九年级数学下册《27.1 图形的相似》教案(2) 新人教版
- 格式:doc
- 大小:42.00 KB
- 文档页数:3
图形的相似(二)一、教学目标1.明白相似多边形的要紧特点,即:相似多边形的对应角相等,对应边的比相等.2.会依照相似多边形的特点识别两个多边形是不是相似,并会运用其性质进行相关的计算.二、重点、难点1.重点:相似多边形的要紧特点与识别.2.难点:运用相似多边形的特点进行相关的计算.3.难点的冲破方式(1)判别两个多边形是不是相似,要看这两个多边形的对应角是不是相等,且对应边的比是不是也相等,这两个条件缺一不可;能够以矩形、菱形为例说明:仅有对应角相等,或仅有对应边的比相等的两个多边形不必然相似(见例1),也能够借助电脑直观演示,增加成效,从而纠正学生的错误熟悉.(2)由相似多边形的特点可知,若是已知两个多边形相似,就等于明白它们的对应角相等,对应边的比相等(对应边成比例),在计算时要能灵活运用.(3)相似比是一个很重要的概念,它实质是把一个图形放大或缩小的倍数(即相似多边形的对应边的长放大或缩小的倍数).三、例题的用意本节课安排了3个例题,例1与例3都是补充的题目,其中通过例1的学习,要让学生了解判别两个多边形是不是相似,要看这两个多边形的对应角是不是相等,且对应边的比是不是也相等,这两个条件缺一不可;而若说明两个多边形不相似,则必需说明各角无法对应相等或各对应边的比不相等,或举出适合的反例,在解决那个问题上,依托直觉观看是不靠得住的;例2是教材P39的例题,它要紧考查的是相似多边形的特点,运用相似多边形的对应角相等,对应边的比相等即可求解;例3是相似多边形特点的灵活运用(利用方程思想)的题目,在教学中还可依照自己的学生学习的程度,适当增加一些题目用以巩固相似多边形的性质.四、课堂引入1.如图的左侧格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.2.问题:关于图中两个相似的四边形,它们的对应角,对应边的比是不是相等.3.【结论】:(1)相似多边形的特点:相似多边形的对应角相等,对应边的比相等.反之,若是两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似.(2)相似比:相似多边形对应边的比称为相似比.问题:相似比为1时,相似的两个图形有什么关系?结论:相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形.五、例题讲解例1(补充)(选择题)下列说法正确的是()A.所有的平行四边形都相似 B.所有的矩形都相似C.所有的菱形都相似 D.所有的正方形都相似分析:A中平行四边形各角不必然对应相等,因此所有的平行四边形不必然都相似,故A错;B中矩形尽管各角都相等,可是各对应边的比不必然相等,因此所有的矩形不必然都相似,故B错;C中菱形尽管各对应边的比相等,可是各角不必然对应相等,因此所有的菱形不必然都相似,故C也错;D中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似,故D说法正确,因此此题应选D.例2(教材P39例题).分析:求相似多边形中的某些角的度数和某些线段的长,可依照相似多边形的对应角相等,对应边的比相等来解题,关键是找准对应角与对应边,从而列出正确的比例式.解:略例3(补充)已知四边形ABCD与四边形A1B1C1D1相似,且A1B1:B1C1:C1D1:D1A1=7:8:11:14,若四边形ABCD的周长为40,求四边形ABCD的各边的长.分析:因为两个四边形相似,因此可依照相似多边形的对应边的比相等来解题.解:∵ 四边形ABCD与四边形A1B1C1D1相似,∴ AB:BC:CD:DA= A1B1:B1C1:C1D1:D1A1.∵ A1B1:B1C1:C1D1:D1A1=7:8:11:14,∴ AB:BC:CD:DA= 7:8:11:14.设AB=7m,则BC=8m,CD=11m,DA=14m.∵ 四边形ABCD的周长为40,∴ 7m+8m+11m+14m=40.∴ m=1.∴ AB=7,则BC=8,CD=11,DA=14.六、课堂练习1.教材P40练习二、3.2.教材P41习题4.3.(选择题)△ABC与△DEF相似,且相似比是,则△DEF 与△ABC与的相似比是().A. B. C. D.4.(选择题)下列所给的条件中,能确信相似的有()(1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形.A.3个 B.4个 C.5个 D.6个5.已知四边形ABCD和四边形A1B1C1D1相似,四边形ABCD的最长边和最短边的长别离是10cm和4cm,若是四边形A1B1C1D1的最短边的长是6cm,那么四边形A1B1C1D1中最长的边长是多少?七、课后练习1.如图,AB∥EF∥CD,CD=4,AB=9,若梯形CDEF与梯形EFAB相似,求EF的长.※3.如图,一个矩形ABCD的长AD= a cm,宽AB= b cm,E、F别离是AD、BC的中点,连接E、F,所得新矩形ABFE与原矩形ABCD相似,求a:b的值.。
