2018年浙江省高考数学试题及参考解析
- 格式:doc
- 大小:1.05 MB
- 文档页数:10
2018 年一般高等学校招生全国一致考试数学(浙江卷)选择题部分(共40 分)一、选择题:本大题共 10 小题,每题 4 分,共 40 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.已知全集U1,2,3,4,5,A1,3,则C U A ().A.B.1,3C.2,4,5D. 1,2,3,4,5【答案】: C【分析】:∵全集 U1,2,3,4,5 , A1,3∴ A的补集C U A2,4,5∴正确答案为C2.双曲线x2y2 1 的焦点坐标是().3A.( 2,0), (2,0)B. (2,0) , (2,0)C.(0,2) , (0,2)D. (0,2), (0,2)【答案】: B【分析】:双曲线x2y21,此中 a2 3 , b213∴c2 a2 b 2 3 1 4∴双曲线的焦点坐标为( 2,0) 和 (2,0)∴正确答案是B3.某几何体的三视图以下图(单位:cm ),则该几何体的体积(单位:cm 3)是().A.2B.4C.6D.8【答案】: C【分析】:由三视图可知,原图以下:V S底 h 【注意有文字】(1 2)2262∴正确答案为C4.复数2( i为虚数单位)的共轭复数是().1iA 1 iBC 1 iD 1 i.. 1 i..【答案】: B【分析】:2(12(1 i )2(1i )1i1i i )(1 i )1i 2∴其共轭复数为1i∴正确答案为 B5.函数y 2 x sin2x 的图象可能是().A.B.C.D.【答案】: D【分析】:函数 y2x sin 2x 是奇函数,其函数图象对于原点对称∴清除 A,B选项又∵ 当 x ( ,0)时,函数有零点x2∴正确答案为 D6.已知平面,直线m , n 知足m, n,则“m∥n ”是“m∥”的().A.充足不用要条件C.充足必需条件B.必需不充足条件D.既不充足也不用要条件【答案】: A【分析】:∵ m∴“, nm∥n ”是“, m∥n 能够推出 m∥m∥”的充足条件又∵ m∴“, n,m∥m∥n ”不是“ m∥不可以推出 m∥n”的必需条件综上“ m∥n ”是“∴正确答案是Am∥”的充足不用要条件7.设 0 p 1 ,随机变量的散布列012P 1p1p 222则当 p 在(0,1)内增大时,().A.D( )减小B.D( )增大C. D ( ) 先减小后增大D. D ( ) 先增大后减小【答案】: D【分析】: E( ) 0 1 p112p1p 222221 p 21 1 2D ( )11pp1p22p222 2221 pp 41 21p22∴ p 在 (0,1) 上增大时, D ( ) 先增大后减小∴正确答案为 D8.已知四棱锥 S ABCD 的底面是正方形,侧棱长均相等,E 是线段 AB 上的点(不含端点),设 SE 与 BC 所成的角为 1 , SE 与平面 ABCD 所成的角为 2 ,二面角 SAB C 的平面角为3 ,则().A .1≤2≤3B .3≤2≤1C .1≤3≤2D . 2≤3≤1【答案】: D【分析】:∵线线角大于或等于线面角,二面角大于或等于线面角∴ 1≥2,3≥2∴正确答案是 D9.已知 a , b , e 是平面向量, e 是单位向量,若非零向量a 与 e 的夹角为π,向量 b 知足32,则 a b 的最小值是( ).b 4e b 3 0A .31B . 31C . 2D .2 3【答案】: Ar r r r r rr【分析】: b 4e b 3 ( b e)(b 3e) 0r r( x, y)设 e (1,0), b∴ (x 1)(x 3) y 2 0∴ ( x 2)2y 21r r uuur uuurOA 时最短,如图 a b BA而BA在OAr r uuur uuur uuur此时 a b BA OA OB3 1∴正确答案是A10.已知a1,a2,a3,a4成等比数列,且 a1a2a3a4ln(a1a2 a3 ) ,若 a1 1 ,则().A.a1a3, a2a4B.a1a3, a2a4C.a1a3, a2a4D.a1a3, a2a4【答案】: B【分析】:若 q0,则 a1a2a3a4a1a2a31∴ a1a2a3a4ln( a1a2a3a4 )ln(a1a2a3 )∴ ln( a1 a2a3 )0∴ a1a2a3a4a1 (1 q q2q3 ) 0q41∴0q 1∴a2 0∴ a1a1q2a3, a2a2q 2a4∴正确答案是 B非选择题部分二、填空题:本大题共7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分.11.我国古代数学着作《张丘建算经》中记录百鸡问题:“今有鸡翁一,值钱五.鸡母一,值钱三.鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁.母.雏各几何”设鸡翁,鸡母,鸡x y z100雏个数分别为 x ,,z,则1,当z81时,x__________, __________ .y100y5 x 3 y z3【答案】: x8 ,y 11【分析】:将 z81 代入,得x y195x 3 y73∴x 8 y11x y≥012 .若x,y知足拘束条件2 x y≤6 ,则 z x 3 y 的最小值是 __________ ,最大值是x y≥2__________.【答案】: 2 ; 8【分析】:经过不等式组,画出可行域,如图:∴A(2,2) , B(4, 2)∴ z x 3 y 的最小值是 2 ,最大值是 813.在△ABC 中,角A,B, C 所对的边分别为 a ,b, c .若a7 , b 2 , A60 ,则 sinB__________,c __________.【答案】:21;37【分析】:∵ a 7 , b 2 , A 60 ,∴ sin A32∵absin B sin A ∴ sin B217∴ sin C sin( A B)32 7 17 3 21727142∴ ca2 21sin A3sin C∴ c3814.二项式3 x1 的睁开式的常数项是 __________ .2 x【答案】: 71 r【分析】:由通项公式 T r 1C 8r (3 x )8 r,2x∴求常数项可得:8 r ( r )0 ,3∴ r 2∴常数项是 C 82 1 7 4x 4≥R ,函数 f (x)2 时,不等式 f ( x)0 的解集是15 .已知x24 x 3 ,当x__________.若函数 f (x) 恰有 2个零点,则的取值范围是 __________.【答案】: 1 x 4 ; 1 ≤3 或4【分析】当2 时, f ( x) x 4x 2x 24x 3 x ,图象以下:2则 f ( x) 0 的解集为 1 x 4若函数 f (x) 恰有 2 个零点:① 二次函数有两个零点,一次函数没有零点,则 4 ; ②二次函数有一个零点,一次函数有一个零点,则1 ≤3;综上可得 1 ≤3 或 416.从 , 3, 5, 7, 9中任取2个数字,一共能够构成__________个没有重复数字的四位1数.(用数字作答) 【答案】: 1260【分析】:分两种状况:① 包括 0 的四位数: C 52 C 31 ( A 44 A 33 ) 540 ;②不包括 0 的四位数: C 52 C 32 A 44720∴一共有 1260 种.17.已知点 P(0,1) ,椭圆x2y2uuur uuurm(m1) 上两点 A ,B 知足 AP 2 PB 则当 m __________4时,点 B 横坐标的绝对值最大.【答案】: 5【分析】:设直线 AB : y kx 12xy 2 my kx 1∴ x 2k 2 x 2 2kx1 m 04∴ x 1x 28k4 4m4k2, x 1x 2 4k21 1 uuuruuur ∵ AP2 PB∴ x12x2∴ x16k, x28k114k214k2∴ 32k 2(1m)(14k 2 )若 B 的横坐标的绝对值最大,则x288≥2,14k214 kk当且仅当 k 1时, m 5 .2三、解答题:本大题共 5 小题,共74 分.解答应写出文字说明、证明过程或验算步骤.18.(此题满分 14 分)已知角的极点与原点 O 重合,始边与x轴的非负半轴重合,它的终边过点 P3,4 .55(Ⅰ)求 sin(π)的值.(Ⅱ)若角知足 sin()5,求 cos的值.1344【分析】: (1) sin52253455cos 3 5sin()sin 4 5(2) ∵sin()513∴ cos()12 13①当 cos()12 时,13cos cos()cos() cos sin() sin123541351355665②当 cos()12 时,13cos 12354 1351351665综上: cos56或16.656519.此题满分15分如图,已知多面体ABCAB C, A A,BB,CC均垂直于平面ABC,() 1 1 1111∠ABC=120 , A1 A=4 , C1C1, AB BC B1B 2 .(Ⅰ)证明:AB1平面A1B1C1.(Ⅱ)求直线AC1与平面 ABB1所成的角的正弦值.【分析】: (1) 过B1作B1E AA1于点E过C1作 C1F BB1于点FB1E AB 2AE BB1 2AE12∴ A1B1A1 E2B1E 2 2 2AB1BB12AB222AA14∴A1B12 AB12 AA12∴AB1 A1 B1又 C1F BC 2,B1F 1∴ B C C F 2 B F 251111AC 23∴ AC1AC 2CC1213∴A1B12 B1C12 AC12∴AB1 B1C1∵B1C1平面 A2 B1C1A1B1平面A1B1C1∴AB1平面 A1 B1C1(2)以 A为原点,AC为 y 轴,AA1为z轴成立空间直角坐标系则: A(0,0,0)A1 (0,0,4)B(1, 3,0)B1 (1, 3,2)C1 (0,2 3,1)uuuur∴AC1 (0,2 3,1)uuuurAB1(1, 3,2)uuurAA1(0,0,4)r设 n ( x, y,z) 的法向量x3y 2z 0r4z0(3,1,0)∴ nuuur r uuur rsinAC n AC n uuur rAC n2 32 133913∴正弦值是39 .1320.