北师大版九年级中考数学模拟考试试题(含答案)
- 格式:docx
- 大小:641.02 KB
- 文档页数:17
初三数学中考试卷一、选择题(本题共10个小题,每小题4分,共40分。
请选出各题中其中一个符合题意的正确选项,不选、多选、错选均不给分)1.冬季的一天,室内温度是8℃,室外温度是-2℃,则室内外温度相差( )A、4℃B、6℃C、10℃D、16℃2.一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是()A、 B、 C、 D、3.右图中几何体的正视图是( )4.吋是电视机常用规格之一,1吋约为拇指上面一节的长,则7吋长相当于( )A、课本的宽度B、课桌的宽度C、黑板的高度D、粉笔的长度5.已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC与AB的延长线交于点P,则∠P等于( )A、15°B、20°C、25°D、30°6.如图,设M、N分别是直角梯形ABCD两腰AD、CB的中点,DE⊥AB于点E,将△ADE沿DE翻折,M与N恰好重合,则AE∶BE等于( )A、2∶1B、1∶2C、3∶2D、2∶37.不等式的解集是( )A、 B、 C、 D、8.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有( )A、2对B、3对C、4对D、6对9.小敏在某次投篮中,球的运动线路是抛物线的一部分(如图),若命中篮圈中心,则他与篮底的距离l是( )A、3.5mB、4 mC、4.5 mD、 4.6 m10.如图,正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E 在函数的图象上,则点E的坐标是( )A、 B、C、 D、二、填空题(本题有6小题,每小题5分共30分)11.当______________时,分式的值为0.12.据媒体报道,今年“五一”黄金周期间,我市旅游收入再创历史新高,达1290000000元,用科学记数法表示为______________元.13.如图是小敏五次射击成绩的图,根据图示信息,则此五次成绩的平均数是_____________环。
最新九年级数学中考模拟试题一、选择题。
1、给出四个数0,3﹣,π,﹣1,其中最小的是()。
A、0B、πC、﹣1D、3﹣2、2019赛季中超联赛中,广州恒大足球队在联赛30场比赛中除4月3日输给河南建业外,其它场次全部保持不败,取得了67个积分的骄人成绩,已知胜一场得3分,平一场得1分,负一场得0分,设广州恒大一共胜了x场,则可列方程为()A.3x+(29﹣x)=67 B.x+3(29﹣x)=67 C.3x+(30﹣x)=67D.x+3(30﹣x)=67 3、两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中4、某地区质量优良指数排名近年来一直排在全国城市前十.下表是深圳市气象局于2020年3月22日在全市十一个监测点监测到空气质量指数(AQI)数据如表5、如图,在平行四边形ABCD中,以A为圆心,AB为半径画弧,交AD于F,6、7、周星驰拍摄的电影《美人鱼》取景地在深圳杨梅坑,据称是深圳最美的溪谷,为估计全罗湖区8000名九年级学生云过杨梅坑的人数,随机抽取400名九年级学生,发现其中有50名学生去过该景点,由此估计全区九年级学生中有个学生去过该景点8、9、二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是10、12、下列事件中,不可能事件是()A、掷一枚六个面分别刻有1~6数码的均匀正方体骰子。
向上一面的点数是“5”B、任意选择某个电视频道,正在播放动画片C、肥皂泡会破碎D、在平面内,度量一个三角形的内角度数,其和为360°17、18、19、。
20、如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB的值是。
21、22、计算23、24、25、九年级(1)班的全体同学根据自己的兴趣爱好参加了六个学生社团(每个学生必须参加且只参加一个),为了了解学生参加社团的情况,学生会对该班参加各个社团的人数进行了统计,绘制成了如图不完整的扇形统计图,已知参加“读书社”的学生有10人,请解答下列问题:(1)该班的学生共有名;该班参加“爱心社”的人数为名,若该班参加“吉他社”与“街舞社”的人数相同,则“吉他社”对应扇形的圆心角的度数为。
ABCDE FMC'D'B'俯视图主(正)视图左视图初中毕业生中考数学模拟考试一.选择题:1、2--的倒数是( )A 、2B 、12 C 、12- D 、-2 2、2007年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球。
已知地球距离月球表面约为384000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为( )A3.84×410千米 B3.84×510千米 C 、3.84×610千米 D 、38.4×410千米3、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是( )A 、5个B 、6个C 、7个 D.8个4、下列运算正确的是( )A 、2224(2)2a a a -=B 、336()a a a -⋅= C.236(2)8x x -=- D 、2()x x x -÷=- 5、下列事件中,不可能事件是( )A 、掷一枚六个面分别刻有1~6数码的均匀正方体骰子。
向上一面的点数是“5”B 、任意选择某个电视频道,正在播放动画片C 、肥皂泡会破碎D 、在平面内,度量一个三角形的内角度数,其和为360°6 、已知代数式1312a x y -与23b a b x y -+-是同类项,那么a 、b 的值分别是( )A 、21a b =⎧⎨=-⎩B 、21a b =⎧⎨=⎩C 、21a b =-⎧⎨=-⎩D 、21a b =-⎧⎨=⎩7、把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在'B M 或'B M 的延长线上,那么∠EMF 的度数是( )A 、85°B 、90°C 、95°D 、100°8、如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。
已知车速45A 、3B 、23C 、5D 、29、为了了解汽车司机遵守交通法规的意识,小明的学习小组成员协助交通警察在某路口统计的某个时段来往汽车的车速(单位:千米/小时)情况如图所示。
最新九年级中考数学测试试卷一、选择题(本大题共12小题,每小题4分,共48分)1、4的算术平方根是()A.2B.-2C.±2D. 22、如图所示的几何体,它的俯视图是()A. B. C. D.3、2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A.0.76×104B.7.6×103C.7.6×104D.76×1024、“瓦当”是中国古建筑装饰××头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()A B C D5、如图,AF是∠BAC的平分线,DF∥AC,若∠1=35°,则∠BAF的度数为()A.17.5°B.35°C.55°D.70°6、下列运算正确的是()A.a2+2a=3a3B.(-2a3)2=4a5 1ABC DFC .(a +2)(a -1)=a 2+a -2 D .(a +b )2=a 2+b 27、关于x 的方程3x -2m =1的解为正数,则m 的取值范围是( ) A .m <-12B .m >-12C .m >12D .m <128、在反比例函数y =-2x图象上有三个点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3),若x 1<0<x 2<x 3,则下列结论正确的是( )A .y 3<y 2<y 1B .y 1<y 3<y 2C .y 2<y 3<y 1D .y 3<y 1<y 29、如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( ) A .(0,4) B .(1,1) C .(1,2) D .(2,1)10、下面的统计图大致反应了我国2012年至2017年人均阅读量的情况.根据统计图提供的信息,下列推断不合理...的是( ) A .与2016年相比,2017年我国电子书人均阅读量有所降低 B .2012年至2017年,我国纸质书的人均阅读量的中位数是4.57C .从2014年到2017年,我国纸质书的人均阅读量逐年增长D .2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多年份电子书纸质书6234511、如图,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( ) A .6π-92 3B .6π-9 3C .12π-92 3D .9π412、若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P (1,0)、Q (2,-2)都是“整点”.抛物线y =mx 2-4mx +4m -2(m >0)与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( ) A .12≤m <1B .12<m ≤1C .1<m ≤2D .1<m <2AB CDO (A ) ABO二、填空题(本大题共6小题,每小题4分,共24分) 13、分解因式:m 2-4=____________;14、在不透明的盒子中装有5个黑色棋子和若于个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑包棋子的概率是14,则白色棋子的个数是=____________; 15、一个正多边形的每个内角等于108°,则它的边数是=____________;16、若代数式x -2x -4的值是2,则x =____________;17、A 、B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h 的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离s (km )与时间t (h )的关系如图所示,则甲出发____________小时后和乙相遇.18、如图,矩形EFGH的四个顶点分别在矩形ABCD的各条边上,AB=EF,FG=2,GC=3.有以下四个结论:①∠BGF=∠CHG;②△BFG≌△DHE;③tan∠BFG=12;④矩形EFGH的面积是43.其中一定成立的是____________.(把所有正确结论的序号填在横线上)BF三、解答题(本大题共9小题,共78分)19、计算:2-1+│-5│-sin30°+(π-1)0.20、解不等式组:⎩⎪⎨⎪⎧3x +1<2x +3 ① 2x >3x -12 ②21、如图,在□ABCD中,连接BD,E是DA延长线上的点,F是BC延长线上的点,且AE=CF,连接EF交BD于点O.求证:OB=O D.22、本学期学校开展以“感受中华传统买德”为主题的研学部动,组织150名学生多观历史好物馆和民俗晨览馆,每一名学生只能参加其中全顺活动,共支付票款2000元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?23、如图AB是⊙O的直径,PA与⊙O相切于点A,BP与⊙O相较于点D,C为⊙O上的一点,分别连接CB、CD,∠BCD=60°.