当前位置:文档之家› 人教版高中物理选修(3-3)第七章《分子动理论》教学设计

人教版高中物理选修(3-3)第七章《分子动理论》教学设计

人教版高中物理选修(3-3)第七章《分子动理论》教学设计
人教版高中物理选修(3-3)第七章《分子动理论》教学设计

人教版高中物理选修(3-3)第七章《分子动理论》教学设

物理名言:热学这一门科学起源于人类对于热与冷现象的本质的追求……着可能是人类最初对自然法则的追求之——王竹溪(1911-1983)。

物理学家,科学院院士,大学教授。

古人的原子论仅限于思辨的范畴,没有尝试做出实验验证。随着科学技术的发展,特别是显微镜的发明,人们对微观世界的观察越来越深入,原子论的观点也逐步为人们接受。到1982年,科学家制成了扫描隧道显微镜,使人类第一次实际观察到了原子的排列。

7.1 物质是由大量分子组成的

三维教学目标

1、知识与技能

(1)知道一般分子直径和质量的数量级;

(2)知道阿伏伽德罗常数的含义,记住这个常数的数值和单位;

(3)知道用单分子油膜方法估算分子的直径。

2、过程与方法:通过单分子油膜法估算测量分子大小,让学生体会到物质是由大量分子组成的。形成正确的唯物主义价值观。

3、情感、态度与价值观

教学重难点

(1)使学生理解和学会用单分子油膜法估算分子大小(直径)的方法;

(2)运用阿伏伽德罗常数估算微观量(分子的体积、直径、分子数等)的方法。

教学教具

(1)教学挂图或幻灯投影片:水面上单分子油膜的示意图;离子显微镜下看到钨原子分布的图样;(2)演示实验:演示单分子油膜:油酸酒精溶液(1:20O),滴管,直径约20cm圆形水槽,烧杯,画有方格线的透明塑料板。

教学过程:

第一节物质是由大量分子组成的

(一)热学内容简介

(1)热现象:与温度有关的物理现象。如热胀冷缩、摩擦生热、水结冰、湿衣服晾干等都是热现象。(2)热学的主要内容:热传递、热膨胀、物态变化、固体、液体、气体的性质等。

(3)热学的基本理论:由于热现象的本质是大量分子的无规则运动,因此研究热学的基本理论是分子动理论、量守恒规律。

(二)新课教学

1、分子的大小:分子是看不见的,怎样能知道分子的大小呢?

(1)单分子油膜法是最粗略地说明分子大小的一种方法。

演示:如果油在水面上尽可能地散开,可认为在水面上形成单分子油膜,可以通过幻灯观察到,并且利用已制好的方格透明胶片盖在水面上,用于测定油膜面积。如图1所示。

提问:已知一滴油的体积V和水面上油膜面积S,那么这种油分子的直径是多少?(如果分子直径为d,油滴体积是V,油膜面积为S,则d=V/S,根据估算得出分子直径的数量级为10-10m)

(2)利用离子显微镜测定分子的直径。

看物理课本上彩色插图,钨针的尖端原子分布的图样:插图的中心部分亮点直接反映钨原子排列情况。经过计算得出钨原子之间的距离是2×10-10m。如果设想钨原子是一个挨着一个排列的话,那么钨原子之间的距离L就等于钨原子的直径d,如图2所示。

(3)用不同方法测量出分子的大小并不完全相同,但是数量级是相同的。

测量结果表明,一般分子直径的数量级是10-10m。例如水分子直径是4×10-10m,氢分子直径是 2.3×10-10m。

(4)分子是小球形是一种近似模型,是简化地处理问题,实际分子结构很复杂,但通过估算分子大小的数量级,对分子的大小有了较深入的认识。

2、阿伏伽德罗常数

提问:在化学课上学过的阿伏伽德罗常数是什么意义?数值是多少?明确1mol物质中含有的微粒数(包括原子数、分子数、离子数……)都相同。此数叫阿伏伽德罗常数,可用符号NA表示此常数, NA=6.02×1023个/mol,粗略计算可用NA=6×1023个/mol。(阿伏伽德罗常数是一个基本常数,科学工作者不断用各种方法测量它,以期得到它精确的数值。)

提问:摩尔质量、摩尔体积的意义?

如果已经知道分子的大小,不难粗略算出阿伏伽德罗常数。例如,1mol水的质量是0.018kg,体积是1.8×10-5m3。每个水分子的直径是4×10-10m,它的体积是(4×10-10)m3=3×10-29m3。如果设想水分子是一个挨着一个排列的。

如何算出1mol水中所含的水分子数?

3、微观物理量的估算

若已知阿伏伽德罗常数,可对液体、固体的分子大小进行估算。事先我们假定近似地认为液体和固体的分子是一个挨一个排列的(气体不能这样假设)。

提问:1mol水的质量是M=18g,那么每个水分子质量如何求?

提问:若已知铁的相对原子质量是56,铁的密度是7.8×103kg/m3,试求质量是1g的铁块中铁原子的数目(取1位有效数字)。又问:是否可以计算出铁原子的直径是多少来?

总结:以上计算分子的数量、分子的直径,都需要借助于阿伏伽德罗常数。因此可以说,阿伏伽德罗常数是联系微观世界和宏观世界的桥梁。它把摩尔质量、摩尔体积等这些宏观量与分子质量、分子体积(直径)等这些微观量联系起来。

课堂练习:

(1)体积是10-4cm3的油滴滴于水中,若展开成一单分子油膜,则油膜面积的数量级是(B)

A.102cm2

B.104cm2

C.106cm2

D. 108cm2

(2)已知铜的密度是8.9×103kg/m3,铜的摩尔质量是63.5×10-3kg/mol。体积是4.5cm3的铜块中,含有多少原子?并估算铜分子的大小。(3.8×1023, 3×10-10m)

课堂小结

(1)物体是由体积很小的分子组成的。这一结论有坚实的实验基础。单分子油膜实验等实验是上述结论的有力依据。分子直径大约有10-10m的数量级。

(2)阿伏伽德罗常数是物理学中的一个重要常数,它的意义和常数数值应该记住。

(3)学会计算微观世界的物理量(如分子数目、分子质量、分子直径等)的一般方法。由于微观量是不能直接测量的,人们可以测定宏观物理量,用阿伏伽德罗常数作为桥梁,间接计算出微观量来。如分子质量m,可通过物质摩尔质量M和阿伏伽德罗常数NA,得到m=M/NA。通过物质摩尔质量 M、密度ρ、阿伏伽德罗常数NA,计算出分子直径:

课后练习

7.2 分子的热运动

三维教学目标

1、知识与技能

(1)知道并记住什么是布朗运动,知道影响布朗运动激烈程度的因素,知道布朗运动产生的原因;(2)知道布朗运动是分子无规则运动的反映;

(3)知道什么是分子的热运动,知道分子热运动的激烈程度与温度的关系。

2、过程与方法:分析概括出布朗运动的原因;培养学生概括、分析能力和推理判断能力。从对悬浮颗粒无规则运动的原因分析,使学生初步接触到用概率统计的观点分析大量偶然事件的必然结果。

3、情感、态度与价值观

教学重点:通过学生对布朗运动的观察,引导学生思考、分析出布朗运动不是外界影响产生的,是液体分子撞击微粒不平衡性产生的。布朗运动是永不停息的无规则运动,反映了液体分子的永不停息的无规则运动。这一连串结论的得出是这堂课的教学重点。

教学难点:学生观察到的布朗运动不是分子运动,但它又间接反映液体分子无规则运动的特点。这是课堂上的难点。这个难点要从开始分析显微镜下看不到分子运动这个问题逐渐分散解疑。

教学教具:气体和液体的扩散实验:分别装有二氧化氮和空气的玻璃储气瓶、玻璃片;250mL水杯内盛有净水、红墨水。

教学过程:

第二节分子的热运动

(一)引入新课

演示实验:

(1)把盛有二氧化氮的玻璃瓶与另一个玻璃瓶竖直方向对口相接触,看到二氧化氮气体从下面的瓶内逐渐扩展到上面瓶内。

(2)在一烧杯的净水中,滴入一二滴红墨水后,红墨水在水中逐渐扩展开来。

提问:上述两个实验属于什么物理现象?这现象说明什么问题?

