除氧器水位三冲量调节
- 格式:pdf
- 大小:63.66 KB
- 文档页数:4
汽包水位三冲量给水调节系统1、所谓冲量,是指调节器接受的被调量的信号;2、汽包水位三冲量给水调节系统由汽包水位测量筒及变送器、蒸汽流量测量装置及变送器、给水流量测量装置及变送器、调节器、执行器等组成;3、在汽包水位三冲量给水调节系统中,调节器接受汽包水位、蒸汽流量和给水流量三个信号,如图所示。
其中,汽包水位H是主信号,任何扰动引起的水位变化,都会使调节器输信号发生变化,改变给水流量,使水位恢复到给定值;蒸汽流量信号qm.S是前馈信号,其作用是防止由于“虚假水位”而使调节器产生错误的动作,改善蒸汽流量扰动时的调节质量;蒸汽流量和给水流量两个信号配合,可消除系统的静态偏差。
当给水流量变化时,测量孔板前后的差压变化很快并及时反应给水流量的变化,所以给水流量信号qm.w作为介质反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰,使调节过程稳定,起到稳定给水流量的作用。
4、在大、中型火力发电厂锅炉汽包水位的变化速度比较快,“虚假水位”现象较为严重,为了达到生产过程中对汽包水位调节的质量要求,因而广泛采用了三冲量汽包水位调节系统。
5、关于测量信号接入调节器的极性说明:当信号值增大时要求开大调节阀,该信号标以“”号;反之,当信号值减小时要求关小调节阀,该信号标以“-”号。
在给水调节系统中,当蒸汽流量信号增大时,要求开大调节阀,该信号标以“”号;给水流量信号增大时,要求关小调节阀,该信号标以“-”号;当汽包水位升高时,差压减小,水位测量信号减小,要求关小调节阀,则该信号标以“”号。
直流炉没有三冲量啊,没有汽包,在直流状态下给多少水就产生多少汽的,是通过中间点温度来调整锅炉燃水比的!单冲量三冲量切换条件:一般用给水流量来划分,小于200t/h(30%,我们300MW机组就是这样)时为单冲量,大于则为三冲量为啥要到30%负荷时,电泵由单冲量切到三冲量啊?要防止汽包的虚假水位。
在低负荷的时候,单冲量主要是给系统上水,在高负荷时,给水的任务就是维持汽包水位。
汽包水位三冲量调节系统
汽包水位三冲量调节系统是指汽包水位、蒸汽流量和给水流量三个信号作用于调节器上,即三个被控变量对应一个调节器。
工作原理:汽包水位作为主信号,水位变化,调节器输出发生变化,继而改变给水流量,使水位恢复到给定值;
蒸汽流量作为前馈信号,防止“虚假水位”使调节器产生错误的动作;
给水流量作为反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰,
使调节过程稳定,起到稳定给水流量的作用。
调节过程:根据串级控制系统选择主、副控制器的正、反作用的原则,水位控制器LC反作用选反作用,流量控制器FC为正作用,调节器为气关阀。
当水位由于扰动而升高时,因LC反作用,它的输出下降,进入加法器后,使FC给定值减小而输出增加,调节
阀的开度减小,给水流量FA2101减小,水位下降,保持在设定值上;当蒸汽流量
FAQ2102增加时,FC给定值增加而输出减小,调节阀的开度增加,给水流量增加,保持水蒸汽平衡,使水位不;副回路克服给水自身的扰动,要进一步地稳定了水位
的自动控制;给水流量FA2101增加,FC输出增加,调节阀的开度减小,给水量减
小,从而保持水蒸汽平衡。
从安全的角度,控制阀应选气关阀。
副回路中,控制阀是反作用,副对象是正作用(当给水增加时,给水流量也增加),所以,副控制器(FC)是正作用。
当给水流量增加时,希望阀门关小,当汽包液位增加时,也希望阀门关小,所以主控制器为反作用。
(1)当干扰进入副回路时:给水压力增加时,测量值大于设定值时,副控制器接受的是正偏差信号,因为副控制器是正作用,故输出信号较大,而阀门是气关阀,所以阀门关小,使给水流量降下来。
(2)当干扰进入主回路时:汽包液位升高,测量值大于设定值时,主控制器接受的是正偏差信号,因为主控制器是反作用,故输出信号较小,因为主控制器的输出是副控制器的设定值,则副控制器接受到较大的偏差信号,而副控制器是正作用,故输出信号较大,而阀门是气关阀,所以阀门关小,使给水流量降下来,从而使汽包液位降下来。
