高中数学 第1章 三角函数章末过关检测卷 苏教版必修4
- 格式:doc
- 大小:271.50 KB
- 文档页数:9
章末综合测评(一) 三角函数(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上) 1.若sin α<0且tan α>0,则α是第________象限角. 【解析】 ∵sin α<0,tan α>0, ∴α是第三象限角. 【答案】 三2.已知圆的半径是6 cm ,则15°的圆心角与圆弧围成的扇形面积是________. 【解析】 15°化为弧度为π12,设扇形的弧长为l ,则l =6×π12=π2,其面积S =12lR =12×π2×6=3π2.【答案】3π23.cos 675°=________.【解析】 cos 675°=cos(675°-720°)=cos(-45°) =cos 45°=22. 【答案】224.把-11π4表示成θ+2k π(k ∈Z )的形式,使|θ|最小的θ的值是________.【解析】 ∵-11π4=-2π-3π4,∴-11π4与-3π4是终边相同的角,且此时⎪⎪⎪⎪⎪⎪-3π4=3π4是最小的. 【答案】 -3π45.角α,β的终边关于x 轴对称,若α=30°,则β=________.【解析】 画出图形,可知β的终边与-α的终边相同,故β=-30°+k ·360°,k ∈Z .【答案】 -30°+k ·360°,k ∈Z6.(2016·南通高一检测)函数y =cos ⎝ ⎛⎭⎪⎫x +π6,x ∈⎣⎢⎡⎦⎥⎤0,π2的值域是________.【解析】 由0≤x ≤π2,得π6≤x +π6≤2π3,∴-12≤cos ⎝ ⎛⎭⎪⎫x +π6≤32.【答案】 ⎣⎢⎡⎦⎥⎤-12,327.设α是第二象限角,则sin αcos α·1sin 2α-1等于________. 【解析】 因为α是第二象限角, 所以sin αcos α·1sin 2α-1 =sin αcos α·1-sin 2αsin 2α=sin αcos α·|cos α||sin α| =sin αcos α·-cos αsin α=-1. 【答案】 -18.(2014·重庆高考)将函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ<π2图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝ ⎛⎭⎪⎫π6=________. 【解析】 将y =sin x 的图象向左平移π6个单位长度可得y =sin ⎝⎛⎭⎪⎫x +π6的图象,保持纵坐标不变,横坐标变为原来的2倍可得y =sin ⎝ ⎛⎭⎪⎫12x +π6的图象,故f (x )=sin ⎝ ⎛⎭⎪⎫12x +π6.所以f ⎝ ⎛⎭⎪⎫π6=sin 12×π6+π6=sin π4=22.【答案】229.(2016·如皋高一检测)若3sin α+cos α=0,则1cos 2α+2sin αcos α的值为________.【解析】 由3sin α+cos α=0,得tan α=-13,∴1cos 2α+2sin αcos α=sin 2α+cos 2αcos 2α+2sin αcos α=tan 2α+11+2tan α=⎝ ⎛⎭⎪⎫-132+11+2×⎝ ⎛⎭⎪⎫-13=103. 【答案】10310.(2016·南京高一检测)已知点P (tan α,sin α-cos α)在第一象限,且0≤α≤2π,则角α的取值范围是________.【解析】 ∵点P 在第一象限,∴⎩⎪⎨⎪⎧tan α>0,①sin α-cos α>0,②由①知0<α<π2或π<α<3π2, ③由②知sin α>cos α.作出三角函数线知,在0,2π]内满足sin α>cos α的α∈⎝ ⎛⎭⎪⎫π4,5π4. ④由③,④得α∈⎝ ⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫π,5π4.【答案】 ⎝ ⎛⎭⎪⎫π4,π2∪⎝⎛⎭⎪⎫π,5π4 11.(2016·苏州高一检测)已知函数f (x )=2sin(ωx +φ)(ω>0)的图象如图1所示,则f ⎝ ⎛⎭⎪⎫7π12=________.图1【解析】 由图象知32T =π,∴T =2π3,A =2,又∵T =2πω,∴ω=3,将点⎝ ⎛⎭⎪⎫π4,0代入y =2sin(3x +φ)得:sin ⎝ ⎛⎭⎪⎫3×π4+φ=0,取φ=-34π,∴f (x )=2sin ⎝ ⎛⎭⎪⎫3x -3π4, ∴f ⎝⎛⎭⎪⎫7π12=2sin ⎝⎛⎭⎪⎫3×7π12-3π4=2sin π=0.【答案】 012.化简:1-2sin 200°cos 160°=________. 【解析】 原式=1-+-=1-2sin 20°cos 20°=-2=cos 20°-sin 20°. 【答案】 cos 20°-sin 20°13.如图2为一半径是3 m 的水轮,水轮圆心O 距离水面2 m ,已知水轮每分钟旋转4圈,水轮上的点P 到水面的距离y (m)与时间x (s)满足函数关系y =A sin(ωx +φ)+2,则ω=________,A =________.图2【解析】 由题意知,半径即是振幅,A =3,因为水轮每分钟旋转4圈,即周期为T =604=15 s ,所以ω=2πT =2π15. 【答案】2π153 14.(2016·泰州高一检测)关于函数f (x )=2sin3x -34π,有下列命题:①其最小正周期为23π;②其图象由y =2sin 3x 向左平移π4个单位而得到;③其表达式可以写成f (x )=2cos ⎝⎛⎭⎪⎫3x +34π; ④在x ∈⎣⎢⎡⎦⎥⎤π12,512π为单调递增函数.则其中真命题为________.(需写出所有真命题的序号) 【解析】 ①由f (x )=2sin ⎝⎛⎭⎪⎫3x -34π得T =2π3,故①正确.②y =2sin 3x 向左平移π4个单位得y =2sin3x +34π,故②不正确.③由f (x )=2sin ⎝ ⎛⎭⎪⎫3x -3π4 =2sin ⎝ ⎛⎭⎪⎫3x +3π4-3π2=-2sin ⎣⎢⎡⎦⎥⎤3π2-⎝ ⎛⎭⎪⎫3x +3π4 =2sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫3x +3π4 =2cos ⎝ ⎛⎭⎪⎫3x +34π, 故③正确.