总结:上述实验是气体、液体的扩散现象,扩散现象是一种热现象。它说明分子在做永不停息的无规则运动。而且扩散现象的快慢直接与温度有关,温度高,扩散现象加快。这些内容在初中物理中已经学习过了。

(二)新课教学

1、介绍布朗运动现象

1827年英国植物学家布朗用显微镜观察悬浮在水中的花粉,发现花粉颗粒在水中不停地做无规则运动,后来把颗粒的这种无规则运动叫做布朗运动。不只是花粉,其他的物质如藤黄、墨汁中的炭粒,这些小微粒悬浮在水中都有布朗运动存在。

看教科书上图,图上画的几个布朗颗粒运动的路线,指出这不是布朗微粒运动的轨迹,它只是每隔30s观察到的位置的一些连线。实际上在这短短的30s内微粒运动也极不规则,绝不是直线运动。

2、介绍布朗运动的几个特点

(1)连续观察布朗运动,发现在多天甚至几个月时间内,只要液体不干涸,就看不到这种运动停下来。这种布朗运动不分白天和黑夜,不分夏天和冬天(只要悬浮液不冰冻),永远在运动着。所以说,这种布朗运动是永不停息的。(2)换不同种类悬浮颗粒,如花粉、藤黄、墨汁中的炭粒等都存在布朗运动,说明布朗运动不取决于颗粒本身。更换不同种类液体,都不存在布朗运动。

(3)悬浮的颗粒越小,布朗运动越明显。颗粒大了,布朗运动不明显,甚至观察不到运动。

(4)布朗运动随着温度的升高而愈加激烈。

3、分析、解释布朗运动的原因

(1)布朗运动不是由外界因素影响产生的,所谓外界因素的影响,是指存在温度差、压强差、液体振动等等。

提问:若液体两端有温度差,液体是怎样传递热量的?液体中的悬浮颗粒将做定向移动,还是无规则运动?温度差这样的外界因素能产生布朗运动吗?

总结:液体存在着温度差时,液体依靠对流传递热量,这样悬浮颗粒将随液体有定向移动。但布朗运动对不同颗粒运动情况不相同,因此液体的温度差不可能产生布朗运动。又如液体的压强差或振动等都只能使液体具有定向运动,悬浮在液体中的小颗粒的定向移动不是布朗运动。因此,推理得出外界因素的影响不是产生布朗运动的原因,只能是液体内部造成的。

(2)布朗运动是悬浮在液体中的微小颗粒受到液体各个方向液体分子撞击作用不平衡造成的。显微镜下看到的是固体的微小悬浮颗粒,液体分子是看不到的,因为液体分子太小。但液体中许许多多做无规则运动的分子不断地撞击微小悬浮颗粒,当微小颗粒足够小时,它受到来自各个方向的液体分子的撞击作用是不平衡的。如教科书上的插图所示。

在某一瞬间,微小颗粒在某个方向受到撞击作用强,它就沿着这个方向运动。在下一瞬间,微小颗粒在另一方向受到的撞击作用强,它又向着另一个方向运动。任一时刻微小颗粒所受的撞击在某一方向上占优势只能是偶然的,这样就引起了微粒的无规则的布朗运动。

悬浮在液体中的颗粒越小,在某一瞬间跟它相撞击的分子数越少。布朗运动微粒大小在10-6m数量级,液体分子大小在10-10m数量级,撞击作用的不平衡性就表现得越明显,因此,布朗运动越明显。悬浮在液体中的微粒越大,在某一瞬间跟它相撞击的分子越多,撞击作用的不平衡性就表现得越不明显,以至可以认为撞击作用互相平衡,因此布朗运动不明显,甚至观察不到。

液体温度越高,分子做无规则运动越激烈,撞击微小颗粒的作用就越激烈,而且撞击次数也加大,造成布朗运动越激烈。

5、布朗运动的发现及原因分析的重要意义

(1)布朗运动是悬浮在液体中的固体微粒分子的运动吗?是液体分子无规则运动吗?布朗微粒是被谁无规则撞击而造成的?布朗运动间接地反映了谁的无规则运动?

总结:

(1)固体颗粒是由大量分子组成的,仍然是宏观物体;显微镜下看到的只是固体微小颗粒,光学显微镜是看不到分子的;布朗运动不是固体颗粒中分子的运动,也不是液体分子的无规则运动,而是悬浮在液体中的固体颗粒的无规则运动。无规则运动的原因是液体分子对它无规则撞击的不平衡性。因此,布朗运动间接地证实了液体分子的无规则运动。

(2)布朗运动随温度升高而愈加激烈,在扩散现象中,也是温度越高,扩散进行的越快,而这两种现象都是分子无规则运动的反映。这说明分子的无规则运动与温度有关,温度越高,分子无规则运动越激烈。所以通常把分子的这种无规则运动叫做热运动。

课堂小结:

(1)要知道什么是布朗运动。它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。(2)知道布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。

(3)产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。

(4)布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。

课堂练习:

(1)关于布朗运动的下列说法中,正确的是( C、D )

A.布朗运动就是液体分子的热运动

B.布朗运动是悬浮在液体中的固体颗粒内的分子的无规则热运动

C.温度越高,布朗运动越激烈

D.悬浮颗粒越小,布朗运动越激烈

7.3 分子间的相互作用力

教学目标

(1)知道分子同时存在着相互作用的引力和斥力,表现出的分子力是引力和斥力的合力;

(2)知道分子力随分子间距离变化而变化的定性规律,知道分子间距离是R0时分子力为零,知道R0的数量级;

(3)了解在固体、液体、气体三种不同物质状态下,分子运动的特点;

(4)通过一些基本物理事实和实验推理得出分子之间有引力,同时有斥力。这种以事实和实验为依据求出新的结论的思维过程,就是逻辑推理。通过学习这部分知识,培养学生的推理能力。

教学重点:

(1)一是通过分子之间存在间隙和分子之间有引力和斥力的一些演示实验和事实,推理论证出分子之间存在着引力和斥力。

(2)二是分子间的引力和斥力都随分子间距离的变化而变化,而分子力是引力和斥力的合力,能正确理解分子间作用力与距离关系的曲线的物理意义。

教学难点:是形象化理解分子间作用力跟分子间距离关系的曲线的物理意义。

教学教具:

(1)演示分子间有间隙的实验:约lm长的,外径约lcm的玻璃管,各约20~30ml的酒精和有红色颜料的水、橡皮塞。长15cm的U形玻璃管、架台、橡皮塞、红墨水。

(2)演示分子间存在引力的实验:两个圆柱形铅块(端面刮光、平滑)、支架、钩码若干。用细线捆住的平板玻璃、直径20cm的盛水玻璃槽、弹簧秤。

(3)图片:分子力随分子间距离变化的曲线和两个分子距离在r=R0,r>R0,r

教学过程:

第三节分子间的相互作用力

(一)引入新课

分子动理论是在坚实的实验基础上建立起来的。我们通过单分子油膜实验、离子显微镜观察钨原子的分布等实验,知道物质是由很小的分子组成的,分子大小在10-10m数量级。我们又通过扩散现象和布朗运动等实验知道了分子是永不停息地做无规则运动的。分子动理论还告诉我们分子之间有相互作用力,这结论的实验依据是什么?分子间相互作用力有什么特点?这是今天要学习的问题。

(二)新课教学

1、已知的实验事实分析、推理得出分子之间存在着引力,

(1)演示实验:

①长玻璃管内,分别注入水和酒精,混合后总体积减小。

②U形管两臂内盛有一定量的水(不注满水),将右管端橡皮塞堵住,左管继续注入水,右管水面上的空气被压缩。

提问:这两个实验说明了什么问题?

归纳:上述实验可以说明气体、液体的内部分子之间是有空隙的。钢铁这样坚固的固体的分子之间也有空隙,有人用两万标准大气压的压强压缩钢筒内的油,发现油可以透过筒壁溢出。

布朗运动和扩散现象不但说明分子不停地做无规则运动,同时也说明分子间有空隙,否则分子便不能运动了。前面第一节讨论分子的大小时,认为固体和液体分子是一个挨一个排列的,那只是估算分子直径的数量级而做的设想,实际上分子大小比估算值要小,中间存在着空隙,但数量级还是正确的。

(2)一方面分子间有空隙,另一方面,固体、液体内大量分子却能聚集在一起形成固定的形状或固定的体积,这两方面的事实,使我们推理出分子之间一定存在着相互吸引力。

(3)演示实验:两个圆柱体形铅块,当把端面刮平后,让它们端面紧压在一起,合起来后,它们不分开,而且悬挂起来后,下面还可以吊起一定量的重物。还有平时人们用力拉伸物体时,为什么不易拉断物体。

(4)以上所有实验事实都说明分子之间存在着相互吸引力。

2、根据已知的实验事实,推理得出分子之间还存在着斥力。

提问:由哪些实验事实,判断得出分子之间有斥力?

总结:固体和液体很难被压缩,即使气体压缩到了一定程度后再压缩也是很困难的;用力压缩固体(或液体、气体)时,物体内会产生反抗压缩的弹力。这些事实都是分子之间存在斥力的表现。

运用反证法推理,如果分子之间只存在着引力,分子之间又存在着空隙,那么物体内部分子都吸引到一起,造成所有物体都是很紧密的物质。但事实不是这样的,说明必然还有斥力存在着。

3、分子间引力和斥力的大小跟分子间距离的关系。

(1)经过研究发现分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。

(2)由于分子间同时存在引力和斥力,两种力的合力又叫做分子力。

在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标r0距离时,分子间的引力与斥力平衡,分子间作用力为零,r0的数量级为10-10m,相当于r0位置叫做平衡位置。分子间距离当r< r0时,分子间引力和斥力都随距离减小而增大,但斥力增加得更快,因此分子间作用力表现为斥力。展示幻灯片图2。当r>时,引力和斥力都随距离的增大而减小,但是斥力减小的更快,因而分子间的作用力表现为引力,但它也随距离增大而迅速减小,当分子距离的数量级大于10-9m时,分子间的作用力变得十分微弱,可以忽略不计了。在图2中表示分子间距离r不同的三种情况下,分子间引力斥力大小的情况。

4、固体、液体和气体的分子运动情况。

(1)分子动理论告诉我们物体中的分子永不停息地做无规则运动,它们之间又存在着相互作用力。分子力的作用要使分子聚集起来,而分子的无规则运动又要使它们分散开来。由于这两种相反因素的作用结果,有固体、液体和气体三种不同的物质状态。

提问:固体与液体、气体比较有什么特征?