(3)当干扰同时进入主、副回路,且变化方向相同:假设给水流量增加,汽包液位也增加。
因为汽包液位增加,测量值大于设定值时,主控制器接受的是正偏差信号,因为主控制器是反作用,故输出信号较小,因为主控制器的输出是副控制器的设定值,意味着副控制器的设定值减小,同时副控制器测量值增加,使副控制器接受到更大的偏差,副控制器是正作用控制器,则输出更大的信号,作用在气关阀上,则阀门关得更小,使汽包液位和给水流量都降了下来。
(4)当干扰同时进入主、副回路,且变化方向相反:假设给水流量增加,汽包液位减小。
因为汽包液位减小,测量值小于设定值时,主控制器接受的是负偏差信号,因为主控制器是反作用,故输出信号较大,因为主控制器的输出是副控制器的设定值,意味着副控制器的设定值增加,同时副控制器测量值增加,如果二者增量相同,则抵消了,阀门不用动;如果二者增量不同,阀门只需稍动一点就可以了。
(5)在三冲量控制中,蒸汽流量是前馈量,前馈控制具有超前控制的特点,即蒸发量波动时,其改变量直接控制调节阀的开度,而不会影响到被控变量的变化,使控制更及时。
除氧器液位波动原因分析及处理措施摘要:除氧器正常运行时给蒸汽发生器提供水源,除氧器液位的稳定对保证堆芯的冷却具有重要的意义。
除氧器液位是机组运行的一个重要的控制参数,因为除氧器液位过低,则可能导致给水泵汽蚀,并触发反应堆线性降功率,而除氧器液住过高则会淹没除氧头,不但影响除氧效果,还可能使给水经抽汽管线倒流至汽轮机,引起水击事故,损坏汽机。
关键词:除氧器;液位波动;原因分析;处理措施不论在常规火电厂还是在核电厂中,除氧器液位都是机组运行的一个重要控制参数。
但是由于其存在着较大的延迟特性,除氧器进口存在较多的进水流量来源以及除氧器出口给水流量随着功率的变化而变化等特性,单纯依靠除氧器液位信号对除氧器液位进行控制,已不能满足系统对稳定性、快速性和准确性的要求,往往会引起超调量过大,甚至振荡的情况。
1除氧器液位控制1.1除氧器液位控制模式除氧器水位控制系统的目的是保持除氧器储水箱的水位恒定。
系统包括三个水位控制阀和三个水位控制器,每一个控制阀和控制器都有各自的水位变送器监测除氧器储水箱的水位。
手动开关64321一HS4410A有三个位置“LT4410A,LT4410B,LT4410C”,用来选择三个水位控制器的主、从位置。
当选定一个位置时,两个控制器投入运行:一个控制器在AUTO位置,一个控制器在STANDBY位置。
在AUTO位置的水位控制器用于调节两个由控制开关64321-HS4410C选定在AUTO位置的水位控制阀,在STANDBY位置的水位控制器控制剩下的一个在STANDBY位置的水位控制阀。
STANDBY通道(LT/LC)在除氧器低水位时投入运行。
手动开关64321一HS4410C有三个位置“LCV4207#1,#2;LCV4207#1,#3;LCV4207#2,#3”,用来选择将AUTO/STANDBY水位控制器的控制信号送至相应的水位控制阀。
1.2除氧器液位控制器除氧器液位控制采用的是三冲量、内部串级加前馈的控制方式,三台控制器内部参数设定完全一致。
锅炉汽包水位是锅炉生产过程的主要工艺指标,同时也是保证锅炉安全运行的主要条件之一。
汽包水位过高,使蒸汽产生带液现象,不仅降低蒸汽的产量和质量,而且还会使过热器结垢,或使汽轮机叶片损坏;当汽包水位过低时,轻则影响水汽平衡,重则烧干锅炉,严重时会导致锅炉爆炸事故的发生。
所以锅炉水位是一个极为重要的被控变量。
在具体工艺生产过程中,常常由于蒸汽负荷的波动和给水流量的变化打破汽包内的平衡状态,对汽包水位造成干扰,最终导致假液位。
所谓“冲量”实际就是变量,多冲量控制中的冲量,是指引入系统的测量信号。
在锅炉控制中,主要冲量是水位。
辅助冲量是蒸汽负荷和给水流量,它们是为了提高控制品质而引入的。
1、三冲量控制的引入目前锅炉汽包水位调节常采用单冲量、双冲量及三冲量等三种调节方案,现分别对它们的基本原理和特性加以讨论。
