柔性直流输电在配电网中的应用
- 格式:docx
- 大小:237.18 KB
- 文档页数:9
基于MMC的柔性直流配电网故障定位及保护配置研究一、本文概述随着能源结构的转型和电力电子技术的快速发展,直流配电网,特别是基于模块化多电平换流器(Modular Multilevel Converter, MMC)的柔性直流配电网,逐渐成为未来智能电网的重要组成部分。
然而,与传统的交流配电网相比,直流配电网的故障特性和保护策略存在显著差异,这使得故障定位和保护配置面临诸多挑战。
因此,本文旨在深入研究基于MMC的柔性直流配电网的故障定位及保护配置问题,以提高电网的安全性和稳定性。
本文首先对柔性直流配电网的基本结构和工作原理进行介绍,重点阐述MMC的工作原理及其在直流配电网中的应用。
在此基础上,分析柔性直流配电网中可能出现的故障类型及其特性,包括线路故障、换流器故障等。
接着,本文深入探讨现有的故障定位方法,如行波法、阻抗法等,并分析其在柔性直流配电网中的适用性。
同时,针对柔性直流配电网的故障特性,研究适用于该系统的保护配置方案,包括过流保护、欠压保护等。
本文还将通过仿真实验和实际案例分析,对所提出的故障定位方法和保护配置方案进行验证。
通过仿真实验,模拟不同故障场景下电网的动态行为,评估故障定位方法的准确性和保护配置方案的有效性。
结合实际案例,分析故障发生的原因和处理过程,为实际工程应用提供参考。
本文旨在通过理论分析和实验研究,为基于MMC的柔性直流配电网的故障定位及保护配置提供有效的解决方案,为推动直流配电网技术的发展和应用提供理论支持和实践指导。
二、MMC技术及其在柔性直流配电网中的应用模块化多电平换流器(Modular Multilevel Converter,MMC)是一种新型的高压大功率电力电子变换技术,由德国学者R. Marquardt和A. Lesnicar于2002年首次提出。
MMC由多个结构相同、相互独立的子模块(Sub-Module,SM)级联而成,通过控制子模块的投入与切除,可以灵活地调节输出电压的幅值和极性,从而实现直流电网的灵活、高效、可靠运行。
柔性直流输电一、概述(一)柔性直流输电的定义高压直流(HVDC)输电技术始于1920年代,到目前为止,经历了3次技术上的革新,其主要推动力是组成换流器的基本元件发生了革命性的重大突破。
第一代直流输电技术采用的换流元件是汞弧阀,所用的换流器拓扑是6脉动Graetz桥,其主要应用年代是1970年代以前。
第二代直流输电技术采用的换流元件是晶闸管,所用的换流器拓扑仍然是6脉动Graetz桥,因而其换流理论与第一代直流输电技术相同,其应用年代是1970年代初直到今后一段时间。
通常我们将基于Graetz桥式换流器的第一代和第二代直流输电技术称为传统直流输电技术,其运行原理是电网换相换流理论。
因此我们也将传统直流输电所采用的Graetz桥式换流器称为“电网换相换流器”,英文是“Line Commutated Converter”,缩写是“LCC”。
这里必须明确一个概念,有人将电流源换流器(CSC)与电网换相换流器(LCC)混淆起来,这是不对的。
LCC属于CSC,但CSC的范围要比LCC宽广得多,基于IGBT构成的CSC目前也是业界研究的一个热点。
1990年,基于电压源换流器的直流输电概念首先由加拿大McGill大学的Boon-Teck Ooi等提出。
在此基础上,ABB公司于1997年3月在瑞典中部的Hellsjon和Grangesberg之间进行了首次工业性试验(3 MW,±10kV),标志着第三代直流输电技术的诞生。
这种以可关断器件和脉冲宽度调制(PWM)技术为基础的第三代直流输电技术,国际权威学术组织国际大电网会议(CIGRE)和美国电气和电子工程师协会(IEEE),将其正式命名为“VSC-HVDC”,即“电压源换流器型直流输电”。
2006年5月,由中国电力科学研究院组织国内权威专家在北京召开“轻型直流输电系统关键技术研究框架研讨会”,会上,与会专家一致建议国内将基于电压源换流器技术的直流输电(第三代直流输电技术)统一命名为“柔性直流输电”。
1、简介从上个世纪五十年代至今,高压直流输电技术(High V oltageDirectCurrent,HVDC)经历了跨越式发展,己经广泛应用于风电场并网、大容量远距离输电、非同步大电网互联、孤岛和弱电网供电等领域HVDC技术从早期的汞弧阀换流技术发展到高压大功率晶闹管换流器技术,极大地促进了直流输电技术的发展。
与高压输电技术相反的是换流技术几乎仍在原地踏步,线换相换流器(Line Commuted Converter, LCC)直流输电占据主流。
由于晶闸管关断不可控,传统直流输电技术具有明显缺陷。
随着电力电子变流技术的迅猛发展,出现了以脉宽调制(Plus Width Modulation, PWM)技术为基础的变流器。
并且PWM变流器技术也日漆完善。
