根据《砌石坝设计规范》(SL25--2006),水泥砂浆标号为M10,现场石料饱和抗压强度取为60MPa,查表得基本组合为4.6MPa,特殊组合为5.3MPa.883.0m高程以下参照《混凝土拱坝设计规范》(SL282--2003),允许主压应力基本组合取为4.28MPa,特殊组合取为5.0MPa.3.5.2结果评价从表6可以看出,中里坪砌石拱坝的主压应力,主拉应力在3种组合工况下均满足规范要求.尤其是最大主压应力都很小,其中组合①最大主压应力为2.09MPa;组合②最大主压应力为2.10MPa;组合③最大主压应力为2.24MPa.都远小于允许主压应力4.28MPa(基本组合)及5.0MPa(特殊组合).说明拱坝结构在压应力方面有一定的安全裕度.主拉应力除组合①下游坝面拱冠梁的第5层(高程876.0~882.0m)主拉应力为1.13MPa稍大外,其余两种组合的主拉应力均未超过0.9MPa.主拉应力均满足允许主拉应力1.2MPa(基本组合)及1.5MPa(特殊组合)的要求,亦即所有主拉应力都在规范允许范围内.4结语根据给定的坝体几何参数,筑坝材料力学参数,赵寿刚,等∥中里坪浆砌石拱坝坝体应力分析和评价岩体及结构面的力学参数,水文地质参数,相关边界条件及不同荷载组合工况,进行坝体应力,应变计算分析,从坝体应力计算结果可得出如下结论:(1)中里坪拱坝的主压应力在3种组合工况下均满足规范要求,拱坝结构有一定的安全裕度.(2)中里坪拱坝的主拉应力在3种组合工况下均未超过1.2MPa,所有主拉应力都满足规范要求.致谢:项目工作得到了贵州省水利厅黎展眉老师的指导和帮助,在此深表谢意!参考文献:[1]黄委会设计研究院地质勘探总队.卢氏县老灌河中里坪水库电站枢纽工程初步设计阶段工程地质勘察报告[R].洛阳:黄委会设计研究院地质勘探总队,2002.[2]河南九龙设计有限公司.河南省卢氏县中里坪水库电站初步设计报告[R].郑州:河南九龙设计有限公司,2006.[3]潘晓红,郭莉莉.后河水库坝体应力分析研究[J].人民黄河, 2004,26(2):44—45.[4]黎展眉.拱坝[M].北京:水利水电出版社,1982.[5]华东水利学院.砌石坝设计[MJ.北京:水利水电出版社, 1982.[6]朱伯芳.拱坝设计与研究[M].北京:中国水利水电出版社, 2oo2.[7]黎展眉.拱坝多拱梁法三向调整程序使用说明[R].贵阳:贵州省水利厅,1992.[8]黎展眉.拱坝温度荷载计算程序使用说明[R].贵阳:贵州省水利厅,1992.(责任编辑欧阳越)(上接第34页)锤动力分析软件校核,同以上结果接近,说明计算成果是可信的.4水力过渡过程计算的效果和意义(1)阀门前置缩短了阀门上游的管道长度,因此可以有效地减小阀前水锤压力,并降低阀门下游管道的工作压力.虽然阀门下游也会产生水锤压力波动,但其幅度很小.本工程条件下,阀门下游在62km长度范围内,管路水锤压力波动升压值仅为1.70~3.99m,降压值仅为一1.60~一6.0/11.(2)调节阀的流阻特性对水力过渡计算结果影响甚大.阀门特性曲线改进后,关阀时间仅为原来的1/2~1/3,却达到了相同甚至更好的效果.(3)多喷孔套筒式调节阀对高压力和大压差条件的管路系统适应能力强,线性度好,且能够根据个体水利水电技术第41卷201O年第12期工程情况调整设计,是一种好的阀型.(4)长距离管道输水工程水力条件较为复杂,为完满实现输水目标,保证工程安全,必须控制系统的压力,防止过高的水锤压力和负压发生.因此,对系统进行水力过渡过程分析与计算,并结合计算成果进行必要的调整,是一项不可缺少的重要工作.(责任编辑林雁庆)41。
模拟施工过程的拱坝结构应力分析蒋婉莹【摘要】针对某高拱坝利用有限单元法计算了自重整体施加、按梁施加、逐层施加三种情况,以及水压力和温度荷载作用下坝体的线弹性和非线性应力和变形,以等效应力及塑性应变来分析自重施加方式对坝体应力的影响。
线弹性有限元计算结果表明,对于高拱坝自重不同的施加方式对坝底和坝肩的应力影响很大;非线性有限元分析也表明,自重不同的施加过程对坝体的塑性应变及塑性应变能也有很大的影响。