①单冲量水位调节系统单冲量水位调节系统的原理如图1所示。
由图1可知,这种类型的水位调节系统,是一个典型的单回路调节系统,被调参数是汽包水位,调节参数是锅炉的给水量。
它适用于停留时间较长(亦即蒸发量与汽包的单位面积相比很小),负荷变化小的小型锅炉(一般为10t/h以下)。
但对于停留时间较短,负荷变化大的系统就不适应了。
图1 单冲量水位调节原理图2 单冲量水位调节系统控制策略从图2可以看出:单冲量水位调节系统控制策略由汽包水位测量差压变送器、PID调节器和调节阀(或变频器)构成。
当蒸汽负荷突然大幅度增加时,由于汽包内蒸汽压力瞬间下降,水的沸腾加剧,汽泡量迅速增加,汽泡不仅出现于水的表面,而且出现于水面以下,由于汽泡的体积比水的体积大许多倍,结果形成汽包内液位升高的现象。
因为这种升高的液位不代表汽包内储液量的真实情况,所以称为“假液位”。
此时PID调节器会错误地认为测量值升高,从而关小给水调节阀,减小给水量。
等到这种暂时汽化现象一旦平稳下来,由于蒸汽量的增加,给水量反而减少,会使水位严重下降,甚至降到液位危险区,造成事故。
汽包水位三冲量调节系统是指汽包水位、蒸汽流量和给水流量三个信号作用于调节器上,即三个被控变量对应一个调节器。
工作原理:汽包水位作为主信号,水位变化,调节器输出发生变化,继而改变给水流量,使水位恢复到给定值;
蒸汽流量作为前馈信号,防止“虚假水位”使调节器产生错误的动作;
给水流量作为反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰,
使调节过程稳定,起到稳定给水流量的作用。
调节过程:根据串级控制系统选择主、副控制器的正、反作用的原则,水位控制器LC反作用选反作用,流量控制器FC为正作用,调节器为气关阀。
当水位由于扰动而升高时,因LC反作用,它的输出下降,进入加法器后,使FC给定值减小而输出增加,调节
阀的开度减小,给水流量FA2101减小,水位下降,保持在设定值上;当蒸汽流量
FAQ2102增加时,FC给定值增加而输出减小,调节阀的开度增加,给水流量增加,保持水蒸汽平衡,使水位不;副回路克服给水自身的扰动,要进一步地稳定了水位
的自动控制;给水流量FA2101增加,FC输出增加,调节阀的开度减小,给水量减
小,从而保持水蒸汽平衡。
机组运行知识
600MW直流机组,RB、FCB和除氧器水位单、三冲量的切换都有涉及到。
1、RB是指机组重要辅机发生故障时机组快速降负荷到适合当时机组所能带动的负荷点,比例两台空预器中的一台停运,则机组快速降负荷至300MW;
2、FCB指的是机组停机不停炉方式,即机组汽轮机或者发电机发生故障,但是故障能马上消除的情况下,可以实现FCB功能,机组介质通过旁路系统打循环,但是FCB功能成功有一个负荷点,当机组当前负荷低于240MW时才会触发;
3、除氧器水位单冲量是指除氧器水位单PID控制,即测量值为除氧器水位,设定指手动给定,所谓三冲量是指除氧器水位、凝结水至除氧器流量、主给水流量三个量,采用串及PID控制除氧器水位,主PID的测量值为除氧器水位、设定值手动给定、输出指令为副PID的设定值即凝结水至除氧器流量设定值,主给水流量作为主PID的前馈信号,副PID的测量值为凝结水至除氧器流量测量值,输出指令为除氧器水位调节阀指令信号,单冲量、三冲量切换条件为机组负荷大于180MW自动切换为三冲量控制。
除氧器水位及凝汽器热井水位控制系统策略的优化除氧器是整个单元机组给水加热系统中唯一的缓冲环节,其水位是机组运行需监控的几个最重要的参数之一,除氧器水位过高,影响除氧效果;水位过低又将危及给水泵的安全运行。
因此,精确控制除氧器水位对单元机组的正常运行是必须的,而好的控制策略和对应策略内的参数整定精准是实现单元机组除氧器水位正常的保证。
一、一般意义的除氧器水位控制方案:除氧器水位,一般是通过直接改变进入除氧器的凝结水流量来控制的。
在以往的除氧器水位的控制组态中,除氧器水位控制系统原理图如左图所示:这是一个单冲量和串级三冲量相结合的控制系统。