④由2k π-π2≤3x -34π≤2k π+π2(k ∈Z )得23k π+π12≤x ≤23k π+512π(k ∈Z ),∴f (x )=2sin ⎝ ⎛⎭⎪⎫3x -34π的单调递增区间为⎣⎢⎡⎦⎥⎤23k π+π12,23k π+512π(k ∈Z ).当k =0时,增区间为⎣⎢⎡⎦⎥⎤π12,5π12, 故④正确. 【答案】 ①③④二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分14分)(1)已知角α的终边经过点P (4,-3),求2sin α+cos α的值;(2)已知角α终边上一点P 与x 轴的距离与y 轴的距离之比为3∶4,求2sin α+cos α的值.【解】 (1)∵r =x 2+y 2=5,∴sin α=y r =-35,cos α=x r =45,∴2sin α+cos α=-65+45=-25.(2)当点P 在第一象限时,sin α=35,cos α=45,2sin α+cos α=2;当点P 在第二象限时,sin α=35,cos α=-45,2sin α+cos α=25;当点P 在第三象限时,sin α=-35,cos α=-45,2sin α+cos α=-2;当点P 在第四象限时,sin α=-35,cos α=45,2sin α+cos α=-25.16.(本小题满分14分)已知sin(α-3π)=2cos(α-4π). (1)求π-α+π-α2sin ⎝ ⎛⎭⎪⎫3π2-α-cos ⎝ ⎛⎭⎪⎫π2+α的值;(2)求sin 2α+2sin αcos α-cos 2α+2的值. 【解】 由已知,得-sin(3π-α)=2cos(4π-α), ∴-sin(π-α)=2cos(-α), ∴sin α=-2cos α. ∵cos α≠0,∴tan α=-2.(1)原式=sin α+5cos α-2sin ⎝ ⎛⎭⎪⎫π2-α+sin α=sin α+5cos α-2cos α+sin α=tan α+5-2+tan α=-2+5-2-2=-34.(2)原式=sin 2α+2sin αcos α-cos 2αsin 2α+cos 2α+2 =tan 2α+2tan α-1tan 2α+1+2 =4+--14+1+2=95.17.(本小题满分14分)已知函数f (x )=3sin ⎝⎛⎭⎪⎫x +π4.(1)用五点法画出它在一个周期内的闭区间上的图象;图3(2)写出f (x )的值域、周期、对称轴、单调区间. 【解】 (1)列表如下:(2)由上图可知:值域为-3,3],周期为2π,对称轴为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =π4+k π,k ∈Z, 单调增区间为⎣⎢⎡⎦⎥⎤-3π4+2k π,π4+2k π(k ∈Z ), 单调减区间为⎣⎢⎡⎦⎥⎤π4+2k π,5π4+2k π(k ∈Z ). 18.(本小题满分16分)(2016·天津十二区联考二)函数f (x )=cos(πx +φ)⎝⎛⎭⎪⎫0<φ<π2的部分图象如图4所示.图4(1)求φ及图中x 0的值;(2)设g (x )=f (x )+f ⎝ ⎛⎭⎪⎫x +13,求函数g (x )在区间⎣⎢⎡⎦⎥⎤-12,13上的最大值和最小值.【解】 (1)由题图得f (0)=32,所以cos φ=32, 因为0<φ<π2,故φ=π6.由于f (x )的最小正周期等于2,所以由题图可知1<x 0<2. 故7π6<πx 0+π6<13π6, 由f (x 0)=32得cos ⎝⎛⎭⎪⎫πx 0+π6=32,所以πx 0+π6=11π6,解得x 0=53.(2)因为f ⎝ ⎛⎭⎪⎫x +13 =cos ⎣⎢⎡⎦⎥⎤π⎝ ⎛⎭⎪⎫x +13+π6=cos ⎝ ⎛⎭⎪⎫πx +π2 =-sin πx ,所以g (x )=f (x )+f ⎝ ⎛⎭⎪⎫x +13=cos ⎝⎛⎭⎪⎫πx +π6-sin πx =cos πx cos π6-sin πx sin π6-sin πx=32cos πx -12sin πx -sin πx =32cos πx -32sin πx =3sin ⎝⎛⎭⎪⎫π6-πx .当x ∈⎣⎢⎡⎦⎥⎤-12,13时,-π6≤π6-πx ≤2π3,所以-12≤sin ⎝ ⎛⎭⎪⎫π6-πx ≤1,故π6-πx =π2,即x =-13时,g (x )取得最大值3; 当π6-πx =-π6,即x =13时,g (x )取得最小值-32. 19.(本小题满分16分)(2016·宿迁高一检测)已知函数y =a sin ⎝⎛⎭⎪⎫2x +π6+b 在x ∈⎣⎢⎡⎦⎥⎤0,π2上的值域为-5,1],求a ,b 的值. 【解】 由题意知a ≠0.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,∴sin ⎝⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1. 当a >0时,⎩⎪⎨⎪⎧ a +b =1,-a2+b =-5,解得⎩⎪⎨⎪⎧a =4,b =-3.当a <0时,⎩⎪⎨⎪⎧-12a +b =1,a +b =-5,解得⎩⎪⎨⎪⎧a =-4,b =-1.综上,a =4,b =-3或a =-4,b =-1.20.(本小题满分16分)(2016·南通高一检测)已知函数f (x )=A sin(ωx +φ)+B ⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的一系列对应值如下表:(1)(2)根据(1)的结果,若函数y =f (kx )(k >0)的周期为2π3,当x ∈⎣⎢⎡⎦⎥⎤0,π3时,方程f (kx )=m 恰有两个不同的解,求实数m 的取值范围.【解】 (1)设f (x )的最小正周期为T ,得T =11π6-⎝ ⎛⎭⎪⎫-π6=2π.由T =2πω,得ω=1.又⎩⎪⎨⎪⎧B +A =3,B -A =-1,解得⎩⎪⎨⎪⎧A =2,B =1,令ω·5π6+φ=π2+2k π,k ∈Z ,即5π6+φ=π2+2k π,k ∈Z ,即φ=-π3+2k π,k ∈Z .又|φ|<π2,解得φ=-π3,∴f (x )=2sin ⎝⎛⎭⎪⎫x -π3+1.(2)∵函数y =f (kx )=2sin ⎝ ⎛⎭⎪⎫kx -π3+1的周期为2π3,又k>0,∴k =3.令t =3x -π3,∵x ∈⎣⎢⎡⎦⎥⎤0,π3,∴t ∈⎣⎢⎡⎦⎥⎤-π3,2π3. 如图,sin t =s 在⎣⎢⎡⎦⎥⎤-π3,2π3上有两个不同的解的条件是s ∈⎣⎢⎡⎭⎪⎫32,1,∴方程f (kx )=m 在x ∈⎣⎢⎡⎦⎥⎤0,π3时,恰有两个不同的解的条件是m ∈[)3+1,3,即实数m 的取值范围是3+1,3).。