第二十七章相似27.1 图形的相似1.从生活中形状相同的图形的实例中认识图形的相似;(重点)2.理解成比例线段的概念,会确定线段的比.(难点)一、情境导入如图是两张大小不同的世界地图,左边的图形可以看作是右边的图形缩小得来的.由于不同的需要,对某一地区,经常会制成各种大小的地图,但其形状(包括地图中所描绘的各个部分)肯定是相同的.日常生活中我们会碰到很多这种形状相同、大小不一定相同的图形,在数学上,我们把具有相同形状的图形称为相似图形.像这样的图形有哪些性质?下面我们就一起探讨一下吧!二、合作探究探究点一:相似图形观察下面图形,指出(1)~(9)中的图形有没有与给出的图形(a)、(b)、(c)形状相同的?解析:通过观察寻找与(a),(b),(c)形状相同的图形,在所给的9个图形中仔细观察,然后作出判断.解:通过观察可以发现:图形(4)、(8)与图形(a)形状相同;图形(6)与图形(b)形状相同;图形(5)与图形(c)形状相同.方法总结:判断两个图形的形状是否相同,应仔细观察,当两个图形的形状除了大小没有其他任何差异时,我们才可以说这两个图形形状相同. 变式训练:见《学练优》本课时练习“课堂达标训练” 第1题探究点二:比例线段【类型一】 判断四条线段是否成比例下列各组中的四条线段成比例的是( )A .4cm ,2cm ,1cm ,3cmB .1cm ,2cm ,3cm ,5cmC .3cm ,4cm ,5cm ,6cmD .1cm ,2cm ,2cm ,4cm解析:选项A.从小到大排列,由于1×4≠2×3,所以不成比例,不符合题意;选项B.从小到大排列,由于1×5≠2×3,所以不成比例,不符合题意;选项C.从小到大排列,由于3×6≠4×5,所以不成比例,不符合题意;选项D.从小到大排列,由于1×4=2×2,所以成比例,符合题意.故选D.方法总结:判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型二】 利用成比例线段的定义,求线段的长已知线段a 、b 、c 、d 是成比例线段,其中a =2m ,b =4m ,c =5m ,则d =( )A .1mB .10m C.52m D.85m 解析:∵线段a 、b 、c 、d 是成比例线段,∴a ∶b =c ∶d ,而a =2m ,b =4m ,c =5m ,∴d =b ·c a =4×52=10(m).故选B. 方法总结:求线段之比时,要先统一线段的长度单位,然后根据比例关系求值.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型三】 利用比例尺求距离若一张地图的比例尺是1∶150000,在地图上量得甲、乙两地的距离是5cm ,则甲、乙两地的实际距离是( )A .3000mB .3500mC .5000mD .7500m解析:设甲、乙两地的实际距离是x cm ,根据题意得1∶150000=5∶x ,x =750000(cm),750000cm =7500m.故选D.方法总结:比例尺=图上距离∶实际距离.根据比例尺进行计算时,要注意单位的转换. 变式训练:见《学练优》本课时练习“课堂达标训练”第5题探究点三:相似多边形【类型一】 利用相似多边形的性质求线段和角如图所示,给出的两个四边形是相似形,具体数据如图所示,求出未知边a 、b 的长度及角α的值.解析:根据相似多边形对应角相等和对应边成比例解答.解:因为四边形ABCD 与四边形A ′B ′C ′D ′相似,所以∠B ′=∠B =63°,∠D ′=∠D ,AD A ′D ′=AB A ′B ′=BC B ′C ′,所以416=a 20=4.5b ,所以a =5,b =18.在四边形A ′B ′C ′D ′中,∠D ′=360°-(84°+75°+63°)=138°.∠α=∠D =∠D ′=138°.方法总结:若两个多边形相似,那么它们的对应角相等,对应边成比例.在书写两个多边形相似时,要注意把表示对应角顶点的字母写在对应的位置上.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型二】 相似多边形的判定如图,一块长3m 、宽1.5m 的矩形黑板ABCD 如图所示,镶在其外围的木质边框宽75cm.边框的内边缘所成的矩形ABCD 与边框的外边缘所成的矩形EFGH 相似吗?为什么?解析:两个矩形的四个角虽然相等,但四条边不一定对应成比例,判定两个矩形是否相似,关键是看对应边是否成比例.解:不相似.∵矩形ABCD 中,AB =1.5m ,AD =3m ,镶在其外围的木质边框宽75cm=0.75m ,∴EF =1.5+2×0.75=3m ,EH =3+2×0.75=4.5m ,∴AB EF =1.53=12,AD EH =34.5=23.∵12≠23,∴内边缘所成的矩形ABCD 与边框的外边缘所成的矩形EFGH 不相似. 方法总结:判定两个多边形相似,需要对应角相等,对应边成比例,这两个条件缺一不可.变式训练:见《学练优》本课时练习“课后巩固提升”第10题三、板书设计1.相似图形的概念;2.比例线段;3.相似多边形的判定和性质.本节课中对相似多边形的特征的教学要注意难度的把握,不要过高要求学生掌握更多的内容.学生能了解性质,并能简单运用即可,重要的还是后续的相似三角形的学习,当相似三角形的特征掌握之后,再进一步研究相似多边形的性质,学生就比较容易掌握.。