所以,高拱坝实际的受力必须考虑坝体混凝土的浇筑过程,其计算结果才能客观地评价坝体的安全性,从而提高设计的可靠性。
【期刊名称】《土木工程》【年(卷),期】2018(007)001【总页数】11页(P37-47)【关键词】拱坝;有限元分析;施工加载模拟【作者】蒋婉莹【作者单位】[1]南京水利科学研究院,南京瑞迪建设科技有限公司,江苏南京;【正文语种】中文【中图分类】U441. 引言拱坝是水工建筑物中一种重要的挡水坝,它以结构合理、体型优美、安全性高、经济性优越而被广泛采用。
但随着坝体高度的增加,河谷地形、地质的复杂化及施工难度的提高,坝体的受力和工作状态越来越复杂,拱坝的安全性,尤其是高拱坝的安全性也越来越引起人们的关注。
坝体的应力水平是评价坝体结构安全性的一个重要指标[1]。
拱坝结构的应力分析方法主要有拱梁法和有限单元法[2]。
拱梁法属结构力学的方法,其力学模型有一定的简化,在坝体选型时常使用,但它无法分析坝体局部结构引起的应力变化,更难仿真坝体动态的施工力学过程。
有限单元法属现代计算力学方法[3]。
它适用于任意形状的拱坝,可以考虑复杂的地形、地质条件,可以考虑材料的塑性、开裂、流变等非线性行为,也可以很方便地模拟坝体的局部结构、混凝土浇筑顺序、横缝灌浆、温度控制、坝体蓄水等因素。
所以有限单元法在拱坝的设计中得到了广泛地应用,对应有限元计算应力–等效应力的控制标准也已写入规范[1]。
早期,用有限单元法来计算坝体应力时,自重、水压力、温度等荷载常在坝体上一次施加,并不考虑实际的受载历程。
大型坝体结构的应力分析与设计引言:大型坝体结构是水利工程中的重要组成部分,也是保障人们生产生活用水的重要策略。
在坝体结构设计中,应力分析是至关重要的环节。
本文将探讨大型坝体结构的应力分析与设计。
一、坝体结构的分类根据坝体材料和结构形式的不同,坝体结构可分为重力坝、拱坝、引力坝和填土坝等几种类型。
不同类型的坝体结构在力学特性及受力条件上存在差异,因此应力分析与设计也有所不同。
二、应力分析的基本原理坝体结构受到各种内外力的作用,主要包括水压力、浸渍力、温差应力、地震力以及重力等。
在应力分析中,需要考虑这些力的大小和方向,并计算出坝体结构的应力分布情况,以确保其稳定性和安全性。
三、材料力学参数的确定在应力分析与设计中,材料力学参数的确定是非常重要的。
常用的参数包括杨氏模量、泊松比、拉伸强度、抗压强度等。
这些参数需要通过试验或经验来确定,以保证所选取的材料能够满足工程要求。
四、应力分析的方法常用的应力分析方法包括解析方法和数值方法。
解析方法是基于数学模型和方程组的推导和求解,具有精确性和可靠性;而数值方法则是通过将坝体结构离散化为小单元,并应用数学模型和计算程序进行求解,具有较高的计算效率。
五、应力分布的计算和分析在应力分析中,需要计算和分析坝体结构的应力分布情况。
通常可以采用有限元分析等数值方法来求解复杂坝体结构的应力分布。
通过分析应力分布情况,可以评估结构的稳定性,并作出合理的修正和优化设计。
六、应力分析的结果与设计优化应力分析的结果对于坝体结构的设计优化非常重要。
通过分析结果,可以判断结构的强度和稳定性是否满足要求,并作出合理的调整和改进。
在设计优化中,需要综合考虑结构的安全性、经济性和实用性等因素。
七、结构施工与监测应力分析与设计只是坝体结构的一部分,施工与监测也同样重要。
在施工中,需要根据设计要求进行施工工艺选择,并对结构的质量进行严格控制。
同时,还需要设置合理的监测系统,及时获取结构的变形和应力信息,以便及时采取措施保障结构的安全。
大坝内应力分析有限元论文大坝的应力分析与优化福建工程学院姓名:王立友学号:0607104205 专业:勘查技术与工程班级:0702班指导老师:张士元2021-4-26大坝的应力分析与优化――――函数加载法分析前言:重力坝是一种古老而重要的坝型,主要依靠坝体自身重力来维持坝身的稳定。
岩基上重力坝的基本剖面呈三角形,上游面通常是垂直的或者稍微倾向下游的三角形断面。