数学苏教必修4第1章三角函数单元检测(满分:100分 时间:60分钟)一、填空题(本大题共10小题,每小题5分,共50分) 1.若2弧度的圆心角所对的弧长为2 cm ,则这个圆心角所夹的扇形的面积是__________ cm 2.2.若4sin 5θ=-,tan θ>0,则cos θ=__________. 3.要得到函数y =sin x 的图象,只需将函数πcos 3y x ⎛⎫=- ⎪⎝⎭的图象向__________平移__________个单位.4.sin(-120°)cos 1 290°+cos(-1 020°)sin(-1 050°)=__________.5.函数y =cos x ,ππ,62x ⎡⎤∈-⎢⎥⎣⎦的值域是__________. 6.函数π2cos 3y x ω⎛⎫- ⎪⎝⎭=的最小正周期是4π,则ω=__________.7.若πsin 2x ⎛⎫-=⎪⎝⎭,且π<x <2π,则x =__________. 8.已知tan θ=2,则33sin sin cos θθθ-=__________. 9.设a 为常数,且a <0,0≤x <2π,则函数f (x )=cos 2x -2a sin x -1的最小值是__________.10.如果函数y =3cos(2x +φ)的图象关于点4π,03⎛⎫⎪⎝⎭对称,那么|φ|的最小值为__________.二、解答题(本大题共4小题,共50分)11.(12分)若sin αcos α<0,sin αtan α<012.(12分)已知π3πsin cos 22αα⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=ππ32α⎛⎫<< ⎪⎝⎭,求sin 3(2π-α)+cos 3(2π-α)的值.13.(12分)已知函数()πsin 262af x a x b ω⎛⎫++ ⎪⎝⎭=+(x ∈R ,a >0,ω>0)的最小正周期为π,函数f (x )的最大值是74,最小值是34.(1)求ω,a ,b 的值;(2)求f (x )的单调增区间.14.(14分)函数f 1(x )=A sin(ωx +φ)π00||2A ωϕ⎛⎫>>< ⎪⎝⎭,,的一段图象过点(0,1),如图所示.(1)求函数f1(x)的表达式;(2)将函数y=f1(x)的图象向右平移π4个单位,得到函数y=f2(x)的图象,求y=f2(x)的最大值,并求出此时自变量x的取值.参考答案1.答案:1解析:由弧长公式l=|α|R得2=2R,∴R=1 cm,则S=12Rl=12×1×2=1(cm2).2.答案:3 5 -解析:∵4sin5θ=-,tan θ>0,∴cos θ<0.∴3 cos5θ==-.3.答案:右π6解析:因为πsin cos2y x x⎛⎫-⎪⎝⎭===πcos2x⎛⎫-⎪⎝⎭=ππcos63x⎡⎤⎛⎫--⎪⎢⎥⎝⎭⎣⎦,所以只需将函数πcos3y x⎛⎫=-⎪⎝⎭的图象向右平移π6个单位即可得到函数y=sin x的图象.4.答案:1解析:原式=-sin 120°cos 210°+cos 60°sin 30°=11=122⎛+⨯⎝⎭.5.答案:[0,1]解析:结合单位圆中的三角函数线或余弦函数图象知函数的值域为[0,1].6.答案:1 2±解析:2π=4π||Tω=,∴12ω=,12ω±=.7.答案:7π6解析:∵πsin22x⎛⎫-=-⎪⎝⎭,∴cos x-=又π<x<2π,∴7π6x=.8.答案:10 7解析:33sin sin cos θθθ-=2233sin (sin cos )sin cos θθθθθ+- =33tan tan tan 1θθθ+-=332210217+=-.9. 答案:2a -1 解析:f (x )=cos 2x -2a sin x -1=1-sin 2x -2a sin x -1=-sin 2x -2a sin x =-(sin 2x+2a sin x +a 2-a 2)=-(sin x +a )2+a 2.∵a <0,∴当sin x =-1时,f (x )取得最小值. f (x )min =-(-1+a )2+a 2=2a -1.10. 答案:π6解析:∵函数y =3cos(2x +φ)的对称中心为4π,03⎛⎫⎪⎝⎭, ∴2×4π3+φ=k π+π2(k ∈Z ). ∴φ=k π+π2-8π3(k ∈Z ).∴|φ|的最小值为π6.11. 解:∵sin αcos α<0,sin αtan α<0, ∴α是第二象限角,即2k π+π2<α<2k π+π(k ∈Z ), 故k π+π4<2α<k π+π2, 即2α是第一或第三象限角.2cos2α, ∴当2α是第一象限角时,原式=2cos 2α;当2α是第三象限角时,原式=2cos 2α-.12. 解:由π3πsin cos =223αα⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,得cos sin αα+. ∴1+2sin αcos α=29,2sin αcos α=79-.∵π2<α<π,∴sin α>0,cos α<0. 从而sin α-cos α=43.于是原式=cos 3α-sin 3α=(cos α-sin α)(cos 2α+sin αcos α+sin 2α)=47221=31827⎛⎫-⨯-- ⎪⎝⎭. 13. 解:(1)由函数的最小正周期为π,得2π2ω=π,∴ω=1. 又f (x )的最大值是74,最小值是34, 则7=243=24a ab a a b ⎧++⎪⎪⎨⎪-++⎪⎩,,解得1=2a ,b =1.(2)由(1)知:1π5()=sin 2264f x x ⎛⎫++ ⎪⎝⎭.当2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),即k π-π3≤x ≤k π+π6(k ∈Z )时,f (x )单调递增,∴f (x )的单调增区间为ππππ36k k ⎡⎤-+⎢⎥⎣⎦,(k ∈Z ).14. 解:(1)由图知,T =π,于是ω=2πT=2.将y =A sin 2x 的图象向左平移π12个单位,得y =A sin(2x +φ)的图象,于是ππ=2=126ϕ⋅.将(0,1)代入πsin 26y A x ⎛⎫+ ⎪⎝⎭=,得A =2.故()1π2sin 26f x x ⎛⎫+ ⎪⎝⎭=.(2)依题意,()2ππ2sin 246f x x ⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦=π2cos 26x ⎛⎫+ ⎪⎝⎭=-.当2x +π6=2k π+π,即x =k π+5π12(k ∈Z )时,y max =2.此时x 的取值为5π=π12x x k k ⎧⎫+∈⎨⎬⎩⎭Z ,.。