人教版九年级数学图形的相似教学设计执教教师:新疆阿克苏市第十三中学赵婷婷设计理念:新课标指出,数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,根据九年级课程内容设置,为了让学生能从代数到几何进行快速的思维转换,在义务教育阶段,让学生接触相对完整的图形变换,是义务教育的性质所决定的. 本章是继“图形全等、轴对称、平移、旋转”之后集中研究图形形状的内容,不仅是对图形全等内容的进一步深化和发展,而且是对图形研究方法的综合运用.教材分析:本节课是本章的第一课时,力图通过观察现实生活中的各种相似图形,归纳抽象出数学概念,呈现出有关内容,体现了数学与现实之间的必然联系.教材从生活中形状相同的图形出发,引出相似图形的概念,进而研究相似多边形的特征并进行运用,另外,学习了本节内容,可以使学生更好地认识、描述物体的形状,同时也为下一步《相似三角形》以及高中段“图形与空间”的学习起着铺垫作用.学情分析:九年级学生虽已具备了一定的逻辑思维能力,但学生的知识结构还不完善,数学思想方法的掌握和运用还不熟练,所以类比全等图形知识的学习,通过具体实例认识图形的相似,引导归纳得出相似图形的概念 .教学目标1.知识与技能通过对事物的图形的观察、思考与分析,认识理解相似的图形.2.过程与方法经历动手操作的活动过程,增强学生的观察、动手能力.3.情感、态度与价值观体会图形的相似在现实世界中的存在与运用,进一步提高学生数学应用意识.教学重点认识图形的相似、形成图形相似的概念.教学难点在方格图中画相似图形 .课型:新授课课时安排:1课时教学手段:多媒体教法与学法分析:教学策略:1、情境教学法:创设问题情境,以学生感兴趣的并容易回答的问题为开端。
2、启发性教学法:启发性原则是永恒的,学生在教师的启发下自然而然的成为课堂的主体。
学习策略:本节主要采用小组合作学习方式,围绕“观察猜想,探究验证,归纳总结”的主线开展学习。
辅助策略:利用多媒体直观演示以突破难点。
陕西省安康市石泉县池河镇九年级数学下册27.1 图形的相似教案2 (新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(陕西省安康市石泉县池河镇九年级数学下册27.1 图形的相似教案2 (新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为陕西省安康市石泉县池河镇九年级数学下册27.1 图形的相似教案2 (新版)新人教版的全部内容。
27。
1图形的相似(二)一、教材分析本节课是图形的相似的第二课时,是在研究图形的相似、相似多边形的特征和识别,研究最简单而又常用的相似三角形,体验由一般到特殊的思想方法.由于三角形的特殊性,所以研究相似三角形更有特殊意义,既促进相似多边形有关概念又丰富相似多边形的特征,另一方面又为后继的圆、三角函数等知识奠定基础,还有重要的实际意义。
二、学情分析初三学生对平面图形的认识能力正在形成,抽象思维还不够,学习几何知识处于现象描述和说理的过渡时期。
学生还没有真正理解推理方法,书写过程有一定困难,应抓住对方法思考与推理能力的培养。
因此,对这部分内容的学习,要引导学生学会正确的说理,理清相似图形在什么条件下用识别方法,在什么条件下用特征。
三、教学目标1.知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等.2.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算.四、教学重点难点重点相似多边形的主要特征与识别.难点运用相似多边形的特征进行相关的计算.五、教学过程设计一.引入:1.如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.2.问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等.3.【结论】:(1)相似多边形的特征:相似多边形的对应角相等,对应边的比相等.反之,如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似.(2)相似比:相似多边形对应边的比称为相似比.问题:相似比为1时,相似的两个图形有什么关系?