3 玻璃的熔制及熔窑(2)讲解
- 格式:ppt
- 大小:78.00 KB
- 文档页数:27
玻璃的熔制过程玻璃是一种广泛应用于制造建筑材料、器皿、光学仪器、电子仪器等工业领域的无机非金属材料。
玻璃的基础原料主要是硅酸盐类物质,包括石英砂、长石、白云石等。
玻璃的制造涉及到多种工艺步骤,其中最主要的过程是熔制。
玻璃的熔制过程,一般分为两个阶段:玻璃原料熔融和玻璃成形。
1. 玻璃原料熔融玻璃原料熔融是制造玻璃的第一步。
首先要将玻璃原料送到炉中,然后在炉内进行高温熔化。
玻璃熔化的温度通常在1300-1600℃之间。
炉内的高温条件有助于熔化原料,并促进原料之间的充分混合。
玻璃熔化过程中,炉内的温度、炉膛的结构、炉膛的加热方式、气氛以及熔化时间等因素都对玻璃性质有很大的影响。
其中,炉温的控制是其中最为关键的一个因素。
炉温过低时,原料无法充分熔化,熔击出来的玻璃比较粗糙;而炉温过高时,虽然玻璃可以很快熔化,但却会使得玻璃成分中的气体难以释放,造成玻璃内部气泡增多,影响玻璃的质量。
同时,熔制过程中原料的混合也是影响玻璃质量的重要因素之一。
原料混合过程中必须注意保持物料配比的稳定,以确保每份原料的比例都是正确的,否则会影响玻璃性能的均匀性和稳定性。
2. 玻璃成形玻璃原料熔融后,需要将其通过成形工艺,将其变成需要的形状。
玻璃成形技术大致可以分为两大类,即自由成形技术和模压成形技术。
自由成形技术包括吹制、拉伸、浸涂等;模压成形技术包括平板压制、吹瓶、挤出等。
自由成形技术中的吹制是最常用的一种方法。
吹制工艺是先将玻璃熔液通过玻璃管或小片,吹成一个球体,然后在模具上加工形状,最后风冷固化。
玻璃吹制的工艺简单,成本低,成品形态多,应用非常广泛。
而模压成形技术,如平板压制、吹瓶、挤出等,则需要利用模具或挤压机来对玻璃进行成形。
这类制品比较规整且饱满,常常用于制备工艺精密的玻璃器具、仪器件等。
总之,玻璃熔制过程经历了玻璃原料熔融和玻璃成形两个阶段。
通过高温下的熔融,使玻璃原料混合均匀,在成型过程中呈现出所需的形态,从而制备成建筑材料、器皿、光学仪器、电子仪器等多种应用领域中的产品。
第12章玻璃的熔制12.1 玻璃的熔制过程熔制是玻璃生产中重要的工序之一,它是配合料经过高温加热形成均匀的、无气泡的、并符合成形要求的玻璃液的过程。
玻璃制品的大部分缺陷主要在熔制过程中产生的,玻璃熔制过程进行的好坏与产品的产量、质量、合格率、生产成本、燃料消耗和池窑寿命都有密切关系,因此进行合理的熔制,是使整个生产过程得以顺利进行并生产出优质玻璃制品的重要保证。
玻璃的熔制是一个非常复杂的过程,它包括一系列物理的、化学的、物理化学的现象和反应,这些现象和反应的结果使各种原料的机械混合物变成了复杂的熔融物即玻璃液。
为了尽可能缩短熔制过程和获得优质玻璃,必须充分了解玻璃熔制过程中所发生的变化和进行熔制所需要的条件,从而寻求一些合适的工艺过程和制定合理的熔制制度。
各种配合料在加热形成玻璃过程中有许多物理的、化学的和物理化学的现象是基本相同的,其主要变化如表12-1所示:表12-1配合料在加热形成玻璃过程中的变化序号物理变化过程化学变化过程物理化学变化过程1 配合料加热固相反应生成低熔混合物2 吸附水的排除盐类分解各组分间相互溶解3 个别组分的熔化水化物的分解玻璃和炉气介质间的相互作用4 多晶转变化学结合水的排除玻璃和耐火材料之间的相互作用5 个别组分的挥发各组分相互作用并形成硅酸盐的反应玻璃熔制过程大致上可分为五个阶段,即硅酸盐形成、玻璃形成、澄清、均化和冷却成形等。
现将这五个阶段的特点分述如下:(1) 硅酸盐形成阶段硅酸盐生成反应在很大程度上是在固体状态下进行的。
粉料的各组分发生一系列的物理变化和化学变化,粉料中的主要固相反应完成,大量气体物质逸出。
这一阶段结束时,配合料变成由硅酸盐和二氧化硅组成的不透明烧结物。
大多数玻璃这个阶段在800~900°C时完成。
(2) 玻璃形成阶段由于继续加热,烧结物开始熔融,低熔混合物首先开始熔化、同时硅酸盐与剩余的二氧化硅相互熔解,烧结物变成了透明体,这时已没有未起反应的配合料,但在玻璃中还存在着大量的气泡和条纹,化学组成和性质尚未均匀一致,普通玻璃在这个阶段的温度约为1200~1250°C之间。
