拉森钢板桩围堰计算汇总
- 格式:docx
- 大小:37.00 KB
- 文档页数:5
(完整版)拉森钢板桩基坑支护方案设计和计算3、拉森钢板桩基坑支护方案设计和计算3.1、基本情况城展路环城河桥桥台位于河岸上,基坑开挖深度较小;桥墩长24m,宽1.7m,右偏角90°,系梁底标高为0.0m,河床底标高0.0m,因此基坑底部尺寸考虑1m施工操作面要求,布置为长26m,宽3.7m,不需土方开挖。
环城河常水位2.6m,1/20洪水位3.27m,河床底标高0.0m,河底为淤泥土。
考虑选择枯水期施工,堰顶标高为3.5m。
3.2、支护方案设计支护采用拉森钢板桩围堰支护,围堰平行河岸布置,平面布置详见附图。
堰体采用拉森钢板桩Ⅳ型,桩长12米,内部水平围檩由单根(500×300mm)H型钢组成,支撑杆设置在钢板桩顶部,由直径为600mm,壁厚为8mm钢管组成。
整个基坑开挖完成后,沿基坑四周挖出一条200×200mm排水沟,在基坑对角设500×500×500mm集水坑,用泥浆泵将集水坑内渗水及时排出基坑。
布置图:4、基坑稳定性验算4.1、桥墩基坑稳定性验算钢板桩长度为12米,桩顶支撑,标高3.5米,入土长度8.5米。
基坑开挖宽度26米,坑底标高0.0米。
基坑采用拉森钢板桩支护,围檩由单根(500×300mm)H型钢组成,设单道桩顶支撑,支撑采用直径为600mm,壁厚为8mm钢管作为支撑导梁,钢管与H型钢进行嵌固相连并焊接。
验算钢板桩长度,选择钢板桩和导梁型号,验算基底稳定性。
采用理正深基坑软件对支护结构和围囹支撑体系等变形与内力整体计算分析;支护结构的抗倾覆稳定性、抗隆起、抗管涌、嵌固深度采用理正深基坑支护结构设计软件单元计算进行分析。
4.1.1、设计标准及参数1、基坑设计等级及设计系数二级,重要性系数:1.0;支护结构结构重要性系数:1.0;构件计算综合性系数:1.25。
2 、材料力学性能指标1、单元分析工况定义(1)、工况1:打钢板桩,水面以下3.5m;(2)、工况2:在桩顶以下0.5m处安装第一道内支撑;(3)、工况3:抽水;2、单元计算[ 支护方案 ]----------------------------------------------------------------------连续墙支护---------------------------------------------------------------------- [ 基本信息 ]---------------------------------------------------------------------- [ 附加水平力信息 ]---------------------------------------------------------------------- [ 土层信息 ]---------------------------------------------------------------------- [ 土层参数 ]---------------------------------------------------------------------- [ 支锚信息 ]---------------------------------------------------------------------- [ 土压力模型及系数调整 ]----------------------------------------------------------------------弹性法土压力模型: 经典法土压力模型:---------------------------------------------------------------------- [ 工况信息 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 设计结果 ]---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 结构计算 ]---------------------------------------------------------------------- 各工况:内力位移包络图:地表沉降图:---------------------------------------------------------------------- [ 抗倾覆稳定性验算 ]---------------------------------------------------------------------- 抗倾覆安全系数:p , 对于内支撑支点力由内支撑抗压力决定;对于锚杆或锚索,支点力为锚杆或锚索的锚固力和抗拉力的较小值。