目前主要应用的主电路类型有电流型变流器(Current Source Converter, CSC)和电压源型变流器(V oltageSource Converter, VSC)。
并且,全控器件电压和容量的等级的不断提升,控制技术的日趋完善,带动VSC开始应用于大容量高压输配电领域,如,灵活交流输电系统(Flexible ACTransmission System, FACTS)、基于电压源变流器的高压直流输电(VSC basedHVDC,VSC-HVDC)、定制电力系统(Custom Power,CP)等典型代表。
VSC设备配合不同的控制策略可以控制系统潮流、调节网络运行参数,进而优化电力统运行状态,提高系统稳定性和运行可靠性。
VSC-HVDC技术是以电压源变流器,可控关断的IGBT和脉宽调制(PWM)为基础的新型输电技术。
VSC-HVDC不仅可以独立快速控制有功无功,还易于翻转潮流,实现了无源网络供电。
同时,随着能源紧缺和环境污染的日益严重,我国开始大力幵发和利用风能、太阳能等可再生清洁能源,优化能源结构。
但是其固有的分散性、小型化、远离负荷中心等特点直接制约了风电利用规模的不断扩大以及传统交流输电技术和CSC-HVDC 输电技术联网的经济性。
多端柔性直流输电(VSC—HVD)系统直流电压下垂控制学院:姓名:学号:组员:指导老师:日期:摘要:多端柔性直流输电系统(voltage sourcedconverter basedmulti-terminal high voltage direct current transmission,VSC-MTDC)与传统的电网换相换流器构成的多端直流输电系统相比,具有控制灵活、能够与短路容量较小的弱交流系统甚至无源交流系统相连、扩建容易等诸多优点直流电压的稳定直接影响到直流潮流的稳定,因此直流电压控制是多端柔性直流输电系统稳定运行的重要因素之一。
下垂控制策略具有无需通讯、可靠性较高等优点,但存在直流电压质量较差、功率分配不独立、参数设计困难等问题。
本文首先介绍了多端柔性直流输电系统控制方法的分类比较,然后重点介绍了下垂控制数学模型,分析MTDC 系统中下垂控制参数对直流电压与电流(功率)的影响机理,研究满足MTDC 系统功率平衡和直流电压稳定的V-I(V-P)下垂特性曲线。
关键词:VSC-MTDC 下垂控制模块化多电平换流器一、引言基于电压源换流器(Voltage Source Converter,VSC)的高压直流输电(High Voltage Direct Current,HVDC)技术(HVDC based on VSC,VSC-HVDC,也称柔性直流输电技术)系统以其灵活性、经济性和可靠性,在新能源并网、城市直流配电网、孤岛供电等领域有着广泛的应用前景。
MTDC 系统接线方式分为串联、并联和混联等,目前主要采用并联式[1]。
并联接线的MTDC 系统中所有VSC 工作于相同直流母线电压下,因此直流电压控制是系统稳定运行的关键,类似于交流系统中的频率控制。
多端柔性直流输电系统级直流电压控制策略可以分为三大类,分别是单点直流电压控制策略、多点直流电压控制策略以及直流电压斜率控制策略。
单点直流电压控制策略将一个换流站作为直流电压控制站,其余换流站负责控制其他的变量,例如交流功率、交流频率、交流电压等,系统中仅有一个换流站对直流电压进行控制,如果这个换流站失去了直流电压的控制能力,整个柔性直流输电系统的潮流将失稳,因此单点直流电压控制策略的适用性较差。
柔性直流输电技术概述1柔性直流输电技术简介柔性直流输电作为新一代直流输电技术,其在结构上与高压直流输电类似,仍是由换流站和直流输电线路(通常为直流电缆)构成。
与基于相控换相技术的电流源换流器型高压直流输电不同,柔性直流输电中的换流器为电压源换流器(VSC),其最大的特点在于采用了可关断器件(通常为IGBT)和高频调制技术。
详细地说,就是要通过调节换流器出口电压的幅值和与系统电压之间的功角差,可以独立地控制输出的有功功率和无功功率。
这样,通过对两端换流站的控制,就可以实现两个交流网络之间有功功率的相互传送,同时两端换流站还可以独立调节各自所吸收或发出的无功功率,从而对所联的交流系统给予无功支撑。
2. 技术特点柔性直流输电技术是采用可关断电压源型换流器和PWM技术进行直流输电,相当于在电网接入了一个阀门和电源,可以有效控制其通过的电能,隔离电网故障的扩散,还能根据电网需求,快速、灵活、可调地发出或者吸收一部分能量,从而优化电网潮流分布、增强电网稳定性、提升电网的智能化和可控性。
它很适合应用于可再生能源并网、分布式发电并网、孤岛供电、城市电网供电、异步交流电网互联等领域。