章末质量评估(一)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.已知角α的终边在射线y =-34x (x >0)上,则2sin α+cos α的值是________.解析 由题知,角α在第四象限,且tan α=-34 ∴sin αsin α=-34,又sin 2α+cos 2α=1, 解得sin α=-35,cos α=45, ∴2sin α+cos α=-25. 答案 -252.如果点P (sin θ·cos θ,2cos θ)位于第三象限,那么角θ所在的象限是__________.解析由⎩⎪⎨⎪⎧sin θ·cos θ<02cos θ<0知sin θ>0,且cos θ<0,∴θ是第二象限角. 答案 第二象限3.(2010·上海春季高考)函数y =12sin 2x 的最小正周期T =________. 解析 由周期公式得T =2πω=2π2=π. 答案 π4.已知sin(2π-α)=45,α∈⎝ ⎛⎭⎪⎫32π,2π,则sin α+cos αsin α-cos α=________.解析 由sin(2π-α)=-sin α=45 ∴sin α=-45,又α∈⎝ ⎛⎭⎪⎫32π,2π,∴cos α=35,∴sin α+cos αsin α-cos α=-45+35-45-35=17.答案175.把函数y=sin⎝⎛⎭⎪⎫3x-π4的图象向右平移π3个单位,再把所得图象上各点的横坐标缩短为原来的13,所得函数的解析式为________.解析y=sin⎝⎛⎭⎪⎫3x-π4向右平移π3个单位得y=sin3⎝⎛⎭⎪⎫x-π3-π4=sin⎝⎛⎭⎪⎫3x-π4-π即y =-sin3x-π4,再将横坐标缩短为原来的13,得y=-sin⎝⎛⎭⎪⎫9x-π4.答案y=-sin⎝⎛⎭⎪⎫9x-π46.函数y=cos2x-3cos x+2的最小值为________.解析y=⎝⎛⎭⎪⎫cos x-322-14,又cos x∈[-1,1],∴当cos x=1时,y min=0.答案07.函数y=lg(cos x-sin x)的定义域是________.解析由cos x>sin x,结合图象知2kπ-34π<x<2kπ+π4,k∈Z.答案⎝⎛⎭⎪⎫2kπ-3π4,2kπ+π4k∈Z8.已知函数y=sin(ωx+φ)(ω>0,-π≤φ<π)的图象如下图所示,则φ=________.解析由图象知函数y=sin(ωx+φ)的周期为T=2⎝⎛⎭⎪⎫2π-3π4=5π2,所以2πω=5π2,得到ω=45.所以y=sin⎝⎛⎭⎪⎫45x+φ,从图中可知,点⎝⎛⎭⎪⎫3π4,-1是“五点法”中的第四点,所以45×3π4+φ=3π2,解得φ=9π10.答案 9π109.关于x 的函数f (x )=tan(x +φ)有以下说法: (1)对任意的φ,f (x )既不是奇函数也不是偶函数; (2)不存在φ,使f (x )既是奇函数,又是偶函数; (3)存在φ,使f (x )是奇函数; (4)对任意的φ,f (x )都不是偶函数.其中不正确的说法的序号是________.因为当φ=________时,该说法的结论不成立.答案 ① k π10.若函数f (x )=A sin(ωx +φ)(A ≠0,ω≠0)为奇函数,则φ的取值集合是________.解析 由f (0)=0,得sin φ=0,φ=k π,k ∈Z . 答案 {φ|φ=k π,k ∈Z }11.下列三角函数①sin ⎝ ⎛⎭⎪⎫n π+4π3;②cos ⎝ ⎛⎭⎪⎫2n π+π6; ③sin ⎝ ⎛⎭⎪⎫2n π+π3;④cos ⎣⎢⎡⎦⎥⎤(2n +1)π-π6;⑤sin ⎣⎢⎡⎦⎥⎤(2n +1)π-π3.(n ∈Z )其中与sin π3数值相同的是________.解析 ①sin ⎝ ⎛⎭⎪⎫n π+4π3=⎩⎪⎨⎪⎧sin π3(n 为奇数),-sin π3(n 为偶数);②cos ⎝ ⎛⎭⎪⎫2n π+π6=cos π6=sin π3;③sin ⎝ ⎛⎭⎪⎫2n π+π3=sin π3;④cos ⎣⎢⎡⎦⎥⎤(2n +1)π-π6=cos 5π6=-sin π3; ⑤sin ⎣⎢⎡⎦⎥⎤(2n +1)π-π3=sin π3,故②③⑤正确.答案 ②③⑤12.函数y =cos ⎝ ⎛⎭⎪⎫x -π6⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤π6,23π的最小值是________.解析 x ∈⎣⎢⎡⎦⎥⎤π6,2π3,则 x -π6∈⎣⎢⎡⎦⎥⎤0,π2 当x -π6=π2时,即当x =23π时,y min =0. 答案 013.已知函数f (x )=πsin x4,如果存在实数x 1、x 2,使得对任意的实数x ,都有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是________.解析 f (x )=πsin x4,则当x 2=8k π+2π时,f (x )max =π; 当x 1=8k π-2π时,f (x )min =-π; ∴|x 1-x 2|min =4π. 答案 4π14.函数y =A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象的最大值为3,对称轴是直线x =π6.要使图象的解析式为y =3sin ⎝ ⎛⎭⎪⎫2x +π6,下列给出的条件中________都适合.①周期T =π;②图象经过点⎝ ⎛⎭⎪⎫0,32;③图象与x 轴的两个相邻交点的距离为π2;④图象的对称中心到最近的对称轴的距离为π2.解析 将所给的四个条件进行检验,①②③符合条件;④不符合条件. 答案 ①②③二、解答题(本大题共6小题,共90分) 15.