3P超薄500万像素手机镜头设计
- 格式:docx
- 大小:37.13 KB
- 文档页数:2
手机摄像头组成结构与原理
19世纪初夏普与当时的日本通信运营商J-PHONE发明了夏普J-SH04,夏普J-SH04具有拍照功能,2003年4月24日夏普发售了全球首款百万像素手机J-SH53,风靡一时。
随着技术的不断突破与革新,新型照相镜头如雨后春笋一样,不断出现,从最初的百万到现在的千万紧紧用了十余年的时间,拍摄质量不断进入新台阶。
最具有代表的如华为、三星、苹果等公司,华为从p6开始镜头与处理芯片突飞猛进,新的设计理念不断应用于实践,比如在年前还是理论的双摄像头设计,目前已经被三星,华为掌握,纷纷用于最新上市手机。
目前市面上的手机通常都具有前后摄像头,前面一般在500万左右,用来自拍和视频通话,后置一般在1300万左右,可以照出更加清晰的图片和录制清晰视频。
手机摄像头组成结构
手机摄像头主要由以下几个部分组成:PCB板、DSP(CCD用)、传感器(SENSOR)、固定器(HOLDER)、镜头(LENS ASS′Y)。
其中镜头(LENS ASS′Y),DSP(C,CD用),传感器(SENSOR)是最重要的三个部分。
PCB板
PCB板又分为硬板,软板,软硬结合板三种(如下图),CMOS可用任何一种板,但CCD 的话就只能用软硬结合板。
这三种板中软硬结合板价格最高,而硬板价格最低。
镜头
镜头是仅次于CMOS芯片影响画质的第二要素,其组成是透镜结构,由几片透镜组成,一般可分为塑胶透镜(plastic)或玻璃透镜(glass)。
当然,所谓塑胶透镜也非纯粹塑料,而是树脂镜片,当然其透光率感光性之类的光学指标是比不上镀膜镜片的。
Open Access Library JournalDesign of a 16.5 Megapixel Camera Lens fora Mobile PhoneYuke Ma, V. N. BorovytskyDepartment of Optical and Optoelectronic Devices, National Technical University of Ukraine, Kyiv, UkraineEmail: sherry_rain@Received 15 February 2015; accepted 2 March 2015; published 6 March 2015Copyright © 2015 by authors and OALib.This work is licensed under the Creative Commons Attribution International License (CC BY)./licenses/by/4.0/AbstractA 16.5 megapixel camera lens for a mobile phone is designed. The lens consists of 3 plastic as-pheric lenses, one glass spheric lens and an infrared glass filter. CMOS OV16850 with a pixel size of1.12 micrometers from Omni Vision is used as an image sensor. The lens has an effective focal lengthof 4.483 mm, a F-number of 2.50, a field-of-view (FOV) of 76.2 degree, and a total length of 5.873 mm.The maximum distortion of the lens is less than 2.0%. The minimum value of all field relative il-lumination is over 39.8%.KeywordsMobile Phone Camera Lens, 16.5 Megapixel Sensor, ZemaxSubject Areas: Mobile Computing Systems, Optical Communications1. IntroductionOn 7 October 2014, Omni Vision Technologies Inc. (NASDAQ:OVTI) announced a 16.5 megapixel digital im-age sensor OV16850 [1]. To design a 16-megapixel camera lens in a compact size is not a trivial task [2]. In the published papers, Song et al. (2010) [3] studied a 5 megapixel camera lens for mobile phone by a structure of 4 pieces of plastic aspheric lens. Recently, Peng (2013) [4] investigated a 8 megapixel camera lens for cell phone by using 1 glass and 3 pieces of plastic aspheric lens (1G3P) to complete the optical system. Yin et al. (2014) [5] investigated a 13 megapixel camera lens for mobile phone by choosing a 5 pieces of plastic aspheric lens (5P) structure configuration.This paper presents a detailed design of a 16.5 megapixel camera lens by a 1P1G2P lens configuration for the first time to our knowledge.Sensor OV16850 has the following specifications: pixel size of 1.12 micrometers, resolution of 5408 pixel × 3044 pixel, diagonal length of 6.95 mm or the image height, and the chief ray angle (CRA) of 33.4 degree. Ny-quist sampling frequency of the sensor can be calculated via 