拉森钢板桩水中围堰设计及验算注:本文着重介绍在水中拉森钢板桩围堰施工中,常见的设计步骤及验算方法,并配以示例图片。
1. 数据参数收集首先需要侧得墩水深, 需清除的淤泥厚, 在抽水清淤时需要设置多层支撑,此处支撑一般采用等弯矩布置。
施工中采用拉森Ⅳ型钢板桩, 需知道钢板桩的惯性模量W ,抗弯强度设计值[f b]。
其他需要的参数:水重度γw ,砂粘土的重度γ ,内摩擦角φ,粘聚力c 。
2. 确定支撑层数与间距按等弯矩布置各层支撑的间距, 得出板桩顶部悬臂端的最大允许跨度如3. 88 m,则支撑层数之间的间距依次为 L1 =2.5 m, L2 =2 m, L3 =2 m, L4 =2.28 m, L5 =2m。
3. 拉森钢板桩的长度计算首先要确定板桩的入土深度,选择用盾恩近似法来计算板桩的入土深度, 需要先计算出朗肯主动土压力系数Ka和朗肯被动土压力系数Kp。
再根据采用的支撑数,算出总的最低钢板桩桩长如16.99 m。
鉴于拉森Ⅳ钢板桩的长度,决定采用拉森桩桩长为 18 m,埋入深度为 6.02 m。
由计算可知埋入深度满足围堰的稳定性要求。
4. 拉森钢板桩强度复核计算需要参数:钢板桩的截面抵抗矩为W ,钢板桩允许抗弯应力[σ] ,得出 Mmax 来判断选用的拉森Ⅳ型钢板桩是否满足强度要求。
5. 抗倾覆验算由3可知:拉森桩理论埋入深度为 L,而实际埋入深度为L′。
计算抗倾覆系数 k =L′/L是否满足要求。
6. 基底隆起验算即水压力和淤泥压力的合力q= γw(H +L5 )+γ′(h + L5 )7. 腰梁支撑强度、刚度钢板桩围堰平面尺寸如为 8.8 m ×10 m,支撑采用并拼双道Ⅰ36b型工字钢 ,斜撑采用 60 cm壁厚 12 mm的管桩。
斜支撑按 45°角布置于腰梁相邻两工字钢之间 ,两斜支撑焊接于三等分工字钢。
腰梁间距D确定后,计算腰梁所承受的均布水平荷载P,即假定腰梁承受相邻两跨各半跨上的侧压力,再分别计算出土中和水中的侧压力。
1钢板桩设计1.1 地质状况本工程项目座落在张家港市北部长江南岸张家港化工保税区内。
厂区位于长江冲积平原的河漫滩地,地形平坦。
原自然地坪标高较底,场地平均高程106.20m ,现已采用吹砂回填,将厂区地坪标高提高。
根据地质报告,本工程土质上层为吹填砂,以下分别为粉质粘土夹粉土;粉细砂夹粉土,土的抗压、抗剪强度均较低,且难以采取有效的降排水措施。
目前厂区内地下水位较高,土质松软,地质情况较为复杂。
该区地质结构断面如下图所示:1.2 电梯井形状本工程结构形式如下。
目前基坑结构长13.50米,宽10.35米,基坑底标高EL.98.55m ,基坑深度7.65米。
池壁每一侧考虑2.0米宽的工作面,则支护结构的尺寸为长17.50米,宽14.40米。
2 支撑式钢板桩挡土墙的构造本工程采用内撑钢板桩挡土墙结构。
其主要由钢板桩、支撑二部分组成,钢板桩起承受水平土压力防止土体沿滑动面滑动以及阻隔地下水的作用。
它的稳定主要靠两道钢支撑使钢板桩保持垂直、稳定,并确保两侧土体不向基坑内发生位移,钢板桩应插入土体一定深度,防止土体滑动和基坑向上隆起。
支撑式钢板桩支挡结构简单且便于施工,整个支挡系统均在基坑开挖过程中完成,作业(包括支撑和挖土)十分安全,施工质量容易保证,且较经济。
3 钢板桩设计其钢板桩和内钢支撑布置示意图如下:EL.105.700EL.104.850钢板桩钢支撑立体布置图安全围栏EL.103.2501EL.100.250上下通道2000 12m钢板桩2000145002000钢板桩围檩及内支撑平面布置图工字钢400×400围檩φ377×10钢管支撑φ630×12钢管支撑45004500本工程钢板桩采用Ⅳ型拉森钢板桩,长度为12m,宽度400mm。