重力坝具有诸多优点,比如安全可靠,结构作用明确,应力计算和稳定分析比较简单等。
但是坝体是要承受重力和不断变化的长期作用的水压力,为确保工程和人民的财产安全,坝体的稳定可靠。
需要对大坝进行应力分析有限元单元法作为一种数值计算方法,在工程分析领域中应用较为广泛,自20世纪中叶以来,以其独有的计算优势得到了广发的发展和应用,已出现了不同的有限元算法,并由此产生了一批非常成熟的通用和专业有限元商业软件。
随着计算机技术的飞速发展,各种工程软件也得到了广发的应用。
本文我们将采用一种有限元软件对大坝的应力进行分析。
1. 研究对象:有一大坝水面高度25m,坝体上端宽度10m,下端宽度20m,坝体材料的弹性模量为50GPa,柏松比为0.3。
然后将坝体改进,在大坝的底部设置一个坡度,对大坝的应力进行分散。
如有图所示2. 研究目的:试对两种坝体的水坝进应力分析,来判断两种坝体的安全可靠性。
进行优化选择。
3. 研究手段:利用有限元对其进行分析,该问题属于线性静力学问题。
由于坝体的跨度大于其他方向上的尺寸,因此在分析工程中按照平面应变问题求解,同时由于坝体内侧水的压力是梯度分布的,所以我采用函数加载法施加荷载。
4. 研究过程: a.建立有限元模型,并设定单元类型8 node 82,以及弹性模量和柏松比等材料属性。
b.创建建和模型,采用直接建模的方法,直接建立节点和单元。
创建大坝的关键点,生成面。
c.划分网络格。
对关键点和关键线进行网络格密度控制。
并且对坝体进行约束。
某水库拱坝应力分析及加固方案研究摘要:拱坝是一种重要的坝型但对坝区工程地质条件较为挑剔,施工难度相对较高而且存在坝身开裂的问题。
论文以某存在开裂渗漏现象的水库砌石拱坝为分析对象,采用结构力学法,开展了针对拱坝病害成因及加固措施等方面的系统研究关键词:应力;坝肩稳定;裂缝;坝体加固Abstract: the arch dam is a kind of important dam type but for engineering geological conditions of the dam are picky, construction difficulty relatively high and exist including the problem of craze. Papers to the existence of a cracking leakage phenomenon QiShi arch dam reservoir for the analysis of target, the structure mechanics method, and carried out the disease causes and for arch dam reinforcement measures, and other aspects of the system researchKeywords: stress; The abutment stability; Crack; Dam reinforcement1引言拱坝对其体形及坝基地质地形条件有较高的要求,但还是由于具有施工速度快、坝体断面小等优点,从而拥有很强的竞争力。
众所周知,尽管勘探技术与设计方法不断改进,但自拱坝出现以来,也伴随着各种隐患和病害。
因此,分析已建旧坝存在的安全隐患、各种病害及相应的加固方案,是十分必要且有意义的。
所以,本文根据某拱坝的实际情况,运用结构力学方法,分析拱坝开裂的根本原因,继而提出相应的加固措施,同时也为今后其整治提供可靠的设计依据。
双曲拱坝优化设计的论文关于双曲拱坝优化设计的论文第一篇:双曲拱坝优化设计论文一、双曲拱坝体形设计条件的特点每个工程的先前设计和施工,都要先考虑到建设环境,如施工区的地形、气温、运行等,以下将对这些环境因素进行分析:(1)地形:双曲拱坝的建设地形为V字形,两岸地基基本对称,而地形的坡度均为50°左右。
(2)气温:经过多年的观察发现,拱坝建设区域位置的常年气温均在18℃左右,当然,不包括特殊情况,在每年的8月份气温达到最高,在28℃左右;每年1月份气温达到最低,在0℃左右;年度温差较大。