1000/(2 × 1.12) = 446 lp/mm. So the limited reso-Y. K. Ma, V. N. Borovytsky lution of the camera lens should be better than 446 lp/mm. An image height of 6.95 mm and a FOV of 76.2 de-gree of lens determine a focal length of 4.432 mm. We set the effective focal length (EFFL) of the lens to be less than 4.5 mm, so the total optical length (TOL) of a camera lens for a mobile phone can be confined to 5.90 mm. The specification parameters for a 16.5 M pixel mobile phone camera lens are summarized in Table 1.2. Design Method2.1. Optical MaterialsOptical resin E48R from Zeonex [6] is used in this design. The optical resin offers high transparency, low fluo-rescence, low birefringence, low water absorption, low cost, high heat resistance, and easy molding for massive production. Since the lens has a large FOV, and its high order optical aberrations such as high order spherical aberration, astigmatism, coma, high order chromatic aberrations, etc., is rather large, in order to have a more steady and clear picture, one element of the lens is set to be an aspheric glass lens, the material of the 2nd ele-ment is SF56A with a optical refractive index of 1.785 and a dispersion coefficient of 26.08, the first, the third and the fourth element of the lens are chosen to be E48R, whose optical refractive index is 1.531 and the cor-respondent dispersion coefficient is 56.0, the fifth element is an infrared filter (IR), and the last is a cover glass BK9.2.2. Design ProceduresZemax [7] is used to simulate the lens optical system. Considering low price and massive production, an initial configuration 1P1G2P of the lens is chosen for the design by trial and error process. There are 6 elements in this lens, the first to the fourth element is the aspheric lens respectively, the fifth element is an IR filter and the sixth is a glass cover of the sensor. All the surfaces of the element 1 to 4 are set to even aspheric profiles, the fifth and the sixth elements are plane. Radius, thickness of each surface from 1 to 8 is set to be variable, all surface conic constants as well as aspheric coefficients are set to be variable either.2.3. Optimization ProceduresThe optimization procedure includes three steps.Step 1 1) Using operand EFFL to define the effective focal length of the lens, using operand TOTR to confine the total optical length of the lens system, using operand RAID to confine the CRA, using operand REAY to de-fine the image height; 2) The merit function also consisted of operands MNCA, MXCA and MNEA to define the air thickness and air boundary constrains, meanwhile operands MNCG, MXCG and MNEG are used to glass case either; 3) Initially, operand LONA is used to control the spherical aberration, LACL is used to control the lateral color for this focal system. TRAY and SUMM are used to control the coma, and operand DIMX is used to control the distortion of each field of view; 4) Using operand TRAY, DIFF, RAGC, ACOS and