柔性直流输电除具有传统直流输电的技术优点外,还具备有功无功单独控制、可以黑启动对系统强度要求低、响应速度快、可控性好、运行方式灵活等特点,目前,大容量高电压柔性直流输电技术已具备工程应用条件,并且具有以下优点:(1)系统具有2个控制自由度,可同时调节有功功率和无功功率,当交流系统故障时,可提供有功功率的紧急支援,又可提供无功功率紧急支援,既能提高系统功角稳定性,还能提高系统电压稳定性;(2)系统在潮流反转时,直流电流方向反转而直流电压极性不变,这个特点有利于构成既能方便地控制潮流又有较高可靠性的并联多端直流系统,实现多端之间的潮流自由控制;(3)柔性直流输电交流侧电流可被控制,不会增加系统的短路功率;(4)对比传统直流输电方式,采用多电平技术,无需滤波装置,占地面积很小;(5)各站可通过直流线路向对端充电,并根据直流线路电压采取不同的控制策略,因此换流站间可以不需要通讯;(6)柔性直流输电具有良好的电网故障后快速恢复控制能力;(7)系统可以工作在无源逆变方式,克服了传统直流受端必须是有源网络,可以为无源系统供电。
浅谈柔性直流输电系统及应用发表时间:2018-08-22T09:31:47.567Z 来源:《基层建设》2018年第21期作者:张永锋[导读] 摘要:柔性直流输电系统是以电压源换流器为基础的新一代直流输电系统(也称作:电压源换相高压直流输电,英文简称:VSC-HVDC)。
吉林省送变电工程有限公司吉林长春 130031摘要:柔性直流输电系统是以电压源换流器为基础的新一代直流输电系统(也称作:电压源换相高压直流输电,英文简称:VSC-HVDC)。
换流器采用了可控关断元件,可解决向无源负荷送电的问题。
在传输有功功率的同时,换流器可从AC系统吸收无功,或向AC系统发无功,起到调节无功功率的作用,运行方式更加灵活。
目前的技术路线主要有两类:一类是ABB公司的两电平结构,一类是西门子公司的多电平机构。
主要的接线方式也有两类:一类是伪双极接线,一类是真双极接线。
关键词:柔性直流;输电;系统;应用1 引言1954年,连接Gotland与瑞典大陆之间的世界上第一条高压直流输电线路建成,标志着HVDC进入了商业化时代。
1990年,加拿大McGill大学的Boon-Teck Ooi等首次提出使用PWM技术控制VSC进行直流输电的概念。
1997年,ABB公司在瑞典中部的Hallsion和Grangesberg之间建成首条的工业试验工程。
从此VSC-HVDC作为一种新兴的输电技术开始进入大发展的商业应用阶段。
2 柔性直流输电的特点(1)柔性直流输电系统的组成柔性直流输电系统由换流站和直流输电线路构成。
柔性直流输电系统包括两个换流站和两条直流线路。
柔性直流输电功率可以双向流动,两个换流站中的任一个既可以作整流站也可以作逆变站运行。
柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、启动电阻、交流滤波器、控制保护以及辅助系统(水冷系统、站用电系统)等。
两端电压源换流器的换流站与直流线路一起构成柔性直流输电系统。
对柔性直流输电技术的相关要点分析摘要:柔性直流输电是有广泛应用前景的输电技术,而且也有比较先进的技术。
能够在国家能源结构方面进行调整,让区域能源实现互联发展。
能够进行自换相,如果没有换相失败的时候,也可以向弱交流系统供电。
如果缺乏无功补偿,可以设置常规直流的补偿功率为50%到60%,另外,整个占地面积比较大。
有比较低的谐波水平,这也决定了柔性直流输电,也不会有更多的滤波。
如果在海上风电和海上石油平台方面也会有大的发展。
由于电的波动性也会比较大,也会有比较强的间歇性,针对调整这些间歇性的问题,可以更快的去调节能量。
针对柔性直流输电技术的特点和发展现状问题,也总结出了柔性直流输电技术的应用领域,更好地对未来柔性直流发电技术发展前景进行了分析。
关键词:柔性直流输电;技术要点;技术分析柔性直流输电能够构成多端直流电网,而且也不需要去改变直流的电压极性,如果只改变直流电压的方向,可能在常规反送的时候去改变电压,对于柔性直流输电并不用改变电压方向和电流方向,因此构成了直流网和只是电流调节。
对于直流电网的实际意义是要实现能量流的双向流动与双向控制,并且提高大功率电力电子性能,从而保证能量流自动调节,这种设计也比较小型化。
一、柔性直流输电的现状优势目前,人们越来越重视以晶闸管换流器为核心的高压直流输电技术。
柔性直流输电的主要优势是可以降低高压输电走廊的建设成本,并且对相位交流电网的柔性进行关联,让负荷中心可以进行远距离大功率的输电。
常规直流输电技术有非常多的优势,柔性直流输电技术也有其独有的特点。
1.孤岛特性常规高压直流输电技术要求受端电网是强电网,受端电网应当提供电压作为支撑方,从而保证输电的稳定性。
在一开始建设常规直流电的时候,由于交流电网容量会比较大,高压直流输电一般都是作为小部分来进行补充,没有比较明显的问题。
我国新能源建设都得到了蓬勃发展,新能源需要借助直流线路输到东部负荷中心,交流端容量无法更好地支撑大量的直流线路输入。
世界柔性直流输电工程建设与应用案例柔性直流输电技术是一种新型的电力传输方式,采用直流电输送电能,具有输电损耗小、效率高、稳定性好等优点,在世界范围内得到了广泛应用。
