人教版初一数学培优和竞赛二合一讲炼教程:用交集解题
- 格式:doc
- 大小:76.00 KB
- 文档页数:3
第一讲有理数的巧算有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性.1.括号的使用在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单.例1计算:分析中学数学中,由于负数的引入,符号“+”与“-”具有了双重涵义,它既是表示加法与减法的运算符号,也是表示正数与负数的性质符号.因此进行有理数运算时,一定要正确运用有理数的运算法则,尤其是要注意去括号时符号的变化.注意在本例中的乘除运算中,常常把小数变成分数,把带分数变成假分数,这样便于计算.例2计算下式的值:211×555+445×789+555×789+211×445.分析直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算.解原式=(211×555+211×445)+(445×789+555×789)=211×(555+445)+(445+555)×789=211×1000+1000×789=1000×(211+789)=1 000 000.说明加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧.例3计算:S=1-2+3-4+…+(-1)n+1·n.分析不难看出这个算式的规律是任何相邻两项之和或为“1”或为“-1”.如果按照将第一、第二项,第三、第四项,…,分别配对的方式计算,就能得到一系列的“-1”,于是一改“去括号”的习惯,而取“添括号”之法.解 S=(1-2)+(3-4)+…+(-1)n+1·n.下面需对n的奇偶性进行讨论:当n为偶数时,上式是n/2个(-1)的和,所以有当n为奇数时,上式是(n-1)/2个(-1)的和,再加上最后一项(-1)n+1·n=n,所以有例4在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?分析与解因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,…,1998之前任意添加符号“+”或“-”,不会改变和的奇偶性.在1,2,3,…,1998中有1998÷2个奇数,即有999个奇数,所以任意添加符号“+”或“-”之后,所得的代数和总为奇数,故最小非负数不小于1.现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“-”,显然n-(n+1)-(n+2)+(n+3)=0.这启发我们将1,2,3,…,1998每连续四个数分为一组,再按上述规则添加符号,即(1-2-3+4)+(5-6-7+8)+…+(1993-1994-1995+1996)-1997+1998=1.所以,所求最小非负数是1.说明本例中,添括号是为了造出一系列的“零”,这种方法可使计算大大简化.2.用字母表示数我们先来计算(100+2)×(100-2)的值:(100+2)×(100-2)=100×100-2×100+2×100-4=1002-22.这是一个对具体数的运算,若用字母a代换100,用字母b代换2,上述运算过程变为(a+b)(a-b)=a2-ab+ab-b2=a2-b2.于是我们得到了一个重要的计算公式(a+b)(a-b)=a2-b2,①这个公式叫平方差公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算.例5计算 3001×2999的值.解 3001×2999=(3000+1)(3000-1)=30002-12=8 999 999.例6计算 103×97×10 009的值.解原式=(100+3)(100-3)(10000+9)=(1002-9)(1002+9)=1004-92=99 999 919.例7计算:分析与解直接计算繁.仔细观察,发现分母中涉及到三个连续整数:12 345,12 346,12 347.可设字母n=12 346,那么12 345=n-1,12 347=n+1,于是分母变为n2-(n-1)(n+1).应用平方差公式化简得n2-(n2-12)=n2-n2+1=1,即原式分母的值是1,所以原式=24 690.例8计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).分析式子中2,22,24,…每一个数都是前一个数的平方,若在(2+1)前面有一个(2-1),就可以连续递进地运用(a+b)(a-b)=a2-b2了.解原式=(2-1)(2+1)(22+1)(24+1)(28+1)×(216+1)(232+1)=(22-1)(22+1)(24+1)(28+1)(216+1)×(232+1)=(24-1)(24+1)(28+1)(216+1)(232+1)=……=(232-1)(232+1)=264-1.例9计算:分析在前面的例题中,应用过公式(a+b)(a-b)=a2-b2.这个公式也可以反着使用,即a2-b2=(a+b)(a-b).本题就是一个例子.通过以上例题可以看到,用字母表示数给我们的计算带来很大的益处.下面再看一个例题,从中可以看到用字母表示一个式子,也可使计算简化.例10计算:我们用一个字母表示它以简化计算.3.观察算式找规律例11某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.分析与解若直接把20个数加起来,显然运算量较大,粗略地估计一下,这些数均在90上下,所以可取90为基准数,大于90的数取“正”,小于90的数取“负”,考察这20个数与90的差,这样会大大简化运算.所以总分为90×20+(-3)+1+4+(-2)+3+1+(-1)+(-3)+2+(-4)+0+2+(-2)+0+1+(-4)+(-1)+2+5+(-2)=1800-1=1799,平均分为 90+(-1)÷20=89.95.例12 计算1+3+5+7+…+1997+1999的值.分析观察发现:首先算式中,从第二项开始,后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000,于是可有如下解法.解用字母S表示所求算式,即S=1+3+5+…+1997+1999.①再将S各项倒过来写为S=1999+1997+1995+…+3+1.②将①,②两式左右分别相加,得2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1)=2000+2000+…+2000+2000(500个2000)=2000×500.从而有 S=500 000.说明一般地,一列数,如果从第二项开始,后项减前项的差都相等(本题3-1=5-3=7-5=…=1999-1997,都等于2),那么,这列数的求和问题,都可以用上例中的“倒写相加”的方法解决.例13计算 1+5+52+53+…+599+5100的值.分析观察发现,上式从第二项起,每一项都是它前面一项的5倍.如果将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项相同,于是两式相减将使差易于计算.解设S=1+5+52+…+599+5100,①所以5S=5+52+53+…+5100+5101.②②—①得4S=5101-1,说明如果一列数,从第二项起每一项与前一项之比都相等(本例中是都等于5),那么这列数的求和问题,均可用上述“错位相减”法来解决.例14 计算:分析一般情况下,分数计算是先通分.本题通分计算将很繁,所以我们不但不通分,反而利用如下一个关系式来把每一项拆成两项之差,然后再计算,这种方法叫做拆项法.解由于所以说明本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项,这种方法在有理数巧算中很常用.练习一1.计算下列各式的值:(1)-1+3-5+7-9+11-…-1997+1999;(2)11+12-13-14+15+16-17-18+…+99+100;(3)1991×1999-1990×2000;(4)4726342+472 6352-472 633×472 635-472 634×472 636;(6)1+4+7+ (244)2.某小组20名同学的数学测验成绩如下,试计算他们的平均分.81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.第二讲绝对值绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题.下面我们先复习一下有关绝对值的基本知识,然后进行例题分析.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数.例1 a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)若|a|=b,则a=b;(5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.解 (1)不对.当a,b同号或其中一个为0时成立.(2)对.(3)对.(4)不对.当a≥0时成立.(5)不对.当b>0时成立.(6)不对.当a+b>0时成立.例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a<0,a+c<0,c-b<0.再根据绝对值的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.例3已知x<-3,化简:|3+|2-|1+x|||.分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解原式=|3+|2+(1+x)||(因为1+x<0)=|3+|3+x||=|3-(3+x)|(因为3+x<0)=|-x|=-x.解因为 abc≠0,所以a≠0,b≠0,c≠0.(1)当a,b,c均大于零时,原式=3;(2)当a,b,c均小于零时,原式=-3;(3)当a,b,c中有两个大于零,一个小于零时,原式=1;(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.解因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.所以x+y的值为-1或-5.例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.解 a,b,c均为整数,则a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,所以只能是|a-b|19=0且|c-a|99=1,①或|a-b|19=1且|c-a|99=0.②由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b±1,于是|b-c|=|a-b|=1.无论①或②都有|b-c|=1且|a-b|+|c-a|=1,所以|c-a|+|a-b|+|b-c|=2.解依相反数的意义有|x-y+3|=-|x+y-1999|.因为任何一个实数的绝对值是非负数,所以必有|x-y+3|=0且|x+y-1999|=0.即由①有x-y=-3,由②有x+y=1999.②-①得2y=2002, y=1001,所以例8 化简:|3x+1|+|2x-1|.分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们为三个部分(如图1-2所示),即这样我们就可以分类讨论化简了.原式=-(3x+1)-(2x-1)=5x;原式=(3x+1)-(2x-1)=x+2;原式=(3x+1)+(2x-1)=5x.即说明解这类题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数轴分成几个部分,根据变数字母的这些取值范围分类讨论化简,这种方法又称为“零点分段法”.例9已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.