(此题满分15 分)已知等比数列a n的公比q1 ,且a3a4a528 ,a4 2 是 a3,a5的等差中项,数列b n知足b11,数列(b n 1 b n )a n的前n项和为2n2n .(Ⅰ)求 q 的值.(Ⅱ)求数列 b n的通项公式.【分析】:(1)∵ a3 a4 a5 28 ,2(a42)a3a5∴ a3a3 q a3q 2282a3q4a32 a3q∴a3 4 ,q 2∴ a n2n 1, q2(2) 设S n为 (b n 1 b n )a n的前n项和即 S n2n2n(b n 1b n ) a n S n Sn 1(n 2)∴(b2b1 ) a1S13(n 1)∴ (b n 1b n ) a n4n1∴ b n 1 b n4n 12n 1b nbn 14n52n 2Mb 23b 120累加得: bb 37 L4 n 1n 112021 2n 1令 T n3 7 4n 120 21L2n 11 374n 5 4n 12Tn2122 L 2n 12 n∴ T n 144n 72n 1∴ b n 1 154n 72n1∴ b n 154n 32 n 221. (此题满分 15 分 )如图,已知点 P 是 y 轴左边(不含 y 轴)一点,抛物线 C : y 24 x 上存在不一样的两点A ,B 知足 PA , PB 的中点均在C 上. (Ⅰ)设 AB 中点为 M ,证明: PM 垂直于 y 轴.(Ⅱ)若 P 是半椭圆 x 2y 21(x 0) 上的动点,求 △PAB 面积的取值范围.4【分析】:(Ⅰ)设 A( x 1 , y 1 ) , B( x 2 , y 2 )M ( x m , y m ) , P(x p , y p )y 12 4 x 1 (1)∴2 4 x(2)y22(1) (2) 得:( y 1 y 2 )( y 1 y 2 ) 4( x 1 x 2 )∴ y 1y 2 y 14 y 2 4 2 x 1x 2 2 y m y mx 1 x p y 1y p又∵ E(,2 )2 x 2 x py 2 y pF ( ,2 )2E ,F 在抛物线上 ( y 1 y p ) 2 4( x 1 x p ) ∴ 4 2y 12 2 y 1 y p y p 28( x 1 x p )∵ y 12 4x 1∴ 2 y 2 y p y p 2 4 x 1 8x p(3)同理 2y 2 y p 24 x 2 8x p (4)y p (3) (4) 2y p (y 1 y 2 ) 4( x 1 x 2 )∴ y 1y 2 2x 1x 2y p∴22y m y p∴ y m y p∴ PM y 轴(Ⅱ) S1 x py 1 y 2PAB xmV212 y 22y 1x p y 1 y 2281( y 1y 2 )2 - 2 y 1 y 2 - 8 x p( y y2- 4 y y)28121 2y 1 2 2 y 1 y p y p 2y 12y 2 2 2 y 2 y p y p 2 y 22由第(Ⅰ)问可知42 2 x p ,42x p2可知 y 1y 22 y p , y 1 y 28x 0y 0 23 2( y p 23∴ S4x p )24又∵x p 2 y p21 , x p1,04∴ S6 2 x p2x p 1∴ △PAB 面积的取值范围是6 2,1510422.(此题满分 15 分)已知函数 f ( x) x ln x .(Ⅰ)若 f ( x) 在 x x 1 , x 2 ( x 1 x 2 ) 处倒数相等,证明:f (x 1 ) f ( x 2 ) 8 8ln 2.(Ⅱ)若 a ≤34ln2 ,证明:对于随意 k0 ,直线 y kxa 与曲线 yf (x) 有独一公共点.【分析】:(Ⅰ) f (x)x ln x1 1 1 x 2f ( x)xx2 x2当 x ≥4 时, f ( x) 单一递加0 x 4 时, f (x) 单一递减∵ f (x 1 )f (x 2 )x 1 2x 22∴2 x 22x 1 ∴ x 1 x 22( x 1x 2 ) ∴ x 1 x 2 4( x 1 x 22 x 1x 2 )x 1x 2 8 x 1 x 24(x 1 x 2 ) 8 x 1x 2 ( x 1 x 2 )∴ x 1 x 2 16 x 1 x 2∴ x 1 x 2 16∵ f (x1 ) f (x 2 )x1x2 ln x1 ln x21x1 x2ln( x1 x 2 )2令x1 x2t 16 f (x1) f ( x2 ) g (t )g(t)1t ln t 22t4g (t)2t当t 4 时,g (t)单一递加∴ g(t) g (16) 8 8ln 2∴ f ( x1 ) f ( x2 )88ln 2(Ⅱ)设函数 g( x)x ln x112kxx 2 kx,则g ( x)xk2 x 2 x①当116k≤0 时,即k≥116此时 g ( x)0 恒成立则 g( x) 在,单一递减∴x ln x kx a 只有一个实数根②当116k0 时,即01 k16设 x1, x2为 g (x)0 的两个根∴ g( x) 在 (0, x1 ) 单一递减,在( x1 , x2 ) 单一递加,在 (x2 ,) 单一递减∵ g( x1 )x1ln x1kx12kx1x1 2 0∴ g( x1 )x1ln x1 1 ,a≤3 4ln2 2∴x11116k , k0, 14k16∴x12,4令x1t则 g(t)t ln t 212t4g (t)2t∴g(t ) 在 2,4 上单一递减∴ g(t ) g 4 3 2ln 2∴ a≤3 4ln2 时,x ln x kx a 只有一个实数根综合得证。
2018年普通高等学校招生全国统一考试(浙江卷)数学红卷(解析版)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. D.【答案】B【解析】分析:由题意,即可利用集合点运算求解.详解:由题意,所以,故选B.点睛:本题主要考查了集合的运算,其中正确求解集合是解答点关键,着重考查了学生的推理与运算能力.2. 已知是虚数单位,若,则()A. B. C. D.【答案】D【解析】分析:由题意得,利用复数的运算,即可求解.详解:由题意,所以,故选D.点睛:本题主要考查了复数的四则运算及复数模的计算,着重考查了考生的推理与运算能力.3. 已知某几何体的三视图(单位:)如图所示,则该几何体的体积是()A. B. C. D.【答案】C【解析】分析:由题意,得到该几何体表示一个底面为腰长为1的等腰直角三角形,高为1的三棱锥,即可利用体积公式求解几何体的体积.详解:由题意,根据给定的三视图可知,可得该几何体表示一个底面为腰长为1的等腰直角三角形,高为1的三棱锥,如图所示,所以该三棱锥的体积为,故选C.点睛:本题主要考查了空间几何体的三视图及锥体的体积的计算,其中解答中根据几何体的三视图得到原几何体是解答的管家,着重考查了空间想象能力以及推理与运算能力.4. 已知实数满足,则的最大值为()A. B. C. D.【答案】C【解析】分析:画出约束条件所表示的平面区域,令,结合图象,平移直线过点时,目标函数取得最大值,联立方程组,即可求解.详解:画出约束条件所表示的平面区域,如图所示,令,结合图象,平移直线过点时,目标函数取得最大值,又由,解得,即,此时目标函数的最大值为,故选C.点睛:本题主要考查了线性规划求最值,其中正确作出约束条件所表示的平面区域,把目标函数平移到可行域的边界上确定最优解是解答的关键,着重考查了分析问题和解答问题的能力.5. 已知是空间五个不同的点,若点在直线上,则“与是异面直线”是“与是异面直线”的()A. 充分不必要条件B. 充分必要条件C. 必要不充分条件D. 既不充分也不必要条件【答案】B【解析】分析:利用异面直线的定义,根据充要条件的判定方法,即可得到结论.详解:若与是异面直线,则四点不共面,则与是异面直线,而点在上,所以与也是异面直线,若与是异面直线,而点在直线上,所以与是异面直线,所以四点不共面,所以与是异面直线,所以因为充分必要条件,故选B.点睛:本题主要考查了充要条件的额判定,其中熟记空间中两直线的位置关系是解答的关键,着重考查了分析问题和解答问题的能力.6. 在中,内角所对的边分别是,若,则角的值为()A. B. C. D.【答案】C【解析】分析:由正弦定理可化简得,再由余弦定理得,即可求解结果.详解:在,因为由正弦定理可化简得,所以,由余弦定理得,从而,故选C.点睛:在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.7. 已知函数的导函数的图象如图所示,则函数()A. 有极大值,没有最大值B. 没有极大值,没有最大值C. 有极大值,有最大值D. 没有极大值,有最大值【答案】A【解析】分析:根据导函数点图象,得出当时,函数先增后减;当时,函数先减后增,即可得到结论.详解:由题意,函数的图象可知,当时,函数先增后减;当时,函数先减后增,所以函数有极大值,没有最大值,故选A.点睛:本题主要考查了函数的单调性与极值与导数的关系,其中导函数与原函数的关系是解答的关键,着重考查了分析问题和解答问题的能力.8. 已知过椭圆的左焦点且斜率为的直线与椭圆交于两点.若椭圆上存在一点,满足(其中点为坐标原点),则椭圆的离心率为()A. B. C. D.【答案】A【解析】分析:根据平方差法得到直线的方程为,联立方程组,解得点的坐标,再根据,得,把点代入椭圆的方程,即可求解离心率的值.详解:设的中点,由题意知,两式相减得,则,而,所以,所以直线的方程为,联立,解得,又因为,所以,所以点代入椭圆的方程,得,所以,故选A.点睛:本题考查了椭圆的几何性质——离心率的求解,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).9. 在直角梯形中,,同一平面内的两个动点满足,则的取值范围为()A. B. C. D.【答案】B【解析】分析:由题意,得点是以点为圆心,半径为1的圆上的一个动点,点是的中点,取的中点,连接,利用三点共线时取得最值,即可求解.