总结:固体为什么有一定的形状和体积呢?因为在固体中,分子间距离较近,数量级在10-10m,分子之间作用很大,绝大部分分子只能在各自平衡位置附近做无规则的振动。

(2)液体分子运动情况。

固体受热温度升高,最终熔化为液体,对大多数物质来说,其体积增加10%,也就是说分子之间距

离大约增加3%。因此,液体分子之间作用力很接近固体情况,分子间有较强的作用力,分子无规则运动主要表现为在平衡位置附近振动。但由于分子间距离有所增加,使分子也存在移动性,所以液体在宏观上有一定的体积,而又有流动性,没有固定的形状。

(3)液体汽化时体积扩大为原来的1000倍,说明分子间距离约增加为原来31000,即10倍。因此气体分子间距离数量级在10-9m,分子间除碰撞时有相互作用力外,彼此之间一般几乎没有分子作用力,分子在两次碰撞之间是自由移动的。所以气体在宏观上表现出没有一定的体积形状,可以充满任何一种容器。

课堂小结:

(1)前面三课时内学习的内容是对初中物理已学过的分子动理论的加深和扩展。总结起来,分子动理论内容是:物体是由大量分子组成的,分子做永不停息的无规则热运动,分子之间存在着引力和斥力。分子动理论是建立在大量实验事实基础上的,这理论是解释、分析热现象的基本理论。

(2)通过实验知道分子之间存在着引力和斥力,而且知道分子间的引力和斥力都随分子间距离增大而减少,尤其斥力随距离增大减小得更快。由于分子间的斥力和引力同时存在,每个分子受到引力和斥力的合力大小及方向随分子间距离大小而改变。其中分子间距离在10-10m的数量级有一个平衡位置(r0),此位置下,斥力与引力的合力为零。当分子间距离大于r0引力显著,当分子间距离小于r0斥力显著。分子间距离接近10-9m时,分子间作用力将微小到可忽略的程度。

(3)固体、液体、气体三种状态的分子之间距离不同,分子之间作用力的变化也由大到小至几乎不计。造成固、液、气三种物质状态的特性不同。

课堂练习:

1、用分子动理论的知识解释下列现象:

(1)洒在屋里的一点香水,很快就会在屋里的其他地方被闻到。

(2)水和酒精混合后,总体积减小。

(3)高压下的油会透过钢壁渗出。

(4)温度升高,布朗运动及扩散现象加剧。

(5)固体不容易被压缩和拉伸。

(2)把一块洗净的玻璃板吊在橡皮筋的下端,使玻璃板水平地接触水面(如图3)。如果你想使玻璃板离开水面,用手向上拉橡皮筋,拉动玻璃板的力是否大于玻璃板受的重力?动手试一试,并解释为什么?(拉力会大于玻璃板的重力。玻璃板离开水面时水会发生分裂,由于水分子之间有引力存在,外力要克服这些分子引力造成外界拉力大于玻璃板的重力。玻璃板离开水面后,可以看到玻璃板下表面上仍有水,说明玻璃板离开水时,水层发生断裂)

7.4 物体的内能

三维教学目标

1、知识与技能

(1)知道分子的动能,分子的平均动能,知道物体的温度是分子平均动能大小的标志;

(2)知道分子的势能跟物体的体积有关,知道分子势能随分子间距离变化而变化的定性规律;

(3)知道什么是物体的内能,物体的内能与哪个宏观量有关,能区别物体的内能和机械能。

2、过程与方法:这节课中要让学生建立:分子动能、分子平均动能、分子势能、物体内能、热量等五个以上物理概念,又要让学生初步知道三个物理规律:温度与分子平均动能关系,分子势能与分子间距离关系,做功与热传递在改变物体内能上的关系。因此,教学中着重培养学生对物理概念和规律的理解能力。

3、情感、态度与价值观:在分子平均动能与温度关系的讲授中,渗透统计的方法。在分子间势能与分子间距离的关系上和做功与热传递关系上都要渗透归纳推理方法。

教学重点:教学重点是使学生掌握三个概念(分子平均动能、分子势能、物体内能),掌握三个物理规律(温度与分子平均动能关系、分子势能与分子之间距离关系、热传递与功的关系)。

教学难点:区分温度、内能、热量三个物理量是教学上的一个难点;分子势能随分子间距离变化的势能曲线是教学上的另一难点。

教学教具:图片,展示分子间势能随分子间距离变化而变化的曲线。

教学过程:

第四节物体的内能

(一)引入新课

我们知道做机械运动的物体具有机械能,那么热现象发生过程中,也有相应的能量变化。另一方面,我们又知道热现象是大量分子做无规律热运动产生的。那么热运动的能量与大量的无规律运动有什么关系呢?这是今天学习的问题。

(二)新课教学

1、分子的动能、温度

物体内大量分子不停息地做无规则热运动,对于每个分子来说都有无规则运动的动能。由于物体内各个分子的速率大小不同,因此,各个分子的动能大小不同。由于热现象是大量分子无规则运动的结果,所以研究个别分子运动的动能是没有意义的。而研究大量分子热运动的动能,需要将所有分子热运动动能的平均值求出来,这个平均值叫做分子热运动的平均动能。

学习布朗运动和扩散现象时,我们知道布朗运动和扩散现象都与温度有关系,温度越高,布朗运动越激烈,扩散也加快。依照分子动理论,这说明温度升高后分子无规则运动加剧。用上述分子热运动的平均动能来说明,就是温度升高,分子热运动的平均动能增大。如果温度降低,说明分子热运动的平均动能减小。因此从分子动理论观点来看,温度是物体分子热运动的平均动能的标志。“标志”的含义是指物体温度升高或降低,表示了物体内部大量分子热运动的平均动能增大或减小。温度不变,就表示了分子热运动的平均动能不变。其他宏观物理量如时间、质量、物质种类都不是分子热运动平均动能的标志。但是,温度不是直接等于分子的平均动能。

另一方面,温度只与物体内大量分子热运动的统计意义上的平均动能相对应,对于个别分子或几十个、几百个分子热运动的动能大小与温度是没有关系的。

我们知道,温度这个物理量在宏观上的意义是表示物体冷热程度,而它又是大量分子热运动平均动能大小的标志,这是温度的微观含义。

2、分子势能

分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。如果分子间距离约为10-10m数量级时,分子的作用力的合力为零,此距离为r0。

r 0时,分子间的作用力表现为斥力,要减小分子间的距离必须克服斥力做功,因此,分子势能随分子间距离的减小而增大。这种情形与弹簧被压缩时弹性势能增大是相似的。如图1中弹簧压

缩,弹性势能Ep增大。

如果分子间距离大于r0时,分子间的相互作用表现为引力,要增大分子间的距离必须克服引力做功,因此,分子势能随分子间的距离增大而增大。这种情况与弹簧被拉伸时弹性势能增大是相似的。如图1中弹簧拉伸,Ep增大。

从以上两种情况综合分析,分子间距离以r0为数值基准,r不论减小或增大,分子势能都增大。所以说,分子在平衡位置处是分子势能最低点。如果分子间距离是无限远时,取分子势能为零值,分子间距离从无限远逐渐减少至r0以前过程,分子间的作用力表现为引力,而且距离减少,分子引力做正功,分子势能不断减小,其数值将比零还小为负值。当分子间距离到达r0以后再减小,分子作用力表现为斥力,在分子间距离减小过程中,克服斥力做功,使分子势能增大。其数值将从负值逐渐变大至零,甚至为正值。分子势能随分子间距离r的变化情况可以在图的图象中表现出来。从图中看到分子间距离在r0处,分子势能最小。

关,那么在宏观上什么物理量能反映分子势能的大小变化情况呢?如果对于确定的物体,它的体积变化,直接反映了分子间的距离,也就反映了分子间的势能变化。所以分子势能的大小变化可通过宏观量体积来反映。

3、物体的内能

(1)物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。

提问:宏观量中哪些物理量是分子热运动的平均动能和分子势能的标志?(一个确定的物体,分子总数是固定的,那么这物体的内能大小是由宏观量——温度和体积决定的。如果不是确定的物体,那么物体的内能大小是由质量、温度、体积和物态来决定。)

15℃升高到55℃,比较内能。

1kg50℃的铁块与质量是0.1kg50℃的铁块,比较内能。

1kg100℃的水与质量是1kg100℃的水蒸气,比较内能。

(2)物体机械运动对应着机械能,热运动对应着内能。任何物体都具有内能,同时还可以具有机械能。例如在空中飞行的炮弹,除了具有内能,还具有机械能——动能和重力势能。

提问:一辆汽车的车厢内有一气瓶氧气,当汽车以 60km/h行驶起来后,气瓶内氧气的内能是否增加?(内能是所有分子热运动动能和分子势能之总和,而不是分子定向移动的动能。另一方面,物体机械能增加,内能不一定增加)

课上练习:

判断下面各结论是否正确?