(本小题满分14分)已知tan αtan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2.解 由已知得tan α=12,(1)sin α-3cos αsin α+cos α=tan α-3tan α+1=12-312+1=-53. (2)sin 2α+sin αcos α+2=sin 2α+sin αcos α+2(cos 2α+sin 2α) =3sin 2α+sin αcos α+2cos 2αsin 2α+cos 2α=3tan 2α+tan α+2tan 2α+1=3×⎝ ⎛⎭⎪⎫122+12+2⎝ ⎛⎭⎪⎫122+1=135. 16.(本小题满分14分)化简: sin (k π-α)·cos[(k -1)π-α]cos [(k +1)π+α]·cos (k π+α)(k ∈Z ).解 对参数k 分为奇数、偶数讨论. 当k =2n +1(n ∈Z )时, 原式=sin (2n π+π-α)·cos (2n π-α)sin (2n π+2π+α)·cos (2n π+π+α)=sin (π-α)·cos αsin α·cos (π+α)=sin α·cos αsin α·(-cos α)=-1;当k =2n (n ∈Z )时, 原式=sin (2n π-α)·cos (2n π-π-α)sin (2n π+π+α)·cos (2n π+α)=-sin α·(-cos α)-sin α·cos α=-1;所以sin (k π-α)·cos[(k -1)π-α]sin[(k +1)π+α]·cos (k π+α)=-1.17.(本小题满分14分)已知函数f (x )=A sin(ωx +φ),x ∈R ⎝ ⎛⎭⎪⎫其中A >0,ω>0,0<φ<π2的周期为π,且图象上一个最低点为M ⎝ ⎛⎭⎪⎫2π3,-2. (1)求f (x )的解析式;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π12,求f (x )的最值.解 (1)由函数f (x )图象上的一个最低点为M ⎝ ⎛⎭⎪⎫2π3,-2,得A =2.由周期T =π,得ω=2πT =2ππ=2.由点M ⎝ ⎛⎭⎪⎫2π3,-2在图象上,得2sin ⎝ ⎛⎭⎪⎫4π3+φ=-2,即sin ⎝ ⎛⎭⎪⎫4π3+φ=-1,所以4π3+φ=2k π-π2(k ∈Z ),故φ=2k π-11π6(k ∈Z ),又φ∈⎝ ⎛⎭⎪⎫0,π2,所以φ=π6.所以函数的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6.(2)因为x ∈⎣⎢⎡⎦⎥⎤0,π12,所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,π3,所以当2x +π6=π6,即x =0时,函数f (x )取得最小值1;当2x +π6=π3,即x =π12时,函数f (x )取得最大值 3.18.(本小题满分16分)已知tan α,1tan α是关于x 的方程x 2-kx +k 2-3=0的两实根,且3π<α<72π,求cos(3π-α)-sin(π+α)的值.解 由已知得tan α·1tan α=k 2-3=1, 所以k =±2.又3π<α<72π, 所以tan α>0,1tan α>0, 于是tan α+1tan α=k >0, 从而k =2(k =-2应舍去).进而由tan α·1tan α=1及tan α+1tan α=2 可得tan α=1tan α=1.所以sin α=cos α=-22.故cos(3π-α)-sin(π+α)=-cos α+sin α=0.19.(本小题满分16分)函数f 1(x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的一段图象如右图所示.(1)求函数f 1(x )的解析式;(2)将函数y =f 1(x )的图象向右平移π4个单位,得函数y =f 2(x )的图象,求y =f 2(x )的最大值,并求出此时自变量x 的集合.解 (1)由图象知A =2,T =2⎝ ⎛⎭⎪⎫π3+π6=π,∴ω=2,∴f 1(x )=2sin(2x +φ).又当x =-π6时,2×⎝ ⎛⎭⎪⎫-π6+φ=0,即φ=π3,∴f 1(x )=2sin ⎝ ⎛⎭⎪⎫2x +π3.(2)由题意f 2(x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π4+π3=2sin ⎝ ⎛⎭⎪⎫2x -π6.当2x -π6=2k π+π2,即x =k π+π3(k ∈Z )时,f 2(x )取得最大值2,此时x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π+π3,k ∈Z20.(本小题满分16分)如右图所示,函数y =2cos(ωx +θ)x ∈R ,ω>0,0≤θ≤π2的图象与y 轴交于点()0,3,且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点A ⎝ ⎛⎭⎪⎫π2,0,点P 是该函数图象上一点,点Q (x 0,y 0)是PA 的中点,当y 0=32,x 0∈⎣⎢⎡⎦⎥⎤π2,π时,求x 0的值.解 (1)将x =0,y =3代入函数y =2cos(ωx +θ)中, 得cos θ=32,因为0≤θ≤π2,所以θ=π6. 由已知T =π,且ω>0,得ω=2πT =2ππ=2. (2)因为点A ⎝ ⎛⎭⎪⎫π2,0,Q (x 0,y 0)是PA 的中点,y 0=32,所以点P 的坐标为⎝ ⎛⎭⎪⎫2x 0-π2,3.又因为点P 在y =2cos ⎝ ⎛⎭⎪⎫2x +π6的图象上,且π2≤x 0≤π,所以cos ⎝ ⎛⎭⎪⎫4x 0-5π6=32,且7π6≤4x 0-5π6≤19π6,从而得4x 0-5π6=11π6,或4x 0-5π6=13π6,即x 0=2π3, 或x 0=3π4.。