详解:由于,则点是以点为圆心,半径为1的圆上的一个动点,点是的中点,取的中点,连接,如图所示,则,当三点共线时,点在之间时,取最小值,;当点在之间时,取最大值,,从而的的取值范围是,故选B.点睛:本题主要考查了平面向量的运算,以及圆的最值问题,其中把,得点是以点为圆心,半径为1的圆上的一个动点,转化为圆的应用问题求解是解答的关键,着重考查了转化思想方法以及分析问题、解答问题的能力.10. 已知是由具有公共直角边的两块直角三角板(与)组成的三角形,如左下图所示.其中,.现将沿斜边进行翻折成(不在平面上).若分别为和的中点,则在翻折过程中,下列命题不正确的是()A. 在线段上存在一定点,使得的长度是定值B. 点在某个球面上运动C. 存在某个位置,使得直线与所成角为D. 对于任意位置,二面角始终大于二面角【答案】C【解析】分析:由题意,可的二面角和二面角由共同的平面角,且另一个面都过点,过点作平面的垂线,即可得到二面角和二面角的平面角,进而的大小关系即可.详解:不妨设,取中点,易知落在线段上,且,所以点到点的距离始终为,即点在以点为球心,半径为的球面上运动,因此A、B选项不正确;对于C选项,作可以看成以为轴线,以为平面角的圆锥的母线,易知与落在同一个轴截面上时,取得最大值,则的最大值为,此时落在平面上,所以,即与所成的角始终小于,所以C选项不正确;对于D选项,易知二面角为直二面角时,二面角始终大于二面角,当二面角为锐二面角时,如图所示作平面与点,然后作分别交于,则二面角的平面角为,二面角的平面角为,且,又因为,所以,所以二面角始终大于二面角,故选D.点睛:本题主要考查了空间几何体的结构特征,以及空间角的求解,其中解答中正确确定二面角的的平面角和异面直线所成的角是解答的关键,试题综合性强,难度大,属于难题,着重考查了空间想象能力,以及分析问题和解答问题的能力.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)11. 双曲线的离心率为__________,渐近线方程为__________.【答案】(1). 2(2).【解析】分析:直接利用双曲线的几何性质解答即可.详解:由题得所以双曲线的离心率为渐近线方程为故答案为:2,.点睛:本题主要是考查双曲线的简单几何性质,意在考查双曲线的基础知识掌握能力.注意焦点在x轴上的双曲线的渐近线方程为,焦点在y轴上的双曲线的渐近线方程为,不要记错了.12. 已知的展开式中的系数为,则__________,此多项式的展开式中含的奇数次幂项的系数之和为__________.【答案】(1). -2(2). -32【解析】分析:由题意的,展开式中含的系数为,解得,令,分别令和,则两式相减,即可求解.详解:由题意的,展开式中含的系数为,解得,令,令,则;令,则,两式相减,则展开式中含奇次幂的系数之和为.点睛:本题主要考查了二项式定理的应用,其中解答中涉及到二项展开式的指定项的求解,二项展开式的系数问题,熟记二项式定理的基本知识是解答的关键,着重考查了推理与运算能力.13. 我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:__________日相逢?【答案】9【解析】解:由题意可知:良马与驽马第天跑的路程都是等差数列,设路程为,由题意有:,故:,满足题意时,数列的前n项和为,由等差数列前n项和公式可得:,解得: .即二马相逢,需9日相逢点睛:本题考查数列的实际应用题.(1)解决数列应用题的基本步骤是:①根据实际问题的要求,识别是等差数列还是等比数列,用数列表示问题的已知;②根据等差数列和等比数列的知识以及实际问题的要求建立数学模型;③求出数学模型,根据求解结果对实际问题作出结论.(2)数列应用题常见模型:①等差模型:如果增加(或减少)的量是一个固定量,该模型是等差数列模型,增加(或减少)的量就是公差;②等比模型:如果后一个量与前一个量的比是一个固定的数,该模型是等比数列模型,这个固定的数就是公比;③递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n与a n-1的递推关系,或前n项和S n与S n-1之间的递推关系.当时,__________,__________.【答案】(1). (2).【解析】分析:由分布列的性质和数学期望的公式,求得,进而求得,又因为,所以,即可求解.详解:由题意,因为,所以,则,又因为,所以.点睛:本题主要考查了随机变量的分布列的性质,以及数学期望与方差的计算问题,其中熟记随机变量的分布列的性质和数学期望与方差的公式是解答的关键,着重考查了推理与运算能力.15. 已知向量满足,若的最大值为,则向量的夹角的最小值为__________,的取值范围为__________.【答案】(1). (2).【解析】分析:由题意,求得,所以的最小值为,再利用向量的模的计算公式,即可求解.详解:由题意,则,解得,所以,所以的最小值为,所以,所以.点睛:平面向量的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.16. 北京两会期间,有甲、乙、丙、丁、戊位国家部委领导人要去个分会场发言(每个分会场至少人),其中甲和乙要求不再同一分会场,甲和丙必须在同一分会场,则不同的安排方案共有__________种(用数字作答).【答案】30【解析】分析:由题意甲和丙在同一分会场,甲和乙不在同一分会场,所以有“”和“”两种分配方案,利用分类计数原理和排列组合的知识,即可求解.详解:因为甲和丙在同一分会场,甲和乙不在同一分会场,所以有“”和“”两种分配方案:当“”时,甲和丙为一组,余下人选出人为一组,有种方案;当“”时,在丁和戊中选出人与甲丙组成一组,有种方案,所以不同的安排方案共有种.点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.在某些特定问题上,也可充分考虑“正难则反”的思维方式.17. 已知函数,函数.若对任意的,都存在,使得成立,则的取值范围是__________.【答案】【解析】分析:由题意,若对任意的,都存在,使得成立,即有成立,利用二次函数的性质和绝对值不等式,分别求解函数和的最小值,得到不等式,即可求解.详解:因为函数,所以,由题意,若对任意的,都存在,使得成立,即有成立,又由,因为,且,所以,当时取等号,即的最小值为,所以,解得,即的取值范围是.点睛:本题主要考查了函数性质的综合应用,以及利用含有量词的命题求参数的取值范围问题,其中解答中,把对任意的,都存在,使得成立,即有成立是解答的关键,着重考查了转化思想方法,以及分析问题和解答问题的能力.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)18. 已知函数.(1)求的值;(2)当时,求函数的取值范围.【答案】(1)1;(2).【解析】分析:(1)由三角恒等变换的公式化简得,即可求解的值;(2)由(1)得,当时,得,即可求解的取值范围.详解:(1),则.(2)由(1)得,当时,,则,即的取值范围为.点睛:本题主要考查了三角函数的图象与性质,其中解答中熟记三角函数的图象与性质的最基本知识点是解答的关键,着重考查了推理与运算能力.19. 如图,三棱柱的各棱长都相等,且,、分别为、的中点.(1)证明:平面;(2)求直线与平面所成角的余弦值.【答案】(1)见解析;(2).【解析】分析:(1)取的中点,连接,证得,进而得到平面平面,再利用面面平行的性质,即可求解.(2)解法一:由(1)连接,由各棱长都相等,得,进而平面,过点作的垂线交其延长线于点即为直线与平面所成角,在中,即可求解;解法二:由(1)过点且平行于的直线为轴,所在直线分别为轴,建立空间直角坐标系如图,分别求解平面的法向量和向量,利用向量的夹角公式,即可求解.详解:(1)取的中点,连接,因为点分别为的中点,所以,又,所以平面平面,因为平面,所以平面.(2)解法一:由(1)连接,由各棱长都相等,得,又,所以,可得点在平面上的射影必在上,为的外心.则平面,过点作的垂线交其延长线于点即为直线与平面所成角.设,则,从而可得.由得.此时,在中,,此时,则,即直线与平面所成角的余弦值为.解法二:由(1)连接,由各棱长都相等,得,又,可得点在平面上的射影必在上,故以为原点,过点且平行于的直线为轴,所在直线分别为轴,建立空间直角坐标系如图,设,此时,则,设平面的法向量为,由,令,解得.设直线与平面的所成角为,则,故,即直线与平面所成角的余弦值为.点睛:本题考查了立体几何中的直线与平面的位置关系的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20. 已知函数.(1)求函数的单调区间;(2)若,对任意的恒成立,求实数的取值范围.【答案】(1)见解析;(2).【解析】分析:(1)由题意求得,令得或,分类讨论即可求解函数的单调区间;(2)由(1)知,当时,函数的单调性,求得函数的极大值与极小值,又由要对任意的恒成立,结合图象得,即可求解.详解:(1)由题意得,令得或,①当时,,则的单调递增区间为,单调递减区间为.②当时,恒成立,则的单调递增区间为.③当时,,则的单调递增区间为,单调递减区间为.(2)因为,则.且由(1)知,当时,函数在上单调递增,在单调递减,所以函数的极大值与极小值分别为.若要对任意的恒成立,结合图象可知只需满足即可,解得.点睛:本题主要考查导数在函数中的应用,以及不等式的恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.21. 如图,直线与抛物线相交于两点,是抛物线的焦点,若抛物线上存在点,使点恰为的重心.(1)求的取值范围;(2)求面积的最大值.【答案】(1);(2).【解析】分析:(1)设,联立方程组,求得,进而利用重心的坐标公式,求得,由题意得不等式组,即可求解;(2)原点到直线的距离,利用弦长公式和三角形的面积公式得,设,利用导数得到函数的单调性和最值,即可求解面积的最大值.详解:(1)设,由,得,由,得①,则,所以,由点为的重心可得,则,且②,而,即,代入①②得,解得,所以的取值范围为.(2)原点到直线的距离,,设,则,由得或,则在上递增,在上递减,即在或处取得最大值,而,所以,所以.点睛:本题主要考直线与抛物线的位置关系的应用问题,解答此类题目,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,确定函数的性质进行求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.22. 已知数列满足.(1)证明:;(2)设,证明:.【答案】(1)见解析;(2)见解析.【解析】分析:(1)由题意,所以数列为递减数列,得,进而得到,即可作出证明;.....................由(1)知,得到,即,即可作出证明.详解:(1),,数列为递减数列..又由,(2)由(1)知,,即.点睛:本题主要考查了数列的综合应用问题,其中解答中涉及数列的递推公式的灵活化简与运算,以及数列的单调性的判定与应用,试题的综合性强,难度大,属于难题,着重考查了分析问题和解答问题的能力,以及推理与运算能力.。