(1)温度高的物体,内能不一定大。

(2)同样质量的水在100℃时的内能比60℃时的内能大。

(3)内能大的物体,温度一定高。

(4)内能相同的物体,温度一定相同。

答案:(1)、(2)是对的。

在标准大气压下,100℃的水吸收热量变成同温度的水蒸气的过程,下面的说法是否正确?

(1)分子热运动的平均动能不变,因而物体的内能不变。

(2)分子的平均动能增加,因而物体的内能增加。

答案:以上结论都不对。

课堂小结:

(1)这节课上新建立了三个物理概念:分子热运动的平均动能、分子势能、内能。要知道这三个概念的确切含义,更为重要的是能够区分温度、内能、热量,知道内能与机械能的区别和联系。

(2)要掌握三个物理规律:分子热运动的平均动能与温度的关系、分子间的相互作用力与分子间距离的关系、做功与热传递在使物体内能改变上的关系。

高中物理选修3-5全套教案(人教版)

16.1 实验:探究碰撞中的不变量 ★新课标要求 (一)知识与技能 1、明确探究碰撞中的不变量的基本思路. 2、掌握同一条直线上运动的两个物体碰撞前后的速度的测量方法. 3、掌握实验数据处理的方法. (二)过程与方法 1、学习根据实验要求,设计实验,完成某种规律的探究方法。 2、学习根据实验数据进行猜测、探究、发现规律的探究方法。 (三)情感、态度与价值观 1、通过对实验方案的设计,培养学生积极主动思考问题的习惯,并锻炼其思考的全面性、准确性与逻辑性。 2、通过对实验数据的记录与处理,培养学生实事求是的科学态度,能使学生灵活地运用科学方法来研究问题,解决问题,提高创新意识。 3、在对实验数据的猜测过程中,提高学生合作探究能力。 4、在对现象规律的语言阐述中,提高了学生的语言表达能力,还体现了各学科之间的联系,可引伸到各事物间的关联性,使自己溶入社会。 ★教学重点 碰撞中的不变量的探究 ★教学难点 实验数据的处理. ★教学方法 教师启发、引导,学生自主实验,讨论、交流学习成果。 ★教学用具: 投影片,多媒体辅助教学设备;完成该实验实验室提供的实验器材,如气垫导轨、滑块等 ★课时安排 1 课时 ★教学过程 (一)引入新课 课件演示:

(1)台球由于两球碰撞而改变运动状态。 (2)微观粒子之间由于相互碰撞而改变状态,甚至使得一种粒子转化为其他粒子. 师:碰撞是日常生活、生产活动中常见的一种现象,两个物体发生碰撞后,速度都发生变化. 师:两个物体的质量比例不同时,它们的速度变化也不一样. 师:物理学中研究运动过程中的守恒量具有特别重要的意义,本节通过实验探究碰撞过程中的什么物理量保持不变(守恒). (二)进行新课 1.实验探究的基本思路 1.1 一维碰撞 师:我们只研究最简单的情况——两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动. 这种碰撞叫做一维碰撞. 课件:碰撞演示 如图所示,A 、B 是悬挂起来的钢球,把小球A 拉起使其悬线与竖直线夹一角度a ,放开后A 球运动到最低点与B 球发生碰撞,碰后B 球摆幅为β角.如两球的质量m A =m B ,碰后A 球静止,B 球摆角β=α,这说明A 、B 两球碰后交换了速度; 如果m A >m B ,碰后A 、B 两球一起向右摆动; 如果m A

高二物理选修3-5-全套教案

第一章动量守恒研究 新课标要求 (1)探究物体弹性碰撞的一些特点,知道弹性碰撞和非弹性碰撞; (2)通过实验,理解动量和动量守恒定律,能用动量守恒定律定量分析一维碰撞问题,知道动量守恒定律的普遍意义; 例1:火箭的发射利用了反冲现象。 例2:收集资料,了解中子是怎样发现的。讨论动量守恒定律在其中的作用。 (3)通过物理学中的守恒定律,体会自然界的和谐与统一。 第二节动量和动量定理 三维教学目标 1、知识与技能:知道动量定理的适用条件和适用范围; 2、过程与方法:在理解动量定理的确切含义的基础上正确区分动量改变量与冲量; 3、情感、态度与价值观:培养逻辑思维能力,会应用动量定理分析计算有关问题。 教学重点:动量、冲量的概念和动量定理。 教学难点:动量的变化。 教学方法:教师启发、引导,学生讨论、交流。 教学用具:投影片,多媒体辅助教学设备。 1、动量及其变化 (1)动量的定义: 物体的质量与速度的乘积,称为(物体的)动量。记为p=mv 单位:kg·m/s读作“千克米每秒”。 理解要点: ①状态量:动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。 大家知道,速度也是个状态量,但它是个运动学概念,只反映运动的快慢和方向,而运动,归根结底是物质的运动,没有了物质便没有运动.显然地,动量包含了“参与运动的物质”和“运动速度”两方面的信息,更能从本质上揭示物体的运动状态,是一个动力学概念。 ②矢量性:动量的方向与速度方向一致。 综上所述:我们用动量来描述运动物体所能产生的机械效果强弱以及这个效果发生的方向,动量的大小等于质量和速度的乘积,动量的方向与速度方向一致。 (2)动量的变化量: 1、定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p= p′-p为物体在该过程中的动量变化。 2、指出:动量变化△p是矢量。方向与速度变化量△v相同。一维情况下:Δp=mΔυ= mυ2- mΔυ1 矢量差 例1:一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少? 2、动量定理 (1)内容:物体所受合外力的冲量等于物体的动量变化 (2)公式:Ft =m'v-mv ='p-p 让学生来分析此公式中各量的意义: 其中F是物体所受合外力,mv是初动量,m'v是末动量,t是物体从初动量变化到末动量所需时间,也是合外力F作用的时间。 (3)单位:F的单位是N,t的单位是s,p和'p的单位是kg·m/s(kg·ms-1)。 (4)动量定理不仅适用恒力作用,也适用变力作用的情况(此时的力应为平均作用力) (5)动量定理不仅适用于宏观低速物体,对微观现象和高速运动仍然适用. 前面我们通过理论推导得到了动量定理的数学表达式,下面对动量定理作进一步的理解。

人教版高中物理选修3-1 全册知识点总结大全

人教版高中物理选修3-1 全册知识点总结大全 第一章 静电场 第1课时 库仑定律、电场力的性质 考点1.电荷、电荷守恒定律 自然界中存在两种电荷:正电荷和负电荷。例如:用毛皮摩擦过的橡胶棒带负电,用丝绸摩擦过的玻璃棒带正电。同种电荷互相排斥,异种电荷相互吸引;电荷的基本性质:能吸引轻小物体 1. 元电荷:电荷量c e 191060.1-?=的电荷,叫元电荷。说明:任意带电体的电荷量都是 元电荷电荷量的整数倍。 2.使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电 ②接触带电 ③感应起电。 3电荷守恒定律:电荷既不能被创造,又不能被消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,电荷的总量保持不变。 考点2.库仑定律 1. 内容:在真空中静止的两个点电荷之间的作用力跟它们的电荷量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在他们的连线上。 2. 公式:叫静电力常量)式中,/100.9(2 292 21C m N k r Q Q k F ??== 3. 适用条件:真空、点电荷。 4. 点电荷:如果带电体间的距离比它们的大小大得多,以致带电体的形状体积对相互作用力的影响可忽略不计,这样的带电体可以看成点电荷。 考点3.电场强度 1.电场 ⑴ 定义:存在电荷周围能传递电荷间相互作用的一种特殊物质。 ⑵ 基本性质:对放入其中的电荷有力的作用。 ⑶ 静电场:静止的电荷产生的电场 2.电场强度 ⑴ 定义:放入电场中的电荷受到的电场力F 与它的电荷量q 的比值,叫做该点的电场强度。