以DEA1_PID和DEA2_PID为核心组成串级三冲量控制系统,DEA1_PID是主调器,DEA2_PID是副调器;以DEA3_PID为核心组成单冲量控制系统。
除氧器水位(三选中)是主信号,该信号与运行人员设置的水位定值信号的偏差,分别送到单冲量和串级三冲量主调器的入口,给水流量和凝结水流量是系统的辅助信号:给水流量为除氧器的所有流出量的总和,为省煤器入口给水流量与过热器一、二级喷水流量之和;凝结水流量是除氧器的流入量。
在三冲量模式下,主调器DEA1_PID接受除氧器水位设定值与检测值(三选中)的偏差信号,经比例积分运算后的输出与给水流量的前馈量之和,减去凝结水流量,其偏差值送至副调器DEA2_PID,副调器的输出去控制除氧器入口的凝结水流量调节阀开度,作用于凝结水流量的改变以稳定除氧器水位;在单冲量模式下,DEA3_PID直接根据水位的偏差信号控制凝结水流量以调节除氧器的水位。
三冲量与单冲量模式的切换逻辑是:1、当凝结水流量<200T/H,为单冲量模式;2、当凝结水流量>300T/H,为串级三冲量模式;3、当200T/H<凝结水流量<300T/H,维持当前的控制模式不变二、一般意义的凝汽器热井水位控制方案:与除氧器一样,凝汽器水位也是机组运行必须监控的重要参数之一:凝汽器水位过高,将直接影响凝汽器的真空,严重时将导致汽轮机低压缸进水;凝汽器热井水位过低,也将危及凝结水泵的安全运行和整个热力系统的水循环,因此必须对其进行自动控制,确保机组的安全高效运行。
锅炉给水三冲量控制原理一、给水量控制给水量是指向锅炉补充的水量,通过控制给水量可以控制锅炉内水位的升降。
在锅炉运行过程中,当锅炉内水位过高时,需要减少给水量,避免溢出;当水位过低时,需要增加给水量,保证锅炉正常运行。
给水量的控制可以通过调节给水泵的转速或开关泵的数量来实现。
二、排污量控制排污量是指从锅炉中排出的水量,通过控制排污量可以控制锅炉内水位的降低。
排污的目的是将含有杂质和浓缩物的锅炉水排出,保持锅炉水的清洁和水质的稳定。
排污的控制可以通过调节排污阀的开启程度或排污泵的转速来实现。
三、补水量控制补水量是指从给水系统中补充到锅炉中的水量,通过控制补水量可以补充锅炉内水位的上升。
在锅炉运行过程中,由于蒸汽的消耗和水的排出,锅炉内的水位会逐渐降低,此时需要增加补水量,以维持锅炉内水位的稳定。
补水的控制可以通过调节补水泵的转速或开关泵的数量来实现。
锅炉给水三冲量控制的原理是通过对给水量、排污量和补水量的控制,来调整锅炉内水位的升降,以保证锅炉的正常运行。
在实际应用中,可以根据锅炉的运行情况和要求,设置相应的控制参数,通过自动控制系统实现对给水量、排污量和补水量的精确控制。
锅炉给水三冲量控制的作用主要体现在以下几个方面:1. 保证锅炉的安全运行:通过控制锅炉内水位的升降,可以避免水位过高导致溢出或水位过低导致锅炉干燥,从而确保锅炉的安全运行。
2. 提高锅炉的热效率:锅炉在正常运行时,需要保持一定的水位,以便能够有效地传递热量。
通过控制给水量、排污量和补水量,可以使锅炉内水位保持在合适的范围内,提高锅炉的热效率。
3. 延长锅炉的使用寿命:锅炉在运行过程中,水位的升降会对锅炉内部的构件产生一定的冲击和应力。
通过控制给水量、排污量和补水量,可以使锅炉内水位的变化尽量平缓,减少对锅炉的损伤,从而延长锅炉的使用寿命。
4. 降低能源消耗:通过合理地控制给水量、排污量和补水量,可以减少给水和排污所需的能源消耗,降低锅炉运行成本。
汽包水位三冲量调节原理一、引言汽包水位三冲量调节是一种常见的控制原理,广泛应用于工业生产中。
本文将从原理、工作过程和优缺点等方面介绍汽包水位三冲量调节的基本知识。
二、原理汽包水位三冲量调节是一种通过控制给水量、蒸汽量和排污量来调节汽包水位的方法。
其基本原理是根据汽包水位的变化,通过调节三个冲量的大小,以达到维持汽包水位稳定的目的。
三、工作过程汽包水位三冲量调节的工作过程可以分为以下几个步骤:1. 水位检测:通过水位计等设备对汽包水位进行实时监测,获取水位信号。