绝密★启用前2018 年普通高等学校招生全国统一考试(浙江卷)数 本试题卷分选择题和非选择题两部分。
全卷共 4 页。
满分 150 分。
考试用时 120 分钟。
学4 页,选择题部分 1 至 2 页;非选择题部分 3 至考生注意:1.答题前, 请务必将自己的姓名、 准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题 纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题选择题部分(共 40 分)一、选择题:本大题共 10 小题,每小题 4 分,共 40 分。
在每小题给出的四个选项中,只有一项是 符合题目要求的。
1.已知全集 U ={1,2,3,4,5},A ={1,3},则 e U A= A .B .{1,3}C .{2,4, 5}D .{1,2,3,4,5}卷上的作答一律无效。
参考公式:若事件 A ,B 互斥,则 P(A B) P(A) P(B) 若事件 A ,B 相互独立,则 P(AB) P(A)P(B) 若事件 A 在一次试验中发生的概率是 p ,则 n 次独立重复试验中事件 A 恰好发生 k 次的概率 k k n kP n (k) C k n p k (1 p)n k (k 0,1,2, ,n) 台体的体积公式 V 1(S 1 S 1S 2 S 2)h 其中 S 1, S 2分别表示台体的上、下底面积, h 表 示台体的高柱体的体积公式 V Sh其中 S 表示柱体的底面积, h 表示柱体的高1锥体的体积公式 V Sh3其中 S 表示锥体的底面积, h 表示锥体的高 球的表面积公式2S 4 R2球的体积公式4322.双曲线x y2=1 的焦点坐标是3A.(- 2 ,0),( 2,0)C.(0,- 2),(0, 2 )3.某几何体的三视图如图所示(单位:B.(-2 ,0),(2 , 0)D.(0 ,-2),(0 ,2)cm ),则该几何体的体积(单位: cm3)是侧视图A.2 B.4 C.D.4 .复数2(i 为虚数单位)的共轭复数是1iA . 1+iB. 1-iC.5.函数y= 2|x| sin2 x的图象可能是6.已知平面α,直线m,n 满足mα,B.必要不充分条件n α,A .充分不必要条件C .充分必要条件D.既不充分也不必要条件7.设 0< p <1 ,随机变量ξ的分布列是则当p 在( 0,1)内增大时,A .D(ξ)减小B.D(ξ)增大C .D(ξ)先减小后增大D .D(ξ)先增大后减小8.已知四棱锥S- ABCD 的底面是正方形,侧棱长均相等,E是线段AB 上的点(不含端点),设SE与BC 所成的角为θ1 ,SE与平面ABCD 所成的角为θ2,二面角S- AB- C 的平面角为θ3,则 A .θ1 ≤θ2≤ θ3 B.θ3≤θ2≤θ1 C .θ1≤θ3≤θ2D .θ2≤ θ3 ≤ θ1 π9.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π,向量b满足 3 b2- 4e·b +3=0 ,则| a- b| 的最小值是A. 3-1 B. 3+1 C.2 D. 2- 310.已知 a1,a2,a3,a4成等比数列,且a1 a2 a3 a4 ln(a1 a2 a3) .若a1 1,则A.a1 a3,a2 a4 B. a1 a3,a2 a4 C . a1 a3,a2 a4 D. a1 a3,a2 a4非选择题部分(共 110 分)二、填空题:本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分。
2018浙江省高考数学试卷新教改一、选择题:本大题共10小题,每小题4分,共40分;在每小题给出的四个选项中,只有一项是符合题目要求的;A=1.4分2018 浙江已知全集U={1,2,3,4,5},A={1,3},则UA.B.{1,3} C.{2,4,5} D.{1,2,3,4,5}2.4分2018 浙江双曲线﹣y2=1的焦点坐标是A.﹣,0,,0 B.﹣2,0,2,0 C.0,﹣,0,D.0,﹣2,0,23.4分2018 浙江某几何体的三视图如图所示单位:cm,则该几何体的体积单位:cm3是A.2 B.4 C.6 D.84.4分2018 浙江复数i为虚数单位的共轭复数是A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i5.4分2018 浙江函数y=2|x|sin2x的图象可能是A. B. C.D.6.4分2018 浙江已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.4分2018 浙江设0<p <1,随机变量ξ的分布列是ξ 012P则当p 在0,1内增大时, A .Dξ减小B .Dξ增大C .Dξ先减小后增大D .Dξ先增大后减小8.4分2018 浙江已知四棱锥S ﹣ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点不含端点.设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S ﹣AB ﹣C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.4分2018 浙江已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4+3=0,则|﹣|的最小值是 A .﹣1 B .+1C .2D .2﹣10.4分2018 浙江已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=lna 1+a 2+a 3,若a 1>1,则 A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分;11.6分2018浙江我国古代数学着作张邱建算经中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x= ,y= .12.6分2018 浙江若x,y 满足约束条件,则z=x+3y 的最小值是 ,最大值是 .13.6分2018 浙江在△ABC 中,角A,B,C 所对的边分别为a,b,c .若a=,b=2,A=60°,则sinB= ,c= . 14.4分2018 浙江二项式+8的展开式的常数项是 .15.6分2018 浙江已知λ∈R,函数fx=,当λ=2时,不等式fx<0的解集是.若函数fx恰有2个零点,则λ的取值范围是.16.4分2018 浙江从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.用数字作答17.4分2018 浙江已知点P0,1,椭圆+y2=mm>1上两点A,B满足=2,则当m= 时,点B横坐标的绝对值最大.三、解答题:本大题共5小题,共74分;解答应写出文字说明、证明过程或演算步骤; 18.14分2018 浙江已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P﹣,﹣.Ⅰ求sinα+π的值;Ⅱ若角β满足sinα+β=,求cosβ的值.19.15分2018 浙江如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=l,AB=BC=B1B=2.Ⅰ证明:AB1⊥平面A1B1C1;Ⅱ求直线AC1与平面ABB1所成的角的正弦值.20.15分2018 浙江已知等比数列{an }的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn }满足b1=1,数列{bn+1﹣bnan}的前n项和为2n2+n.Ⅰ求q的值;Ⅱ求数列{bn}的通项公式.21.15分2018 浙江如图,已知点P是y轴左侧不含y轴一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.Ⅰ设AB中点为M,证明:PM垂直于y轴;Ⅱ若P是半椭圆x2+=1x<0上的动点,求△PAB面积的取值范围.22.15分2018 浙江已知函数fx=﹣lnx.Ⅰ若fx在x=x1,x2x1≠x2处导数相等,证明:fx1+fx2>8﹣8ln2;Ⅱ若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=fx有唯一公共点.2018年浙江省高考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分;在每小题给出的四个选项中,只有一项是符合题目要求的;A=1.4分2018 浙江已知全集U={1,2,3,4,5},A={1,3},则UA.B.{1,3} C.{2,4,5} D.{1,2,3,4,5}考点1F:补集及其运算.A是由所有属于集合U但不属于A的元素构成的集合.分析根据补集的定义直接求解:UA是由所有属于集合U但不属于A的元素构成的集合,由已解答解:根据补集的定义,U知,有且仅有2,4,5符合元素的条件.A={2,4,5}U故选:C.