⑵ 定义式: q F E = E 与 F 、q 无关,只由电场本身决定。 ⑶ 单位:N/C 或V/m 。 ⑷ 电场强度的三种表达方式的比较 定义式 决定式 关系式 表达式 q F E /= 2/r kQ E = d U E /= 适用 范围 任何电场 真空中的点电荷 匀强电场 说明 E 的大小和方向与检验电荷 的电荷量以及电性以及存在与否无关 Q :场源电荷的电荷量 r:研究点到场源电荷的距离 U:电场中两点的电势差 d :两点沿电场线方向的距离 (5)矢量性:规定正电荷在电场中受到的电场力的方向为该点电场强度的方向,或与负电荷在电场中受到的电场力的方向相反。 (6)叠加性:多个电荷在电场中某点的电场强度为各个电荷单独在该点产生的电场强度的矢量和,这种关系叫做电场强度的矢量叠加,电场强度的叠加遵从平行四边形定则。 考点4.电场线、匀强电场 1. 电场线:为了形象直观描述电场的强弱和方向,在电场中画出一系列的曲线,曲线上的各点的切线方向代表该点的电场强度的方向,曲线的疏密程度表示场强的大小。 2. 电场线的特点 ⑴ 电场线是为了直观形象的描述电场而假想的、实际是不存在的理想化模型。 ⑵ 始于正电荷或无穷远,终于无穷远或负电荷,电场线是不闭合曲线。 ⑶ 任意两条电场线不相交。 ⑷ 电场线的疏密表示电场的强弱,某点的切线方向表示该点的场强方向,它不表示电荷在电场中的运动轨迹。 ⑸ 沿着电场线的方向电势降低;电场线从高等势面(线)垂直指向低等势面(线)。 3. 匀强电场 ⑴定义:场强方向处处相同,场强大小处处相等的区域称之为匀强电场。 ⑵特点:匀强电场中的电场线是等距的平行线。平行正对的两金属板带等量异种电荷后,在

人教版高中物理选修3-1知识点归纳总结

物理选修3-1 知识总结 第一章 第1节 电荷及其守恒定律 一、电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个 物体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。 表述2、在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。 二、电荷量 1、电荷量:电荷的多少。 2、元电荷:电子所带电荷的绝对值1.6×10-19 C 3、比荷:粒子的电荷量与粒子质量的比值。 第一章 第2节 库仑定律 一、电荷间的相互作用 1、点电荷:带电体的大小比带电体之间的距离小得多。 2、影响电荷间相互作用的因素 二、库仑定律:在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比,跟它们距离的平方 成反比,作用力的方向在它们的连线上。 2 2 1r Q Q k F 注意(1)适用条件为真空中静止点电荷 (2)计算时各量带入绝对值,力的方向利用电性来判断 第一章 第3节 电场 电场强度 一、电场 电荷(带电体)周围存在着的一种物质,其基本性质就是对置于其中的电荷有力的作用。 二、电场强度 1、检验电荷与场源电荷 2、电场强度 检验电荷在电场中某点所受的电场力F 与检验电荷的电荷q 的比值。 q F E = 国际单位:N /C 电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。 三、点电荷的场强公式 2r Q k q F E == 四、电场的叠加 五、电场线 1、电场线:为了形象地描述电场而在电场中画出的一些曲线,曲线的疏密程度表示场强的大小,

曲线上某点的切线方向表示场强的方向。 2、几种典型电场的电场线 3、电场线的特点 (1)假想的 (2)起----正电荷;无穷远处 止----负电荷;无穷远处 (3)不闭合 (4)不相交 (5)疏密----强弱 切线方向---场强方向 第一章 第4节 电势能 电势 一、电势能 1、电势能:电荷处于电场中时所具有的,由其在电场中的位置决定的能量称为电势能. 注意:系统性、相对性 2、电势能的变化与电场力做功的关系 3、电势能大小的确定 电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电场力所做的功 二、电势 1.电势:置于电场中某点的检验电荷具有的电势能与其电量的比叫做该点的电势 q E 电= ? 单位:伏特(V ) 标量 2.电势的相对性 3.顺着电场线的方向,电势越来越低。 三、等势面 1、等势面:电场中电势相等的各点构成的面。 2、等势面的特点 a:在同一等势面的两点间移动电荷,电场力不做功。 b:电场线总是由电势高的等势面指向电势低的等势面。 c:电场线总是与等势面垂直。 第一章 第5节 电势差 电场力的功 一、电势差:电势差等于电场中两点电势的差值 B A AB U ??-= 电电电电电电)=--=-(-=E E E E E W A B B A AB ?)(电势能为零的点点电=A A W E

高中物理选修3-5教案

目录 第十六章动量守恒定律 (2) 16.1 实验:探究碰撞中的不变量 (2) 16.2 动量守恒定律(一) (6) 16.3 动量守恒定律(二) (8) 16.4 碰撞 (12) 16.5 反冲运动火箭 (18) 16.6 用动量概念表示牛顿第二定律 (20) 第十七章波粒二象性 (23) 17.1 能量量子化:物理学的新纪元 (23) 17.2 科学的转折:光的粒子性 (26) 17.3 崭新的一页:粒子的波动性 (31) 17.4 概率波 (33) 17.5 不确定关系 (35) 第十八章原子结构 (38) 18.1 电子的发现 (38) 18.2 原子的核式结构模型 (41) 18.3 氢原子光谱 (44) 18.4 玻尔的原子模型 (46) 18.5 激光 (52) 第十九章原子核 (56) 19.1 原子核的组成 (56) 19.2 放射性元素的衰变 (59) 19.3 探测射线的方法 (62) 19.4 放射性的应用与防护 (64) 19.5 核力与结合能 (65) 19.6 重核的裂变 (68) 19.7 核聚变 (72) 19.8 粒子和宇宙 (74)

第十六章动量守恒定律 新课标要求 1、内容标准 (1)探究物体弹性碰撞的一些特点,知道弹性碰撞和非弹性碰撞; (2)通过实验,理解动量和动量守恒定律,能用动量守恒定律定量分析一维碰撞问题,知道动量守恒定律的普遍意义; 例1:火箭的发射利用了反冲现象。 例2:收集资料,了解中子是怎样发现的。讨论动量守恒定律在其中的作用。(3)通过物理学中的守恒定律,体会自然界的和谐与统一。 2、活动建议 16.1 实验:探究碰撞中的不变量 三维教学目标 1、知识与技能 (1)明确探究碰撞中的不变量的基本思路; (2)掌握同一条直线上运动的两个物体碰撞前后的速度的测量方法; (3)掌握实验数据处理的方法。 2、过程与方法 (1)学习根据实验要求,设计实验,完成某种规律的探究方法; (2)学习根据实验数据进行猜测、探究、发现规律的探究方法。 3、情感、态度与价值观 (1)通过对实验方案的设计,培养学生积极主动思考问题的习惯,并锻炼其思考的全面性、准确性与逻辑性; (2)通过对实验数据的记录与处理,培养学生实事求是的科学态度,能使学生灵活地运用科学方法来研究问题,解决问题,提高创新意识; (3)在对实验数据的猜测过程中,提高学生合作探究能力; (4)在对现象规律的语言阐述中,提高了学生的语言表达能力,还体现了各学科之间的联系,可引伸到各事物间的关联性,使自己溶入社会。 教学重点:碰撞中的不变量的探究。 教学难点:实验数据的处理。 教学方法:启发、引导,学生自主实验,讨论、交流学习成果。 教学用具:投影片,多媒体辅助教学设备;完成该实验实验室提供的实验器材,如气垫导轨、滑块等。 教学过程: 第一节探究碰撞中的不变量 (一)引入 演示: (1)台球由于两球碰撞而改变运动状态。 (2)微观粒子之间由于相互碰撞而改变状态,甚至使得一种粒子转化为其他粒子。 碰撞是日常生活、生产活动中常见的一种现象,两个物体发生碰撞后,速度都发生变化。两个物体的质量比例不同时,它们的速度变化也不一样。物理学中研究运动过程中的守恒量具有特别重要的意义,本节通过实验探究碰撞过程中的什么物理量保持不变(守恒)。

高中物理选修3-4全套教案

高二物理选修3-4教案 11、1简谐运动 一、三维目标 知识与技能 1、了解什么是机械振动、简谐运动 2、正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线过程与方法 通过观察演示实验,概括出机械振动的特征,培养学生的观察、概括能力 情感态度与价值观 让学生体验科学的神奇,实验的乐趣 二、教学重点 使学生掌握简谐运动的回复力特征及相关物理量的变化规律 三、教学难点 偏离平衡位置的位移与位移的概念容易混淆;在一次全振动中速度的变化 四、教学过程 引入:我们学习机械运动的规律,是从简单到复杂:匀速运动、匀变速直线运动、平抛运动、匀速圆周运动,今天学习一种更复杂的运动——简谐运动 1、机械振动 振动是自然界中普遍存在的一种运动形式,请举例说明什么样的运动就是振动 微风中树枝的颤动、心脏的跳动、钟摆的摆动、声带的振动……这些物体的运动都是振动。请同学们观察几个振动的实验,注意边看边想:物体振动时有什么特征 [演示实验] (1)一端固定的钢板尺[见图1(a)] (2)单摆[见图1(b)] (3)弹簧振子[见图1(c)(d)] (4)穿在橡皮绳上的塑料球[见图1(e)]