TANG to control tangential curvature; 5) Using operand TRAY, DIFF, RAGC, ACOS, TANG, CONS and PROD to con-trol sagittal curvature; 6) Operand TRAC is used to control the spot size of each field of view for the whole wa-velength.Step 2 After the initial optimization, high order controlling operands are added in the merit function, i.e., 1) Using operand TRAY, RAGC, ACOS, TANG, DIVI and DIFF to control the axial and longitudinal chromatic aberrations; 2) Using operand TRAY, RAGC, ACOS, TANG, DIVI, CONS, PROD and DIFF to control the high order spherical aberration; 3) Using TRAY, DIVI and DIFF to control the high order chromatic spherical aber-ration; 4) Using FCGT, FCGS, DIFF and SUMM to control the astigmatism.Step 3 Siedel coefficients are observed after each optimization completed, the layout is watched to show a reasonable configuration. At last, 1) Both MTFS, MTFT is added to the merit function to improve the lens reso-lution; 2) Meanwhile TRAC is replaced by operand OPDX; 3) Weight in merit function is always ready to change to optimize some heavy contribution items in order to get a reasonable lens configuration.Table 1.The specification parameters for a mobile phone camera lens of 16.5 megapixels.EFFL TOL FOV F-number Image height CRA Relativeillumination distortionBack focal length<4.5 mm <5.9 mm 76.2 degree 2.50 >6.95 mm <33.4 degree >35% <2% >0.2 mmY. K. Ma, V. N. Borovytsky3. ResultsThe optimized lens configuration is shown in Figure 1, the correspondent lens data are listed in Table 2 and Table 3. The lens has a total track of 5.873 mm, with an effective focal length of 4.483 mm, and of a back focal length 0.207 mm. The lens has a FOV of 76.2 degree, the image height is 6.97 mm which is a little larger than the CMOS sensor size and implies an easy installation of the CMOS sensor to the lens module. The CRA is less than 33.4 degree; a good coupling between the optics and the COMS is expected.The Spot Diagram, MTF, curvature and distortion, lateral color, chromatic focal shift, and relative illumina-tion can be used to evaluate the lens design. The RMS radius of spot size shall be less than three times of the pixel size (Yu [8]), to this design, it is 3.36 micrometer. The RMS spots of all fields are shown in Figure 2. The RMS spot radius of fields 1 - 6 (FOV 0.000 to FOV 0.787) is 2.545 μm, 2.761μm, 2.662μm, 2.856 μm, 2.337 μm, and 2.091μm respectively, much less than the imaging needs of the CMOS sensor, meanwhile the radius of spot size of field 7 (FOV 0.92) is 5.641 μm and that of field 8 (FOV 1.0) is 4.985μm, very close to this need, that is to say that the whole FOV can image very clearly.Table 2. Lens configuration data.Surf: type Radius Thickness Glass Semi-diameter Conic OBJ Standard Infinity Infinity Infinity 0.000STO Even asphere 3.134 1.413 E48R 1.077 4.1312 Even asphere −3.115 0.021 1.233 1.6043 Spheric −2.252 0.445 SF56A 1.219 0.0004 Spheric −9.057 0.512 1.346 0.0005 Even asphere −4.306 1.378 E48R 1.409 4.8686 Even asphere −2.443 0.938 1.823 −1.2047 Even asphere −2.310 0.354 E48R 2.167 −8.7898 Even asphere −5.332 0.300 3.174 1.6419 Standard Infinity 0.313 BK7 3.222 0.00010 Standard Infinity 0.200 3.344 0.000IMA Standard Infinity 3.485 0.000 Table 3. Aspheric coefficients of each correspondent surface. Aspheric coefs A B C D E F G HSTO Evenasphere 0.050 −0.015 −5.30E-003 −3.136E-003 −3.048E-003 0.000 0.000 0.0002 Evenasphere −0.043 −0.015 −0.012 3.559E-003 −2.045E-003 0.000 0.000 0.0003 Evenasphere 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0004 Evenasphere 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0005 Evenasphere 0.093 −0.033 −1.072E-003 −3.462E-003 −4.413E-004 0.000 0.000 0.0006 Evenasphere −0.060 9.480E-003 −2.006E-003 −9.711E-004 −1.576E-004 1.665E-003 0.000 0.0007 Evenasphere −0.101 −6.280E-003 1.653E-003 −1.796E-003 3.519E-004 4.051E-005 −9.441E-006 0.0008 Evenasphere 0.196 −0.012 1.030E-003 3.686E-007 −1.956E-006 −4.296E-007 5.719E-008 −3.874E-010Y. K. Ma, V. N. BorovytskyFigure 1. 16.5 M pixels mobile phone camera lens layout.Figure 2. 16.5 M pixels mobile phone camera lens spot diagram.Y. K. Ma, V. N. Borovytsky MTF is a comprehensive standard to evaluate the imaging nature of a lens. In this design, the MTF value of central field at 223 lp/mm is 53.4% and 21.4% at 446 lp/mm. For FOV 0.8 zone, MTF value at 223 lp/mm is more than 37.6% in sagittal plane and more than 32.6% in tangential plane, at 446 lp/mm, MTF value is more than 14% in sagittal plane and more than 2% in tangential plane. The MTF curve is shown in Figure 3.The curvature and distortion of the lens is shown in Figure 4; it is shown in Figure 4 that the lens has a low field curvature; it is within 0.05, much less than the imaging need 0.1, and the distortion is less than 2%. It meets the design need.Figure 3.16.5 M pixels mobile phone camera lens MTF curve.Figure 4. Field curvature and distortion of a 16.5 M pixels mobile phone camera lens.Y. K. Ma, V. N. Borovytsky Both the lateral color and chromatic focal shift of the lens revealed a nearly diffraction limited design of this 16.5 M pixels mobile phone camera lens. They are shown in Figure 5 and Figure 6 respectively. In Figure 5, the lateral color of the maximum field is within the Airy disk which implies a diffraction limited design.It is also indicated in Figure 6that the chromatic focal shift of the lens is within diffraction limited. Relative illumination of the lens should be checked; it is shown Figure 7. It can be found in Figure 7that the minimum of the relative illumination value is 40%. Both an auto gain controlling circuit and an auto balance controlling circuit can keep a uniform brightness of the image. It is concluded that this design of a 16.5 M pixels mobile phone camera lens can meet the design needs.Figure 5.The lateral color of a 16.5 M pixels mobile phone camera lens.Figure 6.Chromatic focal shift of a 16.5 