点评本题考查了补集的定义以及简单求解,属于简单题.2.4分2018 浙江双曲线﹣y2=1的焦点坐标是A.﹣,0,,0 B.﹣2,0,2,0 C.0,﹣,0,D.0,﹣2,0,2考点KC:双曲线的性质.专题34 :方程思想;4O:定义法;5D :圆锥曲线的定义、性质与方程.分析根据双曲线方程,可得该双曲线的焦点在x轴上,由平方关系算出c==2,即可得到双曲线的焦点坐标.解答解:∵双曲线方程可得双曲线的焦点在x轴上,且a2=3,b2=1,由此可得c==2,∴该双曲线的焦点坐标为±2,0故选:B.点评本题考查双曲线焦点坐标,着重考查了双曲线的标准方程和焦点坐标求法等知识,属于基础题.3.4分2018 浙江某几何体的三视图如图所示单位:cm,则该几何体的体积单位:cm3是A.2 B.4 C.6 D.8考点L:由三视图求面积、体积.专题35 :转化思想;5F :空间位置关系与距离.分析直接利用三视图的复原图求出几何体的体积.解答解:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V=.故选:C.点评本题考查的知识要点:三视图的应用.4.4分2018 浙江复数i为虚数单位的共轭复数是A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i考点A5:复数的运算.专题5N :数系的扩充和复数.分析化简已知复数z,由共轭复数的定义可得.解答解:化简可得z===1+i,∴z的共轭复数=1﹣i故选:B.点评本题考查复数的代数形式的运算,涉及共轭复数,属基础题.5.4分2018 浙江函数y=2|x|sin2x的图象可能是A. B. C.D.考点3A:函数的图象与图象的变换.专题35 :转化思想;51 :函数的性质及应用.分析直接利用函数的图象和性质求出结果.解答解:根据函数的解析式y=2|x|sin2x,得到:函数的图象为奇函数,故排除A和B.当x=时,函数的值也为0,故排除C.故选:D.点评本题考查的知识要点:函数的性质和赋值法的应用.6.4分2018 浙江已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点29:充分条件、必要条件、充要条件.专题38 :对应思想;4O:定义法;5L :简易逻辑.分析根据线面平行的定义和性质以及充分条件和必要条件的定义进行判断即可.解答解:∵mα,nα,∴当m∥n时,m∥α成立,即充分性成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的充分不必要条件.故选:A.点评本题主要考查充分条件和必要条件的判断,根据线面平行的定义和性质是解决本题的关键,是基础题.7.4分2018 浙江设0<p<1,随机变量ξ的分布列是ξ012P则当p在0,1内增大时,A.Dξ减小B.Dξ增大C.Dξ先减小后增大D.Dξ先增大后减小考点CH:离散型随机变量的期望与方差.专题33 :函数思想;4O:定义法;5I :概率与统计.分析求出随机变量ξ的分布列与方差,再讨论Dξ的单调情况.解答解:设0<p<1,随机变量ξ的分布列是Eξ=0×+1×+2×=p+;方差是Dξ=×+×+×=﹣p2+p+=﹣+,∴p∈0,时,Dξ单调递增;p∈,1时,Dξ单调递减;∴Dξ先增大后减小.故选:D.点评本题考查了离散型随机变量的数学期望与方差的计算问题,也考查了运算求解能力,是基础题.8.4分2018 浙江已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点不含端点.设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1考点MJ :二面角的平面角及求法;L3:棱锥的结构特征;LM :异面直线及其所成的角;MI :直线与平面所成的角.专题31 :数形结合;44 :数形结合法;5G :空间角.分析作出三个角,表示出三个角的正弦或正切值,根据三角函数的单调性即可得出三个角的大小.解答解:∵由题意可知S 在底面ABCD 的射影为正方形ABCD 的中心. 过E 作EF ∥BC,交CD 于F,过底面ABCD 的中心O 作ON ⊥EF 交EF 于N, 连接SN,取CD 中点M,连接SM,OM,OE,则EN=OM, 则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO . 显然,θ1,θ2,θ3均为锐角. ∵tanθ1==,tanθ3=,SN ≥SO,∴θ1≥θ3, 又sinθ3=,sinθ2=,SE ≥SM,∴θ3≥θ2. 故选:D .点评本题考查了空间角的计算,三角函数的应用,属于中档题.9.4分2018 浙江已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4+3=0,则|﹣|的最小值是 A .﹣1 B .+1C .2D .2﹣考点9O :平面向量数量积的性质及其运算.专题11 :计算题;31 :数形结合;4R :转化法;5A :平面向量及应用. 分析把等式﹣4+3=0变形,可得得,即⊥,设,则的终点在以2,0为圆心,以1为半径的圆周上,再由已知得到的终点在不含端点O 的两条射线y=x >0上,画出图形,数形结合得答案. 解答解:由﹣4+3=0,得,∴⊥,如图,不妨设,则的终点在以2,0为圆心,以1为半径的圆周上, 又非零向量与的夹角为,则的终点在不含端点O 的两条射线y=x >0上.不妨以y=为例,则|﹣|的最小值是2,0到直线的距离减1.即.故选:A .点评本题考查平面向量的数量积运算,考查数学转化思想方法与数形结合的解题思想方法,属难题.10.4分2018 浙江已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=lna 1+a 2+a 3,若a 1>1,则 A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4考点8I :数列与函数的综合;4H :对数的运算性质;87:等比数列的性质. 专题11 :计算题;32 :分类讨论;34 :方程思想;49 :综合法;51 :函数的性质及应用;54 :等差数列与等比数列.分析利用等比数列的性质以及对数函数的单调性,通过数列的公比的讨论分析判断即可.解答解:a 1,a 2,a 3,a 4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a 1>1,设公比为q,当q >0时,a 1+a 2+a 3+a 4>a 1+a 2+a 3,a 1+a 2+a 3+a 4=lna 1+a 2+a 3,不成立, 即:a 1>a 3,a 2>a 4,a 1<a 3,a 2<a 4,不成立,排除A 、D .当q=﹣1时,a 1+a 2+a 3+a 4=0,lna 1+a 2+a 3>0,等式不成立,所以q ≠﹣1; 当q <﹣1时,a 1+a 2+a 3+a 4<0,lna 1+a 2+a 3>0,a 1+a 2+a 3+a 4=lna 1+a 2+a 3不成立, 当q ∈﹣1,0时,a 1>a 3>0,a 2<a 4<0,并且a 1+a 2+a 3+a 4=lna 1+a 2+a 3,能够成立, 故选:B .点评本题考查等比数列的性质的应用,函数的值的判断,对数函数的性质,考查发现问题解决问题的能力,难度比较大.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分;11.6分2018浙江我国古代数学着作张邱建算经中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x= 8 ,y= 11 .考点53:函数的零点与方程根的关系.专题11 :计算题;33 :函数思想;49 :综合法;51 :函数的性质及应用.分析直接利用方程组以及z的值,求解即可.解答解:,当z=81时,化为:,解得 x=8,y=11.故答案为:8;11.点评本题考查方程组的解法,是基本知识的考查.12.6分2018 浙江若x,y满足约束条件,则z=x+3y的最小值是﹣2 ,最大值是8 .考点7C:简单线性规划.专题1 :常规题型;11 :计算题;35 :转化思想;49 :综合法;5T :不等式.分析作出题中不等式组表示的平面区域,得到如图的△ABC及其内部,再将目标函数z=x+3y对应的直线进行平移,观察直线在y轴上的截距变化,然后求解最优解得到结果.解答解:作出x,y满足约束条件表示的平面区域,如图:其中B4,﹣2,A2,2.设z=Fx,y=x+3y,将直线l:z=x+3y进行平移,观察直线在y轴上的截距变化,可得当l经过点B时,目标函数z达到最小值.∴z=F4,﹣2=﹣2.最小值可得当l经过点A时,目标函数z达到最最大值:z=F2,2=8.最大值故答案为:﹣2;8.点评本题给出二元一次不等式组,求目标函数的最小值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于中档题.13.6分2018 浙江在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB= ,c= 3 .考点HP:正弦定理.专题11 :计算题;35 :转化思想;49 :综合法;58 :解三角形.分析由正弦定理得=,由此能求出sinB,由余弦定理得cos60°=,由此能求出c.解答解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1舍,∴sinB=,c=3.故答案为:,3.点评本题考查三角形中角的正弦值、边长的求法,考查正弦定理、余弦定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.14.4分2018 浙江二项式+8的展开式的常数项是7 .考点DA:二项式定理.专题35 :转化思想;4O:定义法;5P :二项式定理.分析写出二项展开式的通项并整理,由x的指数为0求得r值,则答案可求.解答解:由=.令=0,得r=2.∴二项式+8的展开式的常数项是.