(即每2.5块1m)。
钢板桩水平围檩采用40号工字钢,内支撑采用Φ630×12的直撑钢管和Φ377×10的斜撑钢管。
1拉森钢板桩力学验算1.1设计资料根据某项目承台、钢板桩结构表中基坑实际开挖情况选取最不利工况进行钢板桩的力学验算。
三桥1#承台处水深0.76m,湖床底标高18.74m,承台底标高15.5m,设置一道支撑,支撑标高18.8m,封底混凝土后0.5m,则开挖深度3.24m+0.5m=3.74m;坑内、外土的天然容重加权平均值1r、2r均为:18.9KN/m3;内摩擦角ф取15°;粘聚力C:24KPa;钢板桩采用拉森钢板桩,选用SPⅢ型,钢板桩参数A=76.42cm2,W=1340cm3/m,[]δ=200Mpa,桩长12m。
1.2 钢板桩入土深度计算1.2.1 内力计算根据《简明施工计算手册》中国建筑工业出版社,P284页(5-89、5-90)公式得:K a=tg2(45−152)=0.59K p=tg2(45+152)=1.69上部水体荷载换算成土体荷载高度:h=qh0/γ=0.76*9.8/18.9=0.38m1.2.2 入土深度验算主动土压力系数,被动土压力系数从上可知:Ka=0.59,Kp=1.69。
本工程拉森钢板桩采用单支撑支护,入土深度计算简图如下:由静力平衡条件有:ΣN=0 R+E p−E a=0ΣM=0 E a l1−E p l2=0式中R---支撑力;L2---被动土压力合力E p至支撑的距离,即L2=H1+2/3t;L1---主动土压力合力E a至支撑的距离。
被动土压力E p =1/2γt2K p主动土压力E a =1/2γ[t+H1+l0]2K a代入上式得到最小入土深度t的方程:1.2t3+2.3t2−30t−37.4=0求解的最小入土深度t=4.74m。
本工程采用12m长拉森钢板桩,在最不利位置处入土深度为6.5m,完全满足要求。
1.3钢板桩稳定性验算1.3.1 钢板桩强度验算(1)桩顶悬臂段验算拉森SP Ⅲ型钢板桩顶部悬臂段最大允许跨距为:h =√6[σ]w γK a 3=√6∗200∗134018.9∗0.593=2.56m实际悬臂长度为1.78m ,完全满足要求。
水中墩钢板桩围堰计算书一、 计算总说明1.计算水位取+2.5m。
2.钢板桩采用IV型拉森桩,长21m,重量75kg/m,截面模量W=2037cm3,允许应力为[σ]=180Mpa。
3.土质按图纸提供参数。
4.钢板桩中支撑不按等反力和等跨弯矩布置,依施工需要安排,即板桩按跨度不等的连续梁计算。
二、 入土深度验算本地质土层为两层较厚的亚粘土中夹了一层粉砂层,且粉砂层较薄,所以本围堰有较好的地质土层。
为安全起见,现按粉砂、细砂土质中不出现涌砂的情况来验算。
不出现涌砂情况时,如图所示基坑内抽水后水头差为h’,由此引起的水渗流,其最短流程为紧靠板桩的h1+h2,故在此流程中,水对土粒渗透的力,其方向应是垂直向上。
现近似地以此流程的渗流来检算坑底的涌砂问题,要求垂直向上的渗透力不超过土在水中的密度,故安全条件如公式所示:K s iρw=K s h’/(h1+h2)×ρw≤ρb式中:K s—安全系数;i—水力梯度;ρb—分别为水的密度及土在水中的密度,g/cm3ρw、ρb=(G-1)(1-n)其中G为土粒的比重;n为土的孔隙率以小数计。
土层按第④层土均质土层计算,入土深等数值见图1.地质剖面图,其中h’=11.7m、h1=10.7m、h2=7.3m、G=2.725g/cm3、安全系数取1.4:K s iρw=1.4×11.7/(7.3+10.7)=0.91ρb=(G-1)(1-n)=(2.725-1)(1-0.78/(1+0.78))=0.970.91<0.97满足要求。
三、 土压力计算按照静止土压力计算钢板桩后土压力:p0=K0rzK0—静止土压力系数,K0=1-sinθ’A点:p0a=r w×h=10×8.3=83kpaB点:p0a=K0(q+r’2h2)=0.778(83+9.4×5.3)=103 kpaC点:p0a= K0(q+r’2h2+r’3h3)=0.669(83+9.4×5.3+8.8×2.2)=102kpaD点:p0a=K0(q+r’2h2+r’3h3+r’4h4)=0.748(83+9.4×5.3+8.8×2.2+9.6×3.2)=137kp 四、 钢板桩计算钢板桩顶标高+4.5m,入土深度7.3m,设置四道支撑,各支撑的中心标高分别为+2.0m、-1.0m、-3.4m、-5.5m。