下面是世界柔性直流输电工程建设与应用的一些案例。
1.德国柏林-德累斯顿柔性直流输电工程德国柏林-德累斯顿柔性直流输电工程是世界首个采用柔性直流输电技术的输电工程。
该工程由德国ABB公司承建,输电距离约为354公里。
该工程的建成使得德国能够从北部风电丰富的地区将电能输送到南部需求量大的地区,有效解决了德国能源供需不平衡的问题。
2.中国青海-河南柔性直流输电工程中国青海-河南柔性直流输电工程是世界上最长的柔性直流输电工程之一,由中国国家电力公司承建。
该工程全长约2700公里,输电容量达到12GW。
该工程通过柔性直流输电技术,将青海丰富的风电和太阳能资源输送到中原地区,解决了中原地区电力供应不足的问题,同时实现了可再生能源的高效利用。
3.挪威-英国柔性直流输电工程挪威-英国柔性直流输电工程是一项具有国际意义的跨国合作项目,由挪威Statnett公司和英国National Grid公司合作建设。
该工程将挪威丰富的水电资源输送到英国,满足英国的电力需求。
该工程输电距离约730公里,输电能力达到1.4GW。
该工程的建成不仅实现了两国电力之间的互补,还推动了北海风电资源的开发利用。
4.日本北海道柔性直流输电工程日本北海道柔性直流输电工程是日本首个采用柔性直流输电技术的输电工程。
该工程由日本电力公司承建,用于将北海道的风能资源输送到本州地区。
该工程全长约530公里,输电能力达到1GW。
该工程的建成在日本推动了可再生能源的开发和利用,同时优化了全国的电力供应结构。
5.澳大利亚海底-内陆柔性直流输电工程澳大利亚海底-内陆柔性直流输电工程是世界上第一条长距离海底输电线路,由澳大利亚传统能源公司和国家电网公司合作建设。
该工程全长约1800公里,将澳大利亚南部的风能资源输送到北部地区。
谈柔性直流输电技术在风电并网中应用摘要:柔性(柔性)直流输电解决了新能源尤其是风电并网系统稳定问题;超高压直流输电解决了大功率远距离输电和系统稳定性问题;特高压直流输电解决了输电线路特别长,输送容量特别大的电能传输问题的系统问题;背靠背直流输电,解决了短距离非同步的联网传输的系统稳定性问题。
柔性直流输电是采用先进的电压源换流器VSC技术,是目前公认的风电并网消纳的最佳输电方式,解决了风力发电上网对系统稳定造成的威胁问题。
柔性直流输电是智能电网发展的必然。
关键词:柔性直流;输电技术;风电并网1 风电并网方式简介1.1常规风电并网目前国内风电机组并网多采用高压交流输电模式。
风力发电机系统可分为恒速恒频发电机系统和变速恒频发电机系统。
恒速恒频同步发电机系统因风速的变化会使其转子转矩不稳定,并网后如不能有效控制易发生无功振荡和风机失步。
恒速恒频异步发电机系统如果直接并网会产生4~5倍发电机额定电流的冲击电流威胁电网安全运行,同时在输电线路两端需安装无功补偿装置来提供并网所需的无功支撑。
变速恒频发电机系统在弥补恒速恒频发电机系统缺点的同时带来建设成本高、产生高次谐波电流等新问题。
1.2柔性直流风电并网采用高压直流输电模式并网可以完全的控制风电的潮流,实现送端系统与受端系统的解耦以避免故障的传播,利用直流输电较交流输电降低了线路损耗,且占地面积小,特别适用于离岸风力发电、海上平台供电等场合。
柔性直流输电(HVDCFlexible)并网不仅具备高压直流输电并网的优点,同时还具备无需外部电源支撑可实现自换相的能力,不需要交流系统提供换相容量,适合弱交流系统场合下使用。
具有无功功率的独立控制能力避免了无功补偿装置的使用,实现了无功功率与有功功率的相互独立。
2 柔性直流输电技术2.1柔性直流输电技术传统直流输电以晶闸管为换流原件,采用相控换流技术,以交流母线线电压过零点为基准,通过顺序发出触发脉冲,形成一定顺序的硅阀通与断,从而实现交流电与直流电的相互转换。
柔性输电知识点总结柔性输电技术其实最主要的就是通过传统的输电技术和电力电子技术的结合,来有效地提高电力传输的效率和可靠性。
在柔性输电技术中,不仅仅包括了柔性交流传输技术和柔性直流传输技术,还包括了一些辅助设备,比如牵引空气绝缘导线、高温超导输电技术、柔性直流输电技术等等。
这些技术的出现,都为柔性输电技术的完善提供了有效的技术支持。
接下来,我们将从柔性输电技术的基本原理、应用领域和未来发展三个方面来阐述柔性输电技术的知识点。
一、柔性输电技术的基本原理柔性输电技术的基本原理就是通过电力电子设备,来控制输电系统的电压、电流和功率等参数。
在柔性输电技术中,主要采用了半导体器件来进行控制,比如各种类型的晶闸管、晶闸管整流器、可控硅、晶体管等等。
利用这些电子设备,就可以有效地实现对输电系统的控制,使其具备一定的灵活性和可靠性。
柔性输电技术中,主要有两种方式来实现控制,一种是通过控制电压来实现控制,另一种是通过控制电流来实现控制。
通过电压控制来实现柔性输电技术,其主要就是通过控制输电系统的电压等参数,来实现对电力传输的调节。