2. 控制策略:根据水位信号,控制系统根据预设的控制策略计算出相应的冲量调节量。
3. 冲量调节:根据控制策略计算出的调节量,分别调节给水量、蒸汽量和排污量,以实现对汽包水位的调节。
4. 反馈控制:根据调节后的水位变化,不断进行反馈控制,使得汽包水位保持在设定范围内。
四、优缺点汽包水位三冲量调节具有以下优点:1. 稳定性好:通过控制三个冲量的大小,可以实现对汽包水位的精确调节,保持水位稳定。
2. 响应速度快:冲量调节可以快速响应水位的变化,实现及时的控制。
3. 精度高:通过精确的冲量调节,可以实现对水位的精细控制,满足生产过程对水位的要求。
4. 调节范围广:汽包水位三冲量调节可以适应不同工况下的水位调节需求,具有较大的调节范围。
然而,汽包水位三冲量调节也存在一些缺点:1. 复杂性高:汽包水位三冲量调节需要涉及多个参数的控制和调节,系统较为复杂。
2. 对设备要求高:汽包水位三冲量调节需要依靠精密的控制设备和传感器,对设备的要求较高。
3. 能耗较大:在冲量调节过程中,需要大量的能源供给,对能耗有一定影响。
五、应用领域汽包水位三冲量调节广泛应用于电力、化工、制药等行业的锅炉系统中。
通过精确的水位调节,可以保证锅炉系统的正常运行和生产过程的安全稳定。
六、总结汽包水位三冲量调节是一种常见的控制原理,通过控制给水量、蒸汽量和排污量的大小来调节汽包水位。
它具有稳定性好、响应速度快、精度高和调节范围广等优点,但也存在复杂性高、对设备要求高和能耗较大等缺点。
毕业设计(论文)摘要除氧器的水箱是为保证锅炉有一定的给水储备而设置的,其容量一般不应小于锅炉额定负荷下连续运行15~20min所需的给水量。
除氧器水位过低,储水量不足有可能危及锅炉的安全运行,此外还有可能造成给水泵入口汽化。
除氧器水位过高,则妨碍除氧器除氧。
因此,除氧器水位应维持在容许范围内。
由于热力循环中不断有工质损失,因此要向热力系统不断补充水。
补充水来自化学水处理装置。
补充水可直接进入除氧器,也可以送凝汽器进行真空除氧后在送至除氧器。
火力发电厂的热力除氧器利用汽轮机的抽气加热锅炉给水,使得锅炉的给水达到该压力下相应的饱和温度,以除去溶于水中的氧气等气体,防止锅炉、汽轮机和管道等热力设备遭到腐蚀,另一方面除氧器是汽水直接接触式的加热器,它是给水加热系统中的一环,利用汽轮机的抽气加热锅炉给水,可以提高电厂效率,节省燃料。
除氧器是电厂重要的辅助设备之一,是电厂热力系统中不可缺少的环节。
所以说除氧器的水位控制对锅炉的安全稳定运行至关重要。
关键字除氧器,水位调节,单冲量,串级三冲量300MW机组除氧器水位检测控制系统AbstractDeaerator water tank is to ensure that the boiler has a water reserve and settings, its capacity should generally not be less than rated boiler load continuous operation for 15 ~ 20min to water. Deaerator water level too low, insufficient storage capacity may endanger the safe operation of the boiler, in addition to may resulting in water pump inlet vaporization. Deaeratorwater level is too high, obstructs the deaerating. Therefore, the deaerator water level should be maintained within the allowable range. The thermodynamic cycle of constantly refrigerantloss, therefore to thermal