分析首先使用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,从中选出最大者.解有三个分界点:-3,1,-1.(1)当x≤-3时,y=-(2x+6)-(x-1)+4(x+1)=x-1,由于x≤-3,所以y=x-1≤-4,y的最大值是-4.(2)当-3≤x≤-1时,y=(2x+6)-(x-1)+4(x+1)=5x+11,由于-3≤x≤-1,所以-4≤5x+11≤6,y的最大值是6.(3)当-1≤x≤1时,y=(2x+6)-(x-1)-4(x+1)=-3x+3,由于-1≤x≤1,所以0≤-3x+3≤6,y的最大值是6.(4)当x≥1时,y=(2x+6)+(x-1)-4(x+1)=-x+1,由于x≥1,所以1-x≤0,y的最大值是0.综上可知,当x=-1时,y取得最大值为6.例10设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.分析本题也可用“零点分段法”讨论计算,但比较麻烦.若能利用|x-a|,|x-b|,|x-c|,|x-d|的几何意义来解题,将显得更加简捷便利.解设a,b,c,d,x在数轴上的对应点分别为A,B,C,D,X,则|x-a|表示线段AX之长,同理,|x-b|,|x-c|,|x-d|分别表示线段BX,CX,DX之长.现要求|x-a|,|x-b|,|x-c|,|x-d|之和的值最小,就是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.因为a<b<c<d,所以A,B,C,D的排列应如图1-3所示:所以当X在B,C之间时,距离和最小,这个最小值为AD+BC,即(d-a)+(c-b).例11若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.分析与解要使原式对任何数x恒为常数,则去掉绝对值符号,化简合并时,必须使含x的项相加为零,即x的系数之和为零.故本题只有2x-5x+3x=0一种情况.因此必须有|4-5x|=4-5x且|1-3x|=3x-1.故x应满足的条件是此时原式=2x+(4-5x)-(1-3x)+4=7.练习二1.x是什么实数时,下列等式成立:(1)|(x-2)+(x-4)|=|x-2|+|x-4|;(2)|(7x+6)(3x-5)|=(7x+6)(3x-5).2.化简下列各式:(2)|x+5|+|x-7|+|x+10|.3.若a+b<0,化简|a+b-1|-|3-a-b|.4.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.5.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,对于满足p≤x≤15的x 来说,T的最小值是多少?6.已知a<b,求|x-a|+|x-b|的最小值.7.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B点应为( ).(1)在A,C点的右边;(2)在A,C点的左边;(3)在A,C点之间;(4)以上三种情况都有可能.第三讲求代数式的值用具体的数代替代数式里的字母进行计算,求出代数式的值,是一个由一般到特殊的过程.具体求解代数式值的问题时,对于较简单的问题,代入直接计算并不困难,但对于较复杂的代数式,往往是先化简,然后再求值.下面结合例题初步看一看代数式求值的常用技巧.例1求下列代数式的值:分析上面两题均可直接代入求值,但会很麻烦,容易出错.我们可以利用已经学过的有关概念、法则,如合并同类项,添、去括号等,先将代数式化简,然后再求值,这样会大大提高运算的速度和结果的准确性.=0-4a3b2-a2b-5=-4×13×(- 2)2- 12×(-2)-5=-16+2-5=-19.(2)原式=3x2y-xyz+(2xyz-x2z)+4x2?[3x2y-(xyz-5x2z)]=3x2y-xyz+2xyz-x2z+4x2z-3x2y+(xyz-5x2z)=(3x2y-3x2y)+(-xyz+2xyz+xyz)+(-x2z+4x2z-5x2z)=2xyz-2x2z=2×(-1)×2×(-3)-2×(-1)2×(-3)=12+6=18.说明本例中(1)的化简是添括号,将同类项合并后,再代入求值;(2)是先去括号,然后再添括号,合并化简后,再代入求值.去、添括号时,一定要注意各项符号的变化.例2已知a-b=-1,求a3+3ab-b3的值.分析由已知条件a-b=-1,我们无法求出a,b的确定值,因此本题不能像例1那样,代入a,b的值求代数式的值.下面给出本题的五种解法.解法1由a-b=-1得a=b-1,代入所求代数式化简a3+3ab-b3=(b-1)3+3(b-1)b-b3=b3-3b2+3b-1+3b2-3b-b3=-1.说明这是用代入消元法消去a化简求值的.解法2因为a-b=-1,所以原式=(a3-b3)+3ab=(a-b)(a2+ab+b2)+3ab=-1×(a2+ab+b2)+3ab=-a2-ab-b2+3ab=-(a2-2ab+b2)=-(a-b)2=-(-1)2=-1.说明这种解法是利用了乘法公式,将原式化简求值的.解法3 因为a-b=-1,所以原式=a3-3ab(-1)-b3=a3-3ab(a-b)-b3=a3-3a2b+3ab2-b3=(a-b)3=(-1)3=-1.说明这种解法巧妙地利用了-1=a-b,并将3ab化为-3ab(-1)=-3ab(a-b),从而凑成了(a-b)3.解法4 因为a-b=-1,所以(a-b)3=(-1)3=1,即 a3+3ab2-3a2b-b3=-1,a3-b3-3ab(a-b)=-1,所以 a3-b3-3ab(-1)=-1,即 a3-b3+3ab=-1.说明这种解法是由a-b=-1,演绎推理出所求代数式的值.解法 5a3+3ab-b3=a3+3ab2-3a2b-b3-3ab2+3a2b+3ab=(a-b)3+3ab(a-b)+3ab=(-1)3+3ab(-1)+3ab=-1.说明这种解法是添项,凑出(a-b)3,然后化简求值.通过这个例题可以看出,求代数式的值的方法是很灵活的,需要认真思考,才能找到简便的算法.在本例的各种解法中,用到了几个常用的乘法公式,现总结如下:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a-b)3=a3-3a2b+3ab2-b3;a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2).解由已知,xy=2(x+y),代入所求代数式中,消去xy,然后化简.所以解因为a=3b,所以c=5a=5×(3b)=15b.将a,c代入所求代数式,化简得解因为(x-5)2,|m|都是非负数,所以由(1)有由(2)得y+1=3,所以y=2.下面先化简所求代数式,然后再代入求值.=x2y+5m2x+10xy2=52×2+0+10×5×22=250例6如果4a-3b=7,并且3a+2b=19,求14a-2b的值.分析此题可以用方程组求出a,b的值,再分别代入14a-2b求值.下面介绍一种不必求出a,b的值的解法.解 14a-2b=2(7a-b)=2[(4a+3a)+(-3b+2b)]=2[(4a-3b)+(3a+2b)]=2(7+19)=52.|x|+|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的值.分析所求代数式中六个绝对值的分界点,分别为:0,1,2,据绝对值的意义去掉绝对值的符号,将有3个x和3个-x,这样将抵消掉x,使求值变得容易.原式=x+(x-1)+(x-2)-(x-3)-(x-4)-(x-5)=-1-2+3+4+5=9.说明实际上,本题只要x的值在2与3之间,那么这个代数式的值就是9,即它与x具体的取值无关.例8若x:y:z=3:4:7,且2x-y+z=18,那么x+2y-z的值是多少?分析 x:y:z=3:4:7可以写成的形式,对于等比,我们通常可以设它们的比值为常数k,这样可以给问题的解决带来便利.x=3k,y=4k,z=7k.因为2x-y+z=18,所以2×3k-4k+7k=18,所以k=2,所以x=6,y=8,z=14,所以x+2y-z=6+16-14=8.例9已知x=y=11,求(xy-1)2+(x+y-2)(x+y-2xy)的值.分析本题是可直接代入求值的.下面采用换元法,先将式子改写得较简洁,然后再求值.解设x+y=m,xy=n.原式=(n-1)2+(m-2)(m-2n)=(n-1)2+m2-2m-2mn+4n=n2-2n+1+4n-2m-2mn+m2=(n+1)2-2m(n+1)+m2=(n+1-m)2=(11×11+1-22)2=(121+1-22)2=1002=10000.说明换元法是处理较复杂的代数式的常用手法,通过换元,可以使代数式的特征更加突出,从而简化了题目的表述形式.练习三1.求下列代数式的值:(1)a4+3ab-6a2b2-3ab2+4ab+6a2b-7a2b2-2a4,其中a=-2,b=1;的值.3.已知a=3.5,b=-0.8,求代数式|6-5b|-|3a-2b|-|8b-1|的值.4.已知(a+1)2-(3a2+4ab+4b2+2)=0,求 a,b的值.5.已知第四讲一元一次方程方程是中学数学中最重要的内容.最简单的方程是一元一次方程,它是进一步学习代数方程的基础,很多方程都可以通过变形化为一元一次方程来解决.本讲主要介绍一些解一元一次方程的基本方法和技巧.用等号连结两个代数式的式子叫等式.如果给等式中的文字代以任何数值,等式都成立,这种等式叫恒等式.一个等式是否是恒等式是要通过证明来确定的.如果给等式中的文字(未知数)代以某些值,等式成立,而代以其他的值,则等式不成立,这种等式叫作条件等式.条件等式也称为方程.使方程成立的未知数的值叫作方程的解.方程的解的集合,叫作方程的解集.解方程就是求出方程的解集.只含有一个未知数(又称为一元),且其次数是1的方程叫作一元一次方程.任何一个一元一次方程总可以化为ax=b(a≠0)的形式,这是一元一次方程的标准形式(最简形式).解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b;(5)方程两边同除以未知数的系数,得出方程的解.一元一次方程ax=b的解由a,b的取值来确定:(2)若a=0,且b=0,方程变为0·x=0,则方程有无数多个解;(3)若a=0,且b≠0,方程变为0·x=b,则方程无解.例1解方程解法1从里到外逐级去括号.去小括号得去中括号得去大括号得解法2按照分配律由外及里去括号.去大括号得化简为去中括号得去小括号得例2已知下面两个方程3(x+2)=5x,①4x-3(a-x)=6x-7(a-x) ②有相同的解,试求a的值.分析本题解题思路是从方程①中求出x的值,代入方程②,求出a的值.解由方程①可求得3x-5x=-6,所以x=3.由已知,x=3也是方程②的解,根据方程解的定义,把x=3代入方程②时,应有4×3-3(a-3)=6×3-7(a-3),7(a-3)-3(a-3)=18-12,例3已知方程2(x+1)=3(x-1)的解为a+2,求方程2[2(x+3)-3(x-a)]=3a的解.解由方程2(x+1)=3(x-1)解得x=5.由题设知a+2=5,所以a=3.于是有2[2(x+3)-3(x-3)]=3×3,-2x=-21,例4解关于x的方程(mx-n)(m+n)=0.分析这个方程中未知数是x,m,n是可以取不同实数值的常数,因此需要讨论m,n取不同值时,方程解的情况.解把原方程化为m2x+mnx-mn-n2=0,整理得 m(m+n)x=n(m+n).当m+n≠0,且m=0时,方程无解;当m+n=0时,方程的解为一切实数.说明含有字母系数的方程,一定要注意字母的取值范围.解这类方程时,需要从方程有唯一解、无解、无数多个解三种情况进行讨论.例5解方程(a+x-b)(a-b-x)=(a2-x)(b2+x)-a2b2.分析本题将方程中的括号去掉后产生x2项,但整理化简后,可以消去x2,也就是说,原方程实际上仍是一个一元一次方程.