M pixels mobile phone camera lens.Y. K. Ma, V. N. BorovytskyFigure 7.Relative illumination of a 16.5 M pixels mobile phone camera lens.At last, a tolerance analysis was made and the results show that a 5 μm deviation in radius, thickness, a 10μm deviation in decenter, and a 0.2 degree in tilt are permitted. It is also shown in Table 2 that the smallest thick-ness of the plastic piece is 0.354 mm which means that a precision injection molding for massive production of the plastic lens elements can be expected. The glass element for this design is set to be a standard spheric surface for an easy production consideration.In conclusion, this 16.5 M pixels mobile phone camera lens is a practical design.4. ConclusionBy using Zemax, a 16.5 M pixels mobile phone camera lens is designed. The lens consists of 3 plastic aspheric lenses, one glass spheric lens and an infrared glass filter. OV16850 whose pixel size of 1.12 micrometer from Omnivision is used as a image sensor. The lens has an effective focal length of 4.483 mm, a F-number of 2.50, a field-of-view (FOV) of 76.2 degree, and a total length of 5.873 mm. This is a practical design for a 16.5 M pix-els mobile phone camera lens.References[1]Geary, J.M. (2002) Introduction to Lens Design with Practical Zemax Example. Willmann-Bell Inc., Richmond.[2]Zhang, P., et al. (2009) Design of a 5 Megapixel Mobile Phone Camera Lens. Journal of Applied Optics, 30, 934-938.[3]Song, D.F., et al. (2010) Design of Lens for 5 Mega-Pixel Mobile Phone Cameras. Journal of Applied Optics, 31, 34-38.[4]Peng, X.F. Design of High Pixel Mobile Phone Camera Lens. Research Journal of Applied Sciences, Engineering andTechnology, 6, 1160-1165.[5]Yin, Z.D., et al. (2014) Optical Design of a 13 Megapixel Mobile Phone Camera Lens. Laser & Optoelectronics Progress,51, 163-168.Y. K. Ma, V. N. Borovytsky[6]World’s Foremost Optical Polymer for Precision-Molded Optics. /optics.aspx[7][8]Yu, D.Y. (1999) Engineering Optics. China Mechanical Press, Beijing.。
手机居然能拍出眼睛看不到的场景,只需要这个小东西摄影师,是很多人都想成为的职业,数码相机的出现降低了拍照的成本,而手机的普及,更是让人人都成为摄影师。
摄影这件事,一半靠技术,一半靠后期,美图秀秀的出现,拯救了一大批不会拍照却又想成为摄影师的人。
但是你会发现,真正的高手,哪怕不用后期修图,也能拍出漂亮的图片。
这些人一般都会用单反相机,因为受到设备硬件自身的限制,哪怕现在有些手机都做到了4000万像素,拍出来的效果都难以和比它少一半像素的单反相机相媲美。
难道手机就只能自拍+美颜么?今天我有幸从@智能界拿到了一款非常小巧但是有趣的产品——海偲4合1手机镜头。
手机镜头,其实就是外挂在手机摄像头之外的一种设备,用来增强手机的拍照能力。
某宝上十多块钱也能买到所谓的手机镜头,但是质量就差的让你想把它扔了!而海偲4合1手机镜头则是手机镜头中的高端产品,通过两组镜头,不同的结合方式,实现两个广角和两个微距的镜头模式。
普通的手机加上海偲4合1手机镜头,马上变身,甚至能够拍摄出单反相机都难以达到的效果。
海偲4合1手机镜头的包装盒并不小,设计清爽,黑色的镜头一眼就能看清楚样子,因为是外挂式的,所以几乎完美兼容主流手机,但对于一些超大或者异形的手机就无能为力了,但是我试了手边十多款手机,均能完美使用。
打开包装一看,里面居然是一个黑色的小袋子,还有一条挂绳,其实镜头就装在这个黑色的袋子里了。
而这个袋子也是平时用来装镜头的保护袋,毕竟镜头是脆弱的产品,需要好好的保护起来。
袋子里面不仅仅有镜头,还有一小块黄色的镜头布,必须要夸一下,虽然镜头布只是一个小小的配件,但是这块布非常好用。
作为一个眼镜党和摄影师,擦镜头的布和纸我用过数不清,但这块小镜头布的质量真心好,足以可见海偲在产品细节上下的功夫。
我们先来简单的看一下这个海偲4合1手机镜头。
整体不大,就像一个架子一样,正反各有一个圆圆的镜头,一大一小,分别都盖着镜头盖。
不过,不是说4合1么,那两个镜头呢?海偲4合1手机镜头的夹子采用了金属材质,虽然整体体积不大,但是还是有一定重量感的。
镜头培训知识镜头知识⼀、镜头介绍1.镜头(LENS)镜头是仅次于CMOS芯⽚影响画质的第⼆要素,其组成是透镜结构,由⼏⽚透镜组成,⼀般可分为塑胶透镜(plastic)或玻璃透镜(glass)。