system continuously add water. The chemical water treatment from water supplement device. Water can be directly added to the deaerator, also can send condenser vacuum deaerator after sent to the deaerator.Thermal power plant deaerator use steam turbine pumping gas heating boiler, the boiler feed water the pressure corresponding saturation temperature is reached, to remove dissolved in the water of oxygen and other gases, to prevent the boiler, turbine and pipeline by thermal equipment corrosion and the other side surface of the deaerator is steam water direct contact of the heater, it is water heating system in a ring, the use of steam turbine pumping gas heating boiler feedwater, can improve the efficiency of power plants and fuel saving. The deaerator is one of the important auxiliary equipment of power plant, is an indispensable link in the power plant thermal system. So the deaerator water level control is crucial to the safe and stable operation of the boiler.Key word s Deaerator,Water level adjustment,Single impulse,Cascade three impulse毕业设计(论文)目录摘要 (I)Abstract (II)1 引言 (1)2 除氧器的概况 (2)2.1除氧器介绍 (2)2.1.1概述 (2)2.1.2除氧器的除氧原理 (2)2.1.3除氧器的工作原理 (3)2.1.4除氧器控制任务 (3)2.2控制仪表知识简介 (4)2.2.1变送器 (4)2.2.2控制器 (4)2.2.3执行器 (5)3 总体设计方案 (6)3.1设计预期目标 (6)3.1.1除氧器水位过高 (6)3.1.2除氧器水位过低 (6)3.2除氧器水位控制系统总体方案 (7)4 除氧器水位检测控制系统分析 (9)4.1测量部分 (9)4.1.1磁翻板液位计 (9)4.1.2浮球液位开关 (9)4.1.3差压式液位计 (10)4.1.4差压式流量计 (11)4.2变送部分 (12)4.2.1差压变送器 (12)4.2.2变送器变换过程 (13)4.3控制部分 (14)4.3.1控制方式 (14)4.3.2单冲量调节系统 (15)4.3.3单级三冲量调节系统 (15)4.3.4串级三冲量调节系统 (16)4.3.5单冲量、三冲量之间的无扰切换 (17)4.4执行器部分 (18)4.4.1执行机构 (18)300MW机组除氧器水位检测控制系统4.4.2调节机构 (19)5 除氧器水位控制系统SAMA图分析 (20)5.1控制系统SAMA图 (20)5.2各组成部分列表 (20)5.3 SAMA图说明 (21)5.3.1控制系统分析 (21)5.3.2单冲量与三冲量控制方式的选择 (22)5.3.3系统跟踪技术 (23)结论 (24)致谢 (25)参考文献 (26)附录 (27)A1.1除氧器水位控制系统SAMA图 (27)A1.2除氧器水位控制系统逻辑图 (28)沈阳工程学院毕业设计(论文)1 引言液位是工业过程中的常见参数,具有便于直接观察、容易测量和过程时间常数一般比较小的特点。