(1)求∠ABD的度数;(2)若AB=6,求PD的长度.C24、某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图 1 、图2两幅均不完整的统计图表.请您根据图表中提供的信息回答下列问题:(1)统计表中的a=________,b=_______;(2)“D”对应扇形的圆心角为_______度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.25、如图,直线y =ax +2与x 轴交于点A (1,0),与y 轴交于点B (0,b ).将线段AB 先向右平移1个单位长度、再向上平移t (t >0)个单位长度,得到对应线段CD ,反比例函数y =kx(x >0)的图象恰好经过C 、D 两点,连接AC 、B D . (1)求a 和b 的值;(2)求反比例函数的表达式及四边形ABDC 的面积;(3)点N 在x 轴正半轴上,点M 是反比例函数y =kx(x >0)的图象上的一个点,若△CMN 是以CM 为直角边的等腰直角三角形时,求所有满足条件的点M 的坐标.第25题图 第25题备用图26、在△ABC 中,AB =AC ,∠BAC =120°,以CA 为边在∠ACB 的另一侧作∠ACM =∠ACB ,点D 为射线BC 上任意一点,在射线CM 上截取CE =BD ,连接AD 、DE 、AE .(1)如图1,当点D 落在线段BC 的延长线上时,直接写出∠ADE 的度数;(2)如图2,当点D 落在线段BC (不含边界)上时,AC 与DE 交于点F ,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB =6,求CF 的最大值.M第26题图1 第26题图227、如图1,抛物线y =ax 2+bx +4过A (2,0)、B (4,0)两点,交y轴于点C ,过点C 作x 轴的平行线与不等式抛物线上的另一个交点为D ,连接AC 、B C .点P 是该抛物线上一动点,设点P 的横坐标为m (m >4).(1)求该抛物线的表达式和∠ACB 的正切值; (2)如图2,若∠ACP =45°,求m 的值;(3)如图3,过点A 、P 的直线与y 轴于点N ,过点P 作PM ⊥CD ,垂足为M ,直线MN 与x 轴交于点Q ,试判断四边形ADMQ 的形状,并说明理由.第27题图1 第27题图2 第27题图3答案解析一、选择题(本大题共12小题,每小题4分,共48分)1.(2018济南,1,4分)4的算术平方根是()A.2 B.-2 C.±2 D. 2 【答案】A2.(2018济南,2,4分)如图所示的几何体,它的俯视图是()A. B. C. D.【答案】D3.(2018济南,3,4分)2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A.0.76×104 B.7.6×103 C.7.6×104 D.76×102【答案】B4.(2018济南,4,4分)“瓦当”是中国古建筑装饰××头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()A B CD【答案】D5.(2018济南,5,4分)如图,AF是∠BAC的平分线,DF∥AC,若∠1=35°,则∠BAF的度数为()A.17.5°B.35°C.55°D.70°【答案】B6.(2018济南,6,4分)下列运算正确的是()A.a2+2a=3a3 B.(-2a3)2=4a5C.(a+2)(a-1)=a2+a-2 D.(a+b)2=a2+b2【答案】C7.(2018济南,7,4分)关于x的方程3x-2m=1的解为正数,则m 的取值范围是()A.m<-12B.m>-12C.m>121ABCDFD .m <12【答案】B8.(2018济南,8,4分)在反比例函数y =-2x图象上有三个点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3),若x 1<0<x 2<x 3,则下列结论正确的是( )A .y 3<y 2<y 1B .y 1<y 3<y 2C .y 2<y 3<y 1D .y 3<y 1<y 2 【答案】C9.(2018济南,9,4分)如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( )A .(0,4)B .(1,1)C .(1,2)D .(2,1)【答案】C10.(2018济南,10,4分)下面的统计图大致反应了我国2012年至2017年人均阅读量的情况.根据统计图提供的信息,下列推断不.合理..的是( ) A .与2016年相比,2017年我国电子书人均阅读量有所降低 B .2012年至2017年,我国纸质书的人均阅读量的中位数是4.57C .从2014年到2017年,我国纸质书的人均阅读量逐年增长D .2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多【答案】B11.(2018济南,11,4分)如图,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )年份电子书纸质书62345A .6π-92 3B .6π-9 3C .12π-92 3D .9π4【答案】A12.(2018济南,11,4分)若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:P (1,0)、Q (2,-2)都是“整点”.抛物线y =mx 2-4mx +4m -2(m >0)与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( ) A .12≤m <1 B .12<m ≤1 C .1<m ≤2 D .1<m<2 【答案】B 【解析】解:∵y =mx 2-4mx +4m -2=m (x -2)2-2且m >0,∴该抛物线开口向上,顶点坐标为(2,-2),对称轴是直线x =2.由此可知点(2,0)、点(2,-1)、顶点(2,-2)符合题意. 方法一:AB CDO (A ) ABO①当该抛物线经过点(1,-1)和(3,-1)时(如答案图1),这两个点符合题意.将(1,-1)代入y =mx 2-4mx +4m -2得到-1=m -4m +4m -2.解得m =1.此时抛物线解析式为y =x 2-4x +2.由y =0得x 2-4x +2=0.解得x 1=2-2≈0.6,x 2=2+2≈3.4.∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意.则当m =1时,恰好有 (1,0)、(2,0)、(3,0)、(1,-1)、(3,-1)、(2,-1)、(2,-2)这7个整点符合题意.∴m ≤1.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大,】答案图1(m =1时) 答案图2( m =12时)②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意.此时x 轴上的点 (1,0)、(2,0)、(3,0)也符合题意.将(0,0)代入y =mx 2-4mx +4m -2得到0=0-4m +0-2.解得m =12.此时抛物线解析式为y =12x 2-2x .当x =1时,得y =12×1-2×1=-32<-1.∴点(1,-1)符合题意.当x =3时,得y =12×9-2×3=-32<-1.∴点(3,-1) 符合题意.综上可知:当m =12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,-1)、(3,-1)、(2,-2)、(2,-1)都符合题意,共有9个整点符合题意, ∴m =12不符合题.∴m >12.综合①②可得:当12<m ≤1时,该函数的图象与x 轴所围城的区域(含边界)内有七个整点,故答案选B .方法二:根据题目提供的选项,分别选取m =12,m =1,m =2,依次加以验证.①当m =12时(如答案图3),得y =12x 2-2x .由y=0得12x2-2x=0.解得x1=0,x2=4.∴x轴上的点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)符合题意.当x=1时,得y=12×1-2×1=-32<-1.∴点(1,-1)符合题意.当x=3时,得y=12×9-2×3=-32<-1.∴点(3,-1) 符合题意.综上可知:当m=12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,-1)、(3,-1)、(2,-2)、(2,-1)都符合题意,共有9个整点符合题意,∴m=12不符合题.∴选项A不正确.答案图3( m=12时) 答案图4(m=1时)答案图5(m=2时)②当m=1时(如答案图4),得y=x2-4x+2.由y=0得x2-4x+2=0.解得x1=2-2≈0.6,x2=2+2≈3.4.∴x轴上的点(1,0)、(2,0)、(3,0)符合题意.当x=1时,得y=1-4×1+2=-1.∴点(1,-1)符合题意.当x=3时,得y=9-4×3+2=-1.∴点(3,-1) 符合题意.综上可知:当m=1时,点(1,0)、(2,0)、(3,0)、(1,-1)、(3,-1)、(2,-2) 、(2,-1)都符合题意,共有7个整点符合题意,∴m=1符合题.∴选项B正确.③当m=2时(如答案图5),得y=2x2-8x+6.由y=0得2x2-8x+6=0.解得x1=1,x2=3.∴x轴上的点(1,0)、(2,0)、(3,0)符合题意.综上可知:当m=2时,点(1,0)、(2,0)、(3,0)、(2,-2) 、(2,-1)都符合题意,共有5个整点符合题意,∴m=2不符合题.二、填空题(本大题共6小题,每小题4分,共24分)13.(2018济南,13,4分)分解因式:m2-4=____________;【答案】(m+2)(m-2)14.(2018济南,14,4分)在不透明的盒子中装有5个黑色棋子和若于个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑包棋子的概率是14,则白色棋子的个数是=____________;【答案】1515.(2018济南,15,4分)一个正多边形的每个内角等于108°,则它的边数是=____________; 【答案】516.(2018济南,16,4分)若代数式x -2x -4的值是2,则x =____________;【答案】617.(2018济南,17,4分)A 、B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h 的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离s (km )与时间t (h )的关系如图所示,则甲出发____________小时后和乙相遇.【答案】165.【解析】y 甲=4t (0≤t ≤4);y乙=⎩⎪⎨⎪⎧2(t -1)(1≤t ≤2)9(t -2)t (2<t ≤4);由方程组⎩⎪⎨⎪⎧y =4ty =9(t -2)解得⎩⎪⎨⎪⎧t =165y =645. ∴答案为165.18.