在柔性输电技术中,主要采用了一些电压型的电力电子设备,比如晶闸管整流器、可控硅电压调节器等等。
通过这些设备,就可以有效地实现对输电系统电压的调节,从而使其具备一定的灵活性和可靠性。
另一种是通过电流控制来实现柔性输电技术,其主要就是通过控制输电系统的电流等参数,来实现对电力传输的调节。
在柔性输电技术中,主要采用了一些电流型的电力电子设备,比如牵引空气绝缘导线、高温超导输电技术等等。
通过这些设备,就可以有效地实现对输电系统电流的调节,从而使其具备一定的灵活性和可靠性。
二、柔性输电技术的应用领域柔性输电技术主要的应用领域就是在输电系统中,主要用来提高输电系统的灵活性和可靠性。
在传统的输电系统中,由于其固有的特点,就存在着很多的问题,比如输电线路容量不足、电压不稳定、电流负载能力受限等等问题。
这些问题都会对电力输送产生一定的影响,甚至会造成输电事故。
浅议柔性直流输电的优势及应用前景摘要:柔性直流输电电网结构灵活、坚强、高效,是充分利用可再生能源发电,将其输送到负荷中心的有效途径,代表直流输电领域的发展方向,为此得到广泛的应用。
本文着重介绍柔性直流输电系统的优势,展望柔性直流输电系统的应用前景。
关键词:柔性直流输电优势前景随着能源紧缺和环境污染等问题的日益严峻,国家将大力开发和利用可再生清洁能源,优化能源结构。
随着风能、太阳能等可再生能源利用规模的不断扩大,其固有的分散性、小型性、远离负荷中心等特点,使得采用交流输电技术或传统的直流输电技术联网显得很不经济。
同时海上钻探平台、孤立小岛等无源负荷,采用昂贵的本地发电装置,既不经济,又污染环境。
加之城市人口膨胀和城区合理规划,城市用电负荷的快速增加,需要不断扩充电网的容量,要求利用有限的线路走廊输送更多的电能,因此,迫切需要采用灵活、经济、环保美观的输电方式。
1 柔性直流输电以可关断器件(IGBT)和脉宽调制(PWM)技术为基础的直流输电技术,国际权威学术组织国际大电网会议(CIGRE)和美国电气和电子工程师协会(IEEE),正式命名为“VSC-HVDC”,即“电压源换流器型直流输电”。
2006年5月,中国电力科学研究院组织国内权威专家在北京召开“轻型直流输电系统关键技术研究框架研讨会”,会上,与会专家一致建议国内将基于电压源换流器技术的直流输电统一命名为“柔性直流输电”。
柔性直流输电作为新一代直流输电技术,在结构上与高压直流输电类似,仍是由换流站和直流输电线路构成。
柔性直流输电的换流器为电压源换流器(VSC),采用可关断器件(IGBT)和脉宽调制(PWM)技术。
通过调节换流器出口电压的幅值和与系统电压之间的功角差,可以独立地控制输出的有功功率和无功功率。
通过对两端换流站的控制,实现两个交流网络之间有功功率的相互传送,同时两端换流站还可以独立调节各自所吸收或发出的无功功率,从而对所联的交流系统给予无功支撑。
输电线路柔性直流融冰技术摘要:对于电力系统而言,输电线路使其稳定运行的重要保障,线路运行质量直接关系着区域供电质量。
但是,由于输电线路一般在外界,冬天极易受到冻害威胁,影响输电线路的运行。
本文对输电线路柔性直流融冰技术进行探讨。
关键词:柔性直流输电;输电线路冰害;融冰技术1柔性直流输电的主要概念及主要优势1.1孤岛特性常规高压直流输电线路的受端电网为强电网。
受端电网提供电压支撑,保证输电稳定。
常规直流建设初期,因交流电网容量较大,高压直流输电只是作为小部分补充,问题并不明显。
近年来,我国新能源蓬勃发展,西部大量的新能源通过直流线路输送到东部负荷中心,交流端容量难以支撑大量直流线路的输入。
相比于常规直流输电,柔性直流输电技术采用全控型器件,在受端电网表现为独立的交流电源。
不仅对受端电网没有电压支撑要求,当交流网内部发生故障时,还可以提供低电压穿越。
综合看来,柔性直流技术可以广泛应用于孤岛供电和大规模新能源消纳。
1.2多端控制特性与配电网常规直流输电需要受端电压提供支撑,多端控制较复杂。
所以,国内已经建成的直流项目均采用点对点模式的长距离高压线路模式,将能源富集区的电力输送至负荷中心。
随着国内经济的整体发展,多经济中心的格局出现。
单纯的点对点输送方式不能构成多负荷中心及多能源输送中心互联的高压直流输电网络。
此外,我国东西部距离较长,不同地区的负荷曲线随着地点与季节都会发生较大变化。
使用多端灵活的柔性直流输电技术,可以构成高电压等级的交直流输电网络,平衡各地不同时间、不同季节的能源需求。
随着经济的增长,点对点的方式只能适用于发展不平衡地区,以多端柔性直流为高压输电走廊。
低压交直流配合的混合式电力网络是未来的发展方向。
1.3MMC技术与谐波无功控制柔性直流输电采用两电平或三电平技术构成换流器。
高压直流输电的需求促使研究人员不断改进柔直换流器。
2001年提出的MMC技术,从根本上解决了高压输电问题。
串联的MMC子模块采用多电平技术进行高精度的输出电压控制。