解将原方程整理化简得(a-b)2-x2=a2b2+a2x-b2x-x2-a2b2,即 (a2-b2)x=(a-b)2.(1)当a2-b2≠0时,即a≠±b时,方程有唯一解(2)当a2-b2=0时,即a=b或a=-b时,若a-b≠0,即a≠b,即a=-b时,方程无解;若a-b=0,即a=b,方程有无数多个解.例6已知(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,求代数式199(m+x)(x-2m)+m的值.解因为(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,所以m2-1=0,即m=±1.(1)当m=1时,方程变为-2x+8=0,因此x=4,代数式的值为199(1+4)(4-2×1)+1=1991;(2)当m=-1时,原方程无解.所以所求代数式的值为1991.例7 已知关于x的方程a(2x-1)=3x-2无解,试求a的值.解将原方程变形为2ax-a=3x-2,即 (2a-3)x=a-2.由已知该方程无解,所以例8 k为何正数时,方程k2x-k2=2kx-5k的解是正数?来确定:(1)若b=0时,方程的解是零;反之,若方程ax=b的解是零,则b=0成立.(2)若ab>0时,则方程的解是正数;反之,若方程ax=b的解是正数,则ab>0成立.(3)若ab<0时,则方程的解是负数;反之,若方程ax=b的解是负数,则ab<0成立.解按未知数x整理方程得(k2-2k)x=k2-5k.要使方程的解为正数,需要(k2-2k)(k2-5k)>0.看不等式的左端(k2-2k)(k2-5k)=k2(k-2)(k-5).因为k2≥0,所以只要k>5或k<2时上式大于零,所以当k<2或k>5时,原方程的解是正数,所以k>5或0<k<2即为所求.例9若abc=1,解方程解因为abc=1,所以原方程可变形为化简整理为化简整理为说明像这种带有附加条件的方程,求解时恰当地利用附加条件可使方程的求解过程大大简化.例10若a,b,c是正数,解方程解法1原方程两边乘以abc,得到方程ab(x-a-b)+bc(x-b-c)+ac(x-c-a)=3abc.移项、合并同类项得ab[x-(a+b+c)]+bc[x-(a+b+c)]+ac[x-(a+b+c)]=0,因此有[x-(a+b+c)](ab+bc+ac)=0.因为a>0,b>0,c>0,所以ab+bc+ac≠0,所以x-(a+b+c)=0,即x=a+b+c为原方程的解.解法2将原方程右边的3移到左边变为-3,再拆为三个“-1”,并注意到其余两项做类似处理.设m=a+b+c,则原方程变形为所以即x-(a+b+c)=0.所以x=a+b+c为原方程的解.说明注意观察,巧妙变形,是产生简单优美解法所不可缺少的基本功之一.例11设n为自然数,[x]表示不超过x的最大整数,解方程:分析要解此方程,必须先去掉[ ],由于n是自然数,所以n与(n+1)…,n[x]都是整数,所以x必是整数.解根据分析,x必为整数,即x=[x],所以原方程化为合并同类项得故有所以x=n(n+1)为原方程的解.例12已知关于x的方程且a为某些自然数时,方程的解为自然数,试求自然数a的最小值.解由原方程可解得a最小,所以x应取x=160.所以所以满足题设的自然数a的最小值为2.练习四1.解下列方程:*2.解下列关于x的方程:(1)a2(x-2)-3a=x+1;4.当k取何值时,关于x的方程3(x+1)=5-kx,分别有:(1)正数解;(2)负数解;(3)不大于1的解.第五讲方程组的解法二元及多元(二元以上)一次方程组的求解,主要是通过同解变形进行消元,最终转化为一元一次方程来解决.所以,解方程组的基本思想是消元,主要的消元方法有代入消元和加减消元两种,下面结合例题予以介绍.例1解方程组解将原方程组改写为由方程②得x=6+4y,代入①化简得11y-4z=-19.④由③得2y+3z=4.⑤④×3+⑤×4得33y+8y=-57+16,所以 y=-1.将y=-1代入⑤,得z=2.将y=-1代入②,得x=2.所以为原方程组的解.说明本题解法中,由①,②消x时,采用了代入消元法;解④,⑤组成的方程组时,若用代入法消元,无论消y,还是消z,都会出现分数系数,计算较繁,而利用两个方程中z的系数是一正一负,且系数的绝对值较小,采用加减消元法较简单.解方程组消元时,是使用代入消元,还是使用加减消元,要根据方程的具体特点而定,灵活地采用各种方法与技巧,使解法简捷明快.例2解方程组解法1由①,④消x得由⑥,⑦消元,得解之得将y=2代入①得x=1.将z=3代入③得u=4.所以解法2由原方程组得所以x=5-2y=5-2(8-2z)=-11+4z=-11+4(11-2u)=33-8u=33-8(6-2x)=-15+16x,即x=-15+16x,解之得x=1.将x=1代入⑧得u=4.将u=4代入⑦得z=3.将z=3代入⑥得y=2.所以为原方程组的解.解法3①+②+③+④得x+y+z+u=10,⑤由⑤-(①+③)得y+u=6,⑥由①×2-④得4y-u=4,⑦⑥+⑦得y=2.以下略.说明解法2很好地利用了本题方程组的特点,解法简捷、流畅.例3解方程组分析与解注意到各方程中同一未知数系数的关系,可以先得到下面四个二元方程:①+②得x+u=3,⑥②+③得y+v=5,⑦③+④得z+x=7,⑧④+⑤得u+y=9.⑨又①+②+③+④+⑤得x+y+z+u+v=15.⑩⑩-⑥-⑦得z=7,把z=7代入⑧得x=0,把x=0代入⑥得u=3,把u=3代入⑨得y=6,把y=6代入⑦得v=-1.所以为原方程组的解.例4解方程组解法1①×2+②得由③得代入④得为原方程组的解.为原方程组的解.说明解法1称为整体处理法,即从整体上进行加减消元或代入消为换元法,也就是干脆引入一个新的辅助元来代替原方程组中的“整体元”,从而简化方程组的求解过程.例5已知分析与解一般想法是利用方程组求出x,y,z的值之后,代入所求的代数式计算.但本题中方程组是由三个未知数两个方程组成的,因此无法求出x,y,z的确定有限解,但我们可以利用加减消元法将原方程组变形.①-②消去x得①×3+②消去y得①×5+②×3消去z得例6已知关于x,y的方程组分别求出当a为何值时,方程组(1)有唯一一组解;(2)无解;(3)有无穷多组解.分析与一元一次方程一样,含有字母系数的一次方程组求解时也要进行讨论,一般是通过消元,归结为一元一次方程ax=b的形式进行讨论.但必须特别注意,消元时,若用含有字母的式子去乘或者去除方程的两边时,这个式子的值不能等于零.解由①得2y=(1+a)-ax,③将③代入②得(a-2)(a+1)x=(a-2)(a+2).④(1)当(a-2)(a+1)≠0,即a≠2且a≠-1时,方程④有因而原方程组有唯一一组解.(2)当(a-2)(a+1)=0且(a-2)(a+2)≠0时,即a=-1时,方程④无解,因此原方程组无解.(3)当(a-2)(a+1)=0且(a-2)(a+2)=0时,即a=2时,方程④有无穷多个解,因此原方程组有无穷多组解.例7已知关于x,y的二元一次方程(a-1)x+(a+2)y+5-2a=0,当a每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解.解法1根据题意,可分别令a=1,a=-2代入原方程得到一个方程组将x=3,y=-1代入原方程得(a-1)·3+(a+2)·(-1)+5-2a=0.所以对任何a值都是原方程的解.说明取a=1为的是使方程中(a-1)x=0,方程无x项,可直接求出y值;取a=-2的道理类似.解法2可将原方程变形为a(x+y-2)-(x-2y-5)=0.由于公共解与a无关,故有例8甲、乙两人解方程组原方程的解.分析与解因为甲只看错了方程①中的a,所以甲所得到的解4×(-3)-b×(-1)=-2.③a×5+5×4=13.④解由③,④联立的方程组得所以原方程组应为练习五1.解方程组2.若x1,x2,x3,x4,x5满足方程组试确定3x4+2x5的值.3.将式子3x2+2x-5写成a(x+1)2+b(x+1)+c的形式,试求4.k为何值时,方程组有唯一一组解;无解;无穷多解?5.若方程组的解满足x+y=0,试求m的值.第六讲一次不等式(不等式组)的解法不等式和方程一样,也是代数里的一种重要模型.在概念方面,它与方程很类似,尤其重要的是不等式具有一系列基本性质,而且“数学的基本结果往往是一些不等式而不是等式”.本讲是系统学习不等式的基础.下面先介绍有关一次不等式的基本知识,然后进行例题分析.1.不等式的基本性质这里特别要强调的是在用一个不等于零的数或式子去乘(或去除)不等式时,一定要注意它与等式的类似性质上的差异,即当所乘(或除)的数或式子大于零时,不等号方向不变(性质(5));当所乘(或除)的数或式子小于零时,不等号方向要改变(性质(6)).2.区间概念在许多情况下,可以用不等式表示数集和点集.如果设a,b为实数,且a<b,那么(1)满足不等式a<x<b的数x的全体叫作一个开区间,记作(a,b).如图1-4(a).(2)满足不等式a≤x≤b的数x的全体叫作一个闭区间,记作[a,b].如图1-4(b).(3)满足不等式a<x≤b(或a≤x<b)的x的全体叫作一个半开半闭区间,记作(a,b](或[a,b)).如图1-4(c),(d).3.一次不等式的一般解法一元一次不等式像方程一样,经过移项、合并同类项、整理后,总可以写成下面的标准型:ax>b,或ax<b.为确定起见,下面仅讨论前一种形式.一元一次不等式ax>b.(3)当a=0时,用区间表示为(-∞,+∞).例1解不等式解两边同时乘以6得12(x+1)+2(x-2)≥21x-6,化简得-7x≥-14,两边同除以-7,有x≤2.所以不等式的解为x≤2,用区间表示为(-∞,2].例2求不等式的正整数解.正整数解,所以原不等式的正整数解为x=1,2,3.例3解不等式分析与解因y2+1>0,所以根据不等式的基本性质有例4解不等式为x+2>7,解为x>5.这种错误没有考虑到使原不等式有意义的条件:x≠6.解将原不等式变形为解之得所以原不等式的解为x>5且x≠6.例5已知2(x-2)-3(4x-1)=9(1-x),且y<x+9,试比较解首先解关于x的方程得x=-10.将x=-10代入不等式得y<-10+9,即y<-1.例6解关于x的不等式:解显然a≠0,将原不等式变形为3x+3-2a2>a-2ax,即(3+2a)x>(2a+3)(a-1).说明对含有字母系数的不等式的解,也要分情况讨论.例7已知a,b为实数,若不等式(2a-b)x+3a-4b<0解由(2a-b)x+3a-4b<0得(2a-b)x<4b-3a.。
初中数学竞赛精品标准教程及练习12用交集解题交集是集合中共有的元素组成的一个新的集合。
在数学竞赛中,使用交集可以解决一些集合相关的问题。
本文将通过几个例题来详细介绍交集在数学竞赛中的应用。
例题1:班有60名同学,其中有40名学生喜欢数学,30名学生喜欢英语。
问:至少同时喜欢数学和英语的学生人数是多少?解析:设喜欢数学的学生集合为A,喜欢英语的学生集合为B。
根据题意,我们可以得到A的元素个数为40,B的元素个数为30。
问题要求的是同时喜欢数学和英语的学生人数,也就是说要求的是A与B的交集C的元素个数。
由于我们已知A和B的元素个数,如果能求出A与B的交集C的元素个数,就可以解答问题了。
根据交集的性质,我们可以得到C的元素个数为A和B的元素个数之和减去A和B的并集的元素个数。
根据集合的运算规则,A和B的并集的元素个数等于A的元素个数加上B的元素个数减去A和B的交集的元素个数。
用公式表示就是:,A∪B,=,A,+,B,-,A∩B。
将已知的数值代入公式中,我们可以得到:,A∩B,=,A,+,B,-,A∪B,=40+30-60=10。
所以,至少同时喜欢数学和英语的学生人数是10。
通过这个例题,我们可以看出使用交集来解决问题时,重要的是先明确要求的是哪个集合的交集,并根据集合的运算规则进行计算。
例题2:班学生共120名,其中70名学生擅长音乐,80名学生擅长美术。
已知同时擅长音乐和美术的学生人数是50人,问:不擅长音乐和美术的学生人数是多少?解析:同样地,我们设擅长音乐的学生集合为A,擅长美术的学生集合为B。
题目要求的是不擅长音乐和美术的学生人数,也就是求A和B的交集的补集。
根据集合的运算规则,集合的补集等于全集减去这个集合。