一、选择题(每小题5分,共50分).1、若角α是第三象限角,则2α是 ( ) A.第二象限角 B.第四象限角 C.第二象限角或第三象限角 D.第二象限角或第四象限角2、9cos()4π= ( )A .-22 B.22 C .-32 D.323、4sin ,(0,)5ααπ=∈,则tan α的值等于 ( )A .34B .43C .34±D .43±4、在(0,2)π内,与334π-角终边相同的角是 ( ) A .4π- B .4πC .34π-D .34π5、函数1()4sin()36f x x π=-的周期是 ( )A 、πB 、2πC 、4πD 、6π6、若2弧度的圆心角所对的弧长为8πcm,则这个圆的半径长是 ( ) A .2 cm B .4 cm C .4π cm D . 2π cm7、sin αcos α =14,则cos α+sin α的值等于 ( ) A .±62 B .62 C .-62 D .328、要得到函数3sin()4y x π=+的图象,只需将3sin y x =的图象 ( )A .向左平移8π个单位长度B .向右平移8π个单位长度C .向左平移4π个单位长度D .向右平移4π个单位长度9、函数⎪⎭⎫⎝⎛-=x y 23sin π的单调递减区间是 ( )A .Z k k k ∈⎥⎦⎤⎢⎣⎡+-,1252,122ππππB .Z k k k ∈⎥⎦⎤⎢⎣⎡++,3114,354ππππ C .Z k k k ∈⎥⎦⎤⎢⎣⎡++,1211,125ππππ D .Z k k k ∈⎥⎦⎤⎢⎣⎡+-,125,12ππππ已知 10、函数1tan tan y x x=-是 ( ) A.奇函数 B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数 二、填空题(每小题5分,共20分). 11、sin56π·cos 253π·tan 94π= , 12、函数tan(2)4x π-的定义域是 .13、把函数sin()6y x π=-先向左平移6π个单位长度,然后保持纵坐标不变,横坐标缩短到原来的12倍,之后再保持横坐标不变,纵坐标伸长到原来的3倍后所得的函数解析式为 .14、函数()4sin(3)6f x x π=-的周期是 ,振幅是 ,频率是 ,相位是 ,初相是 . 三、解答题(共20分). 15、化简sin(2)sin(5)cos(3)cos(3)cos()cos(10)απαπαππαπααπ++--------.(共10分).16、已知3cos 5α=,求cos()2sin(4)cos(6)5sin()2πααππαπα-•-•-+的值.(共10分) 17.函数()sin()f x A x ωϕ=+ (A >0,ω>0,|ϕ|<2π)的一段图象过点(0,1),如图1所示.求函数()f x 的表达式.(共10分)图118、(1)求使函数3sin(2)6y x π=+取得最大值、最小值的自变量的x 的集合,并分别写出最大值、最小值; (2)求使函数3sin(2)6y x π=+)3/0(π<<x 的值域(3)求3sin(2)6y x π=+的单调递减与递增区间.(共20分)。
三角函数全章测试测试卷(120分钟,满分150分)一、选择题(每题5分,共60分)1.若角α的终边落在直线y=-x 上,则ααααcos cos 1sin 1sin 22-+-的值等于( ) A .0 B .2C .-2D .2tg α 2.设θ∈(0,2π),若sin θ<0且cos2θ<0,则θ的取值范围是( )A .πθπ23<< B .4745πθπ<<C .πθπ223<<D .πθπ434<<3.函数12cos 32sin -+=x x y 的定义域是( )A .]1211,125[ππππ++k k (k ∈Z ) B .]3,[πππ+k k (k ∈Z ) C .]4,12[ππππ+-k k (k ∈Z )D .]2,6[ππππ+-k k (k ∈Z )4.函数)4332(sin 4cos 412ππ≤≤--+=x x x y 的值域是( ) A .[0,8] B .[-3,5] C .]122,3[--D .[-4,5]5.已知α,β∈),2(ππ,cos α+sin β>0,则( )A .α+β<πB .23πβα>+ C .23πβα=+D .23πβα<+6.已知tan α,tan β是方程04332=++x x 的两根,且α,β∈)2,2(ππ-,则α+β等于( )A .3πB .3π或π32-C .3π-或π32D .π32-7.有四个函数:①x y 2sin =②y=|sinx|③2cot 2tan x x y -=④y=sin|x|,其中周期是π,且在)2,0(π上是增函数的函数个数是( )A .1B .2C .3D .48.函数)2tan tan 1(sin x x x y +=的最小正周期是( ) A .π B .2π C .2πD .23π 9.22sin =x 是tanx=1成立的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分条件也非必要条件 10.设︒-︒=6sin 236cos 21a ,︒+︒=13tan 113tan 22b ,240sin 1︒-=c 则( ) A .a <b <cB .a <c <bC .b <c <aD .c <b <a11.把函数x x y sin 3cos -=的图象向左平移m 个单位,所得的图象关于y 轴对称,则m 的最小值是( )A .6πB .3π C .32πD .π12.已知函数)32sin(31π-=x y ,)32sin(42π+=x y ,那么函数21y y y +=的振幅A 的值是( )A .5B .7C .13D .13二、填空题(每题4分,共16分)13.函数xx y 2cos 1)4tan(-+=π的最小正周期是_____________。