钢板桩围堰计算钢板桩围堰计算本承台位于水下,长31.3米,宽8.6米,高3.5米,采用钢板桩围堰施工。
围堰为矩形单壁钢板桩围堰,采用钢管桩作为定位桩,用型钢连接作为纵横向支撑。
钢板桩采用拉森Ⅲ型钢板桩,围堰为33.3m×10.6m的单承台围堰方案。
1、计算取值1)现有水位为+4.5m,计算时按照常水位以上一米取值,即水位取+5.5米;淤泥厚度为h2=2.0m,水深为6.0m,水头高度h1=5.5m。
h3为钢板桩入土深度。
2)淤泥力学参数根据含水量情况取值,内摩擦角θ=50,粘聚力c=0kpa,容重r2=16.5kN/m3.3)淤泥质亚粘土力学参数根据含水量及孔隙比情况取值,内摩擦角θ=20,粘聚力c=20kpa,容重r2=18.5kN/m3.4)围堰分五层支撑,标高分别为+0.25m、+1.05m、+1.85m、+2.65m、+3.45m。
开挖底标高为±。
5)钢板桩采用拉森Ⅲ型钢板桩,截面尺寸为宽0.462m,高1.36m,每米长钢板桩参数力学性能为壁厚0.04m,截面积0.123m2,重量14.5kg/m,截面模量为320cm3/m。
6)型钢采用A3钢材,允许应力[δ]=140Mpa;钢板桩允许应力[δ]=200Mpa。
7)设计流水速率V=2.61m/s。
水流冲击力p=0.8Aγv2/2gh,其中A为阻水面积,γ为水容重,取10KN/m3,v为水流速度,g为重力加速度,取9.8m/s,h为水深,单位为米。
p=29.47kN/m。
2、静水压力计算现有水位标高为+4.5m,型钢支撑中心标高分别为+4.25m、+3.45m、+2.65m、+1.85m、+1.05m,承台底标高为0.河水静水压力为10×5.5=55kN/m2,取一米进行计算,±0m处的总压力P=1.25(P净水+P动水)=1.25×(29.47+55)=105.59kN/m,安全系数为1.25.3、按简支连续梁计算内力和弯矩,受力形式及弯矩如下图所示:弯矩图示:15.4KNm。
双排拉森钢板桩围堰计算书嘿,大家好!今天咱们聊聊一个在建筑工程里很重要但又常常被忽视的话题——双排拉森钢板桩围堰的计算。
你可能会觉得,这听上去有点枯燥,是不是?但别急,咱们一步步来,看看这背后的故事会不会让你大开眼界。
1. 拉森钢板桩是什么?首先,咱们得弄明白拉森钢板桩究竟是啥。
简单来说,拉森钢板桩就像是工程中的“护城河”,用来防止周围土壤和水分流失,就像给地面穿上了一层钢铁的“外衣”。
它们通常是用钢板做的,板子之间有交错的齿,这样就能更好地“咬合”在一起。
就好比你把几片饼干挨在一起,中间还要夹个小夹层,这样才不会容易散开。
双排的意思就是在两排钢板桩之间加个隔断,增强防护效果,这样做的好处是更稳固,抗压性更强。
2. 为什么要做围堰?2.1 围堰的作用围堰在工程中的作用可是大大的。
你要知道,围堰的主要目的是为了阻挡地下水和土壤的侵蚀,让施工区域保持干燥。
想象一下,你在家厨房的台面上放一盆水,不一会儿水就会流得到处都是,那可麻烦了!围堰就像是给你的台面装了一个水槽,把水牢牢地挡在外面。
2.2 施工过程中的挑战施工时,围堰的作用更是无可替代。
有时候,施工区域下方的地下水位非常高,如果不设围堰,工地就会变成一片“水塘”,工程进度自然会受到影响。
所以,围堰的设计必须考虑到水位变化、土壤性质等多个因素,才能确保施工顺利进行。
3. 如何计算双排拉森钢板桩围堰的需要?3.1 计算基础要计算双排拉森钢板桩围堰,咱们得先搞清楚几个基本的参数。
比如说土壤的特性、地下水位、施工深度等等。
就像做一道数学题,先要弄清楚题意,再一步步解题。
计算公式里包含的因素非常多,需要综合考虑土壤的承载力、桩的承载力、以及水压等。
3.2 具体步骤首先,咱们得确定桩的间距和深度。
这个就像是安排座位一样,得根据“客人的”数量(也就是土壤和水的压力)来安排得当。