故答案为:7.点评本题考查了二项式系数的性质,关键是熟记二项展开式的通项,是基础题.15.6分2018 浙江已知λ∈R,函数fx=,当λ=2时,不等式fx<0的解集是{x|1<x<4} .若函数fx恰有2个零点,则λ的取值范围是1,3 .考点57:函数与方程的综合运用;3E:函数单调性的性质与判断;5B:分段函数的应用.专题11 :计算题;31 :数形结合;34 :方程思想;49 :综合法;51 :函数的性质及应用.分析利用分段函数转化求解不等式的解集即可;利用函数的图象,通过函数的零点得到不等式求解即可.解答解:当λ=2时函数fx=,显然x≥2时,不等式x﹣4<0的解集:{x|2≤x<4};x<2时,不等式fx<0化为:x2﹣4x+3<0,解得1<x<2,综上,不等式的解集为:{x|1<x<4}.函数fx恰有2个零点,函数fx=的草图如图:函数fx恰有2个零点,则λ∈1,3.故答案为:{x|1<x<4};1,3.点评本题考查函数与方程的应用,考查数形结合以及函数的零点个数的判断,考查发现问题解决问题的能力.16.4分2018 浙江从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成1260 个没有重复数字的四位数.用数字作答考点D8:排列、组合的实际应用.专题11 :计算题;35 :转化思想;49 :综合法;5O :排列组合.分析可先从1,3,5,7,9中任取2个数字,然后通过0是否存在,求解即可.解答解:从1,3,5,7,9中任取2个数字有种方法,从2,4,6,0中任取2个数字不含0时,有种方法,可以组成=720个没有重复数字的四位数;含有0时,0不能在千位位置,其它任意排列,共有=540,故一共可以组成1260个没有重复数字的四位数.故答案为:1260.点评本题考查排列组合及简单的计数问题,先选后排是解决问题的关键,注意“0“是否在4位数中去易错点,是中档题.17.4分2018 浙江已知点P0,1,椭圆+y2=mm>1上两点A,B满足=2,则当m= 5 时,点B横坐标的绝对值最大.考点K4:椭圆的性质.专题34 :方程思想;48 :分析法;5A :平面向量及应用;5D :圆锥曲线的定义、性质与方程.分析设Ax1,y1,Bx2,y2,运用向量共线的坐标表示,以及点满足椭圆方程,求得y1,y2,有x22=m﹣2,运用二次函数的最值求法,可得所求最大值和m的值.解答解:设Ax1,y1,Bx2,y2,由P0,1,=2,可得﹣x1=2x2,1﹣y1=2y2﹣1,即有x1=﹣2x2,y1+2y2=3,又x12+4y12=4m,即为x22+y12=m,①x 22+4y22=4m,②①﹣②得y1﹣2y2y1+2y2=﹣3m,可得y1﹣2y2=﹣m,解得y1=,y2=,则m=x22+2,即有x22=m﹣2==,即有m=5时,x22有最大值16,即点B横坐标的绝对值最大.故答案为:5.点评本题考查椭圆的方程和应用,考查向量共线的坐标表示和方程思想、转化思想,以及二次函数的最值的求法,属于中档题.三、解答题:本大题共5小题,共74分;解答应写出文字说明、证明过程或演算步骤; 18.14分2018 浙江已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P﹣,﹣.Ⅰ求sinα+π的值;Ⅱ若角β满足sinα+β=,求cosβ的值.考点GP:两角和与差的三角函数;G9:任意角的三角函数的定义.专题33 :函数思想;4R:转化法;56 :三角函数的求值.分析Ⅰ由已知条件即可求r,则sinα+π的值可得;Ⅱ由已知条件即可求sinα,cosα,cosα+β,再由cosβ=cosα+β﹣α=cosα+βcosα+sinα+βsinα代值计算得答案.解答解:Ⅰ∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P﹣,﹣.∴x=﹣,y=,r=|OP|=,∴sinα+π=﹣sinα=;Ⅱ由x=﹣,y=,r=|OP|=1,得,,又由sinα+β=,得=,则cosβ=cosα+β﹣α=cosα+βcosα+sinα+βsinα=,或cosβ=cosα+β﹣α=cosα+βcosα+sinα+βsinα=.∴cosβ的值为或.点评本题考查了任意角的三角函数的定义,考查了三角函数的诱导公式的应用,是中档题.19.15分2018 浙江如图,已知多面体ABCA 1B 1C 1,A 1A,B 1B,C 1C 均垂直于平面ABC,∠ABC=120°,A 1A=4,C 1C=l,AB=BC=B 1B=2. Ⅰ证明:AB 1⊥平面A 1B 1C 1;Ⅱ求直线AC 1与平面ABB 1所成的角的正弦值.考点MI :直线与平面所成的角;LW :直线与平面垂直.专题31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角. 分析I 利用勾股定理的逆定理证明AB 1⊥A 1B 1,AB 1⊥B 1C 1,从而可得AB 1⊥平面A 1B 1C 1; II 以AC 的中点为坐标原点建立空间坐标系,求出平面ABB 1的法向量,计算与的夹角即可得出线面角的大小.解答I 证明:∵A 1A ⊥平面ABC,B 1B ⊥平面ABC, ∴AA 1∥BB 1, ∵AA 1=4,BB 1=2,AB=2, ∴A 1B 1==2,又AB 1==2,∴AA 12=AB 12+A 1B 12,∴AB 1⊥A 1B 1, 同理可得:AB 1⊥B 1C 1, 又A 1B 1∩B 1C 1=B 1, ∴AB 1⊥平面A 1B 1C 1.II 解:取AC 中点O,过O 作平面ABC 的垂线OD,交A 1C 1于D, ∵AB=BC,∴OB ⊥OC,∵AB=BC=2,∠BAC=120°,∴OB=1,OA=OC=,以O 为原点,以OB,OC,OD 所在直线为坐标轴建立空间直角坐标系如图所示: 则A0,﹣,0,B1,0,0,B 11,0,2,C 10,,1, ∴=1,,0,=0,0,2,=0,2,1,设平面ABB 1的法向量为=x,y,z,则,∴,令y=1可得=﹣,1,0,∴cos<>===.设直线AC1与平面ABB1所成的角为θ,则sinθ=|cos<>|=.∴直线AC1与平面ABB1所成的角的正弦值为.点评本题考查了线面垂直的判定定理,线面角的计算与空间向量的应用,属于中档题.20.15分2018 浙江已知等比数列{an }的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn }满足b1=1,数列{bn+1﹣bnan}的前n项和为2n2+n.Ⅰ求q的值;Ⅱ求数列{bn}的通项公式.考点8M:等差数列与等比数列的综合.专题34 :方程思想;48 :分析法;54 :等差数列与等比数列.分析Ⅰ运用等比数列的通项公式和等差数列中项性质,解方程可得公比q;Ⅱ设cn =bn+1﹣bnan=bn+1﹣bn2n﹣1,运用数列的递推式可得cn=4n﹣1,再由数列的恒等式求得b n =b1+b2﹣b1+b3﹣b2+…+bn﹣bn﹣1,运用错位相减法,可得所求数列的通项公式.解答解:Ⅰ等比数列{an }的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项,可得2a4+4=a3+a5=28﹣a4,解得a4=8,由+8+8q=28,可得q=2舍去,则q的值为2;Ⅱ设cn =bn+1﹣bnan=bn+1﹣bn2n﹣1,可得n=1时,c1=2+1=3,n≥2时,可得cn=2n2+n﹣2n﹣12﹣n﹣1=4n﹣1,上式对n=1也成立,则bn+1﹣bnan=4n﹣1,即有bn+1﹣bn=4n﹣1n﹣1,可得bn =b1+b2﹣b1+b3﹣b2+…+bn﹣bn﹣1=1+30+71+…+4n﹣5n﹣2,b=+3n+72+…+4n﹣5n﹣1,=+4+2+…+n﹣2﹣4n﹣5相减可得bnn﹣1=+4 ﹣4n﹣5n﹣1,化简可得b=15﹣4n+3nn﹣2.点评本题考查等比数列的通项公式和等差数列中项的性质,考查数列的恒等式和错位相减法的运用,考查运算能力,属于中档题.21.15分2018 浙江如图,已知点P是y轴左侧不含y轴一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.Ⅰ设AB中点为M,证明:PM垂直于y轴;Ⅱ若P是半椭圆x2+=1x<0上的动点,求△PAB面积的取值范围.考点KN:直线与抛物线的位置关系;KL:直线与椭圆的位置关系.专题34 :方程思想;48 :分析法;5D :圆锥曲线的定义、性质与方程.分析Ⅰ设Pm,n,A,y1,B,y2,运用中点坐标公式可得M的坐标,再由中点坐标公式和点在抛物线上,代入化简整理可得y1,y2为关于y的方程y2﹣2ny+8m﹣n2=0的两根,由韦达定理即可得到结论;Ⅱ由题意可得m2+=1,﹣1≤m<0,﹣2<n<2,可得△PAB面积为S=|PM||y1﹣y2|,再由配方和换元法,可得面积S关于新元的三次函数,运用单调性可得所求范围.解答解:Ⅰ证明:可设Pm,n,A,y1,B,y2,AB中点为M的坐标为,,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上,可得2=4 ,2=4 ,化简可得y1,y2为关于y的方程y2﹣2ny+8m﹣n2=0的两根,可得y1+y2=2n,y1y2=8m﹣n2,可得n=,则PM垂直于y轴;Ⅱ若P是半椭圆x2+=1x<0上的动点,可得m2+=1,﹣1≤m<0,﹣2<n<2,由Ⅰ可得y1+y2=2n,y1y2=8m﹣n2,由PM垂直于y轴,可得△PAB面积为S=|PM||y1﹣y2|=﹣m=4n2﹣16m+2n2﹣m=n2﹣4m,可令t===,可得m=﹣时,t取得最大值;m=﹣1时,t取得最小值2,即2≤t≤,则S=t3在2≤t≤递增,可得S∈6,,△PAB面积的取值范围为6,.点评本题考查抛物线的方程和运用,考查转化思想和运算能力,以及换元法和三次函数的单调性,属于难题.22.15分2018 浙江已知函数fx=﹣lnx.Ⅰ若fx在x=x1,x2x1≠x2处导数相等,证明:fx1+fx2>8﹣8ln2;Ⅱ若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=fx有唯一公共点.