(2018济南,18,4分)如图,矩形EFGH 的四个顶点分别在矩形ABCD 的各条边上,AB =EF ,FG =2,GC =3.有以下四个结论:①∠BGF =∠CHG ;②△BFG ≌△DHE ;③tan ∠BFG =12;④矩形EFGH的面积是43.其中一定成立的是____________.(把所有正确结论的序号填在横线上)F【答案】①②④.【解析】设EH =AB =a ,则CD =GH =a . ∵∠FGH =90°,∴∠BGF +∠CGH =90°. 又∵∠CGH +∠CHG =90°,∴∠BGF =∠CHG …………………………………故①正确. 同理可得∠DEH =∠CHG . ∴∠BGF =∠DEH .又∵∠B =∠D =90°,FG =EH ,∴△BFG≌△DHE…………………………………故②正确.同理可得△AFE≌△CHG.∴AF=CH.易得△BFG∽△CGH.∴BFCG =FGGH.∴BF3=2a.∴BF=6a.∴AF=AB-BF=a-6a.∴CH=AF=a-6a.在Rt△CGH中,∵CG2+CH2=GH2,∴32+( a-6a)2=a2.解得a=2 3.∴GH=2 3.∴BF=a-6a= 3.在Rt△BFG中,∵cos∠BFG=BFFG=32,∴∠BFG=30°.∴tan∠BFG=tan30°=33.…………………………………故③正确.矩形EFGH的面积=FG×GH=2×23=43…………………………………故④正确.三、解答题(本大题共9小题,共78分)19.(2018济南,19,6分)计算:2-1+│-5│-sin30°+(π-1)0.解:2-1+│-5│-sin30°+(π-1)0.=12+5-12+1=620.(2018济南,20,6分)解不等式组:⎩⎪⎨⎪⎧3x +1<2x +3 ① 2x >3x -12 ② 解:由① ,得3x -2x <3-1. ∴x <2. 由② ,得 4x >3x -1. ∴x >-1.∴不等式组的解集为-1<x <2.21.(2018济南,21,6分)如图,在□ABCD 中,连接BD ,E 是DA 延长线上的点,F 是BC 延长线上的点,且 AE =CF ,连接EF 交BD 于点O . 求证:OB =O D .证明:∵□ABCD 中,∴AD =BC ,AD ∥B C. ∴∠ADB =∠CB D. 又∵AE =CF , ∴AE +AD =CF +B C. ∴ED =F B.又∵∠EOD=∠FOB,∴△EOD≌△FO B.∴OB=O D.22.(2018济南,22,8分)本学期学校开展以“感受中华传统买德”为主题的研学部动,组织150名学生多观历史好物馆和民俗晨览馆,每一名学生只能参加其中全顺活动,共支付票款2000元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?解:(1)设参观历史博物馆的有x人,则参观民俗展览馆的有(150-x)人,依题意,得10x+20(150-x)2000.10x+3000-20x=2000.-10x=-1000.∴x=100.∴150-x=50.答:参观历史博物馆的有100人,则参观民俗展览馆的有50人.(2)2000-150×10=500(元).答:若学生都去参观历史博物馆,则能节省票款500元.23.(2018济南,23,8分)如图AB 是⊙O 的直径,PA 与⊙O 相切于点A ,BP 与⊙O 相较于点D ,C 为⊙O 上的一点,分别连接CB 、CD ,∠BCD =60°.(1)求∠ABD 的度数; (2)若AB =6,求PD 的长度.C【解析】解:(1)方法一:连接AD (如答案图1所示). ∵BA 是⊙O 直径,∴∠BDA =90°. ∵⌒BD =⌒BD ,∴∠BAD =∠C =60°.∴∠ABD =90°-∠BAD =90°-60°=30°.CC第23题答案图1 第23题答案图2方法二:连接DA、OD(如答案图2所示),则∠BOD=2∠C=2×60°=120°.∵OB=OD,∴∠OBD=∠ODB=12(180°-120°)=30°.即∠ABD=30°.(2)∵AP是⊙O的切线,∴∠BAP=90°.在Rt△BAD中,∵∠ABD=30°,∴DA=12BA=12×6=3.∴BD=3DA=33.在Rt△BAP中,∵cos∠ABD=ABPB,∴cos30°=6PB=32.∴BP=43.∴PD=BP-BD=43-33=3.24.(2018济南,24,10分)某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图 1 、图2两幅均不完整的统计图表.请您根据图表中提供的信息回答下列问题:(1)统计表中的a=________,b=_______;(2)“D”对应扇形的圆心角为_______度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.解:(1)a=36÷0.45=80.b=16÷80=0.20.(2)“D”对应扇形的圆心角的度数为:8÷80×360°=36°.(3)估计该校2000名学生中最喜欢“数学史”校本课程的人数为:2000×0.25=500(人). (4)列表格如下:共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为:39=13.25.(2018济南,25,10分)如图,直线y =ax +2与x 轴交于点A (1,0),与y 轴交于点B (0,b ).将线段AB 先向右平移1个单位长度、再向上平移t (t >0)个单位长度,得到对应线段CD ,反比例函数y =kx(x >0)的图象恰好经过C 、D 两点,连接AC 、B D . (1)求a 和b 的值;(2)求反比例函数的表达式及四边形ABDC 的面积;(3)点N 在x 轴正半轴上,点M 是反比例函数y =kx(x >0)的图象上的一个点,若△CMN 是以CM 为直角边的等腰直角三角形时,求所有满足条件的点M 的坐标.第25题图第25题备用图【解析】解:(1)将点A(1,0)代入y=ax+2,得0=a+2.∴a=-2.∴直线的解析式为y=-2x+2.将x=0代入上式,得y=2.∴b=2.∴点B(0,2).(2)由平移可得:点C(2,t)、D(1,2+t).将点C(2,t)、D(1,2+t)分别代入y=kx ,得⎩⎪⎨⎪⎧t=k22+t=k1.解得⎩⎪⎨⎪⎧k=4t=2.∴反比例函数的解析式为y=4x,点C(2,2)、点D(1,4).分别连接BC、AD(如答案图1).∵B(0,2)、C(2,2),∴BC∥x轴,BC=2.∵A(1,0)、D(1,4),∴AD⊥x轴,AD=4.∴BC⊥A D.∴S四边形ABDC=12×BC×AD=12×2×4=4.第25题答案图1(3)①当∠NCM=90°、CM=CN时(如答案图2所示),过点C作直线l∥x轴,交y轴于点G.过点M作MF⊥直线l于点F,交x轴于点H.过点N作NE⊥直线l于点E.设点N(m,0)(其中m>0),则ON=m,CE=2-m.∵∠MCN=90°,∴∠MCF+∠NCE=90°.∵NE⊥直线l于点E,∴∠ENC+∠NCE=90°.∴∠MCF=∠EN C.又∵∠MFC=∠NEC=90°,CN=CM,∴△NEC≌△CFM.∴CF=EN=2,FM=CE=2-m.∴FG=CG+CF=2+2=4.∴x M=4.将x=4代入y=4x,得y=1.∴点M(4,1).l第25题答案图2 第25题答案图3②当∠NMC=90°、MC=MN时(如答案图3所示),过点C作直线l ⊥y轴与点F,则CF=x C=2.过点M作MG⊥x轴于点G,MG交直线l与点E,则MG⊥直线l于点E,EG=y C=2.∵∠CMN=90°,∴∠CME+∠NMG=90°.∵ME⊥直线l于点E,∴∠ECM+∠CME=90°.∴∠NMG=∠ECM.又∵∠CEM=∠NGM=90°,CM=MN,∴△CEM≌△MGN.∴CE=MG,EM=NG.设CE=MG=a,则y M=a,x M=CF+CE=2+a.∴点M(2+a,a).将点M(2+a,a) 代入y=4x,得a=42+a.解得a1=5-1,a2=-5-1.∴x M=2+a=5+1.∴点M(5+1,5-1).综合①②可知:点M的坐标为(4,1)或(5+1,5-1).26.(2018济南,26,12分)在△ABC 中,AB =AC ,∠BAC =120°,以CA 为边在∠ACB 的另一侧作∠ACM =∠ACB ,点D 为射线BC 上任意一点,在射线CM 上截取CE =BD ,连接AD 、DE 、AE .(1)如图1,当点D 落在线段BC 的延长线上时,直接写出∠ADE 的度数;(2)如图2,当点D 落在线段BC (不含边界)上时,AC 与DE 交于点F ,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB =6,求CF 的最大值.M第26题图1第26题图2 【解析】解:(1) ∠ADE =30°.(2) (1)中的结论是否还成立证明:连接AE(如答案图1所示).∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°.又∵∠ACM=∠ACB,∴∠B=∠ACM=30°.又∵CE=BD,∴△ABD≌△ACE.∴AD=AE,∠1=∠2.∴∠2+∠3=∠1+∠3=∠BAC=120°.即∠DAE=120°.又∵AD=AE,∴∠ADE=∠AED=30°.答案图 1 答案图2(3) ∵AB=AC,AB=6,∴AC=6.∵∠ADE=∠ACB=30°且∠DAF=∠CAD,∴△ADF ∽△AC D.∴AD AC =AF AD.∴AD 2=AF ·A C .∴AD 2=6AF .∴AF =AD 26.∴当AD 最短时,AF 最短、CF 最长.易得当AD ⊥BC 时,AF 最短、CF 最长(如答案图2所示),此时AD =12AB =3.∴AF 最短=AD 26=326=32. ∴CF 最长=AC - AF 最短=6-32=92.27.(2018济南,27,12分)如图1,抛物线y =ax 2+bx +4过A (2,0)、B (4,0)两点,交y 轴于点C ,过点C 作x 轴的平行线与不等式抛物线上的另一个交点为D ,连接AC 、B C .点P 是该抛物线上一动点,设点P 的横坐标为m (m>4).(1)求该抛物线的表达式和∠ACB 的正切值; (2)如图2,若∠ACP =45°,求m 的值;(3)如图3,过点A 、P 的直线与y 轴于点N ,过点P 作PM ⊥CD ,垂足为M ,直线MN 与x 轴交于点Q ,试判断四边形ADMQ 的形状,并说明理由.第27题图 1 第27题图 2第27题图3 【解析】解:(1)将点A (2,0)和点B (4,0)分别代入y =ax 2+bx +4,得⎩⎪⎨⎪⎧0=4a +2x +40=16a +4b +4.解得⎩⎪⎨⎪⎧a =12b =-3.∴该抛物线的解析式为y=12x 2-3x +4. 将x =0代入上式,得y =4.∴点C (0,4),OC =4.在Rt △AOC 中,AC =OA 2+OC 2=22+42=2 5.设直线AC 的解析式为y =kx +4,将点A (2,0)代入上式,得0=2k +4.解得k =-2. ∴直线AC 的解析式为y =-2x +4.同理可得直线BC 的解析式为y =-x +4. 求tan ∠ACB 方法一:过点B 作BG ⊥CA ,交CA 的延长线于点G (如答案图1所示),则∠G =90°.∵∠COA =∠G =90°,∠CAO =∠BAG ,∴△GAB ∽△OA C.∴BG AG =OC OA =42=2.∴BG =2AG . 在Rt △ABG 中,∵BG 2+AG 2=AB 2,∴(2AG )2+AG 2=22.AG =255.