然后,计算桩的长度,这个长短要根据实际情况来决定,确保它能深深地“扎根”在地里,不被轻易移动。
第二部分水中拉森板桩围堰计算1 工程概况天津吉兆桥采用4墩3跨方式跨越海河,跨径布置为55+90+55m,4 #、5#号为水中墩,位于河道中,结构形式相同,每墩基础为16根直径1.8m的钻孔桩,桩长75m;承台为埋入式,底标高为-10.0m,平面尺寸为41.1m×7.7m,厚度为3.0m;承台上设板式墩身。
具体结构如下图:+1.5-10.04#、5#墩结构图2 钢板桩围堰布置主墩基础施工拟采用钢板桩围堰法。
钢板桩采用拉森Ⅵ型钢板桩,材质SY295,单根长度为22m,围堰平面尺寸为43.2×9.6m,共设置三道内支撑。
围堰顶高程为+2.5m,围堰底高程为-19.5m,承台底高程为-10m,封底混凝土厚3m。
钢板桩围堰施工步骤:(1)钻孔桩施工结束后拆除钻孔平台,在靠近承台侧定位桩上焊接牛腿,安装第一道内支撑作为钢板桩插打导向围檩;(2)依次插打钢板桩至合拢;(3)围堰内抽水至-3.4m,在-2.4m处安装第二道内支撑;(4)第二道内支撑安装后围堰内加水至围堰外水位,水下吸泥、清淤至-13.0m;(5)搭设封底施工平台、布置封底砼导管,水下浇筑封底砼;(6)待封底砼达到设计强度后,围堰内抽水至-7.3m,在-6.3m处安装第三道内支撑;(7)抽光围堰内水后凿除桩头,施工承台;(8)承台模板拆除后,向钢板桩与承台间间回填细砂并在顶部浇注40cm 厚C30砼圈梁,拆除第三道内支撑;(9)施工第一节墩身至第一道内支撑下方(顶标高不低于+0.5m);(10)向围堰内注水至-3.0m,拆除第二道内支撑;(11)继续向围堰内注水至+0.0m,拆除第一道内支撑;(12)继续施工余下墩身;(13)依次拔出钢板桩。
3 计算假设及基本参数3.1 计算假设(1)由于4#墩河床较5#墩河床高,围堰受力较5#墩更不利,使用本设计取4#墩围堰进行计算;(2)计算时取1m宽单位宽度钢板桩;(3)假设钢板桩在封底砼面以下0.5m处固结。
W01#墩钢板桩围堰计算一、基本参数 1、承台参数2、材料选择(1)、钢板桩采用拉森Ⅵ钢板桩围堰,钢板桩参数见下表:(2)、内支撑采用HM588型钢、φ426和φ600钢管。
(3)、土层为粉砂,取内摩擦角 20=ϕ,3/20m kN =γ,浮容重3/10'm kN =γ。
主动土压力系数49.0)2/2045(tan 2=-=a K 被动土压力系数04.2)2/2045(tan 2=+=p K二、围堰计算1、封底混凝土厚度计算(1)、围堰封底抽水完成后,封底混凝土需承受水头差引起的向上的上浮力,封底混凝土标号为C30,其容重γ=24kN/m 3,施工时清理基底保证封底混凝土厚度不小于1.5m ,计算取1.3m 有效厚度。
封底混凝土所受荷载:q=γ水h 水-γ砼h 砼=10×6.88-24×1.5=32.8kN/m 2(2)、按照四边简支双向板计算,Lx=7000mm ,Ly=9000mm ,Lx/Ly=0.78,查得:αx=0.0613,αy=0.0319,Mx= 0.0613qlx 2=0.0613×32.8×72 =98.5kN ·m My= 0.0319qlx 2=0.0319×32.8×72 =51.3kN ·mm kN M M M y x x ⋅=⨯+=+=1.1073.51167.05.98max ν m kN M M M x y y ⋅=⨯+=+=7.675.98167.03.51max ν取1m 单位宽进行验算: A=bh=1.3m 2,Wx=bh 2/6=0.28m 3σmax=Mmax/Wx=0.1071/0.28=0.38MPa<0.5Mpa <满足要求> (3)、钢护筒粘结力计算围堰投影面积:A=15×34-(0.785×2.82×10)=448.46m 2; 封底混凝土重量:G=24×448.46×1.5=16144.6kN ; 浮力:F 浮=6.88×10×448.46=30854kN ;一个围堰共有10根φ2.8m 钢护筒,每根钢护筒所承受的粘结力为: (30854-16144.6)/(3.14×2.8×1.3×1000×10)=0.13MPa <0.15 MPa<满足要求>(4)、结论:1.5m 厚封底混凝土满足受力要求。