玻璃窑炉的理论课一、玻璃的熔制过程:玻璃的熔制过程分为五个阶段:(一)硅酸盐形成阶段:在高温(约800—1000℃)作用下发生变化:如粉料受热、水分蒸发、盐类分解、多晶转变等,变成不透明的烧结物;(二)玻璃形成阶段温度升高到1200℃时,各种硅酸盐开始为熔融,继续升高温度,未熔化的硅酸盐和石英砂完全熔解于熔融体中,形成大量可见气泡,这一阶段称为配合料熔化阶段;(三)玻璃液澄清阶段:当温度达到1400—1500℃时,玻璃液的黏度降低,使气泡大量逸出;(四)玻璃液均化阶段:达到玻璃液均化主要依靠扩散和对流作用。
高温是一个主要条件,因为它可以减少玻璃液黏度,使扩散作用加强,另外搅拌是提高均匀性的好方法;(五)玻璃液冷却阶段:澄清均化后的玻璃液黏度太小,不适于成型,必须通过冷却达到成形温度,成形温度比澄清温度低200—300℃。
以上各阶段不一定按顺序进行,各阶段没有明显的界线的二、对窑炉关键部位的了解和掌握以及作用1)加料口的作用:玻璃池窑将加料池发展为预熔池。
预熔池内的温度保持在1100—1300℃,配合料内各组分之间的硅酸盐反应在预熔池内开始,料堆表面已经开始熔融。
已初步熔化的料堆,当它进入熔化池后,其熔化速度可以加快。
在熔化池面积一定时,熔化速度加快了,相对来说,其澄清时间就延长了。
因此,加料口的作用就是能提高熔化率、改善玻璃质量、降低热耗的作用;池内粉料飞扬的情况大大减少,格子体堵塞情况大大改善。
2)窑坎:窑坎是放在窑池深层的挡墙,墙高为池深的1/2以上,有的可达到3/4;窑坎是控制玻璃液流,提高熔化率的技术措施。
窑坎作用是:迫使熔化部玻璃液呈一薄层全部流经窑池上层,经高温加热后再进入流液洞,这样提高了玻璃液的温度,有利于气泡的排除,加快澄清速度,从而改善玻璃液质量;设置窑坎后,玻璃液在窑坎处产生回旋,可延迟玻璃液在熔化部停留时间,可阻挡池底脏料流往澄清部。
3)流液洞:流液洞是熔化部和冷却部的玻璃液连通起来的位于池窑底部的涵洞,是由一套特制的优质耐火材料砌筑成的。
玻璃熔窑的定义:玻璃熔窑是将按玻璃成分配好的粉料和掺加的熟料(碎玻璃)在窑内高温熔化、澄清并形成符合成型要求玻璃液的热工设备。
玻璃熔窑的热工过程:玻璃熔窑内除有燃烧反应和产生高温外,还有热量传递、动量传递和质量传递。
1、热量传递:包括在火焰空间内和玻璃液中由温度差引起的火焰空间热交换、玻璃液内热交换、蓄热室内热交换和窑墙与外界环境的热交换。
2、动量传递:由压强差引起的不可压缩气体流动、可压缩气体流动、气体射流和玻璃液流动。
3、质量传递:燃烧过程中由气相浓度差引起的气相扩散和玻璃液浓度差引起的液相扩散。
玻璃熔窑的分类:玻璃熔窑有坩埚窑和池窑两大类。
它们均包括玻璃熔制、热源供给、余热回收和排烟供气4个部分。
坩埚窑:窑膛内放置单只或多只坩埚。
坩埚窑中玻璃熔制的各阶段(熔化、澄清、均化、冷却)在同一坩埚中随时间推移依次进行,窑内温度制度随时间推移变动。
成型时,用人工从坩埚口取料,再进行吹制、压制、拉引、浇注等,也可以坩埚底供料,或将整坩埚移出取料。
坩埚材质以粘土居多,也有用铂的。
形状有开口和横口(闭口)两种。
开口坩埚的坩埚口朝向窑膛,能直接得到窑墙及热源辐射和传递的热能;横口坩埚的坩埚口朝向窑外,要通过坩埚壁间接取得热量,能避免窑内气氛对玻璃液的影响和污染。
坩埚窑适用于熔制产量小、品种多或经常更换料种的玻璃。
池窑:窑膛包含一耐火材料砌筑的熔池,配合料投入窑池内熔化。
池窑有间歇式和连续式两种。
间歇式池窑又称日池窑,一般较小,熔池面积仅几平方米。
熔制过程完成后,从取料口取料,大多采用手工或半机械成型。
适用于生产特种玻璃。
绝大多数池窑属于连续式(图2),各个熔制阶段在窑的不同部位进行。
各部位的温度制度是稳定的。
配合料由投料口投入,在熔化部经历熔化和玻璃液澄清、均化的行进过程,转入冷却部进一步均化和冷却,继而进入成型部最后均化(包括玻璃液温度均化)和稳定供料温度。
由于池窑靠近底部玻璃液温度低而呈滞流状态,因此窑池玻璃液总容量大于作业玻璃量,连续作业的加料量与成型量保持平衡。