章末检测一、填空题1.已知cos α=12,α∈(370°,520°),则α=________. 2.若y =sin x 是减函数,y =cos x 是增函数,那么角x 在第______象限.3.函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则φ=________.4.若sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是________. 5.已知一扇形的弧所对的圆心角为54°,半径r =20 cm ,则扇形的周长为________ cm.6.已知集合M =⎩⎨⎧⎭⎬⎫x |x =k π2+π4,k ∈Z ,N ={x |x =k π4+π2,k ∈Z },则集合M 与N 的关系是________.7.若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________. 8.将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是________.9.在同一平面直角坐标系中,函数y =cos ⎝⎛⎭⎫x 2+3π2(x ∈)的图象和直线y =12的交点个数是________.10.设a =sin 5π7,b =cos 2π7,c =tan 2π7,则a 、b 、c 按从小到大的顺序排列为________. 11.方程sin πx =14x 的解的个数是________. 12.已知函数y =sin πx 3在区间上至少取得2次最大值,则正整数t 的最小值是________. 13.设ω>0,函数y =sin ⎝⎛⎭⎫ωx +π3+2的图象向右平移43π个单位后与原图象重合,则ω的最小值是________.14.已知函数f (x )=2sin(ωx +φ)的图象如图所示,则f (7π12)=________.二、解答题15.已知α是第三象限角,f (α)=sin (π-α)·cos (2π-α)·tan (-α-π)tan (-α)·sin (-π-α). (1)化简f (α);(2)若cos ⎝⎛⎭⎫α-32π=15,求f (α)的值; (3)若α=-1 860°,求f (α)的值.16.求函数y =3-4sin x -4cos 2x 的最大值和最小值,并写出函数取最值时对应的x 的值.17.已知sin α+cos α=15. 求:(1)sin α-cos α;(2)sin 3α+cos 3α.18.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8. (1)求φ;(2)求函数y =f (x )的单调增区间;(3)画出函数y =f (x )在区间上的图象.19.在已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上一个最低点为M ⎝⎛⎭⎫2π3,-2. (1)求f (x )的解析式;(2)当x ∈⎣⎡⎦⎤π12,π2时,求f (x )的值域.20.如右图所示,函数y =2cos(ωx +θ)(x ∈R ,ω>0,0≤θ≤π2)的图象与y 轴交于点(0,3),且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点A (π2,0),点P 是该函数图象上一点,点Q (x 0,y 0)是PA 的中点,当y 0=32,x 0∈π2,π0,π-1,2. 20.解 (1)将x =0,y =3代入函数y =2cos(ωx +θ)中,得cos θ=32,因为0≤θ≤π2, 所以θ=π6. 由已知T =π,且ω>0,得ω=2πT =2ππ=2. (2)因为点A (π2,0),Q (x 0,y 0)是PA 的中点, y 0=32,所以点P 的坐标为(2x 0-π2,3). 又因为点P 在y =2cos(2x +π6)的图象上,且π2≤x 0≤π, 所以cos(4x 0-5π6)=32, 且7π6≤4x 0-5π6≤19π6, 从而得4x 0-5π6=11π6,或4x 0-5π6=13π6, 即x 0=2π3,或x 0=3π4.。
第1章 三角函数(B)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.已知cos α=12,α∈(370°,520°),则α=________. 2.若sin x ·cos x <0,则角x 的终边位于第________象限.3.已知tan(-α-43π)=-5,则tan(π3+α)的值为________. 4.如果cos α=15,且α是第四象限的角,那么cos(α+π2)=________. 5.函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则φ=________.6.若sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是________.7.已知函数y =2sin (ωx +φ))(ω>0)在区间[0,2π]的图象如图,那么ω=________.8.设θ是第二象限角,则点P (sin θ,cos θ)落在第________象限.9.将函数y =sin(x -θ)的图象F 向右平移π3个单位长度得到图象F ′,若F ′的一条对称轴是直线x =π4,则θ的所有可能取值的集合是________. 10.在同一平面直角坐标系中,函数y =cos ⎝⎛⎭⎫x 2+3π2(x ∈[0,2π])的图象和直线y =12的交点个数是______.11.设a =sin 5π7,b =cos 2π7,c =tan 2π7,则a ,b ,c 按从小到大的顺序是________. 12.函数y =A sin(ωx +φ)(A 、ω、φ为常数,A >0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω=________.13.设定义在区间(0,π2)上的函数y =6cos x 的图象与y =5tan x 的图象交于点P ,过点P 作x 轴的垂线,垂足为P 1,直线PP 1与函数y =sin x 的图象交于点P 2,则线段P 1P 2的长为________.14.给出下列命题:(1)函数y =sin |x |不是周期函数;(2)函数y =tan x 在定义域内为增函数;(3)函数y =|cos 2x +12|的最小正周期为π2; (4)函数y =4sin(2x +π3),x ∈R 的一个对称中心为(-π6,0). 其中正确命题的序号是________.二、解答题(本大题共6小题,共90分)15.(14分)已知α是第三象限角,f (α)=sin (α-π2)cos (3π2+α)tan (π-α)tan (-α-π)sin (-π-α). (1)化简f (α);(2)若cos(α-32π)=15,求f (α)的值.16.(14分)已知4sin θ-2cos θ3sin θ+5cos θ=611,求下列各式的值. (1)5cos 2θsin 2θ+2sin θcos θ-3cos 2θ; (2)1-4sin θcos θ+2cos 2θ.17.(14分)已知sin α+cos α=15, 求:(1)sin α-cos α;(2)sin 3α+cos 3α.18.