所以,我们需要求得的是全集减去A和B的交集的元素个数。
已知A和B的元素个数分别为70和80,交集A∩B的元素个数为50。
全集的元素个数为120。
所以,不擅长音乐和美术的学生人数等于全集的元素个数减去A和B的交集的元素个数,即120-50=70。
有理数混合运算的六种技巧(解析版)【专题精讲】有理数的混合运算是加、减、乘、除乘方的综合应用,学会运算法则是基础,运算的关键是运算的顺序,为了提高运算速度,要灵活运用运算律,还要能创造条件利用运算律,如拆数,移动小数点等,对于复杂的有理数运算,要善于观察、分析、类比与联想,从中发现可以简算的地方从而达到算得准、算得快的目的。
计算复杂算式,应遵循以下几个原则:(1)分段同时性原则:例如在计算一0.25²÷(-21)-(−1)2021+(-2)²×(-3)²的过程中,应在第一步中计算0.25² −(12)4 (−1)2021 (-2)²,(-3)²以达到高效的目的; (2)整体性原则:例如乘除混合运算统一化为乘法,统一进行约分;(3)简明性原则:计算步骤尽可能简明,能够一步计算出来的就同时算出来,不要拖沓;(4)心算原则:计算过程中,能用心算的都尽量运用心算,心算是提高运算速度的重要方法。
有理数计算常用的技巧与方法有①应用运算律;②裂项相消;③分解相约;④巧用公式;⑤利用倒数;⑥借用图形面积◎类型一:巧用凑整法计算解题方法:多个有理数相加时,如果既有分数,也有小数,一般将存在数量少的形式转化成数量多的形式,把能凑成整数的数结合在一起,可以使计算简便,这种方法简称凑整法。
1.(2020·安徽·马鞍山市雨山实验学校七年级阶段练习)计算(1)()21112 2.75524⎛⎫----+-+ ⎪⎝⎭(2)5212018201740351632⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1)()()36762464+-+-+(2)33243571375-++++(1)(9)(7)(6)(5)---+--+;(2)11213()() 2332---+-.4.(2022·全国·七年级专题练习)(- 48)-(- 512)+(- 44)-38◎类型二:运用拆项法计算解题方解答此类问题,先把带分数拆成整数和真分数两部分,再把整数部分和真分数部分分别结合在一起,利用交换律结合律得出答案。
初中数学竞赛精品标准教程及练习12用交集解题用交集解题是数学竞赛中常见的解题方法之一,可以帮助我们更好地理解和解决问题。
下面以一个简单的例题为例,说明如何用交集解题。
【例题】小明参加了一次数学竞赛,该竞赛共有100名参赛选手,其中40人参加了语文比赛,60人参加了英语比赛,35人既参加了语文比赛又参加了英语比赛。
那么参加了至少一项比赛的选手有多少人?【解答】首先,我们将已知条件用集合表示出来:语文参赛选手的集合为A,其元素个数为n(A)=40;英语参赛选手的集合为B,其元素个数为n(B)=60;既参加了语文比赛又参加了英语比赛的选手的集合为C,其元素个数为n(C)=35要求参加了至少一项比赛的选手,即要求A、B、C三个集合的并集的元素个数。
根据集合的基本运算关系,我们可以利用交集求和公式来求解:n(A∪B∪C)=n(A)+n(B)+n(C)−n(A∩B)−n(A∩C)−n(B∩C)+n(A∩B∩C)将已知数据代入公式中,即可得到参加了至少一项比赛的选手人数:n(A∪B∪C)=40+60+35−n(A∩B)−n(A∩C)−n(B∩C)+n(A∩B∩C)我们已知n(A∩B∩C)为35,其余交集的人数没有给出。
因此,我们需要先研究这些交集。
根据题意可知,整个竞赛的参赛人数为100,即选手总数为100。
所以我们可以设n(U)=100,其中U表示全集。
根据已知条件,我们可以列出如下的等式:n(A∪B)=n(A)+n(B)−n(A∩B)n(A∪C)=n(A)+n(C)−n(A∩C)n(B∪C)=n(B)+n(C)−n(B∩C)将已知数据代入上述等式,可得:n(A∪B)=40+60−n(A∩B)n(A∪C)=40+35−n(A∩C)n(B∪C)=60+35−n(B∩C)将公式整理,并代入已知数据,可以得到:n(A∩B)=40+60−n(A∪B)=100−n(A∪B)n(A∩C)=40+35−n(A∪C)=75−n(A∪C)n(B∩C)=60+35−n(B∪C)=95−n(B∪C)最后我们可以代入公式,得到参加了至少一项比赛的选手人数:n(A∪B∪C)=40+60+35−n(A∩B)−n(A∩C)−n(B∩C)+n(A∩B∩C)=40+60+35−(100−n(A∪B))−(75−n(A∪B))−(95−n(B∪C))+35=170−100+75+95+x=240+x其中x代表未知数量,表示既参加了语文比赛又参加了英语比赛的选手数量。
人教版初一数学培优和竞赛二合一讲炼教程( 13)经验归纳法【知识精读】1.通常我们把“从特殊到一般”的推理方法、研究问题的方法叫做归纳法。
通过有限的几个特例,观察其一般规律,得出结论,它是一种不完全的归纳法,也叫做经验归纳法。
例如①由 ( - 1)2= 1 ,(- 1 )3=- 1 ,(- 1 )4= 1 ,……,归纳出- 1 的奇次幂是- 1,而- 1 的偶次幂是 1 。
②由两位数从10 到 99共 90 个( 9 × 10 ),三位数从 100 到 999 共900个(9×102),四位数有9×103=9000个(9×103),…………归纳出n 位数共有9×10n-1 (个)由1+3=22, 1+3+5=32, 1+3+5+7=42……③推断出从1开始的n个連续奇数的和等于n2等。
可以看出经验归纳法是获取新知识的重要手段,是知识攀缘前进的阶梯。
2. 经验归纳法是通过少数特例的试验,发现规律,猜想结论,要使规律明朗化,必须进行足夠次数的试验。
由于观察产生的片面性,所猜想的结论,有可能是错误的,所以肯定或否定猜想的结论,都必须进行严格地证明。
(到高中,大都是用数学归纳法证明)【分类解析】平面内n条直线,每两条直线都相交,问最多有几个交点?例1解:两条直线只有一个交点, 1 2第3条直线和前两条直线都相交,增加了2个交点,得1+2 3第4条直线和前3条直线都相交,增加了3个交点,得1+2+3第5条直线和前4条直线都相交,增加了4个交点,得1+2+3+4………第n条直线和前n-1条直线都相交,增加了n-1个交点由此断定n 条直线两两相交,最多有交点1+2+3+……n-1(个),这里n≥2,其和可表示为[1+(n+1)]×21n, 即2)1(nn个交点。
例2.符号n!表示正整数从1到n的連乘积,读作n的阶乘。
例如 5!=1×2×3×4×5。
数的整除(一)【知识精读】如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除.一些数的整除特征能被7整除的数的特征:①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。
如 1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除)【分类解析】例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。
求x,y解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=31234能被12整除,求X。
例2己知五位数x解:∵五位数能被12整除,必然同时能被3和4整除,当1+2+3+4+X能被3整除时,x=2,5,84能被4整除时,X=0,4,8当末两位X∴X=8例3求能被11整除且各位字都不相同的最小五位数。
解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263。
【实战模拟】1分解质因数:(写成质因数为底的幂的連乘积)①593②1859③1287④3276⑤10101⑥10296987能被3整除,那么a=_______________2若四位数a12X能被11整除,那么X=__________-3若五位数3435m能被25整除4当m=_________时,59610能被7整除5当n=__________时,n6能被11整除的最小五位数是________,最大五位数是_________7能被4整除的最大四位数是____________,能被8整除的最小四位数是_________ 88个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972中,能被下列各数整除的有(填上编号):6________,8__________,9_________,11__________9从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除但不是5的倍数的共______个。
【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题2.4合并同类项【名师点睛】1.同类项(1)定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.同类项中所含字母可以看成是数字、单项式、多项式等.(2)注意事项:①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项.2.合并同类项(1)定义:把多项式中同类项合成一项,叫做合并同类项.(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.(3)合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.【典例剖析】【知识点1】同类项【例1】已知﹣4xy n+1与52x m y4是同类项,求2m+n的值.【分析】同类项的含有相同的字母且相同字母的指数相同,由此可得出答案.【解析】由题意得:m=1,n+1=4,解得:m=1,n=3.∴2m+n=5.【变式1】.判断下列各组中的两个项是不是同类项?为什么?(1)12x2y与﹣3yx2;(2)a2b与―12ab2;(3)2×32与3×22;(4)﹣2a2b与3a2bc.【分析】根据同类项的定义:所含字母相同,相同字母的次数相同,即可作出判断.【解析】(1)是同类项,因为12x2y与﹣3yx2都含有x、y且x的指数都是2,y的指数都是1;(2)不是同类项,因为a2b与―12ab2中,a的指数分别为2、1,b的指数分别为1、2,不同;(3)是同类项,2×32与3×22中都不含字母为常数项,常数项都是同类项;(4)不是同类项,因为所含字母不同,﹣2a2b中含字母a、b,而3a2bc中含字母a、b、c.【知识点2】合并同类项【例2】.合并下列各式的同类项:(1)2xy﹣3xy+5xy;(2)4x2﹣8x+5﹣3x2+6x﹣4;(3)3a m+4a m+1﹣5a m+1+2a m;(4)2(x﹣2y)2﹣7(x﹣2y)3+3(x﹣2y)2﹣(x﹣2y)3.【分析】各式利用合并同类项法则计算即可得到结果.【解答】(1)解:原式=4xy;(2)解:原式=x2﹣2x+1;(3)解:原式=5a m﹣a m+1;(4)解:原式=5(x﹣2y)2﹣8(x﹣2y)3.【变式2】.已知多项式3﹣2x2+3x+3x2﹣5x﹣x2﹣7.(1)合并该多项式中的同类项;(2)当x=―12时,求这个多项式的值.【分析】(1)首先找出同类项,进而合并,再利用字母x降幂排列即可;(2)把x=―12代入﹣2x﹣4求值即可.【解析】(1)3﹣2x2+3x+3x2﹣5x﹣x2﹣7=(﹣2+3﹣1)x2+(3﹣5)x+(3﹣7)=﹣2x﹣4;(2)当x=―12时,﹣2x﹣4=﹣2×(―12)﹣4=1﹣4=﹣3.【知识点3】合并同类项后不含某一项【例3】已知多项式mx4+(m﹣2)x3+(2n+1)x2﹣3x+n不含x2和x3的项,试写出这个多项式,再求当x=﹣1时多项式的值.【分析】根据mx4+(m﹣2)x3+(2n+1)x2﹣3x+n不含x2和x3的项可得出二次项和三次项的系数为0,从而求出m和n的值,再把x=﹣1代入多项式求出多项式的值即可.