提问:这些物体的运动各不相同:运动轨迹是直线的、曲线的;运动方向水平的、竖直的;物体各部分运动情况相同的、不同的……它们的运动有什么共同特征 归纳:物体振动时有一中心位置,物体(或物体的一部分)在中心位置两侧做往复运动,振动是机械振动的简称。 2、简谐运动 简谐运动是一种最简单、最基本的振动,我们以弹簧振子为例学习简谐运动 (1)弹簧振子 演示实验:气垫弹簧振子的振动 讨论:a.滑块的运动是平动,可以看作质点 b.弹簧的质量远远小于滑动的质量,可以忽略不计,一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子 c.没有气垫时,阻力太大,振子不振动;有了气垫时,阻力很小,振子振动。我们研究在没有阻力的理想条件下弹簧振子的运动。 (2)弹簧振子为什么会振动 物体做机械振动时,一定受到指向中心位置的力,这个力的作用总能使物体回到中心位置,这个力叫回复力,回复力是根据力的效果命名的,对于弹簧振子,它是弹力。 回复力可以是弹力,或其它的力,或几个力的合力,或某个力的分力,在O点,回复力是零,叫振动的平衡位置。 (3)简谐运动的特征 弹簧振子在振动过程中,回复力的大小和方向与振子偏离平衡位置的位移有直接关系。在研究机械振动时,我们把偏离平衡位置的位移简称为位移。 3、简谐运动的位移图象——振动图象 简谐运动的振动图象是一条什么形状的图线呢简谐运动的位移指的是什么位移(相对平衡位置的位移) 演示:当弹簧振子振动时,沿垂置于振动方向匀速拉动纸带,毛笔P 就在纸带上画出一条振动曲线 说明:匀速拉动纸带时,纸带移动的距离与时间成正比,纸带

人教版高中物理选修3-5教案

物理选修3-5教案 第十六章 动量和动量守恒定律 16.1 实验:探究碰撞中的不变量 目的要求 通过这节课的学习,让学生掌握科学探究的思维方法,从最简单的关系开始寻找,利用身边的资源及已学过的原理,来完成该实验的探究过程。 重难点分析 一、重点 本节课的重点在于如何让学生掌握科学探究的方法。如何真正实现探究的过程。 二、难点 本节课的难点在于,如何启发学生利用身边的一切可利用资源,来自行设计可行性较强的实验方案。 新课教学 一、新课引入 碰撞是自然界中常见的现象。比如,两节火车车厢之间的挂钩靠碰撞相连,台球由于两球的碰撞而改变运动状态。两个迎面而来的人相撞后会相仰而倒,或者各自后退。在微观粒子之间,更是由于相互碰撞而改变能量,甚至由于撞击而使得一种粒子转化为其他粒子。 二、新课教学 由很多例子可知,两个物体碰撞前后的速度都会发生变化,物体的质量不同时速度变化也不一样。那么,碰撞前后会不会有什么物理量保持不变?这节课主要介绍研究这个问题的实验。 (一)实验的基本思路 研究最简单的情况——两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动。这种碰撞叫做一维碰撞。 思考一下,在一维碰撞的情况下,与物体有关的物理量有哪些? (学生答:质量m ,速度v ) 为什么与质量m 有关? (学生答:相互作用力下,质量越大的物体速度改变越慢) 设两物体质量分别为m 1、m 2,碰撞前速度分别为v 1、v 2,碰撞后速度分别为1v '、2 v '。速度为矢量,因而需规定正方向。 问题是:物体的质量和速度在碰撞前后有什么不变的关系? 质量必定是不变的,但质量只是惯性的量度,无法描述物体的运动状态。而速度却是在碰撞前后改变的,那么,可否有一个物理量为质量与速度的某种关系,却又恰好能在碰撞前后保持不变呢? 可能关系: ①2222112 2 22112 1212121v m v m v m v m '+'=+ →这个关系不可能。碰撞前后能量必有损失,只是多少的问题。而我们要寻找的物 理量是在任何一种碰撞中都不变的量。 ②221 12211v m v m v m v m '+'=+

人教版高中物理选修全册教案完整

第四章电磁感应 划时代的发现 教学目标 (一)知识与技能 1.知道与电流磁效应和电磁感应现象的发现相关的物理学史。 2.知道电磁感应、感应电流的定义。 (二)过程与方法 领悟科学探究中提出问题、观察实验、分析论证、归纳总结等要素在研究物理问题时的重要性。 (三)情感、态度与价值观 1.领会科学家对自然现象、自然规律的某些猜想在科学发现中的重要性。 2.以科学家不怕失败、勇敢面对挫折的坚强意志激励自己。 教学重点 知道与电流磁效应和电磁感应现象的发现相关的物理学史。领悟科学探究的方法和艰难历程。培养不怕失败、勇敢面对挫折的坚强意志。 教学难点 领悟科学探究的方法和艰难历程。培养不怕失败、勇敢面对挫折的坚强意志。教学方法 教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。 教学手段 计算机、投影仪、录像片 教学过程 一、奥斯特梦圆“电生磁”------电流的磁效应 引导学生阅读教材有关奥斯特发现电流磁效应的内容。提出以下问题,引导学

生思考并回答: (1)是什么信念激励奥斯特寻找电与磁的联系的在这之前,科学研究领域存在怎样的历史背景 (2)奥斯特的研究是一帆风顺的吗奥斯特面对失败是怎样做的 (3)奥斯特发现电流磁效应的过程是怎样的用学过的知识如何解释 (4)电流磁效应的发现有何意义谈谈自己的感受。 学生活动:结合思考题,认真阅读教材,分成小组讨论,发表自己的见解。二、法拉第心系“磁生电”------电磁感应现象 教师活动:引导学生阅读教材有关法拉第发现电磁感应的内容。提出以下问题,引导学生思考并回答: (1)奥斯特发现电流磁效应引发了怎样的哲学思考法拉第持怎样的观点 (2)法拉第的研究是一帆风顺的吗法拉第面对失败是怎样做的 (3)法拉第做了大量实验都是以失败告终,失败的原因是什么 (4)法拉第经历了多次失败后,终于发现了电磁感应现象,他 发现电磁感应现象的具体的过程是怎样的之后他又做了大量的实 验都取得了成功,他认为成功的“秘诀”是什么 (5)从法拉第探索电磁感应现象的历程中,你学到了什么谈谈 自己的体会。 学生活动:结合思考题,认真阅读教材,分成小组讨论,发表自己的见解。 三、科学的足迹 1、科学家的启迪教材P3 2、伟大的科学家法拉第教材P4 四、实例探究 【例1】发电的基本原理是电磁感应。发现电磁感应现象的科学家是(C)

高中物理选修3-4全套教案(人教版)

高二物理选修3-4教案 郑伟文 11.1简谐运动 教学目的 (1)了解什么是机械振动、简谐运动 (2)正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线。 2.能力培养通过观察演示实验,概括出机械振动的特征,培养学生的观察、概括能力 教学重点:使学生掌握简谐运动的回复力特征及相关物理量的变化规律 教学难点:偏离平衡位置的位移与位移的概念容易混淆;在一次全振动中速度的变化 课型:启发式的讲授课 教具:钢板尺、铁架台、单摆、竖直弹簧振子、皮筋球、气垫弹簧振子、微型气源 教学过程(教学方法) 教学内容 [引入]我们学习机械运动的规律,是从简单到复杂:匀速运动、匀变速直线运动、平抛运动、匀速圆周运动,今天学习一种更复杂的运动——简谐运动。 1.机械振动 振动是自然界中普遍存在的一种运动形式,请举例说明什么样的运动就是振动? [讲授]微风中树枝的颤动、心脏的跳动、钟摆的摆动、声带的振动……这些物体的运动都是振动。请同学们观察几个振动的实验,注意边看边想:物体振动时有什么特征? [演示实验](1)一端固定的钢板尺[见图1(a)](2)单摆[见图1(b)] (3)弹簧振子[见图1(c)(d)] (4)穿在橡皮绳上的塑料球[见图1(e)] {提问}这些物体的运动各不相同:运动轨迹是直线的、曲线的;运动方向水平的、竖直的;物体各部分运动情况相同的、不同的……它们的运动有什么共同特征? {归纳}物体振动时有一中心位置,物体(或物体的一部分)在中心位置两侧做往复运动,振动是机械振动的简称。 2.简谐运动 简谐运动是一种最简单、最基本的振动,我们以弹簧振子为例学习简谐运动。

人教版高中物理选修3-5教案

物理选修3-5教案 第十六章动量和动量守恒定律 16.1 动量守恒定律(一) 1.动量及其变化 (1)动量的定义:物体的质量与速度的乘积,称为(物体的)动量。记为p=mv. 单位:kg·m/s 读作“千克米每秒”。 ①矢量性:动量的方向与速度方向一致。 动量的大小等于质量和速度的乘积,动量的方向与速度方向一致。 (2)动量的变化量: 定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p= p′-p为物体在该过程中的动量变化。 强调指出:动量变化△p是矢量。方向与速度变化量△v相同。 一维情况下:Δp=mΔυ= mυ2- mΔυ1矢量差 2.系统内力和外力 (1)系统:相互作用的物体组成系统。 (2)内力:系统内物体相互间的作用力 (3)外力:外物对系统内物体的作用力 3.动量守恒定律 (1)内容:一个系统不受外力或者所受外力的和为零,这个系统的总动量保持不变。这个结论叫做动量守恒定律。公式:m1υ1+ m2υ2= m1υ1′+ m2υ2′ (2)注意点: ①研究对象:几个相互作用的物体组成的系统(如:碰撞)。 ②矢量性:以上表达式是矢量表达式,列式前应先规定正方向; ③同一性(即所用速度都是相对同一参考系、同一时刻而言的)