第29卷第2期2012年4月供 用 电柔性直流输电技术在上海电网的应用研究蔡光宗1,何 晖1,包海龙2,袁智强1(1.上海电力设计院有限公司,上海 200025;2.上海市电力公司,上海 200025)摘 要:柔性直流输电技术的应用可解决现代城市电网发展面临的诸多技术问题。
以上海电网为对象,研究了柔性直流输电技术在城市电网中实际应用的前景,介绍了目前上海电网需要进一步完善和提高的主要环节,根据柔性直流输电技术特点,讨论了上海不同电压等级电网现状及其对柔性直流输电技术不同侧面的具体应用构想。
关键词:柔性直流输电技术;电压等级;城市电网中图分类号:TM721.1 文献标识码:A 文章编号:1006-6357(2012)02-0001-5Research on VSC-HVDC Technology Application in Shanghai ffGridCai Guangzong1,He Hui1,Bao Hailong2,Yuan Zhiqiang1(1.Shanghai Electric Power Design Institute Co.,Ltd.,Shanghai 200025,Shanghai China;2.Shanghai Municipal Electric Power Company,Shanghai 200025,Shanghai China)Abstract:Applying VSC-HVDC technology can get rid of many technical problems met with in the period of themodern urban grid development.Aiming at shanghai grid,the actual perspective of applying VSC-HVDC tech-nology in urban grid is researched on,and major steps nowadays needed to improve further are suggested.Ac-cording to technical features of VSC-HVDC,the present grid status of different voltage level in shanghai is dis-cussed,so is concrete conception of application from different aspects for VSC-HVDC technology.Key words:VSC-HVDC;voltage level;urban grid 柔性直流输电(VSC-HVDC)技术是以电压源换流器(VSC)和脉冲宽度调制(PWM)技术为基础的新型直流输电技术,具有多控制变量和快速调节能力,可应用于向孤岛供电、可再生能源发电电源并网、电能质量控制以及向城市负荷供电等。
浅谈配电网“网格化”规划与“三型两网”建设随着我国经济的快速发展和城镇化进程的加快,能源需求日益增长,电力配送网也面临着新的挑战。
为了满足日益增长的用电需求,提高电力系统的可靠性和经济性,配电网“网格化”规划和“三型两网”建设成为了当前电力行业的热门话题。
本文将探讨配电网“网格化”规划及“三型两网”建设的重要性和影响。
一、配电网“网格化”规划的重要性1. 适应新能源接入随着新能源的快速发展,特别是光伏和风电的大规模接入,传统的配电网结构已经无法满足新能源并网的需求。
配电网需要进行网格化规划,以提高对新能源的接纳能力和稳定性。
2. 提高电网的可靠性传统的配电网结构多为辐射状和环状,一旦出现故障,可能会引起大面积停电。
而采用“网格化”规划后,可以实现多路径供电,减少了停电的可能性,提高了电网的可靠性。
3. 提高经济性网格化的配电网能够提高电网的利用率,减少线损和能源浪费,提高经济性。
通过智能化管理,还可以实现电力的合理分配,减少耗能,降低电网运行成本。
二、配电网“网格化”规划的关键技术1. 智能化实时监测配电网“网格化”规划需要依靠智能化监测系统来实现对电网运行状态的实时监测和分析,及时发现故障隐患和异常情况,保障电网的安全稳定运行。
2. 柔性直流输电技术柔性直流输电技术可以有效应对新能源接入的波动性和间断性,提高电网的稳定性和灵活性。
3. 大数据和人工智能大数据和人工智能技术可以对电网运行数据进行深度分析和优化调整,提高电网的运行效率和智能化管理水平。
三、“三型两网”建设的意义“三型两网”是指城市电网、农村电网、工业电网,以及城市燃气管网和城市供热管网。
这一体系的建设对于提高能源利用效率和保障能源安全具有重要意义。
1. 优化能源结构通过“三型两网”建设,可以实现城市电网与城市燃气管网的互联互通,提高能源的利用效率,优化能源结构,降低能源消耗。
2. 推动产业发展“三型两网”建设可以为城市提供更加稳定和高效的能源供应,为产业发展提供保障,推动城市经济的健康发展。