考点6E:利用导数研究函数的最值.专题14 :证明题;35 :转化思想;49 :综合法;53 :导数的综合应用.分析Ⅰ推导出x>0,f′x=﹣,由fx在x=x1,x2x1≠x2处导数相等,得到+=,由基本不等式得:=≥,从而x1x2>256,由题意得fx1+fx2==﹣lnx1x2,设gx=,则,利用导数性质能证明fx1+fx2>8﹣8ln2.Ⅱ令m=e﹣|a|+k,n=2+1,则fm﹣km﹣a>|a|+k﹣k﹣a≥0,推导出存在x∈m,n,使fx0=kx+a,对于任意的a∈R及k∈0,+∞,直线y=kx+a与曲线y=fx有公共点,由fx=kx+a,得k=,设hx=,则h′x==,利用导数性质能证明a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=fx有唯一公共点.解答证明:Ⅰ∵函数fx=﹣lnx,∴x >0,f′x=﹣,∵fx 在x=x 1,x 2x 1≠x 2处导数相等, ∴=﹣,∵x 1≠x 2,∴+=,由基本不等式得:=≥,∵x 1≠x 2,∴x 1x 2>256, 由题意得fx 1+fx 2==﹣lnx 1x 2,设gx=,则,∴列表讨论:x 0,16 16 16,+∞g′x ﹣ 0 + gx↓2﹣4ln2↑∴gx 在256,+∞上单调递增, ∴gx 1x 2>g256=8﹣8ln2, ∴fx 1+fx 2>8﹣8ln2. Ⅱ令m=e ﹣|a|+k ,n=2+1,则fm ﹣km ﹣a >|a|+k ﹣k ﹣a ≥0, fn ﹣kn ﹣a <n﹣﹣k ≤n﹣k <0,∴存在x 0∈m,n,使fx 0=kx 0+a,∴对于任意的a ∈R 及k ∈0,+∞,直线y=kx+a 与曲线y=fx 有公共点, 由fx=kx+a,得k=,设hx=,则h′x==,其中gx=﹣lnx,由1知gx ≥g16,又a ≤3﹣4ln2,∴﹣gx ﹣1+a ≤﹣g16﹣1+a=﹣3+4ln2+a ≤0,∴h′x≤0,即函数hx在0,+∞上单调递减,∴方程fx﹣kx﹣a=0至多有一个实根,综上,a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=fx有唯一公共点.点评本题考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.。
绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:互斥,则相互独立,则分别表示台体的上、下底面积,台体的高柱体的体积公式表示柱体的底面积,表示柱体的高锥体的体积公式表示锥体的底面积,表示锥体的高球的体积公式其中表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知全集U={1,2,3,4,5},A={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}2. 双曲线的焦点坐标是A. (−,0),(,0)B. (−2,0),(2,0)C. (0,−),(0,)D. (0,−2),(0,2)3. 某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是学|科|网...学|科|网...学|科|网...A. 2B. 4C. 6D. 84. 复数(i为虚数单位)的共轭复数是A. 1+iB. 1−iC. −1+iD. −1−i5. 函数y=sin2x的图象可能是A. B.C. D.6. 已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小8. 已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ19. 已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是A. −1B. +1C. 2D. 2−10. 已知成等比数列,且.若,则A. B. C. D.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2018年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是A. 902cmB. 1292cmC. 1322cmD. 1382cm4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位 5.在46)1()1(y x ++的展开式中,记n m y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f )( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c7.在同一直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )。
2018年浙江高考数学真题及答案本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=台体的体积公式11221()3V S S S S h =++其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则=UAA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.双曲线221 3=x y -的焦点坐标是A .(2,0),2,0)B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是俯视图正视图2211A .2B .4C .6D .84.复数21i- (i 为虚数单位)的共轭复数是 A .1+iB .1−iC .−1+iD .−1−i5.函数y =||2x sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是ξ 0 1 2P12p- 12 2p 则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是A 3 1B 3C .2D .2310.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。
浙江省2018年普通高等学校招生全国统一考试数学答案解析一、选择题1.【答案】C【解析】由补集概念知,把全集U 中去掉元素1,3得,2,,={}45U A ð.【考点】集合的补集运算2.【答案】B 【解析】从双曲线的标准方程2213x y -=知,焦点在x 轴上,且223,61a ==,则c 222314a b =+=+=,进而焦点坐标为(2,0)±.【考点】双曲线的标准方程和几何性质3.【答案】C【解析】由三视图知,该几何体为直四棱柱,且侧棱长为2,上下底面为上边为1,下边为2,高为2的直角梯形.故(12)2262V +⨯=⨯= 【考点】空间几何体的三视图4.【答案】B 【解析】22(1i)1i 1i (1i)(1i)+==+--+所以21i -的共轭复数为1i -. 【考点】复数的基本概念5.【答案】D【解析】设||()2sin 2x f x x =,因为||||()2sin 2()2sin 2()x x f x x x f x ---=-=-=-,所以函数()f x 为奇函数,选项A ,B 不符,当2π3x =时,()0f x <,则选项C 不符合,故选D. 【考点】函数的图象和性质6.【答案】A【解析】如图,作SO 垂直于平面ABCD ,垂足为O ,取AB 的中点M ,连接SM ,则23,SEO SMO θθ==∠∠,而23tan ,tan SO SO OE OMθθ==,且EO MO ≥,故32θθ≥,根据线面所成角定义可推得,线面所成角是鞋面与平面内直线所成角中最小的角,所以选D.9.【答案】A【解析】由2430b e b -+=g 可得22441b e b e +=g -,即2(2)1b e -=,即|2|1b e -=,如图,由几何意义得,b 的终点B 在以F 为圆心,半径为1的圆上运动,a 的终点A 在射线OP 上,当点B 为点F 到OP 的垂线与圆F 的交点时,||a b -最小,即min π|2sin 113|a b -=-=【考点】平面向量的运算及几何意义10.【答案】B【解析】由1234123ln()a a a a a a a +++=++结构,想到常用对数放缩公式ln 1x x -≤,所以1234123123ln()()1a a a a a a a a a a +++=++++-≤,即41a -≤.若1q -≤,则212341(1)(1)0a a a a a q q +++=++≤即123ln()0a a a ++≤而212311(1)1a a a a q q a ++=++>≥,故123ln()0a a a ++>,即与123ln()0a a a ++≤矛盾,所以10q -<<,所以选B【考点】等比数列中的基本量以及对数的有关性质二、填空题11.【答案】811【解析】当81z =时,得195373x y x y +=⎧⎨+=⎩,解得811x y =⎧⎨=⎩. 【考点】数学文化与方程组的解法12.【答案】2-8【解析】由3z x y =+得133z y x =-+,欲求3z x y =+的最值,即求3z x y =+的最值,即求直线133z y x =-+在可行域内纵截距的最值,由图知,在点A (4,-2),B (2,2)处分别取得最小值和最大值,即min max 43(2)22328z z =+⨯-=-=+⨯=,.【考点】二元一次不等式表示平面区域以及线性规划等知识13.32sin B =,即sin 7B =,由余弦定理得227222cos60c c =+-⨯︒,解得3,1c c ==-(舍).【考点】解三角形中的正弦定理与余弦定理14.