④ 条件:系统不受外力,或受合外力为0。要正确区分内力和外力;当F 内>>F 外时, 系统动量可视为守恒; 16.2动量守恒定律(二) 1.分析动量守恒定律成立条件有: 答:①F 合=0(严格条件) ②F 内 远大于F 外(近似条件) ③某方向上合力为0,在这个方向上成立。 221 12211v m v m v m v m '+'=+ 这就是动量守恒定律的表达式。 2.应用动量守恒定律解决问题的基本思路和一般方法 (1)分析题意,明确研究对象。在分析相互作用的物体总动量是否守恒时,通常把这些 被研究的物体总称为系统.对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的。 (2)要对各阶段所选系统内的物体进行受力分析,弄清哪些是系统内部物体之间相互作 用的内力,哪些是系统外物体对系统内物体作用的外力。在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒。 (3)明确所研究的相互作用过程,确定过程的始、末状态,即系统内各个物体的初动量 和末动量的量值或表达式。 注意:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。 例1、(2001年高考试题)质量为M 的小船以速度v 0行驶,船上有两个质量皆为m 的小 孩a 和b ,分别静止站在船头和船尾.现在小孩a 沿水平方向以速率v (相对于静止水面)向前跃入水中,然后小孩b 沿水平方向以同一速率v (相对于静止水面)向后跃入水中.求小孩b 跃出后小船的速度.

人教版高中物理选修全册教案完整

—-可编辑修改,可打印—— 别找了你想要的都有! 精品教育资料

——全册教案,,试卷,教学课件,教学设计等一站式服务—— 全力满足教学需求,真实规划教学环节 最新全面教学资源,打造完美教学模式 第四章电磁感应 4.1 划时代的发现 教学目标 (一)知识与技能 1.知道与电流磁效应和电磁感应现象的发现相关的物理学史。 2.知道电磁感应、感应电流的定义。 (二)过程与方法 领悟科学探究中提出问题、观察实验、分析论证、归纳总结等要素在研究物理问题时的重要性。 (三)情感、态度与价值观 1.领会科学家对自然现象、自然规律的某些猜想在科学发现中的重要性。 2.以科学家不怕失败、勇敢面对挫折的坚强意志激励自己。 教学重点

知道与电流磁效应和电磁感应现象的发现相关的物理学史。领悟科学探究的方法和艰难历程。培养不怕失败、勇敢面对挫折的坚强意志。 教学难点 领悟科学探究的方法和艰难历程。培养不怕失败、勇敢面对挫折的坚强意志。教学方法 教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。 教学手段 计算机、投影仪、录像片 教学过程 一、奥斯特梦圆“电生磁”------电流的磁效应 引导学生阅读教材有关奥斯特发现电流磁效应的内容。提出以下问题,引导学生思考并回答: (1)是什么信念激励奥斯特寻找电与磁的联系的?在这之前,科学研究领域存在怎样的历史背景? (2)奥斯特的研究是一帆风顺的吗?奥斯特面对失败是怎样做的? (3)奥斯特发现电流磁效应的过程是怎样的?用学过的知识如何解释? (4)电流磁效应的发现有何意义?谈谈自己的感受。 学生活动:结合思考题,认真阅读教材,分成小组讨论,发表自己的见解。二、法拉第心系“磁生电”------电磁感应现象 教师活动:引导学生阅读教材有关法拉第发现电磁感应的内容。提出以下问题,引导学生思考并回答: (1)奥斯特发现电流磁效应引发了怎样的哲学思考?法拉第持怎样的观点? (2)法拉第的研究是一帆风顺的吗?法拉第面对失败是怎样做的? (3)法拉第做了大量实验都是以失败告终,失败的原因是什么?

人教版高中物理选修3教案 简谐运动

简谐运动 教学目的 (1)了解什么是机械振动、简谐运动 (2)正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线。 2.能力培养通过观察演示实验,概括出机械振动的特征,培养学生的观察、概括能力 教学重点:使学生掌握简谐运动的回复力特征及相关物理量的变化规律 教学难点:偏离平衡位置的位移与位移的概念容易混淆;在一次全振动中速度的变化 课型:启发式的讲授课 教具:钢板尺、铁架台、单摆、竖直弹簧振子、皮筋球、气垫弹簧振子、微型气源 教学过程(教学方法) 教学内容 [引入]我们学习机械运动的规律,是从简单到复杂:匀速运动、匀变速直线运动、平抛运动、匀速圆周运动,今天学习一种更复杂的运动——简谐运动。 1.机械振动 振动是自然界中普遍存在的一种运动形式,请举例说明什么样的运动就是振动? [讲授]微风中树枝的颤动、心脏的跳动、钟摆的摆动、声带的振动……这些物体的运动都是振动。请同学们观察几个振动的实验,注意边看边想:物体振动时有什么特征? [演示实验](1)一端固定的钢板尺[见图1(a)](2)单摆[见图1(b)] (3)弹簧振子[见图1(c)(d)] (4)穿在橡皮绳上的塑料球[见图1(e)]

{提问}这些物体的运动各不相同:运动轨迹是直线的、曲线的;运动方向水平的、竖直的;物体各部分运动情况相同的、不同的……它们的运动有什么共同特征? {归纳}物体振动时有一中心位置,物体(或物体的一部分)在中心位置两侧做往复运动,振动是机械振动的简称。 2.简谐运动 简谐运动是一种最简单、最基本的振动,我们以弹簧振子为例学习简谐运动。 (1)弹簧振子 演示实验:气垫弹簧振子的振动 [讨论] a.滑块的运动是平动,可以看作质点 b.弹簧的质量远远小于滑动的质量,可以忽略不计,一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子 c.没有气垫时,阻力太大,振子不振动;有了气垫时,阻力很小,振子振动。我们研究在没有阻力的理想条件下弹簧振子的运动。 (2)弹簧振子为什么会振动? 物体做机械振动时,一定受到指向中心位置的力,这个力的作用总能使物体回到中心位置,这个力叫回复力,回复力是根据力的效果命名的,对于弹簧振子,它是弹力。 回复力可以是弹力,或其它的力,或几个力的合力,或某个力的分力。 在O点,回复力是零,叫振动的平衡位置。 (3)简谐运动的特征 弹簧振子在振动过程中,回复力的大小和方向与振子偏离平衡位置的位移有直接关系。在研究机械振动时,我们把偏离平衡位置的位移简称为位移。 3、简谐运动的位移图象——振动图象 简谐运动的振动图象是一条什么形状的图线呢?简谐运动的位移指的是什么位移?(相对平衡位置的位移)

人教版高中物理选修3-1教案电子教案

人教版高中物理选修 3-1教案

高一物理选修3-1教案 第一章静电场 1.1电荷及其守恒定律 一、教学三维目标 (一)知识与技能 1.知道两种电荷及其相互作用.知道电量的概念. 2.知道摩擦起电,知道摩擦起电不是创造了电荷,而是使物体中的正负电荷分开. 3.知道静电感应现象,知道静电感应起电不是创造了电荷,而是使物体中的电荷分开. 4.知道电荷守恒定律. 5.知道什么是元电荷. (二)过程与方法 1、通过对初中知识的复习使学生进一步认识自然界中的两种电荷 2、通过对原子核式结构的学习使学生明确摩擦起电和感应起电不是创造了电荷,而是使物体中的电荷分开.但对一个与外界没有电荷交换的系统,电荷的代数和不变。 (三)情感态度与价值观

二、教学重点:电荷守恒定律 三、教学难点:利用电荷守恒定律分析解决摩擦起电和感应起电的相关问题。 四、教学具体过程: (一)引入新课:新的知识内容,新的学习起点.本章将学习静电学.将从物质的微观的角度认识物体带电的本质,电荷相互作用的基本规律,以及与静止电荷相联系的静电场的基本性质。 【板书】第一章静电场 复习初中知识: 【演示】摩擦过的物体具有了吸引轻小物体的性质,这种现象叫摩擦起电,这样的物体就带了电. 【演示】用丝绸摩擦过的玻璃棒之间相互排斥,用毛皮摩擦过的硬橡胶棒之间也相互排斥,而玻璃棒和硬橡胶棒之间却相互吸引,所以自然界存在两种电荷.同种电荷相互排斥,异种电荷相互吸引. 【板书】自然界中的两种电荷 正电荷和负电荷:把用丝绸摩擦过的玻璃棒所带的电荷称为正电荷,把用毛皮摩擦过的硬橡胶棒所带的电荷称为负电荷,用负数表示. 电荷及其相互作用:同种电荷相互排斥,异种电荷相互吸引. (二)进行新课:第1节、电荷及其守恒定律 【板书】