有的会加上镀膜,其作⽤是主要的作⽤是降低玻璃表⾯的反光,减少光衰减。
通常摄像头⽤的镜头结构有:1P、2P、1G1P、2G2P、等等。
透镜越多,成本越⼤,但效果越好,且玻璃透镜⽐树脂贵,但效果好。
以2P镜头为例,镜头的构成如下:由左⾄右分別为P, P,IR Filter, Image sensor⽤于30万像素⼿机摄像头IR-Cut Filter对于红外波段 650nm 以上不能被⼈眼识别,但芯⽚可以感应这样拍摄出来的画⾯就会泛红,与⼈眼观测到的景物在颜⾊上存在严重差异,所以需要增加IR-CUT 滤掉红外波段的光线。
使得Sensor对红外线变得较为不敏感。
2. FOV(Field Of View)视场⾓指镜头能够观测到的最⼤范围的夹⾓,视场⾓可以分为对⾓线视场⾓、⽔平视场⾓以及垂直视场⾓。
对⾓线视场⾓最⼤,⽔平视场⾓次之,垂直视场⾓最⼩。
视场⾓:如果y’是CMOS的半对⾓线长度,那么视场⾓2θ=arctan (y’/f’).可见焦距越短,视场⾓越⼤。
⼜有光学FOV和机械FOV之分,光学FOV是指sensor所能真正成像有效FOV范围,机械FOV⼀般⼤于光学FOV,这时有其它考虑和⽤途的,⽐如说需要⽤机械FOV来参考设计Module或⼿机盖的通光孔直径⼤⼩。
设计镜头的技术⼈员建议我们以光学FOV的最⼤值为准。
3.焦距EFL:Effective Focal Length 有效焦距,就是透镜中⼼到焦点的距离BFL:Back Focal Length 后焦距,包括光学后焦和机械后焦。
光学后焦:BFL或OBFL,指镜头最后⼀⽚镜⽚最后⼀⾯中⼼点到像⾯的距离。
机械后焦:MBFL,指镜头最后的机械⾯到像⾯的距离。
同⼀物体和拍摄距离:镜头焦距越⼤,成像越⼤、视⾓越⼩,俗称长焦距镜头为望远镜头;镜头焦距越⼩,成像越⼩、视⾓越⼤,俗称短焦距镜头为⼴⾓镜头。
手机摄像头的分类,技术指标及工作原理1.1 手机摄像头概述手机的数码相机功能指的是手机是否可以通过内置或是外接的数码相机进行拍摄静态图片或短片拍摄,作为手机的一项新的附加功能,手机的数码相机功能得到了迅速的发展。
手机摄像头分为内置与外置,内置摄像头是指摄像头在手机内部,更方便。
外置手机通过数据线或者手机下部接口与数码相机相连,来完成数码相机的一切拍摄功能。
外置数码相机的优点在于可以减轻手机的重量,而且外置数码相机重量轻,携带方便,使用方法简单。
处于发展阶段的手机的数码相机的性能应该也处于初级阶段,带有光学变焦的手机目前国内销售的还没有这个功能,不过相信随着手机数码相机功能的发展,带有光学变焦的手机也会逐渐上市,但大部分都拥有数码变焦功能。
除此之外,目前手机的数码相机功能主要包括拍摄静态图像,连拍功能,短片拍摄,镜头可旋转,自动白平衡,内置闪光灯等等。
手机的拍摄功能是与其屏幕材质、屏幕的分辨率、摄像头像素、摄像头材质有直接关系。
1.2 Camera分类Camera一般分为Digital camera 数字式与Digital Still Cameras模拟式。
1.2.1 Digital camera 数字式数字摄像头是直接将摄像单元和视频捕捉单元集成在一起,然后通过串、并口或者USB 接口连接到HOST SYSTEM上。
现在CAMERA市场上的摄像头基本以数字摄像头为主,而数字摄像头中又以使用新型数据传输接口的USB数字摄像头为主(独立),在手机上主要是直接通过IO (BTB,USB,MINI USB…)与HOST SYSTEM连接,经过HOST SYSTEM的编辑后以数字信号输出到DISPLAY上显示。
目前CAMERA市场上主流的CAMERA全DIGITALCAMERA。
1.2.2 Simulant camera 模拟式模拟摄像头是将视频采集设备产生的模拟视频信号转换成数字信号,进而将其储存到SYSTEM MEMORY里。
3P超薄500万像素手机镜头设计
郭王凯;王敏;徐苗;陶郅
【期刊名称】《光电工程》
【年(卷),期】2016(43)9
【摘要】A 5 mega-pixel lens system is designed with ZEMAX. The mobile lens is composed of 3 plastic aspheric lenses. The F-number is 2.8 and FOV is 64°.The sensor OV5645 has 5 mega-pixel which is made by Omnivision, whose pixel size is 1.4μm×1.4μm, so the limiting resolution is 358 lp/mm. The final design result shows the optical total length is 4.163 mm, the MTF value is more than 0.3 in full fields of view at 1/2 limiting resolution, the relative illumination is more than 55%, the distortion is less than 1%, and the field curvature is less than 0.1 mm. It possesses an excellent imaging performance.%利用ZEMAX软件设计一款500万像素的手机镜头。
该镜头由3片塑料非球面镜片组成。
镜头的光圈值F为2.8,全视场角64°。
采用Omnivision公司OV5645型号的CMOS作为图像传感器,像素尺寸大小为
1.4μm×1.4μm,截止频率为358 lp/mm。
最终设计结果,镜头光学总长度为4.163 mm,1/2截止频率处的全视场MTF大于0.3,相对照度大于55%,畸变小于1%,场曲小于0.1 mm,可以获得优质的成像效果。
【总页数】5页(P67-71)
【作者】郭王凯;王敏;徐苗;陶郅
【作者单位】福建师范大学光电与信息工程学院医学光电科学与技术教育部重点实验室,福州 350007;福建师范大学光电与信息工程学院医学光电科学与技术教育部重点实验室,福州 350007;福建师范大学光电与信息工程学院医学光电科学与技术教育部重点实验室,福州 350007;福建师范大学光电与信息工程学院医学光电科学与技术教育部重点实验室,福州 350007
【正文语种】中文
【中图分类】TN942.2
【相关文献】
1.800万像素超薄非球面手机镜头设计 [J], 邱鑫;王艳
2.一款超薄非球面手机镜头设计 [J], 黄航星;金伟民;鲁丁
3.折叠型超薄光学镜头设计 [J], 赵渊明;赵丽东
4.折叠型超薄光学镜头设计 [J], 赵渊明;赵丽东
5.大相对孔径高分辨率手机镜头设计 [J], 李升辉
因版权原因,仅展示原文概要,查看原文内容请购买。