【答案】7【解析】设84831881122r rr r r r r T C C x x --+⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭g ,令8403r -=,得2r =,此时37T =. 【考点】二项式定理的通项公式15.【答案】(1,4)(1,3](4,)+∞U【解析】当2λ=,由()0f x <得402x x -<⎧⎨⎩≥或24302x x x ⎧-+<⎨<⎩,即24x <≤或12x <<,故不等式()0f x <的解集为(1,4)令()0f x =,得4x =或1x =或3x =,欲使得函数()f x 恰好有2个零点,则使4λ>或13λ<≤.【考点】一元一次不等式、一元二次不等式的解法、函数零点的求法16.【答案】1 260【解析】分两类讨论,第一类不取0,则有224534720C C A =,第二类,取0,则有21145334540C C C A =21145334540C C C A =,一共可以组成1 260个没有重复数字的四位数.【考点】计数原理中排列组合等知识17.【答案】5【解析】设点1122,),((,)A x y B x y ,当直线AB 的斜率不存在时,此时9m =;当直线AB 的斜率存在时,设直线AB 为1y kx =+,代入方程22(1)4x y m m +=>可得22(14)8440k x kx m +++-=,由0∆>得2410mk m +->,由书达定理得121222844,1414k m x x x x k k -+=-=++,由2AP PB =u u u r u u u v 得122x x =-,联立解得1222168,1414k k x x k k =-=++,所以228||8||21144||||k x k k k ==++≤(当且仅当1||2k =时取等号),此时122216881414k k x x k k -==-++g ,而动122442214m x x m k-==-+,解得5m =,经检验,5m =符合题意。
绝密★启用前2018年普通高等学校招生全国统一考试 (浙江卷)数学本试题卷分选择题和非选择题两部分。
全卷共 4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名 、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定 的位置上。
2.作答一律无效。
参考公式:若事件A , B 互斥,则卜出:m ; m若事件A , B 相互独立,则 疋■贋,:汽科若事件A 在一次试验中发生的概率是 p ,则n 次独立重复试验中事件 A 恰好发生k 次的概率 卩矗)=(制F -pT k (k =a i2…n 台体的体积公式\/・*比+/廷+比血 其中S 「禺分别表示台体的上、下底面积, h 表示台体的高其中表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的 柱体的体积公式■其中 表示柱体的底面积,卩表示柱体的高锥体的体积公式其中| :表示锥体的底面积,炉表示锥体的高球的表面积公式S 4寂球的体积公式题目要求的。
1.已知全集U={1 , 2, 3, 4, 5}, A={1 , 3},则A. B. {1 , 3} C. {2 , 4, 5} D. {1 , 2, 3, 4, 5} 22. 双曲线I 的焦点坐标是 A. (-, 0), ( ' , 0)B. (-2 , 0), (2, 0)C. (0, - ' ) , (0 , )D. (0,-2) ,(0 , 2)3. 某几何体的三视图如图所示 (单位:cm ),则该几何体的体积(单位:cm 3)是A. 1+iB. 1-iC. -1+iD. -1-i 5.函数y= sin2x 的图象可能是直线m , n 满足m 花a , a ,则"m // n ”是"m // a”的.84.复数 (i 为虚A.充分不必要条件B.必要不充分条件则当p 在(0, 1 )内增大时,A. D (E)减小B. D (3增大C. D ( 3)先减小后增大D. D ( 3先增大后减小8.已知四棱锥 SABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为01, SE 与平面ABCD 所成的角为 込 二面角S-AB-C 的平面角为 出,则0W0W0 C. 01 <03<02 D. 02<0 <01的最小值是A. -1B. ' +1C. 2D. 2-10. 已知S 也內冋成等比数列,且h %心4 -忸佃1決2 °畧•若1,则 A.珂 吋牡七巧 B.勺 > 勺眄 < 打 C.巧 < 幻內> % D.尊 S 巧:-九非选择题部分(共110分)、填空题:本大题共 7小题,多空题每题 6分,单空题每题 4分,共36分。
2018年普通高等学校招生全国统一考试浙江卷一、选择题(本大题共10小题,每小题4分,共40分)1. 已知全集U ={1,2,3,4,5},A ={1,3},则C U A =( )A . ∅B . {1,3}C . {2,4,5}D . {1,2,3,4,5}2. 双曲线−y 2=1的焦点坐标是( )A . (− ,0),( ,0)B . (−2,0),(2,0)C . (0,− ),(0, )D . (0,−2),(0,2)3. 某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )A . 2B . 4C . 6D . 84. 复数-(i 为虚数单位)的共轭复数是( ) A . 1+i B . 1−i C . −1+i D . −1−i5. 函数y = sin 2x 的图象可能是( )6. 已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件7. 设0<p <1,随机变量ξ则当p 在(0,1)A . D (ξ)减小 B . D (ξ)增大 C . D (ξ)先减小后增大 D . D (ξ)先增大后减小 8. 已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( ) A . θ1≤θ2≤θ3 B . θ3≤θ2≤θ1 C . θ1≤θ3≤θ2 D . θ2≤θ3≤θ19. 已知a,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为 ,向量b 满足b 2−4e •b +3=0,则|a −b|俯视图正视图DC B A的最小值是( )A. −1B. +1C. 2D. 2−10.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则( )A. a1<a3,a2<a4B. a1>a3,a2<a4C. a1<a3,a2>a4D. a1>a3,a2>a4二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一,凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁、鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x=__________________________,y=___________________________12.若x,y满足约束条件−≤ ,则z=x+3y的最小值是________________________,最大值是_____________________13.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=,b=2,A=60°,则sinB=_________________,c=___________________14.二项式(+)8的展开式的常数项是_________________________15.已知λ∈R,函数f(x)=−,−,,当λ=2时,不等式f(x)<0的解集是_____________________,若函数f(x)恰有2个零点,则λ的取值范围是________________________16.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成______________________个没有重复数字的四位数(用数字作答)17.已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=____________________时,点B横坐标的绝对值最大三、解答题(本大题共5小题,共74分)18.(14分)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(− ,− )(1)求sin(α+π)的值(2)若角β满足sin(α+β)=,求cosβ的值19. (15分)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2(1) 证明:AB 1⊥平面A 1B 1C 1(2) 求直线AC 1与平面ABB 1所成的角的正弦值20. (15分)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项,数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n (1) 求q 的值(2) 求数列{b n }的通项公式21. (15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上(1) 设AB 中点为M ,证明:PM 垂直于y 轴C 1B 1A 1CA(2)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围22.(15分)已知函数f(x)=−lnx(1)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8−8ln2(2)若a≤3−4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。