二、双曲拱坝体形优化设计1.体形优化程序在对双曲拱坝的设计时,为了确保拱坝优化设计的正确合理,对优化设计方案进行比较,并采用中国水利水电科学研究院材料所编制的ADASO拱坝体形优化程序和浙江大学水工结构研究所编制的ADAO拱坝体形设计程序进行优化计算。
2.拱冠梁前倾度分析针对拱坝体形的优化设计,首先得对拱冠梁前倾度进行分析,对拱冠梁前倾度的分析就必须了解拱坝各方面的数据和构造,然而,我们研究的拱坝的河谷比较宽,梁向作用就比较明显;使得前倾的体形对上游坝踵有压紧的趋势,有利于减小对上游坝踵的作用力。
当水库的水位最大落差超过坝高的百分之七十,水库供水的死水位就非常低,拱坝向上游侧位移的倾向就比较明显,则在下游低高程处就会存在较大的压力。
在对双曲拱坝体形设计时,拱坝体形不能过于前倾,否则会造成应力过大,导致拱坝的稳定性减弱;所以,该工程双曲拱坝的拱梁前倾度要适中,不易过大或过小,这样会增强拱坝的稳定性。
3.拱圈中心角的优化在双曲拱坝的建设中,拱圈的中部拱受到的作用力最大,拱圈中心角在该处也是最大的,而拱坝的上部拱圈的拱作用力比较小,拱圈中心角也就比较小。
然而,本文研究的拱坝坝址比较宽,所以,对于拱坝中上部拱圈的作用力需要增强,这就说明中上部拱圈的中心角需要增大。
研究表明,坝址的岩性主要是熔结凝灰岩,它的抗风化能力较强,岩体比较坚硬,风化浅薄,坝址断层中等发育,但是其规模较小,坝肩的稳定性较好,设计人员可以利用这一特点,来增大中上部拱圈的中心角。
拱坝基本参数应力分析毕业论文目录第一章拱坝基本参数计算 (2)1.1坝顶高程的确定 (2)1.1.1坝顶超高计算 (2)1.1.2坝顶高程计算 (3)1.2坝型方案及结构布置 (3)第二章应力分析 (6)2.1 荷载计算 (6)2.1.1自重 (6)2.1.3泥沙压力 (9)2.1.4扬压力 (10)2.1.5温度荷载 (11)2.2 地基位移计算 (12)2.3拱冠应力分析(拱冠梁法) (15)γγ的确定 (38)2.2.3拱冠径向变位系数,i i2.2.4拱冠梁变位的计算 (41)2.2.5拱冠梁应力计算 (44)2.2.6拱圈应力计算 (52)第三章坝肩稳定分析 (56)3.1 稳定分析 (56)3.1.1计算式 (56)3.1.2分析过程 (57)第四章溢流设计及消能防冲设计 (60)4.1溢流面计算 (60)4.2下游消能防冲复核 (60)第一章拱坝基本参数计算1.1坝顶高程的确定1.1.1坝顶超高计算根据《水利水电工程等级划分及洪水标准》(SL252—2000)规定:龙源口水库设计洪水标准采用50年一遇,校核洪水标准采用500年一遇,按照《浆砌石坝设计规》SL25—91,《砼拱坝设计规》SL282—2003中规定计算大坝需要的坝顶超高。
坝顶超高按下式计算:△h=Zh i+h0+h C式中:Zh i—波浪高(m)h0—波浪中心线至水库静水位的高度(m)h C—安全超高(m)(正常运行情况h C=0.4m,非常运行情况h C =0.3m)g(Zhi)/V△2=0.0076V0-1/12(gD/V02)1/3gLm/ V02=0.331 V0-7/15(gD/V02)4/15h0=[π(Zhi)2/Lm]Cth(2πH1/Lm)式中:L m—波长(m)D—吹程(D=3000m)V0—多年平均最大风速,V0=17.5m/s,正常运用条件下采用 V0′=1.5 V0 H1—水域平均水深(m)坝顶超高计算成果列如表1-4。
表1-4 坝顶超高计算成果表1.1.2坝顶高程计算坝顶高程计算结果列表于1-5。
表1-5 坝顶高程计算成果表取大值322.88m,本工程取323.00m。
1.2坝型方案及结构布置本工程按砌石拱坝进行设计,初拟坝底厚为10m 。
该坝址受地形、地质条件的限制,右岩山体下有一冲沟从坎肩后面通过,左岸山体稍欠单薄,拱端的位置由于受这些因素的制约,仅能在有限的围进行选择,拱坝的具体位置布置如图所示。
拱圈参数的拟定:1、中心角2φA :砌石拱坝顶拱中心角可选用80°~110°,下层可采用40°~80°。