∴BG =455,CG =AC +AG =25+255=125 5.在Rt △BCG 中,tan ∠ACB =BG CQ =455 1255=13.第27题答案图1 第27题答案图2求tan ∠ACB 方法二:过点A 作AE ⊥AC ,交BC 于点E (如答案图2所示),则k AE ·k AC=-1.∴-2k AE =-1.∴k AE =12.∴可设直线AE 的解析式为y =12x +m .将点A (2,0)代入上式,得0=12×2+m .解得m =-1.∴直线AE 的解析式为y =12x -1.由方程组⎩⎪⎨⎪⎧y =12x -1y =-x +4解得⎩⎪⎨⎪⎧x =103y =23.∴点E (103,23).∴AE =⎝ ⎛⎭⎪⎪⎫2-1032+⎝ ⎛⎭⎪⎪⎫0-232=23 5. 在Rt △AEC 中,tan ∠ACB =AE AC =23525=13.求tan ∠ACB 方法三:过点A 作AF ⊥BC ,交BC 点E (如答案图3所示),则k AF ·k BC=-1.∴-k AF =-1.∴k AF =1.∴可设直线AF 的解析式为y =x +n .将点A (2,0)代入上式,得0=2+n .解得n =-2.∴直线AF 的解析式为y =x -2.由方程组⎩⎪⎨⎪⎧y =x -2y =-x +4 解得⎩⎪⎨⎪⎧x =3y =1 .∴点F (3,1).∴AF =(3-2)2+(1-0)2=2,CF =(3-0)2-(1-4)2=3 2.在Rt △AEC 中,tan ∠ACB =AF CF =232=13.第27题答案图3(2)方法一:利用“一线三等角”模型将线段AC 绕点A 沿顺时针方向旋转90°,得到线段AC ′,则AC ′=AC ,∠C ′AC =90°,∠CC ′A =∠ACC ′=45°.∴∠CAO +∠C ′AB =90°. 又∵∠OCA +∠CAO =90°, ∴∠OCA =∠C ′A B .过点C ′作C ′E ⊥x 轴于点E .则∠C ′EA =∠COA =90°. ∵∠C ′EA =∠COA =90°,∠OCA =∠C ′AB ,AC ′=AC , ∴△C ′EA ≌△AO C .∴C ′E =OA =2,AE =OC =4. ∴OE =OA +AE =2+4=6. ∴点C ′(6,2).设直线C ′C 的解析式为y =hx +4.将点C ′(6,2)代入上式,得2=6h +4.解得h =-13.∴直线C ′C 的解析式为y =-13x +4.∵∠ACP=45°,∠ACC′=45°,∴点P在直线C′C上.设点P的坐标为(x,y),则x是方程12x2-3x+4=-13x+4的一个解.将方程整理,得3x2-14x=0.解得x1=163,x2=0(不合题意,舍去).将x1=163代入y=-13x+4,得y=209.∴点P的坐标为(163,209).第27题答案图4 第27题答案图5(2)方法二:利用正方形中的“全角夹半角”模型.过点B作BH⊥CD于点H,交CP于点K,连接AK.易得四边形OBHC 是正方形.应用“全角夹半角”可得AK=OA+HK.设K(4,h),则BK=h,HK=HB-KB=4-h,AK=OA+HK=2+(4-h)=6-h.在Rt△ABK中,由勾股定理,得AB2+BK2=AK2.∴22+h 2=(6-h)2.解得h=83.∴点K(4,83 ).设直线CK的解析式为y=hx+4.将点K(4,83)代入上式,得83=4h+4.解得h=-13.∴直线CK的解析式为y=-13x+4.设点P的坐标为(x,y),则x是方程12x2-3x+4=-13x+4的一个解.将方程整理,得3x2-14x=0.解得x1=163,x2=0(不合题意,舍去).将x1=163代入y=-13x+4,得y=209.∴点P的坐标为(163,209).(3)四边形ADMQ是平行四边形.理由如下:∵CD∥x轴,∴y C=y D=4.将y=4代入y=12x2-3x+4,得 4=12x2-3x+4.解得x1=0,x2=6.∴点D(6,4).根据题意,得P (m ,12m 2-3m +4),M (m ,4),H (m ,0).∴PH =12m 2-3m +4),OH =m ,AH =m -2,MH =4.①当4<m <6时(如答案图5所示),DM =6-m∵△OAN ∽△HAP ,∴ON PH =OAAH .∴ON12m 2-3m +4=2m -2. ∴ON =m 2-6m +8m -2=(m -4)(m -2)m -2=m -4.∵△ONQ ∽△HMP ,∴ON HM =OQ HQ .∴ON 4=OQm -OQ.∴m -44=OQm -OQ.∴OQ =m -4.∴AQ =OA -OQ =2-(m -4)=6-m . ∴AQ = DM =6-m .又∵AQ ∥DM ,∴四边形ADMQ 是平行四边形.第27题答案图6 第27题答案图7 ②当m >6时(如答案图6所示),同理可得:四边形ADMQ是平行四边形.综合①、②可知:四边形ADMQ是平行四边形.。
九年级中考数学模拟试题一、选择题(共15小题,每小题3分,满分45分)1、﹣12的绝对值是( )A .12B .-12C .D .2、如图,直线a ∥b ,直线c 与a ,b 相交,∠1=65°,则∠2=( )A .115°B .65°C .35°D .25°3、2012年伦敦奥运会火炬传递路线全长约为12800公里,数字12800用科学记数法表示为( C )A .1.28×103B .12.8×103C .1.28×104D .0.128×1054、下列事件中必然事件的是( )A .任意买一张电影票,座位号是偶数B .正常情况下,将水加热到100℃时水会沸腾C .三角形的内角和是360°D .打开电视机,正在播动画片5、下列各式计算正确的是( )A .3x -2x=1B .a 2+a 2=a 4C .a 5÷a 5=aD .a 3•a 2=a 51121126.下面四个立体图形中,主视图是三角形的是( )7、化简5(2x -3)+4(3-2x )结果为( )A .2x -3B .2x+9C .8x -3D .18x -38、暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一社区参加实践活动的概率为( )A .B .C .D . 9、如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为( )A .B .C .D .310、下列命题是真命题的是( )A .对角线相等的四边形是矩形B .一组邻边相等的四边形是菱形C .四个角是直角的四边形是正方形D .对角线相等的梯形是等腰梯形11、一次函数y=kx+b 的图象如图所示,则方程kx+b=0的解为( )1213161913122A .x=2B .y=2C .x=-1D .y=-112、已知⊙O 1和⊙O 2的半径是一元二次方程x 2-5x+6=0的两根,若圆心距O 1O 2=5,则⊙O 1和⊙O 2的位置关系是( )A .外离B .外切C .相交D .内切13、如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为( )ABC .5D .14、如图,矩形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (2,0)同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向 以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是( )152A .(2,0)B .(-1,1)C .(-2,1)D .(-1,-1)[来15、如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是( )A .y 的最大值小于0B .当x=0时,y 的值大于1C .当x=-1时,y 的值大于1D .当x=-3时,y 的值小于0二、填空题(共6小题,每小题3分,满分18分)16.分解因式:a 2-1= .17.计算:2sin30= .18.不等式组 2x -4<0 x+1≥0 的解集为 .19.如图,在Rt △ABC 中,∠C=90°,AC=4,将△ABC 沿CB 向右平移得到△DEF ,若平移距离为2,则四边形ABED 的面积等于 .20.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是.21.如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.三、解答题(共7小题,共57分,解答应写出文字说明,证明过程或演算步骤)22.(1)解不等式3x-2≥4,并将解集在数轴上表示出来.(2)化简:.23.(1)如图1,在▱ABCD 中,点E ,F 分别在AB ,CD 上,AE=CF .求证:DE=BF .(2)如图2,在△ABC 中,AB=AC ,∠A=40°,BD 是∠ABC 的平分线,求∠BDC 的度数.2121224a a a a a --+÷--24.冬冬全家周末一起去济南山区参加采摘节,他们采摘了油桃和樱桃两种水果,其中油桃比樱桃多摘了5斤,若采摘油桃和樱桃分别用了80元,且樱桃每斤价格是油桃每斤价格的2倍,问油桃和樱桃每斤各是多少元?25.济南以“泉水”而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉”活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,宁宁将5月份各户居民的节水量统计整理如下统计图表:(1)300户居民5月份节水量的众数,中位数分别是多少米3?(2)扇形统计图中2.5米3对应扇形的圆心角为度;(3)该小区300户居民5月份平均每户节约用水多少米3?26.如图1,在菱形ABCD中,AC=2,BD=2 3 ,AC,BD相交于点O.(1)求边AB的长;(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD 的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.①判断△AEF是哪一种特殊三角形,并说明理由;②旋转过程中,当点E为边BC的四等分点时(BE>CE),求CG的长.27、如图,已知双曲线,经过点D (6,1),点C 是双曲线第三象限上的动点,过C 作CA ⊥x 轴,过D 作DB ⊥y 轴,垂足分别为A ,B ,连接AB ,BC .(1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式; (3)判断AB 与CD 的位置关系,并说明理由.k y x28.如图1,抛物线y=ax2+bx+3与x轴相交于点A(-3,0),B(-1,0),与y轴相交于点C,⊙O1为△ABC的外接圆,交抛物线于另一点D.(1)求抛物线的解析式;(2)求cos∠CAB的值和⊙O1的半径;(3)如图2,抛物线的顶点为P,连接BP,CP,BD,M为弦BD中点,若点N在坐标平面内,满足△BMN∽△BPC,请直接写出所有符合条件的点N的坐标.。
1正面ABCD数学模拟试卷一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求。