2016 Year Spring Term Course examination (Reading Report、Research Report)
考核科目 Examination Subjects : 直流输电技术 学生所在院(系) School/Department :电气工程及其自动化学院 学生所在学科 Discipline :电力系统及其自动化 学生姓名 Student’s Name : 金昱 学生学号 Student No. :15S006048
考核结果 Examination Result :
阅卷人Examiner 直流输电技术课程报告—— 柔性直流输电在城市配电网中的应用 (哈尔滨工业大学 金昱 15S006048)
1 城市配电网输电技术研究现状 随着我国电力系统整体配置的不断发展,国家对城乡配电网建设日益重视,如何科学地设置城市配电网的规划显得尤为重要。在传统的电力建设中,我国总是将发电摆在第一位,输送配电摆在第二位,认为只要有充足的电能资源就可以做好电力系统的建设。但是,输送配电也在无形中影响着城市供电的能力和供电的可靠性。因此,合理适当的城市配电网规划在逐渐彰显着自己独特的优势,为电网建设的改造提供了合理性、科学性的指导经验。
1.1 我国配电网技术背景及现状 如今,我国有意识地改变原先的“重发电、轻输送配电”的现状,并取得了一定的成果,使得整体上配电网的设置都趋向了正规、合理。但是由于我国在配电网规划上发展较晚,依旧存在一些不合理的因素:
(1)基础差、底子薄。基础差、底子薄是我国配电网建设的真实写照。在过去的电网建设中,由于缺乏早期的勘测、考察和规划,导致我国配电网的设置分布不合理,供电线路较长,损坏较严重。一些城市出现了市中心电源丰富,周边村落电源稀少的现状,这种情况致使一些周边农村长期处于没有电用的状态。
(2)电路结构不合理,转换复杂、不灵活。我国在电网建设中呈现出电路复杂、互相交错、难以移动等现象。近电远送、电网接线复杂、迂回供电、专用线路占有主线路过多等不合理的安排也为之后重新建设新电路结构带来了极大的不便,也增大了电路维修的困难。
1.1 直流输电供电与交流输电的优劣势 交流电的优点主要表现在发电和配电方面:利用建立在电磁感应原理基础上的交流发电机可以很经济方便地把机械能(水流能、风能„„)、化学能(石油、天然气„„)等其他形式的能转化为电能;交流电源和交流变电站与同功率的直流电源和直流换流站相比,造价大为低廉;交流电可以方便地通过变压器升压和降压,这给配送电能带来极大的方便.这是交流电与直流电相比所具有的独特优势。 直流电的优点主要在输电方面: (1)输送相同功率时,直流输电所用线材仅为交流输电的2/3~l/2 。 直流输电采用两线制,以大地或海水作回线,与采用三线制三相交流输电相比,在输电线载面积相同和电流密度相同的条件下,即使不考虑趋肤效应,也可以输送相同的电功率,而输电线和绝缘材料可节约1/3。如果考虑到趋肤效应和各种损耗(绝缘材料的介质损耗、磁感应的涡流损耗、架空线的电晕损耗等),输送同样功率交流电所用导线截面积大于或等于直流输电所用导线的截面积的1.33倍。因此,直流输电所用的线材几乎只有交流输电的一半。同时,直流输电杆塔结构也比同容量的三相交流输电简单,线路走廊占地面积也少。
(2)在电缆输电线路中,直流输电没有电容电流产生,而交流输电线路存在电容电流,引起损耗。在一些特殊场合,必须用电缆输电。例如高压输电线经过大城市时,采用地下电缆;输电线经过海峡时,要用海底电缆。由于电缆芯线与大地之间构成同轴电容器,在交流高压输线路中,空载电容电流极为可观.一条200kV的电缆,每千米的电容约为0.2μF,每千米需供给充电功率约3×103kw,在每千米输电线路上,每年就要耗电2.6×107kw·h。而在直流输电中,由于电压波动很小,基本上没有电容电流加在电缆上。
(3)直流输电时,其两侧交流系统不需同步运行,而交流输电必须同步运行。交流远距离输电时,电流的相位在交流输电系统的两端会产生显著的相位差;并网的各系统交流电的频率虽然规定统一为50HZ,但实际上常产生波动。这两种因素引起交流系统不能同步运行,需要用复杂庞大的补偿系统和综合性很强的技术加以调整,否则就可能在设备中形成强大的循环电流损坏设备,或造成不同步运行的停电事故。在技术不发达的国家里,交流输电距离一般不超过300km而直流输电线路互连时,它两端的交流电网可以用各自的频率和相位运行,不需进行同步调整。
(4)直流输电发生故障的损失比交流输电小。两个交流系统若用交流线路互连,则当一侧系统发生短路时,另一侧要向故障一侧输送短路电流。因此使两侧系统原有开关切断短路电流的能力受到威胁,需要更换开关。而直流输电中,由于采用可控硅装置,电路功率能迅速、方便地进行调节,直流输电线路上基本上不向发生短路的交流系统输送短路电流,故障侧交流系统的短路电流与没有互连时一样。因此不必更换两侧原有开关及载流设备。