2、拱圈半径:初步拟定可按下式计算,拱圈半径R=L/(2sin φA),式中L 为弦长。
3、拱冠梁的形式和尺寸坝顶高程处开挖后的河床宽度L 经多次布置,L 最终选定为138.47m 。
根据经验公式,可求得坝顶底厚度。
)3(01.04.0H L T C ++=10002)(0832..0632.0HH L H T B += 式中:c T 为坝顶厚度; b T 为坝底厚度;L 为开挖后坝顶高程河岸宽度;H 为坝高。
经计算Tc=3.5m Tb=15m已知Tc,Tb 后,可查《砌石坝设计》拱冠梁经验断面表格得出拱冠梁1-6 断面尺寸如下表拱圈几何尺寸拟定见下表1-7:表1-7 大坝几何尺寸表第二章 应力分析2.1 荷载计算拱坝受的荷载包括:自重、静水压力、动水压力、扬压力、泥沙压力、冰压力、浪压力、温度作用以及地震作用等,基本上与重力坝相同。
但由于拱坝本身的特点,有些荷载的计算及其对坝体应力的影响与重力坝不尽相同。
2.1.1自重由于永久性设备的自重相对于坝体自重可以忽略不计,所以自重计算只包括坝体自重计算。
由于拱坝各坝块的水平截面都呈扇形,如图2-1所示,截面A 1与A 2间的坝块自重G 可按辛普森公式计算,即:G=1m 21Z A 4A A 6()m(2.1) 式中,γm —砌体容重,21.70kN/m 3; ΔZ —计算坝块高度,m ;A 1、A 2、A m —上、下两端和中间截面的面积,㎡;1图2-1 坝体自重计算图为了计算方便,教材还介绍下式计算:G=121Z A A 2()γm (2.2) 取单位长度的坝块,2121.710.8(3.56.01)/211114.38k 113.71G N T 3221.710.8(6.018.59)/21710.83k 174.57G N T 4321.710.8(10.668.59)/22255.72k 230.18G N T 5421.710.8(10.6612.61)/22726.78k 278.24G NT6521.710.8(12.6115)/23235.34k 330.14G N T2.1.2静水压力静水压力是坝体承受的最主要荷载,由拱梁系统共同承担,可通过拱梁分载法来确定拱系和梁系的荷载分配。
但在拱梁分载法计算中,一般近似假定由梁承担,通过梁的变位考虑其对拱的影响。
上游静水压力应根据水库功能和荷载组合所规定的水库水位确定,下游静水压力应根据相应的不利下游水位根据SL282—2003《混凝土拱坝设计规》附录B.1计算确定。
水的容重宜采用9.8 KN/m 3。
1)水平静水压力根据SL282—2003《混凝土拱坝设计规》附录B.1,水平静水压力计算公式为: p=γw H (2.3) 式中,p —计算点处静水压力强度,kP a ; H —计算点处的作用水头,m ;γw — 水(或含泥沙水)的重度,kN/m 3 ; a 、设计洪水位(319.98m )时 上游面: 截面Ⅰ:22w1H 9.800k /0/1上p N m T m截面Ⅱ:22w22H 9.8(319.98312.2)76.24k /7.78/上p N m T m 截面Ⅲ:22w33H 9.87.7810.8182.084k /18.58/上()p N m T m 截面Ⅳ:22w44H 9.818.5810.8287.92k /29.38/上()p N m T m 截面Ⅴ:22w55H 9.829.3810.8393.76k /40.18/上()p N m T m 截面Ⅵ:22w66H 9.840.1810.8499.60k /50.98/上()p N m T m下游面:截面Ⅴ处高程为279.8m ,高于下游水位276.70,故截面Ⅵ的水平水压力为: 截面Ⅵ:22w66H 9.8276.726975.46k /7.7/下()p N m T mb 、校核洪水位(321.00m )时上游面: 截面Ⅰ:22w11H 9.800k /0/上p N m T m截面Ⅱ:22w22H 9.8(321.00312.2)86.24k /8.8/上p N m T m截面Ⅲ:22w33H 9.88.810.8192.08k /19.6/上()p N m T m 截面Ⅳ:22w44H 9.819.610.8297.92k /30.4/上()p N m T m 截面Ⅴ:22w55H 9.830.410.8403.76k /41.2/上()p N m T m 截面Ⅵ:22w66H 9.841.210.8509.6k /52/上()p N m T m下游面:截面Ⅴ处高程为279.80m ,高于校核洪水位时下游水位277.7m 。