钢板桩围堰结构计算1、设计参数(1)主跨墩处河道内主要为砾砂土,其土体力学性能如下: 土体容重: r=18KN/m3 土体内摩擦角: φ=36° (2)钢板桩力学性能:钢板桩采用IV 型拉森桩,重量75kg/m ,每1米宽截面模量W=2037cm3,允许应力为[σ]=210Mpa 。
(3)承台尺寸:8.4m ×12.3m ×3.5m ,围堰尺寸:10.8m ×15.5m 。
(4)计划采用拉森Ⅳ钢板桩,技术参数:(5)根据地质情况(见图1) 20m 范围加权平均:5.16205.1420410=+γ=⨯⨯5.1420205.14=φ=⨯ 05.1320185.14==⨯C主动土压力系数:Ka =tg2(45-φ/2)=0.60 被动土压力系数:Kp =tg2(45+φ/2)=1.668 2、计算内容(1)内支撑层数及间距按照等弯矩布置确定各层支撑的间距,根据拉森Ⅳ型钢板桩承受的最大弯矩确定板桩顶悬臂端的最大允许跨度:[]3a w f 6h K γ==m 98.2cm 2981060.05.161020372156335==⨯⨯⨯⨯⨯γ:取加权平均16.5, h1=0.88h =2.62m h2=0.77h =2.29m h3=0.65h =1.94m根据具体情况,确定采用的立面布置形式如下图所示:(2)计算板桩墙上土压力零点离开挖面的距离y ,在y 处板桩墙的被动土压力等于板桩后的主动土压力:γKKpy =γKa (H +y )y =81.36.0686.12.19.86.0p =-⨯⨯=-Ka KK KaH式中K-主动土压力修正系数,取1.2 (3)钢板桩零点以下入土深度x 的确定: 由力矩分配法计算的如下: P0=47.7KN P1=8.2KN/m P2=63.3KN/m P3=129KN/m P4=80.1KN/m最大弯矩在8.9m 处,Mmax=98.3KN.M采用等值梁法计算原理,土压力零点处的支撑反力与该点以下钢板桩土压力对桩底的力矩平衡,假设土压力零点以下钢板桩零点以下钢板桩埋深为x ,建平衡方程。
拉森钢板桩围堰计算汇总
计算方法中,先假设内撑对钢板桩为刚性支撑,计算出钢板桩作用于圈梁的反力,将该反力作用在内撑上计算出钢板桩与内撑连接处的最大位移,最后对钢板桩施加强制支座位移,得出钢板桩的内力和应力。
钢板柱围堰的入土深度较大,土体对入土部分的围堰起到了嵌固作用,此时围堰上端收到内撑的支撑作用,下端受到土体的嵌固支承作用。
但是,由于内撑对钢板桩围堰是弹性支撑,并不是完全刚性。
(1)拆除钻孔平台,焊接牛腿在靠近承台侧定位桩上,安装第一道内支撑作为钢板桩插打导向围檩;
(2)依次插打钢板桩至合拢;
(3)围堰内吸泥、抽水至+23.74m,在+24.24m处安装第二道内支撑;
(4)围堰内继续吸泥、抽水至+19.823m,在+20.823m处安装第三道内支撑;
(5)第三道内支撑安装后围堰内注水至围堰外水位,水下吸泥、清淤至+13.823m;
(6)搭设封底平台、布置封底砼导管,水下浇筑封底砼;
(7)待封底砼达到设计强度后抽光围堰内水,凿除桩头进行承台、墩身施工;
(8)承台模板拆除后,向钢板桩与承台间回填细砂并在顶部浇注40cm厚C25砼冠梁,待冠梁砼达到强度后,拆除第三道内支撑;
(9)向围堰内注水至+23.74m处,拆除第二道内支撑;
(10)继续向围堰内注水至围堰外水位,拆除第一道内支撑;
钢板桩的初步验算分为三个工况:工况一为第一道内支撑安装后,围堰内吸泥、抽水至+23.74m;工况二为第二道内支撑安装后,围堰内吸泥、抽水至+19.823m;工况三为第三道内支撑安装后围堰内加水至围堰外水位,水下吸泥、清淤至+13.823m。
在工况二中,第二道内支撑安装后,需要在围堰内吸泥并抽水至+19.823m。
为计算反弯点位置,同样需要利用
Pp=Pa+Pw的公式,并计算主动土压力Pa、被动土压力Pb和水压力Pw。
通过计算,可以得出反弯点位置y=1.71m。
工况五:承台模板拆除后,向钢板桩与承台间回填细砂并在顶部浇注40cm厚C25砼冠梁,待冠梁砼达到强度后,拆除第三道内支撑。
在该工况下,需要先计算出作用在钢板柱处的主动土压力和静水压力。
(此处缺少相关内容,无法进行修改和改写)。