结论:相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形.二.例题讲解例1(补充)(选择题)下列说法正确的是()A.所有的平行四边形都相似 B.所有的矩形都相似C.所有的菱形都相似 D.所有的正方形都相似分析:A中平行四边形各角不一定对应相等,因此所有的平行四边形不一定都相似,故A错;B中矩形虽然各角都相等,但是各对应边的比不一定相等,因此所有的矩形不一定都相似,故B错;C中菱形虽然各对应边的比相等,但是各角不一定对应相等,因此所有的菱形不一定都相似,故C也错;D中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似,故D说法正确,因此此题应选D.例2(教材P39例题).分析:求相似多边形中的某些角的度数和某些线段的长,可根据相似多边形的对应角相等,对应边的比相等来解题,关键是找准对应角与对应边,从而列出正确的比例式.解:略例3(补充)已知四边形ABCD与四边形A1B1C1D1相似,且A1B1:B1C1:C1D1:D1A1=7:8:11:14,若四边形ABCD的周长为40,求四边形ABCD的各边的长.分析:因为两个四边形相似,因此可根据相似多边形的对应边的比相等来解题.解:∵ 四边形ABCD与四边形A1B1C1D1相似,∴ AB:BC:CD:DA= A1B1:B1C1:C1D1:D1A1.∵ A1B1:B1C1:C1D1:D1A1=7:8:11:14,∴ AB:BC:CD:DA= 7:8:11:14.设AB=7m,则BC=8m,CD=11m,DA=14m.∵ 四边形ABCD的周长为40,∴ 7m+8m+11m+14m=40.∴ m=1.∴ AB=7,则BC=8,CD=11,DA=14.三.课堂练习1.教材P40练习2、3.2.教材P41习题4.3.(选择题)△ABC与△DEF相似,且相似比是,则△DEF 与△ABC 与的相似比是().A. B. C. D.4.(选择题)下列所给的条件中,能确定相似的有( )(1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形.A.3个 B.4个 C.5个 D.6个5.已知四边形ABCD和四边形A1B1C1D1相似,四边形ABCD的最长边和最短边的长分别是10cm和4cm,如果四边形A1B1C1D1的最短边的长是6cm,那么四边形A1B1C1D1中最长的边长是多少?四.小结:六、练习及检测题1.教材P40练习2、3.2.教材P41习题4.3.(选择题)△ABC与△DEF相似,且相似比是,则△DEF 与△ABC与的相似比是( ).A. B. C. D.4.(选择题)下列所给的条件中,能确定相似的有()(1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形.A.3个B.4个 C.5个 D.6个5.已知四边形ABCD和四边形A1B1C1D1相似,四边形ABCD的最长边和最短边的长分别是10cm和4cm,如果四边形A1B1C1D1的最短边的长是6cm,那么四边形A1B1C1D1中最长的边长是多少?七、作业设计1.如图,AB∥EF∥CD,CD=4,AB=9,若梯形CDEF与梯形EFAB相似,求EF的长.※3.如图,一个矩形ABCD的长AD= a cm,宽AB= b cm,E、F分别是AD、BC的中点,连接E、F,所得新矩形ABFE与原矩形ABCD相似,求a:b的值.。
人教版九年级下册27.1图形的相似教学设计一、教学目标1.学生能够理解什么是相似图形,掌握相似图形的定义及性质。
2.学生能够根据相似比例计算相似图形的边长、面积和周长。
3.学生能够运用相似关系解决实际问题。
二、教学重难点重点:理解相似图形的定义及性质,掌握计算相似图形的边长、面积和周长的方法。
难点:如何运用相似关系解决实际问题。
三、教学过程1. 导入新知识教师先放映一段视频,让学生观看一下两个正在比试的跳水运动员,互相交流自己的感受。
之后,教师带领学生小结,通过分享及展现,将相似性质的问题引入,从而激发学生围绕相似性质的探究兴趣。
2. 相关定义通过讲解PPT,教师带领同学开启探秘相似的新旅程,引导学生了解相似图形的特点、相似比和相似位置。
同时,让同学们能够区分相似图形和全等图形、相似三角形的共性与区别,为后面的教学打下基础。
3. 课堂实践•实践一:测量图形的边长教师准备好不同大小的图形,要求学生进行测量并计算出它们的相似比。
通过实践,让学生体验到相似关系的基本思路,培养学生的观察力和思考能力。
•实践二:计算图形面积教师给学生一些简单的图形,要求学生手算出它们的面积,并且根据相似比来计算出相似图形的面积。
通过做这个实验,能够让学生更好地理解相似图形的面积比值,提高学生的计算与推理能力。
4. 讲解应用通过导入优秀的阐释素材,让学生了解相似图形在生活中的应用,并在课堂上一起探讨进行探究。