所以: 截面Ⅵ:22w 66H 9.8277.726985.26k /8.7/下()p N m T m2)垂直静水压力 计算公式为:we u a S h (kN ) (2.4)式中,h —计算点的水深,m ;e a —坝体上游面混凝土块的径向投影长度,m ;u S —混凝土块上游面水平弧长,m (u S 近似取为1m );a 、设计洪水位319.98m 时 上游面: 截面Ⅰ:19.800k 0上N T截面Ⅱ: 29.8(3.080.906)(319.98312.2)1165.75k 16.91上N T 截面Ⅲ:39.89.8(5.51 3.08)(7.7810.8)1442.46k 45.15上N T 截面Ⅳ:49.8 6.64 5.517.7810.821325.35k 33.20上()()NT截面Ⅴ:59.8 6.64 6.647.7810.8310k 0上()()N T截面Ⅵ:69.8 5.29 6.6441674.47k 68.82上()(7.78+10.8)NT下游面: 截面Ⅵ:69.89.71 6.94276.72691209.02k 21.33上()()N Tb 、校核洪水位时321.00m 上游面: 截面Ⅰ:19.800k 0上N T截面Ⅱ: 29.8(3.080.213)(321312.2)1247.25k 25.23上N T 截面Ⅲ:39.89.8(5.51 3.08)(8.810.8)1466.75k 47.63上N T 截面Ⅳ:49.8 6.64 5.5110.821336.65k 34.35上()(8.8)N T截面Ⅴ:59.8 6.64 6.6410.8310k 0上()(8.8)NT截面Ⅵ:69.8 5.29 6.6441687.96k 70.2上()(8.8+10.8)NT下游面没有垂直静水压力。
2.1.3泥沙压力泥沙压力Ps221tan ()242s s s s P h ϕπγ=-式中:sγ为淤沙浮容重;sϕ为泥沙摩擦角;sh 为坝前泥沙淤积高度,m 。
大坝坝前百年泥沙淤积高程约286.0m ,泥沙浮容重取8KN/m 3,摩擦角取13º。
则泥沙压力Ps2a 1138tan ()43.02242(286-269)π=⨯⨯⨯-=KP s P 2.1.4扬压力扬压力包括浮托力和渗透压力,根据SL282—2003《混凝土拱坝设计规》附录B ·3,计算公式为:f u(2.5)(6)12uh TA r(2.6) 式中,ω—扬压力,kN ; f ω—浮托力,kN ;u ω—单位混凝土块所受的渗透压力,kN ;h —计算水位至各计算点的水深 m ; A —混凝土块计算截面面积 m 2; T —计算截面厚度 m ; r —计算截面平均半径 m ;a 、设计洪水位(319.98m )时 截面Ⅱ:27.786.019.8 6.011(6)232.03k 23.681278.8N T截面Ⅲ:3(7.7810.8)8.599.88.591(6)799.28k 81.561264.985N T截面Ⅳ: 4(7.7810.82)10.669.810.661(6)1591.87k 162.441247.64N T截面Ⅴ:5(7.7810.83)12.619.812.611(6)2671.66k 272.621227.61N T截面Ⅵ:6(7.7810.847.7)159.8(276.7269)159.815(6)4792.64k 489.041216.58N T截面Ⅴ高于下游水位,所以下游没有浮托力。