【解析】∵多项式mx4+(m﹣2)x3+(2n+1)x2﹣3x+n不含x2和x3的项,∴m﹣2=0,2n+1=0,∴m=2,n=―1 2,∴多项式为2x4﹣3x―1 2,当x=﹣1时,多项式为2×(﹣1)4﹣3×(﹣1)―12=2+3―12=92.【变式3】.已知关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3项和x2项,求m+2n的值.【分析】根据关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3项和x2项,得到m+5=0,n﹣1=0,从而求得m,n的值,再求代数式的值即可.【解析】∵关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3项和x2项,∴m+5=0,n﹣1=0,∴m=﹣5,n=1,∴m+2n=﹣5+2=﹣3.【知识点4】整体思想在合并同类项中的应用【例4】将下列两个式子合并同类项.(提示:用整体思想)(1)5(a+b)2﹣(a+b)+2(a+b)2+2(a+b).(2)2(x﹣2y)2﹣7(x﹣2y)3+3(2y﹣x)2﹣(2y﹣x)3.【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.据此计算即可.【解析】(1)原式=(5+2)(a+b)2+(2﹣1)(a+b)=7(a+b)2+(a+b);(2)原式=2(x﹣2y)2+7(2y﹣x)3+3(x﹣2y)2﹣(2y﹣x)3=(2+3)(x﹣2y)2+(7﹣1)(2y﹣x)3=5(x﹣2y)2+6(2y﹣x)3.【满分训练】一.选择题(共10小题)1.(2021•上海)下列单项式中,a2b3的同类项是( )A.a3b2B.3a2b3C.a2b D.ab3【分析】依据同类项的定义:所含字母相同,相同字母的指数相同,据此判断即可.【解析】A 、字母a 、b 的指数不相同,不是同类项,故本选项不符合题意;B 、有相同的字母,相同字母的指数相等,是同类项,故本选项符合题意;C 、字母b 的指数不相同,不是同类项,故本选项不符合题意;D 、相同字母a 的指数不相同,不是同类项,故本选项不符合题意;故选:B .2.(2021秋•姑苏区校级期末)下列各组中的两个项不属于同类项的是( )A .3x 2y 和﹣2x 2y B .﹣xy 和2yx C .﹣1和114D .a 2和32【分析】根据同类项的定义解答.【解析】A 、所含字母相同,相同字母的指数也相同,是同类项.B 、所含字母相同,相同字母的指数也相同,是同类项.C 、两个常数项也是同类项.D 、字母和数字不是同类项.故选:D .3.(2021秋•石阡县期中)已知2x 3y 2和﹣x m y 2是同类项,则式子4m ﹣24的值是( )A .﹣21B .﹣12C .36D .12【分析】根据同类项定义得出=3,代入求出即可.【解析】∵2x 3y 2和﹣x m y 2是同类项,∴m =3,∴4m ﹣24=4×3﹣24=﹣12,故选:B .4.(2021秋•拜泉县期中)已知25x 6y 和5x 2m y 是同类项,则m 的值为( )A .2B .3C .4D .2或3【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出m 的值,【解析】根据题意得:2m =6,解得:m =3.故选:B .5.(2021秋•招远市期末)如果单项式x 2y m +2与x n y 的和仍然是一个单项式,则m 、n 的值是( )A .m =2,n =2B .m =﹣1,n =2C .m =﹣2,n =2D .m =2,n =﹣1【分析】本题考查同类项的定义,单项式x 2y m +2与x n y 的和仍然是一个单项式,意思是x 2y m +2与x n y 是同类项,根据同类项中相同字母的指数相同得出.【解析】由同类项的定义,可知2=n ,m +2=1,解得m =﹣1,n =2.故选:B .6.(2021秋•吐鲁番市期末)下列运算正确的是( )A .3a +2b =5ab B .3a 2b ﹣3ba 2=0C .3x 2+2x 3=5x 5D .5y 2﹣4y 2=1【分析】根据合并同类项的法则把系数相加即可.【解析】A 、不是同类项不能合并,故A 错误;B 、系数相加字母及指数不变,故B 正确;C 、不是同类项不能合并,故C 错误;D 、系数相加字母及指数不变,故D 错误;故选:B .7.(2021秋•长寿区期末)下面运算正确的是( )A .3a +6b =9ab B .3a 3b ﹣3ba 3=0C .8a 4﹣6a 3=2aD .12y 2―13y 2=16【分析】根据同类项的定义及合并同类项的方法进行判断即可.【解析】A 、C 不是同类项,不能合并;B 、正确;D 、原式=16y 2.故选:B .8.(2018秋•临河区期末)下列式子计算正确的个数有( )①a 2+a 2=a 4;②3xy 2﹣2xy 2=1;③3ab ﹣2ab =ab ;④(﹣2)3﹣(﹣3)2=﹣17.A .1个B .2个C .3个D .0个【分析】根据合并同类项的法则和有理数的混合运算进行计算即可.【解析】①a 2+a 2=2a 2,故①错误;②3xy 2﹣2xy 2=xy 2,故②错误;③3ab ﹣2ab =ab ,故③正确;④(﹣2)3﹣(﹣3)2=﹣17,故④正确,故选:B .9.(2021秋•凌海市期中)多项式x 2―3kxy ―3y 2+13xy ―8合并同类项后不含xy 项,则k的值是( )A.13B.16C.19D.0【分析】先将原多项式合并同类项,再令xy项的系数为0,然后解关于k的方程,即可求出k的值.【解析】原式=x2+(13―3k)xy﹣3y2﹣8,因为不含xy项,故13―3k=0,解得:k=1 9.故选:C.10.(2021秋•东海县期中)代数式7a3﹣6a3b+3a2b+3a2+6a3b﹣3a2b﹣10a3的值( )A.与字母a,b都有关B.只与a有关C.只与b有关D.与字母a,b都无关【分析】把代数式7a3﹣6a3b+3a2b+3a2+6a3b﹣3a2b﹣10a3合并同类项后,再判断它的值与什么有关.【解析】7a3﹣6a3b+3a2b+3a2+6a3b﹣3a2b﹣10a3=(7﹣10)a3+(﹣6+6)a3b+(3﹣3)a2b+3a2=﹣3a3+3a2所以代数式的值只与a有关.故选:B.二.填空题(共8小题)11.(2020秋•汕尾期末)单项式3x m y2与﹣2x5y n是同类项,则m+n= 7 .【分析】根据同类项的定义求解即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解析】由题意得:m=5,n=2,∴m+n=5+2=7.故答案为:7.12.(2021春•雨花区校级期中)单项式3x m+4y3与12x2y n﹣1是同类项,则m n= 16 .【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,再代入所求式子计算即可.【解析】因为单项式3x m+4y3与12x2y n﹣1是同类项,所以m+4=2,n﹣1=3,解得m=﹣2,n=4,所以m n=(﹣2)4=16.故答案为:16.13.(2021秋•滨湖区期中)若3x m﹣1y3与﹣5xy3是同类项,则m= 2 .【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m的值.【解析】∵3x m﹣1y3与﹣5xy3是同类项,∴m﹣1=1,解得:m=2.故答案为:2.14.(2021秋•丰台区校级期中)已知关于x,y的多项式﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7不含二次项,则m+n= ﹣1.5 .【分析】先合并同类项,然后根据多项式不含二次项可知5m=0,2n+3=0,从而可求得m、n的值,然后代入计算即可.【解析】﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7=﹣5x2y﹣(2n+3)xy+5my2+4x﹣7,∵多项式不含二次项,∴5m=0,2n+3=0,解得m=0,n=﹣1.5,∴m+n=﹣1.5,故答案为:﹣1.5.15.(2020•黔南州)若单项式a m﹣2b n+7与单项式﹣3a4b4的和仍是一个单项式,则m﹣n= 9 .【分析】直接利用合并同类项法则得出m,n的值,进而得出答案.【解析】∵a m﹣2b n+7与﹣3a4b4的和仍是一个单项式,∴m﹣2=4,n+7=4,解得:m=6,n=﹣3,故m﹣n=6﹣(﹣3)=9.故答案为:9.16.(2018秋•常州期中)若―12x a y3与2x2y b3的和仍是单项式,则a﹣b= ﹣1 .【分析】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,得出a,b的值,进而解答即可.【解析】若―12x a y3与2x2y b3的和仍是单项式,可得:a=2,b=3,所以a﹣b=2﹣3=﹣1,故答案为:﹣117.(2017•青海)若单项式2x 2y m 与―13x n y 4可以合并成一项,则n m = 16 .【分析】根据同类项的定义计算.【解析】由题意得,n =2,m =4,则n m =16,故答案为:16.18.(2021秋•勃利县期末)当k = 125 时,代数式x 6﹣5kx 4y 3﹣4x 6+15x 4y 3+10中不含x 4y 3项.【分析】根据合并同类项的法则,合并同类项时把系数相加减,字母与字母的指数不变.【解析】代数式x 6﹣5kx 4y 3﹣4x 6+15x 4y 3+10中不含x 4y 3项,即﹣5kx 4y 3和15x 4y 3合并以后是0,则得到﹣5k +15=0,∴k =125.答:当k =125时,代数式x 6﹣5kx 4y 3﹣4x 6+15x 4y 3+10中不含x 4y 3项.三.解答题(共5小题)19.(2020秋•天心区校级月考)化简:(1)12m 2﹣3mn 2+4n 2+12m 2+5mn 2﹣4n 2.(2)7a 2﹣2ab +b 2﹣5a 2﹣b 2﹣2a 2﹣ab .【分析】根据合并同类项法则化简即可.【解析】(1)原式=(12m 2+12m 2)+(5mn 2―3mn 2)+(4n 2―4n 2)=m 2+2mn 2;(2)原式=(7a 2﹣5a 2﹣2a 2)﹣(2ab +ab )+(b 2﹣b 2)=﹣3ab .20.(2020秋•东莞市校级期中)化简:(1)﹣3x 2y +3xy 2﹣2xy 2+2x 2y ;(2)2a 2﹣5a +a 2+6+4a ﹣3a 2.【分析】合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变,据此计算即可.【解析】(1)﹣3x2y+3xy2﹣2xy2+2x2y=(﹣3x2y+2x2y)+(3xy2﹣2xy2)=﹣x2y+xy2;(2)2a2﹣5a+a2+6+4a﹣3a2=(2a2+a2﹣3a2)+(4a﹣5a)+6=﹣a+6.21.(2020秋•射洪市期中)如果关于字母x的二次多项式﹣3x2+mx﹣5+nx2﹣x+3的值与x 的取值无关,求m2+2mn+n2的值.【分析】根据题意求出m与n的值,然后代入原式即可求出答案.【解析】﹣3x2+mx﹣5+nx2﹣x+3=(n﹣3)x2+(m﹣1)x﹣2,由题意可知:n﹣3=0,m﹣1=0,∴m=1,n=3,∴原式=(m+n)2=42=16.22.(2019秋•双清区期末)(1)关于x,y的多项式4x2y m+2+xy2+(n﹣2)x2y3+xy﹣4是七次四项式,求m和n的值;(2)关于x,y的多项式(5a﹣2)x3+(10a+b)x2y﹣x+2y+7不含三次项,求5a+b的值.【分析】(1)根据多项式的有关定义得到2+m+2=7,n﹣2=0,然后解方程即可;(2)根据多项式的有关定义得到5a﹣2=0且10a+b=0,所以5a=2,b=﹣4,然后利用整体代入的方法计算5a+b.【解析】(1)根据题意得2+m+2=7,n﹣2=0,解得m=3,n=2;(2)根据题意得5a﹣2=0且10a+b=0,所以5a=2,b=﹣4,所以5a+b=2﹣4=﹣2.23.(2020秋•吉安期中)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,尝试应用:(1)把(a﹣b)2看成一个整体,求出3(a﹣b)2+6(a﹣b)2﹣2(a﹣b)2的结果.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值.【分析】(1)根据合并同类项法则、运用整体思想计算;(2)根据添括号法则把原式变形,把x2﹣2y=4代入计算,得到答案.【解析】(1)3(a﹣b)2+6(a﹣b)2﹣2(a﹣b)2=(3+6﹣2)(a﹣b)2=7(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9.。