实验1玻璃的高温熔制一实验的目的与意义在实际生产中,玻璃熔制是关键环节。
在教学、科研和生产中,玻璃的熔制实验也是一项非常重要的实验,因为在进行玻璃新品种的开发或对玻璃生产工艺进行改革中,就必须通过多次或反复进行玻璃的熔制实验来寻找合理玻璃成分、了解玻璃熔制过程各种因素的影响、提出合理熔制工艺制度和具有指导生产实践的各种数据。
玻璃的高温熔制实验的目的如下:①在实验条件下,依据指定配方进行配合料的制备,并根据玻璃熔制制度(温度制度、压力制度、气氛制度、液面制度),进行玻璃的熔制和成形,完成一整套玻璃材料制备过程的基本训练(玻璃熔制和成形由指导教师操作)②了解熔制玻璃的设备及其测试仪器,掌握使用方法③观察熔制温度、保温时间对熔化过程的影响④根据实验结果分析玻璃成分、熔制制度的合理性注意:由于学院实验条件所限,玻璃成分的设计、原料的选择、配料计算和制定玻璃熔制制度在课堂教学阶段中进行说明,,指导教师做配料、玻璃熔制和成形演示实验,学生记录实验结果并进行分析,做实验报告。
二实验原理玻璃的熔制过程是一个复杂的过程,它包括一系列物理变化、化学变化和物理化学变化过程。
物理变化是配合料的加热、吸附水分的蒸发排除、某些单独组分的熔融、某些组分的多晶转变、个别组分的挥发;化学变化是固相反应、各种盐类的分解、水化合物的分解、化学结合水的排除、组分间的相互反应及硅酸盐的生成;物理化学变化是低共熔物生成、组分或生成物间的相互溶解、玻璃和炉气介质之间的相互作用、玻璃液和耐火材料的相互作用及玻璃液和其中夹杂气体的相互作用。
正因为有了这些反应和现象,由各种原料通过机械混合而成的配合料才能变成复杂且具有一定物理化学性质的熔融玻璃液。
若以硅酸盐玻璃为例,依据熔制过程中的不同实质,大致可分为硅酸盐形成、玻璃的形成、澄清、均化和冷却五个阶段。
但必须指出,这五个阶段不是严格顺序进行的,而是彼此之间有着相互密切的关系,各个阶段有交叉。
不管怎样,玻璃熔制就是配合料经高温加热熔化成均匀的、无气泡的并符合成形要求的玻璃液的过程。
第8章玻璃的熔制8.1玻璃的熔制过程概念:配合料经过高温加热形成均匀的、无气泡的、并符合成形要求的玻璃液的过程。
特点:包括一系列物理的、化学的、物理化学的现象和反应玻璃熔制的五个阶段1硅酸盐形成阶段:(800-900℃)在固态下进行。
配合料各组分在加热过程中发生一系列的物理和化学变化,主要的固相反应结束了,绝大部分气态产物从配合料中逸出。
由硅酸盐和二氧化硅组成的不透明物。
2玻璃液形成:(1200-1250℃)易熔物熔融,同时硅酸盐和二氧化硅互熔。
烧结物变成了透明体并含有大量气泡,玻璃液化学组成和性质不均匀,有条纹。
3澄清:(1400-1500 ℃)黏度降低(η≈10帕·秒),消除可见气泡。
4均化(1350-1420℃)依扩散作用,使玻璃中的条纹、结石消除到允许限度,成为均匀一体。
5冷却(降低200-300 ℃)以便使玻璃液具有成形所必须的黏度。
(η=102-103Pa·s)8.2硅酸盐形成和玻璃形成玻璃的形成:温度↑1200-1500℃,各种硅酸盐开始熔融,同时未熔化的石英砂被完全熔解在硅酸盐熔体中形成玻璃液。
结果:透明的玻璃液结论:硅酸盐形成和玻璃形成没有明显的界线,玻璃形成大约28-29分。
配合料的加热反应多晶转化盐类分解析出结晶水和化学结合水。
硅酸盐形成过程的动力学:动力学主要研究反应进行的速度和各种不同因素对硅酸盐形成的影响结论1随着温度的升高,其反应速度也随着提高。
2当温度不变时,反应速度随时间延长而减慢。
在外界条件不变时,任一化学反应速度不是常数,随反应物浓度有减少而减慢。
3随着反应物浓度的增加,正反应速度也相应的增加。
玻璃形成过程的动力在玻璃熔制过程中玻璃形成速度与玻璃成分、砂粒大小、熔制温度等有关。
8.3玻璃的澄清玻璃液中的气体来源:配合料中各组分的分解;挥发组分的分解;已溶解的气体在一定条件下从液相中重新析出.存在形式:气泡分为:1可见气泡2不可见气泡(包括呈溶解状态与玻璃液中组分化学结合的气体)一澄清过程实质:首先使气泡中的气体、窑内的气体与玻璃液中的气体之间建立平衡,再使可见气泡漂浮于玻璃液的表面加以消除。