1.3-的绝对值是( ) A .3 B .3- C .13 D .13-2.计算232(3)x x ⋅-的结果是( )A .56x - B .56x C .62x - D .62x3.已知点P (a ,a -1)在直角坐标系的第一象限内,则a 的取值范围在数轴上可表示为( )A B C D 4.成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( ) A . 59.310⨯ 万元 B . 69.310⨯万元 C .49310⨯万元 D . 60.9310⨯万元 5.如右图所示几何体的主视图是( )6.点B (-3,4)关于y 轴的对称点为A ,则点A 的坐标是( ) A .(3,4) B .(-4,-3) C .(4,-3) D .(-3,-4) 7.把不等式组⎩⎨⎧≤+->321x x 的解集表示在数轴上,下列选项正确的是( )A .B .C .D .8.用半径为12cm ,圆心角为90°的扇形纸片,围成一个圆锥的侧面,这个圆锥的底面半径为( )A .1.5cmB .3cmC .6cmD .12cm9.直线l :y =x +2与y 轴交于点A ,将直线l 绕点A 旋转90°后,所得直线的解析式为( )A .y =x -2B .y =-x +2C .y =-x -2D .y =-2x -110.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°,则∠DCF 等于( ) A .80° B .50° C .40° D .20° 二、填空题(每小题3分,共15分)11.分解因式:22x y xy y -+=_________.12. 甲、乙、丙三位选手各10次射击成绩的平均数和方差统计如表:则射击成绩最稳定的选手是____________.(填“甲”、“乙”、“丙”中的一个)1 0 1-1 0 1- 1 0 1- 10 1-2. 13.方程组31x y x y +=⎧⎨-=-⎩的解是____________.14.如图,是反比例函数1=k y x和y = 2=k y x (k 1<k 2)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若S △AOB =2,则k 2-k 1的值是_________.第14题图 第15题图15. 如图,直线y =43-x +4与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 按顺时针方向旋转90°后得到△AO 1B 1,则点B 1的坐标是 。
北师大版数学九年级中考模拟题及答案解析一.选择题(共12小题)1.抛物线y= - 1 (x+1) 2+3的顶点坐标(A. (1, 3)B. (1, - 3)C. ( - 1, - 3)D. ( - 1, 3)2.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是( )3. 已知二次函数y=kx2 - 7x - 7的图象与x轴有两个交点,则k的取值范围为 ( )A. k> - LB. k>-上且kHOC. - LD. k$ -上且kHO4 4 4 44. 已知二次函数y=ax2+bx+c的图象如图,下列结论中,正确的结论的个数有( )①a+b+c>0②a - b+c>0 ③abc<0 ④b+2a=O ⑤△>().A. 5个B. 4个C. 3个D. 2个5. 某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直),(如图)如果抛物线的最高点M离墙1米,离地面型米,则水流下落点B离墙距离OB是( )A. 2米B. 3米C. 4米D. 5米6.如图,点A 为Zct 边上任意一点,作AC 丄BC 于点C, CD 丄AB 于点D,下列 用线段比表示sina 的值,错误的是( )7.在z^ABC 中,若tanA=l, sinB=、Z,你认为最确切的判断是( )2 A. AABC 是等腰三角形 B. AABC 是等腰直角三角形C. AABC 是直角三角形D. AABC 是一般锐角三角形&如图,过点C ( - 2, 5)的直线AB 分别交坐标轴于A (0, 2), B 两点,则 5 3 2 29.如图,为了测量河岸A, B 两点的距离,在与AB 垂直的方向上取点C,测得 AC=a, ZABC=a,那么 AB 等于( )A. a»sinaB. a»cosaC. a*tana10.下列函数中,是二次函数的有( )①y=l - ②y=_L_(§)y=x (1 - x) <©y= (1 - 2x) (l+2x)xA. 1个B. 2个C. 3个D. 4个11.抛物线y=2 (x - 3) 2+4顶点坐标是() A. (3, 4) B. ( - 3, 4) C. (3, - 4) 12.已知二次函数y=x 2 - 2mx (m 为常数),当-1W X W2时,函数值y 的最小 值为-2,则m 的值是( ) D. —2— tana D. (2, 4)A. 型B. 坐C. 坐D. 空BC AB AC ACtanZOAB=( )A. 4B. V2 c.色或逅 D.仝或迈2 213. 若V3=tan (a+10°),则锐角a= ____ .14. 如图,在(DO中,弦AB=3cm,圆周角ZACB=30。
九年级数学第一次模拟试卷注意事项:1.考试时间120分钟,全卷总分120分; 2.本考试不得使用计算器; 3.将答案写在答题纸上.一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分) 1.下列计算正确的是( )A. 23326x x x =• B .632x x x ÷= C .22 33a a =() D .222a b a b +=+() 2.不等式组的解在数轴上表示为( )ABCD3.惠农区7月2日至7月8日最高气温(℃)统计如下表:日期 2日 3日 4日 5日 6日 7日 8日 最高气温℃28252530322827则这七天最高气温的中位数为( ) A .25℃B . 27℃C . 28℃D . 30℃4.方程9)2(2=-x 的解是A .1,521-==x xB .1,521=-=x xC .7,1121-==x xD .7,1121=-=x x5.九年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h ,则所列方程正确的是( ) A .1010123x x =- B .1010202x x =- C.1010202x x =+ D .1010123x x =+ 6.若关于x 的一元二次方程21220a x x +=(﹣)﹣有实数根,则整数a 的最大值为( ) A .0 B .﹣1 C . 1 D . 27.正方形ABCD 的边长为a ,以点B 为圆心、以a 22为半径的圆与直线AC ,DC 的位置关系是( )8. 已知a 0≠,在同一坐标系中y =xa 与 y=a (x -a )2的图象可能是( ) xyOxyOx yOxyOA B C D 二、填空题(每小题3分,共24分) 9.分解因式:a 3﹣a=10.如图,ABC 与△DEF 位似,位似中心为点O ,且△ABC 的面积等于△DEF 面积的49,则:AB DE = . 11.11. 某校五个绿化小组一天的植树棵树如下:10,10,12,x ,8. 已知这组数据的平均数是10,那么这组数据的方差是 .12.如图,四边形ABCD 内接于⊙O ,已知∠ADC=140°,则∠AOC= .13.已知直线y kx b =+交坐标轴于A (-3,0)、B(0,5)两点,则不等式kx+b>0的解集为______.14. 已知{21x y ==-是二元一次方程组{81mx ny nx my -=-=的解,则m n +的值为 .15.如图,将线段AB 绕点O 顺时针旋转90°得到线段A ′B ′,那么A(﹣2,5)的对应点A ′的坐标是 . 16.如图,在矩形ABCD 中,CD=1,∠DBC=30°.若将BD 绕点B 旋转后,点D 落在DC 延长线上的点E 处,点D 经过的路径,则图中阴影部分的面积是 ;三、解答题(共36分)17.(6分)计算:(12)-2-27 +||3-2+4sin 60°(第12题)(第10题)(第15题图) BA Oxy (第16题图)班级______ 姓名_________18.(6分)解方程:2311+=--x x x19.(6分)如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A (-3,2),B (0,4), C (0,2). (1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C ;平移△ABC ,若A 的对应点A 2的坐标为(0,-4),画出平移后对应的△A 2B 2C 2;(2)若将△A 1B 1C 绕某一点旋转可以得到△A 2B 2C 2,请直接写出旋转中心的坐标; (3)在轴上有一点P ,使得PA+PB 的值最小,请直接写出点P 的坐标.20.(6分)我市某中学艺术节期间,向学生征集书画作品.九年级美术李老师从全年级14个班中随机抽取了A 、B 、C 、D 四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图. (1)李老师采取的调查方式是_________(填“普查”或“抽样调查”),李老师所调查的4个班征集到作品共__________件,请把图2补充完整.(2)如果全年级参加作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要从中抽两人去参加学校总结表彰座谈会,求恰好抽取其中一男一女的概率(要求用树状图或列表法写出分析过程).班作品图(2)图(1)431D C B A 522DCB A 150°2521.(6分)如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长为1.5米,在同一时刻测量杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上的影长为21米,留在墙上的影高为2米,求旗杆的高度.22.(6分)如图所示,在矩形ABCD 中,E 是BC 边上的点,AE=BC ,DF ⊥AE ,垂足为F ,连接DE 。