在直流输电线路中,各级是独立调节和工作的,彼此没有影响。所以,当一极发生故障时,只需停运故障极,另一极仍可输送不少于一半功率的电能。但在交流输电线路中,任一相发生永久性故障,必须全线停电。 2城市直流输电技术经济可行性分析
2.1直流输电技术经济性分析
从经济方面考虑,直流输电有如下优点: (1)线路造价低。对于架空输电线,交流用三根导线,而直流一般用两根采用大地或海水作回路时只要一根,能节省大量的线路建设费用。对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。
(2)直流架空线路投资省。直流输电一般采用双极中性点接地方式,直流线路仅需两根导线,三相交流线路则需三根导线,但两者输送的功率几乎相等,因此可减轻杆塔的荷重,减少线路走廊的宽度和占地面积。在输送相同功率和距离的条件下,直流架空线路的投资一般为交流架空线路投资的三分之二。
(3)换流站比变电站投资大。换流站的设备比交流变电站复杂,它除了必须有换流变压器外,还要有目前价格比较昂贵的可控硅换流器,以及换流器的其它附属设备,因此换流站的投资高于同等容量和相应电压的交流变电站。
(4)年电能损失小。直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。
(5)运行费用较省。根据国外的运行经验,线路和站内设备的年折旧维护费用占工程建设费用的百分数,交流与直流大体相近。但直流输电电能损耗在导线截面相同、输送有功功率相等的条件下,是交流输电的三分之二。
2.1直流输电技术可行性分析
直流输电在技术方面有如下优点: (1)不存在系统稳定问题,可实现电网的非同期互联,而交流电力系统中所有的同步发电机都保持同步运行。直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。
(2)限制短路电流。如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。然而用直流输电线路连接两个交流系统,直流系统的“定电流控制”将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。 (3)调节快速,运行可靠。直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。
(4)没有电容充电电流。直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。
(5)节省线路走廊。按同电压500kV考虑,一条直流输电线路的走廊约40m,一条交流线路走廊约50m,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。
3城市直流配电网中的主要研究内容 与基于自然换相技术的电流源型换流器的传统直流输电不同,VSC-HVDC是一种以电压源换流器、可控关断器件和脉宽调制(PWM技术)为基础的新型直流输电技术。这种输电技术能够瞬时实现有功和无功的独立解耦控制、能向无源网络供电、换流站间无需通讯、且易于构成多端直流系统。另外,该输电技术能同时向系统提供有功功率和无功功率的紧急支援,
在提高系统的稳定性和输电能力等方面具有优势。下面详细介绍VSC-HVDC的系统结构及其基本工作原理。
3.1 系统结构 图1为柔性直流输电系统单线原理图,两端的换流站均采用VSC结构,它由换流站、换流变压器、换流电抗器、直流电容器和交流滤波器等部分组成。下面就各组成部分的结构和作用作简单介绍。
图1 柔性直流输电单线原理图 电压源型换流器VSC:电压源型换流器的桥臂是由大功率的可控关断型电力电子器件(如IGBT、IGCT)和反并联二极管组成。随着大功率电力电子器件的发展,目前IGBT的耐受电压达到6.5kV、通断电流最大达到3kA,IGCT目前能承受的断态重复峰值电压达到6kV,最大可控关断电流达3∼6kA。目前,拥有柔性直流输电系统商业化运行实际工程业绩的,世界上只有ABB公司。
两电平换流器是用于轻型直流输电系统中最简单的换流器拓扑结构中它有六个桥臂,每个桥臂由IGBT和与之反并联的二极管组成。图2(b)所示为中点钳位型三电平换流器拓扑结构。在高压大功率情况下,为提高换流器容量和系统的电压等级,每个桥臂由多个IGBT及其相并联的二极管相互串联来获得,其串联的个数由换流器的额定功率、电压等级和电力电子开关器件的通电能力与耐压强度决定。
3.2 基本工作原理 如前所述,与基于晶闸管的传统直流输电技术不同,柔性直流输电采用电压源型换流器和PWM技术,其基本工作原理如图2和图3所示。由调制波与三角载波比较产生的触发脉冲,使VSC上下桥臂的开关管高频开通和关断,则桥臂中点电压uc在两个固定电压+Ud和−Ud之间快速切换,uc再经过电抗器滤波后则为网侧的交流电压us。
图2
图3