高中物理必修选修目录-人教版

人教版 高中化学教材目录 必修1 走进物理课堂之前物理学与人类文明 第一章运动的描述 1 质点参考系和坐标系 2 时间和位移 3 运动快慢的描述──速度 4 实验:用打点计时器测速度 5 速度变化快慢的描述──加速度 第二章匀变速直线运动的研究 1 实验:探究小车速度随时间变化的规律 2 匀变速直线运动的速度与时间的关系 3 匀变速直线运动的位移与速度的关系 4 自由落体运动 5 伽利略对自由落体运动的研究 第三章相互作用 1 重力基本相互作用 2 弹力 3 摩擦力 4 力的合成 5 力的分解 第四章牛顿运动定律 1 牛顿第一定律 2 实验:探究加速度与力、质量的关系 3 牛顿第二定律 4 力学单位制 5 牛顿第三定律 6 用牛顿运动定律解决问题(一) 7 用牛顿定运动律解决问题(二) 必修2 第五章曲线运动 1 曲线运动 2 平抛运动 3实验:研究平抛运动 4 圆周运动 5 向心加速度 6 向心力 7 生活中的圆周运动 第六章万有引力与航天 1 行星的运动 2 太阳与行星间的引力 3 万有引力定律 4 万有引力理论的成就 5 宇宙航行 6 经典力学的局限性 第七章机械能及其守恒定律 1 追寻守恒量—能量 2 功 3 功率 4 重力势能 5 探究弹性势能的表达式 6 实验:探究功与速度变化的关系 7 动能和动能定理 8 机械能守恒定律 9 实验:验证机械能守恒定律 10 能量守恒定律与能源 选修1-1 第一章电场电流 一、电荷库仑定律 二、电场 三、生活中的静电现象 四、电容器 五、电流和电源 六、电流的热效应 第二章磁场 一、指南针与远洋航海 二、电流的磁场 三、磁场对通电导线的作用 四、磁场对运动电荷的作用 五、磁性材料 第三章电磁感应 一、电磁感应现象 二、法拉第电磁感应定律 三、交变电流 四、变压器 五、高压输电 六、自感现象涡流 七、课题研究:电在我家中

高中物理选修3-5全套教案--动量守恒定律(一)

16.2 动量守恒定律(一) ★新课标要求 (一)知识与技能 理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围 (二)过程与方法 在理解动量守恒定律的确切含义的基础上正确区分内力和外力 (三)情感、态度与价值观 培养逻辑思维能力,会应用动量守恒定律分析计算有关问题 ★教学重点 动量的概念和动量守恒定律 ★教学难点 动量的变化和动量守恒的条件. ★教学方法 教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 上节课的探究使我们看到,不论哪一种形式的碰撞,碰撞前后mυ的矢量和保持不变,因此mυ很可能具有特别的物理意义。 (二)进行新课 1.动量(momentum)及其变化 (1)动量的定义:物体的质量与速度的乘积,称为(物体的)动量。记为p=mv. 单位:kg·m/s读作“千克米每秒”。 理解要点: ①状态量:动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。 师:大家知道,速度也是个状态量,但它是个运动学概念,只反映运动的快慢和方向,而运动,归根结底是物质的运动,没有了物质便没有运动.显然地,动量包含了“参与运动的物质”和“运动速度”两方面的信息,更能从本质上揭示物体的运动状态,是一个动力学概念. ②矢量性:动量的方向与速度方向一致。

师:综上所述:我们用动量来描述运动物体所能产生的机械效果强弱以及这个效果发生的方向,动量的大小等于质量和速度的乘积,动量的方向与速度方向一致。 (2)动量的变化量: 定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p= p′-p为物体在该过程中的动量变化。 强调指出:动量变化△p是矢量。方向与速度变化量△v相同。 一维情况下:Δp=mΔυ= mυ2- mΔυ1矢量差 【例1(投影)】 一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少? 【学生讨论,自己完成。老师重点引导学生分析题意,分析物理情景,规范答题过程,详细过程见教材,解答略】 2.系统内力和外力 【学生阅读讨论,什么是系统?什么是内力和外力?】 (1)系统:相互作用的物体组成系统。 (2)内力:系统内物体相互间的作用力 (3)外力:外物对系统内物体的作用力 〖教师对上述概念给予足够的解释,引发学生思考和讨论,加强理解〗 分析上节课两球碰撞得出的结论的条件: 两球碰撞时除了它们相互间的作用力(系统的内力)外,还受到各自的重力和支持力的作用,使它们彼此平衡。气垫导轨与两滑块间的摩擦可以不计,所以说m1和m2系统不受外力,或说它们所受的合外力为零。 3.动量守恒定律(law of conservation of momentum) (1)内容:一个系统不受外力或者所受外力的和为零,这个系统的总动量保持不变。这个结论叫做动量守恒定律。 公式:m1υ1+ m2υ2= m1υ1′+ m2υ2′ (2)注意点: ①研究对象:几个相互作用的物体组成的系统(如:碰撞)。 ②矢量性:以上表达式是矢量表达式,列式前应先规定正方向; ③同一性(即所用速度都是相对同一参考系、同一时刻而言的) ④条件:系统不受外力,或受合外力为0。要正确区分内力和外力;当F内>>F外时,系统动量可视为守恒; 思考与讨论:

人教版高中物理选修3-1教案

人教版高中物理选修3-1教案 第一章静电场 1.1电荷及其守恒定律 教学三维目标 (一)知识与技能 1.知道两种电荷及其相互作用.知道电量的概念. 2.知道摩擦起电,知道摩擦起电不是创造了电荷,而是使物体中的正负电荷分开. 3.知道静电感应现象,知道静电感应起电不是创造了电荷,而是使物体中的电荷分开. 4.知道电荷守恒定律. 5.知道什么是元电荷. (二)过程与方法 1、通过对初中知识的复习使学生进一步认识自然界中的两种电荷 2、通过对原子核式结构的学习使学生明确摩擦起电和感应起电不是创造了电荷,而是使物体中的电荷分开.但对一个与外界没有电荷交换的系统,电荷的代数和不变。 (三)情感态度与价值观 通过对本节的学习培养学生从微观的角度认识物体带电的本质 重点:电荷守恒定律 难点:利用电荷守恒定律分析解决相关问题摩擦起电和感应起电的相关问题。教学过程: (一)引入新课:新的知识静电场 复习初中知识: 【演示】摩擦过的物体具有了吸引轻小物体的性质,这种现象叫摩擦起电,这样的物体就带了电. 【演示】用丝绸摩擦过的玻璃棒之间相互排斥,用毛皮摩擦过的硬橡胶棒之间也相互排斥,而玻璃棒和硬橡胶棒之间却相互吸引,所以自然界存在两种电荷.同种电荷相互排斥,异种电荷相互吸引.【板书】自然界中的两种电荷正电荷和负电荷:把用丝绸摩擦过的玻璃棒所带的电荷称为正电荷,用正数表示.把用毛皮摩擦过的硬橡胶棒所带的电荷称为负电荷,用负数表示.电荷及其相互作用:同种电荷相互排斥,异种电荷相互吸引. (二)进行新课:第1节、电荷及其守恒定律 【板书】电荷 (1)原子的核式结构及摩擦起电的微观解释 原子:包括原子核(质子和中子)和核外电子。 (2)摩擦起电的原因:不同物质的原子核束缚电子的能力不同.实质:电子的转移.结果:两个相互摩擦的物体带上了等量异种电荷. (3)金属导体模型也是一个物理模型P3 用静电感应的方法也可以使物体带电. 【演示】:把带正电荷的球C移近彼此接触的异体A,B(参见课本图1.1-1).可以看到A,B 1 上的金属箔都张开了,表示A,B都带上了电荷.如果先把C移走,A和B上

高中物理人教版选修3-5-知识点总结

选修3-5知识梳理 一.量子论的建立黑体和黑体辐射Ⅰ (一)量子论 1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。 2.量子论的主要内容: ①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。 ②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。 3.量子论的发展 ①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。 ②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。 ③到1925年左右,量子力学最终建立。 4.量子论的意义 ①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。 ②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。 ③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应 ④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。 量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。 (二)黑体和黑体辐射 1.热辐射现象 任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。 这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。 ①.物体在任何温度下都会辐射能量。 ②.物体既会辐射能量,也会吸收能量。物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。 辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。 实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。 2.黑体 物体具有向四周辐射能量的本领,又有吸收外界辐 射来的能量的本领。 黑体是指在任何温度下,全部吸收任何波长的辐射 的物体。 3.实验规律: 1)随着温度的升高,黑体的辐射强度都有增加; 2)随着温度的升高,辐射强度的极大值向波长较短 方向移动。

相关主题
文本预览
相关文档 最新文档