中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4.00分)﹣8的绝对值是()A.﹣8 B.8 C.±8 D.﹣2.(4.00分)2017年我省粮食总产量为695.2亿斤.其中695.2亿用科学记数法表示为()A.6.952×106B.6.952×108C.6.952×1010D.695.2×1083.(4.00分)下列运算正确的是()A.(a2)3=a5B.a4•a2=a8 C.a6÷a3=a2D.(ab)3=a3b34.(4.00分)一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A.B.C.D.5.(4.00分)下列分解因式正确的是()A.﹣x2+4x=﹣x(x+4) B.x2+xy+x=x(x+y)C.x(x﹣y)+y(y﹣x)=(x﹣y)2 D.x2﹣4x+4=(x+2)(x﹣2)6.(4.00分)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2a C.b=(1+22.1%)×2a D.b=22.1%×2a7.(4.00分)若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A.﹣1 B.1 C.﹣2或2 D.﹣3或18.(4.00分)为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差9.(4.00分)▱ABCD中,E,F的对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF10.(4.00分)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)11.(5.00分)不等式>1的解集是.12.(5.00分)如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D是AB的中点,则∠DOE=°.13.(5.00分)如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B.平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数表达式是.14.(5.00分)矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8.00分)计算:50﹣(﹣2)+×.16.(8.00分)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8.00分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是个平方单位.18.(8.00分)观察以下等式:第1个等式:++×=1,第2个等式:++×=1,第3个等式:++×=1,第4个等式:++×=1,第5个等式:++×=1,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10.00分)为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米?(结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)20.(10.00分)如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.六、解答题(本大题满分12分)21.(12.00分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.七、解答题(本题满分12分)22.(12.00分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?八、解答题(本题满分14分)23.(14.00分)如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB 于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4.00分)﹣8的绝对值是()A.﹣8 B.8 C.±8 D.﹣【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣8<0,∴|﹣8|=8.故选:B.【点评】本题考查了绝对值的意义,任何一个数的绝对值一定是非负数,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4.00分)2017年我省粮食总产量为695.2亿斤.其中695.2亿用科学记数法表示为()A.6.952×106B.6.952×108C.6.952×1010D.695.2×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:695.2亿=695 2000 0000=6.952×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4.00分)下列运算正确的是()A.(a2)3=a5B.a4•a2=a8 C.a6÷a3=a2D.(ab)3=a3b3【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【解答】解:∵(a2)3=a6,∴选项A不符合题意;∵a4•a2=a6,∴选项B不符合题意;∵a6÷a3=a3,∴选项C不符合题意;∵(ab)3=a3b3,∴选项D符合题意.故选:D.【点评】此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.(4.00分)一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看上边是一个三角形,下边是一个矩形,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.(4.00分)下列分解因式正确的是()A.﹣x2+4x=﹣x(x+4) B.x2+xy+x=x(x+y)C.x(x﹣y)+y(y﹣x)=(x﹣y)2 D.x2﹣4x+4=(x+2)(x﹣2)【分析】直接利用公式法以及提取公因式法分解因式分别分析得出答案.【解答】解:A、﹣x2+4x=﹣x(x﹣4),故此选项错误;B、x2+xy+x=x(x+y+1),故此选项错误;C、x(x﹣y)+y(y﹣x)=(x﹣y)2,故此选项正确;D、x2﹣4x+4=(x﹣2)2,故此选项错误;故选:C.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键.6.(4.00分)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2a C.b=(1+22.1%)×2a D.b=22.1%×2a【分析】根据2016年的有效发明专利数×(1+年平均增长率)2=2018年的有效发明专利数.【解答】解:因为2016年和2018年我省有效发明专利分别为a万件和b万件,所以b=(1+22.1%)2a.故选:B.【点评】考查了列代数式,掌握2次增长或下降之类方程的等量关系是解决本题的关键.7.(4.00分)若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A.﹣1 B.1 C.﹣2或2 D.﹣3或1【分析】将原方程变形为一般式,根据根的判别式△=0即可得出关于a的一元二次方程,解之即可得出结论.【解答】解:原方程可变形为x2+(a+1)x=0.∵该方程有两个相等的实数根,∴△=(a+1)2﹣4×1×0=0,解得:a=﹣1.故选:A.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.8.(4.00分)为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差【分析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;对于n个数x1,x2,…,x n,则x¯=(x1+x2+…+x n)就叫做这n个数的算术平均数;s2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2]进行计算即可.【解答】解:A、甲的众数为7,乙的众数为8,故原题说法错误;B、甲的中位数为7,乙的中位数为4,故原题说法错误;C、甲的平均数为6,乙的平均数为5,故原题说法错误;D、甲的方差为4.4,乙的方差为6.4,甲的方差小于乙的方差,故原题说法正确;故选:D.【点评】此题主要考查了众数、中位数、方差和平均数,关键是掌握三种数的概念和方差公式.9.(4.00分)▱ABCD中,E,F的对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF【分析】连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF 即可,然后根据各选项的条件分析判断即可得解.【解答】解:如图,连接AC与BD相交于O,在▱ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OE,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,然后同A,故本选项不符合题意;故选:B.【点评】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定方法是解题的关键.10.(4.00分)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.【分析】当0<x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,由此即可判断;【解答】解:当0<x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,∴函数图象是A,故选:A.【点评】本题考查动点问题函数图象、分段函数等知识,解题的关键是理解题意,学会构建函数关系式解决问题,属于中考常考题型.二、填空题(本大题共4小题,每小题5分,共20分)11.(5.00分)不等式>1的解集是x>10.【分析】根据解一元一次不等式得基本步骤依次计算可得.【解答】解:去分母,得:x﹣8>2,移项,得:x>2+8,合并同类项,得:x>10,故答案为:x>10.【点评】本题考查了解一元一次不等式:有分母先去分母,再去括号,然后进行移项,把含未知数的项移到不等式的左边,再进行合并同类项,最后把未知数的系数化为1可得到不等式的解集.12.(5.00分)如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D 是AB的中点,则∠DOE=60°.【分析】连接OA,根据菱形的性质得到△AOB是等边三角形,根据切线的性质求出∠AOD,同理计算即可.【解答】解:连接OA,∵四边形ABOC是菱形,∴BA=BO,∵AB与⊙O相切于点D,∴OD⊥AB,∵点D是AB的中点,∴直线OD是线段AB的垂直平分线,∴OA=OB,∴△AOB是等边三角形,∵AB与⊙O相切于点D,∴OD⊥AB,∴∠AOD=∠AOB=30°,同理,∠AOE=30°,∴∠DOE=∠AOD+∠AOE=60°,故答案为:60.【点评】本题考查的是切线的性质、等边三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键13.(5.00分)如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B.平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数表达式是y=x﹣3.【分析】首先利用图象上点的坐标特征得出A点坐标,进而得出正比例函数解析式,再利用平移的性质得出答案.【解答】解:∵正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),∴2m=6,解得:m=3,故A(2,3),则3=2k,解得:k=,故正比例函数解析式为:y=x,∵AB⊥x轴于点B,平移直线y=kx,使其经过点B,∴B(2,0),∴设平移后的解析式为:y=x+b,则0=3+b,解得:b=﹣3,故直线l对应的函数表达式是:y=x﹣3.故答案为:y=x﹣3.【点评】此题主要考查了反比例函数与一次函数的交点问题,正确得出A,B点坐标是解题关键.14.(5.00分)矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为或3.【分析】根据勾股定理求出BD,分PD=DA、P′D=P′A两种情况,根据相似三角形的性质计算.