第四篇组合第23章组合计数23.1 加法原理和乘法原理23.1.1★有800名乒乓球选手参加淘汰赛,需要进行多少场比赛才能决出冠军?解析由于每场比赛淘汰一名选手,即比赛的场数与被淘汰的选手人数是相等的.要决出冠军,需淘汰799名选手,所以需要进行799场比赛.23.1.2★★一个小朋友有8块相同的巧克力(即不计顺序),他每天至少吃一块,直至吃完,问共有多少种不同的吃巧克力的方案?解析将8块巧克力排成一行.如果第一天吃2块,第二天吃1块……那么,就在第2块后面画一条竖线,这后面的第1块的后面(即第3块的后面)画一条竖线……这样,吃巧克力的方案就与在8块巧克力的7个空隙里添加竖线对应起来.由于每个空隙里加以加1根竖线,也可以不加,所以,由乘法原理知,加竖线的方法共有7⨯⨯⨯==(种).2222128从而吃巧克力的方案也就有128种.23.1.3★有多少个有序整数对(x,y)满足225+≤?x y解析我们把这个问题分成6种情况:22i=,1,2, (5)x y i+=,0当220+=时,(x,y)=(0,0);x y当221+=时,(x,y)=(0,1-),(0,y),(1,0),(1-,0);x y当222+=时,(x,y)=(1-,1-),(1-,1),(1,1-),(1,1);x y当223+=时,不可能;x y当223x y+=时,不可能;当224+=时,(x,y)=(0,2-),(0,2),(2-,0),(2,0);x y当225+=时,(x,y)=(2-,1-),(2-,1),(1-,2-),(1-,2),(1,2-),(1,2),(2,1-),(2,1).x y由加法原理知,满足题设的有序数对共有+++++=(个).1440482123.1.4★★利用数字1、2、3、4、5共可组成(1)多少个数字不重复的三位数?(2)多少个数字不重复的三位偶数?(3)多少个数字不重复的偶数?解析(1)百位数有5种选择;十位数有4种选择;个位数有3种选择,所以共有⨯⨯=个数字不重复的三位数.54360(2)先选个位数,共有两种选择:2或4.在个位数选定后,十位数还有4种选择;百位数有3种选择.所以共有24324⨯⨯=个数字不重复的三位偶数.(3)分为5种情况:一位偶数,只有两个:2和4.二位偶数,共有8个:12,32,42,52,14,24,34,54.三位偶数由上述(2)中求得的为24个.四位偶数共有:()243248⨯⨯⨯=个.括号外面的2表示个位数有2种选择(2或4).五位偶数共有:()2432148⨯⨯⨯⨯=个.由加法原理,偶数的个数共有28244848130++++=(个).23.1.5★★从1到300的正整数中,完全不不含有数字3的有多少个?解析1 将符合要求的正整数分为以下三类:(1)一位数,有1、2、4、5、6、7、8、9共8个.6、7、8、9八种情形,在个位上出现的数字除以上八个数字外还有0,共9种情形,故二位数有8972⨯=个.(3)三位数,在百位上出现的数字有1,2两种情形,在十位、个位上出现的数字则有0、1、2、4、5、6、7、8、9九种情形,故三位数有299162⨯⨯=个.因此,从1到300的正整数中完全不含数字3的共有872162242++=个.解析2 将0到299的整数都看成三位数,其中数字3不出现的,百位数字可以是0、1或2三种情况,十位数字与个位数均有九种,因此除去0共有3991242⨯⨯-=个.23.1.6★★一个班级有30名学生.(1)从中选出2人,一个担任班长,一个担任副班长,共有多少种不同的选法?(2)从中选2个人去参加数学竞赛,有多少种不同的选法?解析(1)从30个人中选1个人担任班长,有30种选法,再从剩下的29个人中选1个人担任副班长,有29种选法,则由乘法原理知,共有不同的选法为3029870⨯=(种).(2)从30个人中选两人有3029⨯种选法,但由于选出甲、乙去比赛和选出乙、甲去比赛是相同的情况,因此不同的选法共有30294352⨯=(种).23.1.7★★在小于10 000的正整数中,含有数字1的数有多少个?解析不妨将1至9999的正整数均看作四位数,凡位数不到四位的正整数在前面补0,使之成为四位数.先求不含数字1的这样的四位数共有几个,即有0、2、3、4、5、6、7、8、9这九个数字所组成的四位数的个数,由于每一位都有9种写法,所以,根据乘法原理,由这九个数字组成的四位数个数为99996561⨯⨯⨯=.其中包括了一个0000,这不是正整数,所以比10000小的不含数字1的正整数有6560个,于是,小于10 000且含有数字1的正整数共有999965603439-=个.23.1.8★★在1到9999中,有多少个整数与4567相加,至少在一个数位中发生进位?解析将0到9999这10 000个整数都看成四位数,即位数不中四位的,在左面添0补足四位.考虑这些四位数中,有多少个在与4567相加时不发生进位.这样的数,千位数字有0、1、2、3、4、5这6种可能;百位数字有0、1、2、3、4这5种可能;十位数字有0、1、2、3这4种可能;个位数字有0、1、2这3种可能.所以这样的数共有6543360⨯⨯⨯=(个).其中包括0.所以,在1到9999中,与4567相加产生进位的整数有 100003609640-=(个).23.1.19★★在1到1999这1999个自然数中,取4的倍数与7的倍数各一个相加,一共可得到多少个不同的和. 解析 在1到1999这1999个自然数中,有4的倍数499个,它们是4,8,12,…,1992,1996;有7的倍数285个,它们是7,14,21,…,1988,1995.可得到的和最小为7411+=,最大为199619953991+=,介于11至3991之间的自然数,有一部分得不到. 例如:12、13、14、16、17、20、21、24、28不能得到,下面能依次得到 29218=+,301416=+,31724=+, 32284=+,332112=+,341420=+, 35728=+,36288=+,… 反过来,不能得到的数还有3990、3989、3988、3986、3985、 3982、3981、3978、3974.不能得到的数共有9918+=(个). 所以可得到的不同的和共有 ()3991111183963-+-=(个). 2.3.1.10★600有多少个不同的正约数(包括1和600)?解析 将600质因数分解,有 312600235=⨯⨯.一个正整数m 是600的约数的弃要条件是m 具有235a b c ⨯⨯的形式,其中a 、b 、c 是整数且03a ≤≤,01b ≤≤,02c ≤≤.由于a 有()431=+种选择:0、1、2、3;b 有()211=+种选择:0、1;c 有()321=+种选择:0、1、2,故由乘法原理知,这样的m 有 42324⨯⨯=(个). 评注一般地,若一个正整数n 的质因数分解式为1212r a a a r n p p p =.其中1p ,2p ,…,r p 是互不相同的质数,1α,2α,…,r α是正整数,则n 的不同正约数的个数为()()()12111r ααα+++.23.1.11★★★在20000与70000之间,有多少个数字不重复的偶数? 解析 设abcde 是满足要求的偶数,那么a 只能取2、3、4、5、6,e 只能取0、2、4、6、8.(1)若a 取2、4、6之一,即a 有3种选法,此时e 有()451=-种选法,b 、c 、d 分别有8、7、6种选法,由乘法原理知,不重复的偶数有 348764032⨯⨯⨯⨯=(个).(2)若a 取3、5之一,则a 有2种选法,e 有5种选法,b 、c 、d 分别有8、7、6种选法,由乘法原理知,此时不重复的偶数有 258763360⨯⨯⨯⨯=(个).最后,由加法原理知,满足题意的偶数共有 403233607392+=(个). 评注 在很多计数问题中,都是加法原理和乘法原理结合在一起用的. 23.1.12★★★求至少出现一个数字6,而且是3的倍数的五位数的个数. 解析设满足要求的五位数为12345a a a a a .由于3整除12345a a a a a 的充要条件是123453a a a a a ++++,所以分情况讨论如下:(1)从左向右看,若最后一个6出现在第5位,即56a =,则2a 、3a 、4a 可以从0,1,2,…,9这10个数字中任取1个,为了保证123453a a a a a ++++,1a 只有3种可能(例如,()23451mod3a a a a +++=,则1a 只能取2,5,8之一,等等),由乘法原理,五位数中最后一位是6,且是3的倍数的数有 31010103000⨯⨯⨯=(个).(2)从左向右看,最后一个6出现在第4位,即46a =,于是5a 只有9种可能(因为56a ≠),2a 、3a 各有10种可能,为了保证123453a a a a a ++++,1a 只有3种可能,由乘法原理,这一类的五位数有3910102700⨯⨯⨯=(个).(3)从左向右看,最后一个6出现在第3位,即36a =,则4a 、5a 均有9种可能,2a 有10种可能,1a 有3种可能,这类五位数有 399102430⨯⨯⨯=(个).(4)从左向右看,最后一个6出现在第2位,26a =,则3a 、4a 、5a 均有9种可能,1a 有3种可能,所以这类五位数有 39992187⨯⨯⨯=(个).(5)从左向右看,最后一个6出现在第1位,即16a =,则2a 、3a 、4a 均有9种可能,为了保证123453a a a a a ++++,5a 只有3种可能,从而这类五位数有 39992187⨯⨯⨯=(个).最后,由加法原理知,五位数中至少出现一个6,且是3的倍数的数有 3000270024302187218712504++++=(个).23.1.13★★★将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,问:满足要求的排法有多少种? 解析设1a ,2a ,3a ,4a ,5a 是1,2,3,4,5的一个满足要求的排列.首先,对于1a ,2a ,3a ,4a ,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件矛盾.又如果()13i a i ≤≤是偶数,1i a +是奇数,则2i a +是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以1a ,2a ,3a ,4a ,5a 只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件:2,1,3,4,5;2,3,5,4,1;2,5,1,4,3;4,3,1,2,5;4,5,3,2,1. 23.1.14★★★由35个单位小正方形组成的长方形中,如图所示,有两个“*”,问包含两个“*”在内的小正方形组成的长方形(含正方形)共有多少个?**解析 含两个“*”的矩形,与第二、三两行有公共部分.它们可能与第一行有公共部分,也可能没有公共部分,即分为两类:每一类中的矩形,可能与四、五两行都有公共部分,或都没有公共部分,或仅与第四行有公共部分而与第五行没有公共部分,即又分为三类,这样,从行考虑共有236⨯=类.同样,考虑列,矩形可能与第一、二列都有公共部分,或都没有公共部分,或仅与第二列有公共部分,共三类.而与第五、六、七列的关系则有四列(都有公共部分,都没有公共部分,仅与第五列有公共部分,与第五、六列有公共部分而与第七列无公共部分). 