教师可以给出一些实际情境,在此基础上实例演练,并引导学生自己思考,遇到实际问题,我们能够如何运用相似关系解决问题。
5. 课后作业布置课后作业,让学生模拟一些具体应用,做一些相应的实践练习,通过实践中总结归纳,巩固教学要点与知识。
四、总结通过以上授课过程,相信学生们已经初步掌握了相似图形的核心概念和基本应用,同时在课堂中也学习-了探究问题、思考问题的能力。
这种教学方式既能够使学生在轻松的氛围中学习到新知识,同时也能够促进学生将知识应用于实践中,从而深入了解相似图形的基本理论知识及其应用,提高学生的数学素养和实际应用能力。
人教版九年级数学下册: 27.1《图形的相似》教学设计1一. 教材分析《图形的相似》是人教版九年级数学下册的教学内容,主要介绍了相似图形的概念、性质以及相似三角形的判定和性质。
本节内容是在学生已经掌握了平面几何的基本概念和性质的基础上进行学习的,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于平面几何的基本概念和性质有一定的了解。
但是,对于相似图形的概念和性质的理解还需要加强,同时,学生对于实际应用相似图形解决问题的关键点还不是很清楚。
三. 教学目标1.理解相似图形的概念和性质。
2.掌握相似三角形的判定和性质。
3.能够运用相似图形解决实际问题。
四. 教学重难点1.相似图形的概念和性质的理解。
2.相似三角形的判定和性质的掌握。
3.运用相似图形解决实际问题的能力的培养。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,通过引导学生自主探究、合作交流,提高学生对于相似图形的理解和运用能力。
六. 教学准备1.教学课件。
2.相关练习题。
七. 教学过程1.导入(5分钟)通过展示一些实际生活中的图形,如飞机、汽车、建筑物等,引导学生观察这些图形之间的相似性,从而引出相似图形的概念。
2.呈现(10分钟)利用课件呈现相似图形的定义和性质,引导学生自主学习,理解并掌握相似图形的概念和性质。
3.操练(10分钟)通过一些练习题,让学生运用所学的相似图形的性质进行解题,巩固所学知识。
4.巩固(10分钟)利用一些实际问题,让学生运用相似图形解决实际问题,进一步巩固所学知识。
5.拓展(10分钟)引导学生思考相似图形在实际生活中的应用,如设计、制造、建筑等领域,拓宽学生的视野。
6.小结(5分钟)对本节课的主要内容进行总结,让学生明确所学知识的重点和难点。
7.家庭作业(5分钟)布置一些相关的练习题,让学生课后巩固所学知识。
8.板书(5分钟)板书本节课的主要内容和重点知识点,方便学生复习和记忆。
人教版九年级数学下册: 27.1《图形的相似》教学设计4一. 教材分析《图形的相似》是人教版九年级数学下册第27.1节的内容,本节课主要让学生了解相似图形的概念,掌握相似图形的性质,并会运用相似图形解决一些实际问题。
通过本节课的学习,学生能够进一步理解图形的变换,提高解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的图形认知能力,对图形的变换有一定的了解。
但是,对于相似图形的概念和性质,学生可能还比较陌生。
因此,在教学过程中,教师需要引导学生从实际问题中抽象出相似图形的概念,并通过大量的例子让学生理解和掌握相似图形的性质。
三. 教学目标1.了解相似图形的概念,掌握相似图形的性质。
2.能够运用相似图形解决一些实际问题。
3.提高学生的抽象思维能力和解决问题的能力。
四. 教学重难点1.相似图形的概念和性质。
2.运用相似图形解决实际问题。
五. 教学方法1.情境教学法:通过实际问题引导学生抽象出相似图形的概念。
2.例题教学法:通过大量的例子让学生理解和掌握相似图形的性质。
3.问题解决法:让学生在解决实际问题的过程中运用相似图形,提高解决问题的能力。
六. 教学准备1.教学课件:制作课件,展示相似图形的概念和性质。
2.例题:准备一些典型的例题,让学生理解和掌握相似图形的性质。
3.练习题:准备一些练习题,巩固学生对相似图形的理解和掌握。
七. 教学过程1.导入(5分钟)通过一个实际问题引入相似图形的概念,例如:“有两幅相似的画,一幅画的长是8cm,宽是6cm,另一幅画的长是10cm,宽是7cm,请问这两幅画的面积是否相等?为什么?”引导学生思考和讨论,引出相似图形的概念。
2.呈现(10分钟)呈现相似图形的性质,如:相似图形的对应边成比例,对应角相等。
通过具体的图形和例子让学生理解和掌握这些性质。
3.操练(10分钟)让学生分组进行练习,运用相似图形的性质解决一些实际问题。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生独立完成一些练习题,巩固对相似图形的理解和掌握。
《27.1 图形的相似》教案(2)
课题 授课时间 年 月 日
教
学
目
标
知识与
能力
通过对生活中的事物或图形的观察,获得理性认识,从而加以识别相似
的图形.