【解答】解:∵四边形ABCD为矩形,∴∠BAD=90°,∴BD==10,当PD=DA=8时,BP=BD﹣PD=2,∵△PBE∽△DBC,∴=,即=,解得,PE=,当P′D=P′A时,点P′为BD的中点,∴P′E′=CD=3,故答案为:或3.【点评】本题考查的是相似三角形的性质、勾股定理和矩形的性质,掌握相似三角形的性质定理、灵活运用分情况讨论思想是解题的关键.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8.00分)计算:50﹣(﹣2)+×.【分析】首先计算零次幂和乘法,然后再计算加减即可.【解答】解:原式=1+2+4=7.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.16.(8.00分)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.【分析】设城中有x户人家,根据鹿的总数是100列出方程并解答.【解答】解:设城中有x户人家,依题意得:x+=100解得x=75.答:城中有75户人家.【点评】考查了一元一次方程的应用.解题的关键是找准等量关系,列出方程.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8.00分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是20个平方单位.【分析】(1)以点O为位似中心,将线段AB放大为原来的2倍,即可画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,即可画出线段A2B1;(3)连接AA2,即可得到四边形AA1B1A2为正方形,进而得出其面积.【解答】解:(1)如图所示,线段A1B1即为所求;(2)如图所示,线段A2B1即为所求;(3)由图可得,四边形AA1B1A2为正方形,∴四边形AA1B1A2的面积是()2=()2=20.故答案为:20.【点评】此题主要考查了位似变换以及旋转的性质以及勾股定理等知识的运用,利用相似变换的性质得出对应点的位置是解题关键.18.(8.00分)观察以下等式:第1个等式:++×=1,第2个等式:++×=1,第3个等式:++×=1,第4个等式:++×=1,第5个等式:++×=1,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【分析】以序号n为前提,依此观察每个分数,可以用发现,每个分母在n的基础上依次加1,每个分字分别是1和n﹣1【解答】解:(1)根据已知规律,第6个分式分母为6和7,分子分别为1和5故应填:(2)根据题意,第n个分式分母为n和n+1,分子分别为1和n﹣1故应填:证明:=∴等式成立【点评】本题是规律探究题,同时考查分式计算.解答过程中,要注意各式中相同位置数字的变化规律,并将其用代数式表示出来.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10.00分)为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米?(结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【分析】根据平行线的性质得出∠FED=45°.解等腰直角△DEF,得出DE=DF=1.8米,EF=DE=米.证明∠AEF=90°.解直角△AEF,求出AE=EF•t an∠AFE≈18.036米.再解直角△ABE,即可求出AB=AE•sin∠AEB≈18米.【解答】解:由题意,可得∠FED=45°.在直角△DEF中,∵∠FDE=90°,∠FED=45°,∴DE=DF=1.8米,EF=DE=米.∵∠AEB=∠FED=45°,∴∠AEF=180°﹣∠AEB﹣∠FED=90°.在直角△AEF中,∵∠AEF=90°,∠AFE=39.3°+45°=84.3°,∴AE=EF•tan∠AFE≈×10.02=18.036(米).在直角△ABE中,∵∠ABE=90°,∠AEB=45°,∴AB=AE•sin∠AEB≈18.036×≈18(米).故旗杆AB的高度约为18米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,平行线的性质,掌握锐角三角函数的定义、仰角俯角的概念是解题的关键.20.(10.00分)如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【分析】(1)利用基本作图作AE平分∠BAC;(2)连接OE交BC于F,连接OC,如图,根据圆周角定理得到=,再根据垂径定理得到OE⊥BC,则EF=3,OF=2,然后在Rt△OCF中利用勾股定理计算出CF=,在Rt△CEF中利用勾股定理可计算出CE.【解答】解:(1)如图,AE为所作;(2)连接OE交BC于F,连接OC,如图,∵AE平分∠BAC,∴∠BAE=∠CAE,∴=,∴OE⊥BC,∴EF=3,∴OF=5﹣3=2,在Rt△OCF中,CF==,在Rt△CEF中,CE==.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了三角形的外心.六、解答题(本大题满分12分)21.(12.00分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有50人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为30%;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【分析】(1)用“59.5~69.5”这组的人数除以它所占的百分比可得到调查的总人数;再计算出“89.5~99.5”这一组人数占总参赛人数的百分比,然后用1分别减去其它三组的百分比得到“69.5~79.5”这一组人数占总参赛人数的百分比;(2)利用“59.5~69.5”和“69.5~79.5”两分数段的百分比为40%可判断他不能获奖;(3)画树状图展示所有12种等可能的结果数,再找出恰好选中1男1女的结果数,然后根据概率公式求解.【解答】解:(1)5÷10%=50,所以本次比赛参赛选手共有50人,“89.5~99.5”这一组人数占总参赛人数的百分比为×100%=24%,所以“69.5~79.5”这一组人数占总参赛人数的百分比为1﹣10%﹣36%﹣24%=30%;故答案为50,30%;(2)他不能获奖.理由如下:他的成绩位于“69.5~79.5”之间,而“59.5~69.5”和“69.5~79.5”两分数段的百分比为10%+30%=40%,因为成绩由高到低前60%的参赛选手获奖,他位于后40%,所以他不能获奖;(3)画树状图为:共有12种等可能的结果数,其中恰好选中1男1女的结果数为8,所以恰好选中1男1女的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.七、解答题(本题满分12分)22.(12.00分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【分析】(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,根据“总利润=盆数×每盆的利润”可得函数解析式;(2)将盆景的利润加上花卉的利润可得总利润关于x的函数解析式,配方成顶点式,利用二次函数的性质求解可得.【解答】解:(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,所以W1=(50+x)(160﹣2x)=﹣2x2+60x+8000,W2=19(50﹣x)=﹣19x+950;(2)根据题意,得:W=W1+W2=﹣2x2+60x+8000﹣19x+950=﹣2x2+41x+8950=﹣2(x﹣)2+,∵﹣2<0,且x为整数,∴当x=10时,W取得最大值,最大值为9160,答:当x=10时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是9160元.【点评】本题主要考查二次函数的应用,解题的关键是理解题意,找到题目蕴含的相等关系,据此列出函数解析式及二次函数的性质.八、解答题(本题满分14分)23.(14.00分)如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB 于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【分析】(1)利用直角三角形斜边中线的性质定理即可证明;(2)利用四边形内角和定理求出∠CME即可解决问题;(3)首先证明△ADE是等腰直角三角形,△DEM是等边三角形,设FM=a,则AE=CM=EM=a,EF=2a,推出=,=,由此即可解决问题;【解答】(1)证明:如图1中,∵DE⊥AB,∴∠DEB=∠DCB=90°,∵DM=MB,∴CM=DB,EM=DB,∴CM=EM.(2)解:∵∠AED=90°,∠A=50°,∴∠ADE=40°,∠CDE=140°,∵CM=DM=ME,∴∠NCD=∠MDC,∠MDE=∠MED,∴∠CME=360°﹣2×140°=80°,∴∠EMF=180°﹣∠CME=100°.(3)证明:如图2中,设FM=a.∵△DAE≌△CEM,CM=EM,∴AE=ED=EM=CM=DM,∠AED=∠CME=90°∴△ADE是等腰直角三角形,△DEM是等边三角形,∴∠DEM=60°,∠MEF=30°,∴AE=CM=EM=a,EF=2a,∵CN=NM,∴MN=a,∴=,=,∴=,∴EM∥AN.【点评】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、等边三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.。
北师大版数学九年级中考模拟试题(二)一、选择题。
1.如图,过点C(﹣2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan ∠OAB=()。
A.B.C.D.2.如图,为了测量河岸A,B两点的距离,在与AB垂直的方向上取点C,测得AC=a,∠ABC=α,那么AB等于()。
A.a•sinαB.a•cosαC.a•tanαD.3.下列函数中,是二次函数的有()。
①y=1﹣x2②y=③y=x(1﹣x)④y=(1﹣2x)(1+2x)A.1个B.2个C.3个D.4个4.抛物线y=2(x﹣3)2+4顶点坐标是()。
A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(2,4)5.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是()。
A. B. C.或 D.或6.在Rt△ABC中,∠C=90°,AC=7,AB=25,则cosB的值为()。
A. B. C. D.7.在△ABC中,∠C=90°,sinB=,则tanA的值为()。
A.B.1 C. D.8.已知二次函数y=kx2﹣7x﹣7的图象与x轴有两个交点,则k的取值范围为()。
A.k>﹣B.k>﹣且k≠0 C.k≥﹣D.k≥﹣且k≠09.已知二次函数y=ax2+bx+c的图象如图,下列结论中,正确的结论的个数有()。