所以,由乘法原理,含两个“*”的矩形共有233472⨯⨯⨯=(个).23.1.15★★设有红、黑、白三种颜色的球各10个.现将它们全部放入甲、乙两个袋子中,要求每个袋子里三种颜色球都有,且甲乙两个袋子中三种颜色球数之积相等,问共有多少种放法. 解析 设甲袋中的红、黑、白三种颜色的球数为x 、y 、z ,则有1x ≤、y 、9z ≤,且 ()()()101010xyz x y z =---,①即()()500505xyz x y z xy yz zx =-+++++,②于是有5xyz .因此x ,y ,z 中必有一个取5.不妨设5x =,代入(1)式,得到10y z +=. 此时,y 可取1,2,…,8,9(相应地z 取9,8,…,2,1),共9种放法.同理可得5y =或者5z =时,也各有9种放法,但有x y z ==时两种放法重复.因此可得共有93225⨯-=种放法.23.1.16★★★★设正整数p 和q 互质.问:有多少个非负整数n 不能表示成px qy +(x 和y 是非负整数)的形式? 解析 首先,由于p 、q 互质,所以下面q 个数n ,n p -,2n p -,…,()1n q p --除以q 所得的余数不同.事实上,若()mod n ip n jp q -=-,01i j q <-≤≤,则()()0mod j i p q -=,()q j i p -,所以q j i -,矛盾.所以这q 个数中一定有一个除以q 余数为0,设这个数为n xp -,01x q -≤≤,于是可设n xp qy -=,即px py n +=恰有一组满足01x q -≤≤的整数解(x ,y ). 设n 与数组(x ,y )依上述规律对应,即n px qy =+,01x q -≤≤.与0y ≥的数组(x ,y )春风一度的整数n 称为“好的”;否则称为“坏的”. 若n 与(x ,y )对应,即n px qy =+,01x q -≤≤,则 pq p q n pq p q px qy ---=---- ()()11p q x q y =--+--.因为011q x q ---≤≤, 且y 与1y --中恰有一个是非负的,所以,pq p q n ---与(1q x --,1y --)对应,且n 与pq p q n ---中恰有一个是好的,一个是坏的.所以在0,1,2,…,pq p q --中好数与坏数一一对应,从而其中的坏数有()()111122pq p q p q --+=--(个). 当0n <,则n 是坏数(显然0y <),故大于pq p q --的数均为好数.由此得坏数即不能表为px qy +(x ,y 为非负整数)的非负整数n 有()()1112p q --个. 23.1.17★★★把1,2,3,…,2012这2012个正整数随意放置在一个圆周上,统计所有相邻三个数的奇偶性得知:三个数全是奇数的600组,恰好两个奇数的有500组,问:恰好一个奇数的有几组?全部不是奇数的有几组? 解析 设恰好1个奇数的有x 组,则全部不是奇数的有2010600500912x x ---=-. 将圆周上的数从某个数开始,依次计为1x ,2x ,…,2012x ,令 1,,1,i i i x y x -⎧⎪=⎨⎪⎩奇偶当为数时当为数时, 则1220120y y y +++=,再令12i i i i A y y y ++=++121212123,,,1,,,21,,,3,,,i i i i i i i i i i i i x x x x x x x x x x x x ++++++++-⎧⎪-⎪=⎨⎪⎪⎩全奇恰好奇恰好一奇全偶当为数时当个数时当个数时当为数时其中20012i i x x +=,1i =,2,于是 ()12201203y y y =+++122012A A A =+++()36005003912x x =-⨯-++-,解得218x =.恰好一个奇数的有218组,全部不是奇数的有912218694-=组. 23.2 几何计数23.2.1★如图所示,数一数图中有多少条不同的线段?BA解析 对于两条线段,只要有一个端点不同,就是不同的线段,我们以左端点为标准,将线段分5类分别计数;(1)以A 为左端点的线段有AB 、AC 、AD 、AE 、AF 共5条; (2)以B 为左端点的线段有BC 、BD 、BE 、BF 共4条; (3)以C 为左端点的线段有CD 、CE 、CF 共3条; (4)以D 为左端点的线段有DE 、DF 共2条; (5)以E 为左端点的线段只有EF 一条. 所以,不同的一线段一共有 5432115++++=(条). 评注 般地,如果一条线段上有1n +个点(包括两个端点).那么这1n +个点把这条线段一共分成的线段总数为()()11212n n n n ++-+++=.23.2.2★如果一条线段AB 上有n 个点(不包括两个端点A 和B ).它们共有210条不同的线段,求n 的值.解析 线段AB 上共有2n +个点(包括端点),所以不同的线段有()()122n n ++条.所以()()122102n n ++=,解得19n =.23.2.3★图中有多少个三角形?FE D C B A O解析 以OA 为一边的三角形有OAB △、OAC △、OAD △、OAE △、OAF △共5个;以OB 为一边的三角形还有4个(前面已计数过的不再数,下同),它们是OBC △、OBD △、OBE △、OBF △;以OC 为一边的三角形有OCD △、OCE △、OCF △共3个;以OD 为一边的三角形有ODE △、ODF △共2个;以OE 为一边的三角形有OEF △一个,所以,共有三角形5432115++++=(个). 23.2.4★图中一共有多少个长方形?解析 图中长的一边有5个分点(包括端点),所以,长的一边上不同的线段共有123410+++=(条),同样,宽的一边上没的线段也有10条. 所以,共有长方形1010100⨯=(个). 23.2.5★★图中所有长方形的面积和是多少? 解析 因为长的一边上的10条线段分别为5、17、25、26、12、20、21、8、9、1,宽的一边上的10条线段长分别为3742181252、6、12、16、4、11、14、7、10、3,所以,所有长方形面积和为()()()525653172176173121613⨯+⨯++⨯+⨯+⨯++⨯++⨯+⨯++⨯=()()517126131448612384+++⨯+++=⨯=.23.2.6★★图中有多少个三角形? 解析 把图中最小的三角形看作基础三角形,分类计数.含1个基础三角形的三角形共有16个; 含2个基础三角形的三角形共有16个; 含4个基础三角形的三角形共有8个; 含8个基础三角形的三角形共有4个; 因此,图中共有三角形 16168444+++=(个).23.2.7★★★图中有多少个梯形? 解析 设图中AD 的长为1个单位.先计算底与BC 平行且上底小、下底大的梯形的个数. 下底长是5的梯形有414⨯=(个)(即梯形BCJI ,BCHG ,BCFE ,BCDA ).CLQP KBJ M T S I H N RG F O E D A下底长是4的梯形有339⨯=(个),其中下底可为BL ,KC ,IJ ,对于每一个这样的下底、上底都有三种可能.类似地,下底的长为3的梯形有 ()232112⨯++=(个). 下底的长为2的梯形有 ()1432110⨯+++=(个). 因此,底与BC 平行且下底大于上底的梯形有49121035+++=(个).再计算底与BC 平行且下底大于上底的梯形有49121035+++=(个). 再计算底与BC 平行且上底大于下底的梯形,易知有 14611++=(个).底与AB 平行,且左边底大于右边底的梯形有610925++=个;左边底小于右边底的梯形有13711++=个,因此共有 251136+=(个).底与CD 平行的梯形也有36个. 所以,图中共有梯形35113636118+++=(个).评注 本题“分类”要全,不要遗漏了底与AB 或CD 平行的梯形. 23.2.8★★★图中共有多少个三角形?CB A解析 显然三角形可分为尖向上与尖向下两大类,两类中三角形的个数相等.尖向上的三角形双可分为6类:最大的三角形1个(即ABC △); 第二大的三角形有123+=(个); 第三大的三角形有1236++=(个); 第四大的三角形有123410+++=(个); 第五大的三角形有1234515++++=(个);最小的三角形有123456324++++++=(个).注意在ABC △外面还有三个最小的尖向上的三角形(左、右、下各一个),所以最小的三角形不是21个而是24个. 于是尖向上的三角形共136********+++++=(个). 图中共有三角形 592118⨯=(个).23.29★★★图中有多少个等腰直角三角形?161110854654解析 图中有 554441⨯+⨯=个点.在每点标一个数,它等于以这点为直角顶点的等腰直角三角形的个数.因此由对称性,共有等腰直角三角形485166410484114161268⨯+⨯+⨯+⨯+⨯+⨯+⨯=(个). 23.2.10★★★(1)图(a )中有多少个三角形? (2)图(b )中又有多少个三角形?(b)(a)解析 (1)图(a )中有6条直线.一般来说,每3条直线能围成一个三角形,但是这3条直线如果相交于同一点,就不能围成三角形了.从6条直线中选3条,有654206⨯⨯=种选法,每次选出的3条直线围成一个三角形,但是在图(a )中,每个顶点处有3条直线通过,它们不能围成三角形,因此,共有20317-=个三角形.(2)图(b )中有7条直线,从7条直线中选3条,有 765356⨯⨯= 种选法.每不过同点的3条直线构成一个三角形.(b )中,有2个顶点处有3条直线通过,它们不能构成三角形,还有一个顶点有4条直线通过,因为4条直线中选3条有4种选法,即能构成4个三角形,现在这4个三角形没有了,所以,图(b )中的三角形个数是 352429--=(个).评注 从6条直线中选3条,第一条有6种选法,第二条5种选法,第三条有4种选法,共有654⨯⨯种选法,但是每一种被重复计算了6次,例如123l l l ,132l l l ,213l l l ,231l l ,312l l l ,321l l l 实际上是同一种,所以,不同的选法应为654206⨯⨯=种. 23.2.11★★问8条直线最多能把平面分成多少部分? 解析 1条直线最多将平面分成2个部分;2条直线最多将平面分成4个部分;3条直线最多将平面分成7个部分;再在添上第4条直线,它与前面的3条直线最多有3个交点,这3个交点将第4条直线分成4段,其中每一段将原来所在平面部分一分为二,如图,所以4条直线最多将平面分成7411+=个部分.13l 4完全类似地,5条直线最多将平面分成11516+=个部分;6条直线最多将平面分成16622+=个部分;7条直线最多将平面分成22729+=个部分;8条直线最多将平面分成29837+=个部分. 评注一般地,n 条直线最多将平面分成()2122322n n n ++++=++个部分. 23.2.12★★平面上5个圆最多把平面分成多少个部分? 解析 1个圆最多能把平面分成2个部分;2个圆最多能把平面分成4个部分;3个圆最多能把平面分成8个部分;现在加入第4个圆,为了使分成的部分最多,第4个圆必须与前面3个圆都有两个交点,如图所示.因此得6个交点,这6个交点将第4个圆的圆周分成6段圆弧,而每一段圆弧将原来的部分一分为二,即增加了一个部分,于是,4个圆最多将平面分成8614+=个部分.同样道理,5个圆最多将平面分成14822+=个部分. 所以,5个圆最多将平面分成22个部分. 说明 用上面类似的方法,可以计算出n 个圆最多分平面的部分数为 ()2122212n +⨯+⨯++-⨯()22121n =++++-⎡⎤⎣⎦22n n =-+.23.2.13★★★平面上5个圆和一条直线,最多能把平面分成多少个部分?解析 首先,由上题可知,平面上5个圆最多能把平面分成22个部分,现在加入一条直线,由于一条直线最多与一个圆有两个交点,所以一条直线与5个圆最多有10个交点.10个点把这条直线分成了11段,其中9段在圆内,2条射线在圆外,9条在圆内的线段把原来的部分一分为二;圆外只增加了一个部分.所以,总共增加了10个部分. 