汽包水位三冲量调节原理
汽包水位三冲量调节原理是指通过调节汽包内的水位,控制汽包内水的流入和流出,从而实现对锅炉汽水系统的水平补给和水位控制的一种方法。
在锅炉运行时,汽包内的水位会受到很多因素的影响,如锅炉负荷变化、水质变化、鼓风机调节不当等,这些因素都会导致汽包水位波动过大,从而影响锅炉的稳定运行。
因此,汽包水位三冲量调节就显得尤为重要。
汽包水位三冲量调节是通过调节锅炉供水量,控制汽包内水位的方法,将汽包分为三个水位区间,分别是高水位、正常水位和低水位。
当汽包水位过高时,会通过泄水阀将多余的水排出,从而使水位降至正常水位;当汽包水位过低时,会通过给水泵进行补水,使水位回升至正常水位。
这种三冲量调节方法可以有效控制汽包水位,保证锅炉的稳定运行。
汽包水位三冲量调节的核心是调节供水量,实现水平补给和水位控制。
在实际操作中,需要根据锅炉的负荷变化和水质变化来调节供水量,从而保证汽包水位保持在正常水位范围内。
同时,还需要监测汽包水位的变化,及时调整供水量,避免水位波动过大。
总之,汽包水位三冲量调节是一种有效的锅炉水位控制方法,通过调节供水量,控制汽包内水的流入和流出,实现对锅炉汽水系统的水平补给和水位控制,保证锅炉的稳定运行。
- 1 -。
收稿日期: 20060117除氧器水位控制中的调节阀自动切换逻辑冯宗杭(粤电静海发电有限公司,广东惠来 515223) 在大型机组除氧器水位控制系统中,通常主管道和旁路管道都配备有调节阀(在凝汽器热井补充水回路和主给水管路上也常采用这种方式)。
在机组起动和带低负荷阶段,通过旁路管道的调节阀(小阀)控制除氧器水位;在机组带较大负荷时,通过主管道的调节阀(大阀)控制除氧器水位。
旁路管道的最大流量一般为主管道最大流量的15%~30%。
在低负荷下使用小阀,在高负荷下使用大阀,避免了大阀在小开度下较长时间运行,减小了大阀的磨损,和节流损失,提高了机组效率。
采用大小两个调节阀控制同一流量,在手动操作情况下,不存在任何问题,但在自动控制情况下,则必须要考虑以下问题:(1)两个调节阀应可自动手动双向无扰切换;(2)在手动情况下两个调节阀开度可多种组合;(3)尽量减少系统的节流损失。
静海发电公司600MW超临界机组除氧器水位控制两个调节阀可由控制系统自动进行切换,系统原理见图1。
图1中A为可由运行人员手动操作的除氧器水位设定值,其后分别为防止设定值变化时对系统冲击过大的速率限制器,以及为了防止运行人员误操作的最大和最小设定值限制;PID1为低负荷下小阀使用的单冲量调节器,PID2为高负荷下大阀使用的单冲量调节器,PID3为高负荷下大阀使用的三冲量调节主调节器,PID4为高负荷下大阀使用的三冲量调节副调节器。
设计在低负荷下采用单冲量控制除氧器水位,在高负荷时采用三冲量控制除氧器水位,其差别仅在于把大阀和小阀所使用的调节器完全分开,使调节器跟踪方便:PID1跟踪小阀的控制指令,PID2和PID4跟踪大阀的控制指令,PID3跟踪凝结水流量和锅炉总给水流量之差。
图1 除氧器水位控制原理为了尽量减少系统的节流损失和防止机组在工况稍有变化时两个阀门来回切换,单冲量和三冲量控制的切换采用按机组负荷大小进行切换并带有滞环,即当大于25%机组额定负荷时切换到三冲量控制,小于20%机组额定负荷时切换到单冲量控制。
汽包水位三冲量给水调节系统1、所谓冲量,是指调节器接受的被调量的信号;2、汽包水位三冲量给水调节系统由汽包水位测量筒及变送器、蒸汽流量测量装置及变送器、给水流量测量装置及变送器、调节器、执行器等组成;3、在汽包水位三冲量给水调节系统中,调节器接受汽包水位、蒸汽流量和给水流量三个信号,如图所示。