①a+b+c>0 ②a﹣b+c>0 ③abc<0 ④b+2a=0 ⑤△>0.A.5个B.4个C.3个D.2个10.某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直),(如图)如果抛物线的最高点M离墙1米,离地面米,则水流下落点B离墙距离OB是()。
A.2米B.3米C.4米D.5米二、填空题。
11.若=tan(α+10°),则锐角α=.12.如图,在⊙O中,弦AB=3cm,圆周角∠ACB=30°,则⊙O的直径等于cm.13.如图是一条水铺设的直径为2米的通水管道横截面,其水面宽1.6米,则这条管道中此时水深为米.14.二次函数y=ax2+bx+c的图象如图所示,则a 0,b 0,c 0,△0.15.抛物线y=2x2向右平移3个单位,再向下平移4个单位,得到图象的解析式是,顶点坐标是,对称轴是.16.抛物线y=x2﹣4x+3与x轴交于A、B,顶点为P,则△PAB的面积是.三、解答题。
九年级中考数学二模考试试题满分150分时间:120分钟一、单选题。
(每小题4分,共40分)1.2023的相反数是()A.2023B.﹣2023C.﹣12023 D.120232.如图是由8个完全相同的小正方体组成的几何体,从正面看到的形状图是()3.我国自主研发的北斗系统技术世界领先,在西昌卫星发射中心成功发射最后一颗北斗三号卫星,该卫星发射升空的速度约7100米/秒,其中“7100”用科学记数法表示为()A.7100B.0.71×104C.7.1×103D.71×1024.将一副三角板按如图所示的方式放置,则∠AOB=()A.75°B.45°C.30°D.80°(第4题图)(第6题图)(第9题图)5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,下列既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图数轴上A,B两点表示的数分别为a,b,下列结论中,错误的是()A.a+b <0B.a -b <0C.ab <0D.ab <07.二十四节气是中华上古农耕文明的智意结晶,小明购买了二十四节气主题邮票,他要将立春,立夏,秋分,大寒四张邮票中的两张送给小鹏,小明将它们背面朝上放在桌面上,让小鹏从中随机抽取一张,(不放回),再从中随机抽取一张,则小鹏抽到的两张恰好是立夏和秋分的概率是( )A.12 B.16 C.13 D.34 8.函数y=ax 与y=ax -a 在同一坐标系中的大致图象是( )9.如图,在△ABC 中,∠C=90°,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E ,已知CE=3,BE=5,则AC 的长为( )A.8B.7C.6D.510.已知函数y=x 2-2ax+5,当x ≤2时,函数值随x 增大而减小,且对任意的1≤x 1≤a+1和1≤x 2≤a+1,x 1,x 2相对应的函数值为y 1,y 2,总满足|y 1-y 2|≤4,则实数a 的取值范围是( ) A.﹣1≤a ≤3 B.﹣1≤a ≤2 C.2≤a ≤3 D.2≤a ≤4 二.填空题。
(每小题4分,共24分) 11.分解因式:x 2-16= .12.如图,转盘中6个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,(指向两个扇形交线处时,重新转动转盘),事件指针落在蓝色扇形中的概率是 .(第12题图) (第15题图) (第16题图)13.一个多边形的每个内角都为120°,则这个多边形的边数为 .14.定义运算法则:a ★b=a 2+ab ,例如3★2=32+3×2=15,若2★x=10,则x 的值为 . 15.古代数学家贾宪提出从长方形对角线上任一点作两条分别平行于两邻边的直线,则所得两长方形面积相等,如图1,S 矩形DNFG =S 矩形FEBM ,问题解决:如图2,点P 是矩形ABCD 的对角线BD 上一点,过点P 作EF ∥BC 分别交AB ,CD 于点E ,F ,连接AP ,CP ,若DF=4,EP=3,则图中阴影部分的面积和为 .16.如图,在平面直角坐标系中,∠ACB=90°,∠BAC=30°,BC=2,点A 在x 轴的正半轴上滑动,点B 在y 轴的正半轴上滑动,点A ,点B 在滑动过程中可与原点O 重合,下列结论:①若C ,O 两点关于AB 对称,则OA=2√3;②若AB 平分CO ,则AO ⊥CO ;③四边形ACBO 的面积最大值为4+2√3;④AB 的中点D 运动路径的长为12π.其中正确的结论是 .(写出正确结论的序号) 三.解答题。
17.(6分)计算2﹣1+|﹣5|-sin30°+(π-1)0.18.(6分)解不等式组{2x ≥5x -3①4x+23>x ②,并写出它的所有整数解.19.(6分)如图,在菱形ABCD中,点M,N分别在AB,CB上,且BM=BN.求证:DM=DN.20(8分)某校数学实践小组近期人们关注的五个话题:A.通讯;B.民法典;C.导航;D.数学经济;E.小康社会,对某小区居民进行随机抽样调查,每人只能从中选择一个本人最关注的话题,根据调查结果绘制了如图两幅不完整的统计图.根据上面提供的信息,回答下列问题:(1)数学实践小组在这次活动中,调查的居民共有人.(2)将上面的最关注话题条形统计图补充完整.(3)最关注话题扇形统计图中a= ,话题D所在扇形的圆心角是度.(4)解设这个小区居民共有10000人,请估计该小区居民中最关注的话题是民法典的人数大约有多少?21.(8分)为给人的生活带来方便,图1是公共自行车的实物图,图2是公共自行车的车架示意图,点A,D,C,E在同一条直线上,CD=35cm,DF=24cm,AF=30cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)(1)求AD的长.(2)求点E到AB的距离(结果保留整数).22.(8分)如图,在△ABC中,点O是边AB上一点,以点O为圆心,以OB为半径作⨀O,⨀O 恰好与AC相切于点D,连接BD,BD平分∠ABC.(1)求∠C的度数;(2)若∠A=30°,AD=2√3,求线段CD的长.23.(10分)超市有甲,乙两种礼品,经调查发现,发现用8800元购进的甲礼品的数量是用4000元购进的乙礼品的2倍,且每个甲礼品的进价比乙礼品贵4元.(1)甲,乙两个礼品的进件是多少元;(2)为满足消费者需求,该超市准备再次购进甲,乙两种礼品共200个,甲礼品的定价为70元,乙礼品的售价为60元,若总利润不低于4120元,问最少购进多少个甲礼品?(x<0)的图象交于A(a,6)、24.(10分)如图,一次函数y=x+8的图象与反比例函数y=kxB两点.(1)求反比例函数的表达式以及点B的坐标;(2)在y轴上存在点P,使得AP+BP的值最小,求AP+BP的最小值;(3)M为反比例函数图象上一点,N为x轴上一点,是否存在点M,N,使△MBN是以MN为底的等腰直角三角形,若存在,求出点M的坐标,若不存在,说明理由.25.(12分)已知点C为△ABC和△CDE的公共顶点,将△CDE绕点C顺时针旋转α(0°<α<360°),连接BD,AE,请完成如下问题.(1)如图1,若△ABC和△CDE均为等边三角形,线段BD,AE的数量关系是.(2)如图2,若∠ABC=∠EDC=90°,∠ACB=∠ECD=60°,其他条件不变,请写出线段BD与线段AE的数量关系,并说明理由.(3)如图3,D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB=4,AC=2√3,直接写出AD的长.图1 图2 图326.(12分)如图,二次函数y=ax2+bx+4图象与x轴交于A(4,0)和B(﹣1,0)两点,与y轴交于点C.(1)求函数表达式以及C的坐标;(2)Q在抛物线的对称轴上,连接CQ,BQ,若△QBC以BC为底的等腰三角形,求Q点坐标;的最大值并写(3)点P在抛物线上且在第一象限内,过点P作PM⊥AC,PN⊥y轴,求PM·CMPN2出点P的坐标.答案解析一、单选题。
(每小题4分,共40分)1.2023的相反数是( B )A.2023B.﹣2023C.﹣12023 D.120232.如图是由8个完全相同的小正方体组成的几何体,从正面看到的形状图是( D )3.我国自主研发的北斗系统技术世界领先,在西昌卫星发射中心成功发射最后一颗北斗三号卫星,该卫星发射升空的速度约7100米/秒,其中“7100”用科学记数法表示为( C )A.7100B.0.71×104C.7.1×103D.71×1024.将一副三角板按如图所示的方式放置,则∠AOB=( A )A.75°B.45°C.30°D.80°(第4题图)(第6题图)(第9题图)5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,下列既是轴对称图形又是中心对称图形的是( D )A. B. C. D.6.如图数轴上A,B两点表示的数分别为a,b,下列结论中,错误的是( A )A.a+b<0B.a-b<0C.ab<0D.ab<07.二十四节气是中华上古农耕文明的智意结晶,小明购买了二十四节气主题邮票,他要将立春,立夏,秋分,大寒四张邮票中的两张送给小鹏,小明将它们背面朝上放在桌面上,让小鹏从中随机抽取一张,(不放回),再从中随机抽取一张,则小鹏抽到的两张恰好是立夏和秋分的概率是( B )A.12 B.16 C.13 D.34 8.函数y=ax 与y=ax -a 在同一坐标系中的大致图象是( A )9.如图,在△ABC 中,∠C=90°,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E ,已知CE=3,BE=5,则AC 的长为( C ) A.8 B.7 C.6 D.510.已知函数y=x 2-2ax+5,当x ≤2时,函数值随x 增大而减小,且对任意的1≤x 1≤a+1和1≤x 2≤a+1,x 1,x 2相对应的函数值为y 1,y 2,总满足|y 1-y 2|≤4,则实数a 的取值范围是( C ) A.﹣1≤a ≤3 B.﹣1≤a ≤2 C.2≤a ≤3 D.2≤a ≤4 二.填空题。
(每小题4分,共24分)11.分解因式:x 2-16= (x+4)(x -4) .12.如图,转盘中6个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,(指向两个扇形交线处时,重新转动转盘),事件指针落在蓝色扇形中的概率是 13 .(第12题图) (第15题图) (第16题图) 13.一个多边形的每个内角都为120°,则这个多边形的边数为 6 .14.定义运算法则:a ★b=a 2+ab ,例如3★2=32+3×2=15,若2★x=10,则x 的值为 3 .15.古代数学家贾宪提出从长方形对角线上任一点作两条分别平行于两邻边的直线,则所得两长方形面积相等,如图1,S 矩形DNFG =S 矩形FEBM ,问题解决:如图2,点P 是矩形ABCD 的对角线BD 上一点,过点P 作EF ∥BC 分别交AB ,CD 于点E ,F ,连接AP ,CP ,若DF=4,EP=3,则图中阴影部分的面积和为 12 .16.如图,在平面直角坐标系中,∠ACB=90°,∠BAC=30°,BC=2,点A 在x 轴的正半轴上滑动,点B 在y 轴的正半轴上滑动,点A ,点B 在滑动过程中可与原点O 重合,下列结论:①若C ,O 两点关于AB 对称,则OA=2√3;②若AB 平分CO ,则AO ⊥CO ;③四边形ACBO 的面积最大值为4+2√3;④AB 的中点D 运动路径的长为12π.其中正确的结论是 ①③ .(写出正确结论的序号) 三.解答题。