因此,5个圆和1条直线,最多将平面分成221032+=个部分.23.2.14★★★三角形ABC 内部有2008个点,以顶点A 、B 、C 和这2008个点为顶点能把原三角形分割成多少个小三角形?(b)(a)P nCBAP nBA解析设ABC △内部的1n -个点能把原三角形分割成1n a -个小三角形,我们考虑新增加一个点n P 之后的情况:(1)若点n P 在某个小三角形的内部,如图(a),则原小三角形的三个顶点连同n P 将这个小三角形一分为三,即增加了两个小三角形;(2)若点n P 在某两个小三角形公共边上,如图(b).则这两个小三角形的顶点连同点n P 将这两个小三角形分别一分为二,即也增加了两个小三角形.所以,ABC △内部的n 个点把原三角形分割成的小三角形个数为 12n n a a -=+.易知01a =,于是102a a =+,212a a =+,…,12n n a a -=+.将上面这些式子相加,得21nn =+.所以,当2008n =时,三个顶点A 、B 、C D 和这2008个内点能把原三角形分割成2200814017⨯+=个小三角形.23.2.15★★★平面上有100条直线,其中有20条是互相平行的,问这100条直线最多能将平面分成多少部分?解析1 首先,这20条平行线将平面分成21个部分.设另加上k 条直线,连同这20条平行线最多可将平面分成k a 个部分,则 121k k a a k +=++.这是因为当再加入第1k +条直线后,它与前20k +条直线最多有20k +个交点,从而这条直线被分成了20121k k ++=+段(其中有两段是射线),每一段将原来的部分一分为二,即增加了21k +个部分. 所以()1211k k a a k --=+-,……21211a a -=+,把上面的后1k -个等式相加,得()()1121112k a a k k k =+-+-. 易知142a =,故()142212112k a k k k =+-+-21412122k k =++. 所以280141808021486122a =⨯+⨯+=.所以,这100条直线最多将平面分成了4861个部分.解析2 解法1是先从平行线入手,现在我们先从80条互不平行的直线入手.一般地,设平面上k 条直线最多可将平面分成k a 个部分,则(见题23.2.11)2801180801324122a =⨯+⨯+=.所以,80条直线最多将平面分成3241个部分.现在再加入平行线.每加入一条平行线,它与前面的直线最多有80个交点,从而增加81个部分,于是加入20条平行线后最多增加20811260⨯=个部分. 因此,这100条直线最多将平面分成 324116204861+= 个部分.23.2.16★★★圆周上有()4n ≥个点,每两点连一条弦,如果没有三条弦交于圆内一点,问:这些弦在圆内一共有多少个交点?PA 4A 3A 2A 1解析 圆周上每4点构成一个凸四边形,它的两条对角线(弦)交于一点(如图),因此第4点对应于圆内一个交点.由于没有三条弦交于圆内一点,所以不同的4点对应于圆内的不同交点.反应过一,设点P 是弦13A A 与24A A 的交点,则P 与4点1A 在、2A 、3A 、4A 对应.所以,交点的个数就是圆周上n 个点中取4点的不同的取法总数,即 ()()()()()()1231123432124n n n n n n n n ---=---⨯⨯⨯.评注 最后的答案中要除以4321⨯⨯⨯,理由同题23.2.10. 23.2.17★★★圆周上有8个点1A ,2A ,…,8A ,如图所示.(1)从1A 出发将它们连结成一条在圆内不相交的折线(由7条线段组成,例如折线12345876A A A A A A A A 就是满足要求的一条),共可得多少条不同的折线?(2)如果可以从这8点中的任一点出发,共可得多少条不同的拆线?A 8A 7A 6A 5A 4A 3A 2A 1解析(1)从1A 出发连第1条线段时,只有两种连法:12A A 或18A A (否则,若连13A A ,则2A 与4A 、5A 、6A 、7A 、8A 分布在13A A 两边,要每个顶点都连到,必定与13A A 相交);接着连第2条线段时,也只有两种连法……连第6条线段时,有两种连法,连最后一条线段时,只有一种连法,所以由乘法原理知,不同的折线共有 622221264⨯⨯⨯⨯==(条).(2)由(1)知,从8个点中的每一点i A (1i =,2,…,8)出发,可以有64条不同的折线,从而可得864⨯条折线,但是对其中的每一条折线,将它的起点和终点都作为出发点重复算了一次,所以应除以2,故不同的折线共有 8642256⨯÷=(条). 23.2.18★★★★在平面上给出()3n >条直线,且它们中的任何两条不平行,任三条不共线,证明:这些直线把平面分成的各部分中,三角形个数不少于223n -. 解析 研究已知直线的所有交点.我们证明,这些点都在不多于两条已知直线的同一旁.假设所有这些交点都在三条已知直线的同一旁,这三条直线构成三角形ABC ,第四条直线不能仅与这个三角形的边相交,也就是它至少与一条边的延长线相交.为了确定起见,设它与从B 点出发的边AB 的延长线相交于某点M .这时点A 和M 在直线BC 的两旁,得出矛盾.因此至少有2n -条直线,它的两旁都有交点.如果我们在由直线l 所给出的半平面上选取邻近l 的交点,那么这个点是毗连直线l 的三角形的顶点.这样一来,有不少于2n -条直线,毗连它们每一条至少有两个三角形,并且有两条直线,毗连它们每一条至少有一个三角形,因为每个三角形恰毗连三条直线,所以有不少于()2222233n n -+-=个三角形.。
人教版初一数学培优和竞赛二合一讲炼教程
(11)用交集解题
【知识精读】
1. 某种对象的全体组成一个集合。
组成集合的各个对象叫这个集合的元素。
例如6的正约数集合记作{6的正约数}={1,2,3,6},它有4个元素1,2,3,6;除以3余1的正整数集合是个无限集,记作{除以3余1的正整数}={1,4,7,10……},它的个元素有无数多个。
2. 由两个集合的所有公共元素组成的一个集合,叫做这两个集合的交集
例如6的正约数集合A ={1,2,3,6},10的正约数集合B ={1,2,5,10},6与10的公约数集合C ={1,2},集合C 是集合A 和集合B 的交集。
3. 几个集合的交集可用图形形象地表示, 右图中左边的椭圆表示正数集合, 右边的椭圆表示整数集合,中间两个椭圆 的公共部分,是它们的交集――正整数集。
例如不等式组⎩
⎨⎧
<->)2(2)1(62 x x 解的集合就是 不等式(1)的解集x>3和不等式(2)的解集x >2的交集,x>3. 4.一类问题,它的答案要同时符合几个条件,一般可用交集来解答。
把符合每个条件的所有的解(即解的集合)分别求出来,它们的公共部分(即交集)就是所求的答案。
有时可以先求出其中的一个(一般是元素最多)的解集,再按其他条件逐一筛选、剔除,求得答案。
(如例2)
分类解析】
例1.一个自然数除以3余2,除以5余3,除以7余2,求这个自然数的最小值。
解:除以3余2的自然数集合A ={2,5,8,11,14,17,20,23,26,……} 除以5余3的自然数集B ={3,8,13,18,23,28,……}
除以7余2自然数集合C ={2,9,16,23,30,……}
集合A 、B 、C 的公共元素的最小值23就是所求的自然数。
例2. 有两个二位的质数,它们的差等于6,并且平方数的个位数字相同,求这两个数。
解: 二位的质数共21个,它们的个位数字只有1,3,7,9,即符合条件的质数它们的个
位数的集合是{1,3,7,9};
其中差等于6的有:1和7;3和9;13和7,三组;
平方数的个位数字相同的只有3和7;1和9二组。
同时符合三个条件的个位数字是3和7这一组
故所求质数是:23,17; 43,37; 53,47; 73,67共四组。
例3. 数学兴趣小组中订阅A 种刊物的有28人,订阅B 种刊物的有21人,其中6人两种都
订,只有一人两种都没有订,问只订A 种、只订B 种的各几人?数学兴趣小组共有几人?
解:如图左、右两椭圆分别表示订阅A 种、B 种刊物的人数集合,则两圆重叠部分就是它们的交集(A 、B 两种都订的人数集合)。
∴只订A 种刊物的人数是28-6=22人; 只订B 刊物的人数是21-6=15人;
小组总人数是22+15+6+1=44人。
设N ,N (A ),N (B ),N (AB ),N
分别表示总人数,订A 种、B 种、AB 两种、都不订的人数,则得
[公式一]N =N + N (A )+N (B )-N (AB )。
例4. 在40名同学中调查,会玩乒乓球的有24人,篮球有18人,排球有10人,同时会玩
乒乓球和篮球的有6人,同时会玩乒乓球和排球的有4人,三种球都会的只有1人, 问:有多少人①只会打乒乓球 ②同时会打篮球和排球 ③只会打排球?
解:仿公式一,得[公式二]:
N =N + N (A )+N (B )+N(C)-N (AB )-N (
①只会打乒乓球的是24-6-4+1=15(人) ②求N (BC )可用公式二:
∵40=24+18+10-6-4-N (BC
)+1 ∴N (BC )=3, 即同时会打篮球和排球的是3③只会打排球的是10-3-1=6(人)
例5. 十进制中,六位数8719xy 能被33整除,求解:∵0≤x ,y ≤9, ∴0≤x+y ≤18, -9≤x -y ≤9,x+y>x -y
∵33=3×11,
∴1+9+x+y+8+7的和是3的倍数,故x+y=2,5,8,11,14,17
(1+x+8)-(9+y+7)是11的倍数, 故x -y=-4,7
∵x+y 和x -y 是同奇数或同偶数,∴它们的交集是下列四个方程组的解: ⎩⎨⎧-=-=+48y x y x ⎩
⎨⎧-=-=+414y x y x ⎩⎨⎧=-=+711y x y x ⎩⎨⎧=-=+717y x y x 解得⎩⎨⎧==62y x ⎩⎨⎧==95y x ⎩⎨⎧==29y x ⎩⎨⎧==5
12y x (x=12不合题意舍去)答:x=2,y=6或x=5,y=9或x=9,y=2
【实战模拟】
1. 负数集合与分数集合的交集是______
2. 等腰直角三角形集合是___三角形集合与___三角形集合的交集。
3. 12的正约数集合A ={ },30的正约数集合B ={ }
12和30的公约数集合C ={ },集合C 是集合A 和集合B 的__
4. 解下列不等式组并把解集(不是空集)表示在数轴上:
①⎩⎨⎧-<->563x x ②⎩⎨⎧<>-052x x ③ ⎪⎩
⎪⎨⎧->-->22131x x ④⎩⎨⎧<+>-0202x x 5. 某数除以3余1,除以5余1,除以7余2,求某数的最小值。
6. 九张纸各写着1到9中的一个自然数(不重复),甲拿的两张数字和是10,乙拿的两张数字差是1,丙拿的两张数字积是24,丁拿的两张数字商是3,问剩下的一张是多少?
7. 求符合如下三条件的两位数:①能被3整除②它的平方、立方的个位数都不变③两个数位上的数字积的个位数与原两位数的个位数字相同。
8. 据30名学生统计,会打篮球的有22人,其中5人还会打排球;有2人两种球都不会打。
那么①会打排球有几人?②只会打排球是几人?
9. 100名学生代表选举学生会正付主席,对侯选人A 和B 进行表决,赞成A 的有52票,赞成B 的有60票,其中A 、B 都赞成的有36人,问对A 、B 都不赞成的有几人?
10. 数、理、化三科竞赛,参加人数按单科统计,数学24人,物理18人,化学10人;按两科统计,参加数理、数化、理化分别是13、4、5人,没有三科都参加的人。
求参赛的总人数,只参加数学科的人数。
(本题如果改为有2人三科都参加呢?)
11. 053=+-+-+y x y x
12. 十进制中,六位数2851xy 能被21整除,求x,y 的值(仿例5)
练习
1. 负分数
2.等腰,直角
3.交集
4 ①x>5, ② x<-2, ③-3<x<1, ④空集 5. 16 6. 7
7. 30,60,90,15,75,66(从个位数为0,15,6中找)
8. 11人,6人 9.由 100=N +52+60-36得N =24
10. 30人,7人; 32人,9人 11.⎩⎨⎧=-=4
1y x 12. ⎩
⎨⎧== ,5,0y x (仿例5)。