过程与
方法
1、经历对相似图形观察、分析、欣赏以及动手操作、画图、测量等过
程,能用所学的知识去解决问题;
2、回顾相似图形的性质、定义,得出相似三角形的定义及其基本性
情感态
度价值
观
通过观察、归纳等数学活动,与他人交流思维的过程和结果,在获得知
识的过程中培养学习的自信心.发展审美能力,增强对图形欣赏的意
教学重点 运用相似多边形的概念进行计算和证明.
教学难点 运用相似多边形的概念进行证明.
教学方法
合作深究
教具准备 课型 新授
教 学 活 动
教学环节补
充
一、情景导学:
播放多媒体——教材中的图27.1.l-4 (1)(用投影幻灯片或用教
学挂图展示).观察相似三角形的特征,得出:三角相似的对应角相等、
对应边成比例以及相似比.
二、自学梳理
分组活动:(5分钟)复习相似变换图形,掌握相似形的基本特征:
对应角相等,对应边的比相等.
三、合作解疑:
(1)整体感知
从回顾旧知“相似多边形性质”入手定义相似三角形,认识符号相似于
“∽”,会用数学语言表达两个三角形相似——从课本第41页中“习题
27.1第5题”,通过测量得到DE∥BC时, △ADE∽△ABC-一给出三角形
相似的定义.
(2)互动1
师:教师展示投影1:课本第38页中图27. 1.1-4.这两个图形有何共
同特征? 生:回答略.
师:这两个图形的不同点在哪里? 生:回答略(教师在学生进行议论、
交流、评判形成共识后可由学生进行口头归纳.)
明确 图上所展示的两个相似图形中,∠A=∠A',∠B=∠B',∠C=
∠C',.
定义相似比:两个相似三角形对应边的比叫相似比.
注意:相似比是有顺序的,△ABC与△A'B'C'的相似比为k,则△A'
B'C'与△ABC的相似比为.
(3)互动2
师:展示投影2:课本中第39页图27.1-5.△ABC与△ADE的三个角对应
相等吗?为什么? 生:略.
师:△ABC与△ADE的三边对应成比例吗?量量看.生:动手测量得出结
论并与同伴交流.
师:△ABC与△ADE相似吗? 生:学生分组进进行讨论.
明确: 在同学交流、评判的过程中,老师进一步阐述,平行于三角形一边
的直线截其他两边或其延长线所得的三角形与原三角形相似.
四、点拨校正(师生共同分析,总结归纳)
五、巩固应用: 课本第40页练习第 l-3 题.
六、课堂小结:
(1)内容总结:相似用符号“∽”表示,读作“相似于”.
两个相似三角形对应边的比称为相似比,相似比是有顺序的.△ABC与△
A'B'C'的相似比为k,则△A'B'C'与△ABC的相似比为.
平行于三角形一边的直线截三角形的另两边,所得对应线段成比例.
(2)方法归纳:学会动手画平行线,动手测量、计算、观察、猜想总结
规律;重在培养学生的合作、交流与探索的能力.
七、达标检测:(见学案)
板书设计:相似多边形对应角相„„ 例1 例2
对应角相等,对应边„„
„„叫做相似比.