其中,汽包水位H是主信号,任何扰动引起的水位变化,都会使调节器输信号发生变化,改变给水流量,使水位恢复到给定值;蒸汽流量信号qm.S是前馈信号,其作用是防止由于“虚假水位”而使调节器产生错误的动作,改善蒸汽流量扰动时的调节质量;蒸汽流量和给水流量两个信号配合,可消除系统的静态偏差。
当给水流量变化时,测量孔板前后的差压变化很快并及时反应给水流量的变化,所以给水流量信号qm.w作为介质反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰,使调节过程稳定,起到稳定给水流量的作用。
4、在大、中型火力发电厂锅炉汽包水位的变化速度比较快,“虚假水位”现象较为严重,为了达到生产过程中对汽包水位调节的质量要求,因而广泛采用了三冲量汽包水位调节系统。
5、关于测量信号接入调节器的极性说明:当信号值增大时要求开大调节阀,该信号标以“+”号;反之,当信号值减小时要求关小调节阀,该信号标以“,”号。
在给水调节系统中,当蒸汽流量信号增大时,要求开大调节阀,该信号标以“+”号;给水流量信号增大时,要求关小调节阀,该信号标以“,”号;当汽包水位升高时,差压减小,水位测量信号减小,要求关小调节阀,则该信号标以“+”号。
3.1 汽包锅炉给水自动控制的任务是维持汽包水位在一定的范围内变化。
汽包水位是锅炉运行中的一个重要的监控参数,它间接地表示了锅炉负荷和给水的平衡关系。
维持汽包水位是保持汽机和锅炉安全运行的重要条件。
3.2 汽包水位被控对象的扰动有四个来源,包括给水量方面的扰动为内部扰动;其余的如蒸汽负荷的扰动、燃料量的变化及汽包压力的变化等为外部扰动。
锅炉控制系统中三冲量的应用及仪表选型摘要本文着重从工艺简介、锅炉生产使用中常见问题、三冲量控制的概念及具体含义、引入三冲量的主要原因、三冲量控制原理、系统控制方框图、三冲量控制的构成与控制关系、调节阀的选择与调节器正反作用的确定、三冲量控制的调节过程、三冲量控制在DCS系统中的应用、DCS系统PID参数设置与调节规律、PID参数在DCS上的设置、仪表的选型、常见故障问题和处理措施等方面对三冲量在锅炉中应用进行阐述。
关键词:冲量、前馈、反馈、干扰、调节。
目录第1章绪论 (3)1.1 锅炉汽包工艺流程图 (3)1.2 锅炉生产使用中常见问题 (3)1.3 三冲量控制的概念及具体含义 (4)1.4引入三冲量的主要原因 (4)第2章三冲量控制系统构成与作用形式选择 (6)2.1 三冲量控制系统构成 (6)2.1.1三冲量控制原理 (6)2.1.2 系统控制方框图 (6)2.1.3方框图点描述 (7)2.1.4三冲量控制的构成与控制关系 (7)2.2 调节阀的选择与调节器正反作用的确定 (8)2.2.1 调节阀的选择 (8)2.2.2 副调节器的选择 (8)2.2.3 主调节器的选择 (8)2.3 三冲量控制的调节过程 (9)第3章三冲量控制在DCS系统中的应用 (11)3.1 三冲量控制DCS系统控制图 (11)3.1.1DCS功能块描述 (11)3.1.2 DCS系统控制描述 (12)3.2 DCS系统PID参数设置与调节规律 (14)3.2.1 PID的含义 (14)3.2.2 PID参数的调节规律 (14)3.2.3 常用的调节方法:临界比例法 (15)3.2.4 PID参数在DCS上的设置 (16)第4章仪表的选型 (17)4.1 双室平衡容器的工作原理 (17)4.2 差压的计算 (18)4.3 电动浮筒与调校 (19)4.3.1 电动浮筒 (19)4.3.2 电动浮筒“零位”及“量程”调整 (20)4.3.3电动浮筒的优点 (20)第5章常见故障问题和处理措施 (21)5.1 常见故障问题 (21)5.1.1 蒸汽负荷扰动对水位的影响 (21)5.1.2 炉膛热负荷的扰动对水位的影响 (21)5.2 处理措施 (22)第6章结论 (23)参考文献 (24)致谢 (25)第1章绪论1.1 锅炉汽包工艺流程图1.2 锅炉生产使用中常见问题锅炉是化工生产中重要的动力设备,汽包液位是锅炉运行中的一个重要监控参数,它反映了锅炉负荷与给水的平衡关系。