(16分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)如何由函数y =2sin x 的图象通过适当的变换得到函数f (x )的图象,写出变换过程.19.(16分)函数y =A sin(ωx +φ)(A >0,ω>0,0≤φ≤π2)在x ∈(0,7π)内只取到一个最大值和一个最小值,且当x =π时,y max =3;当x =6π,y min =-3.(1)求出此函数的解析式;(2)求该函数的单调递增区间;(3)是否存在实数m ,满足不等式A sin(ω-m 2+2m +3+φ)>A sin(ω-m 2+4+φ)?若存在,求出m 的范围(或值),若不存在,请说明理由.20.(16分)已知某海滨浴场海浪的高度y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作:y =f (t )(1)根据以上数据,求函数y =A cos ωt +b 的最小正周期T ,振幅A 及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8∶00时至晚上20∶00时之间,有多少时间可供冲浪者进行运动?第1章 三角函数(B)1.420° 2.二或四 3.54.265解析 ∵α是第四象限的角且cos α=15. ∴sin α= -1-cos 2α=-265, ∴cos(α+π2)=-sin α=265. 5.k π+π2(k ∈Z ) 解析 若函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则f (0)=cos φ=0,∴φ=k π+π2,(k ∈Z ).6.310解析 ∵sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1=2, ∴tan θ=3.∴sin θcos θ=sin θcos θsin 2θ+cos 2θ=tan θtan 2θ+1=310. 7.2解析 由图象知2T =2π,T =π,∴2πω=π,ω=2. 8.四解析 由已知θ是第二象限角,∴sin θ>0,cos θ<0,则点P (sin θ,cos θ)落在第四象限.9.{θ|θ=k π-7π12,k ∈Z } 解析 将y =sin(x -θ)向右平移π3个单位长度得到的解析式为y =sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π3-θ=sin(x -π3-θ).其对称轴是x =π4,则π4-π3-θ=k π+π2(k ∈Z ). ∴θ=-k π-7π12(k ∈Z ).即θ=k π-712π,k ∈Z . 10.2解析 函数y =cos ⎝⎛⎭⎫x 2+3π2=sin x 2,x ∈[0,2π],图象如图所示,直线y =12与该图象有两个交点.11.b <a <c解析 ∵a =sin 5π7=sin(π-5π7)=sin 2π7. 2π7-π4=8π28-7π28>0. ∴π4<2π7<π2. 又α∈⎝⎛⎭⎫π4,π2时,sin α>cos α.∴a =sin 2π7>cos 2π7=b . 又α∈⎝⎛⎭⎫0,π2时,sin α<tan α. ∴c =tan 2π7>sin 2π7=a . ∴c >a .∴c >a >b .12.3解析 由函数y =Asin(ωx +φ)的图象可知:T 2=(-π3)-(-23π)=π3,∴T =23π. ∵T =2πω=23π,∴ω=3. 13.23解析 由⎩⎪⎨⎪⎧y =6cos x ,y =5tan x消去y 得6cos x =5tan x . 整理得6cos 2 x =5sin x,6sin 2x +5sin x -6=0,(3sin x -2)(2sin x +3)=0,所以sin x =23或sin x =-32(舍去). 点P 2的纵坐标y 2=23, 所以P 1P 2=23. 14.(1)(4)解析 本题考查三角函数的图象与性质.(1)由于函数y =sin |x |是偶函数,作出y 轴右侧的图象,再关于y 轴对称即得左侧图象,观察图象可知没有周期性出现,即不是周期函数;(2)错,正切函数在定义域内不单调,整个图象具有周期性,因此不单调;(3)由周期函数的定义f (x +π2)=|-cos 2x +12|≠f (x ),∴π2不是函数的周期;(4)由于f (-π6)=0,故根据对称中心的意义可知(-π6,0)是函数的一个对称中心,故只有(1)(4)是正确的.15.解 (1)f (α)=sin (α-π2)cos (3π2+α)tan (π-α)tan (-α-π)sin (-π-α)=-sin (π2-α)sin α(-tan α)(-tan α)sin α=cos αsin αtan α-tan αsin α=-cos α.(2)∵cos(α-3π2)=cos(3π2-α)=-sin α=15.∴sin α=-15. ∵α是第三象限角,∴cos α=-265. ∴f (α)=-cos α=265. 16.解 由已知4sin θ-2cos θ3sin θ+5cos θ=611, ∴4tan θ-23tan θ+5=611. 解得:tan θ=2.(1)原式=5tan 2θ+2tan θ-3=55=1. (2)原式=sin 2θ-4sin θcos θ+3cos 2θ=sin 2θ-4sin θcos θ+3cos 2θsin 2θ+cos 2θ=tan 2θ-4tan θ+31+tan 2θ=-15. 17.解 (1)由sin α+cos α=15,得2sin αcos α=-2425, ∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925, ∴sin α-cos α=±75. (2)sin 3α+cos 3α=(sin α+cos α)(sin 2α-sin αcos α+cos 2α)=(sin α+cos α)(1-sin αcos α),由(1)知sin αcos α=-1225且sin α+cos α=15, ∴sin 3α+cos 3α=15×⎝⎛⎭⎫1+1225=37125. 18.解 (1)由图象知A =2.f (x )的最小正周期T =4×(5π12-π6)=π,故ω=2πT =2. 将点(π6,2)代入f (x )的解析式得 sin(π3+φ)=1,又|φ|<π2,∴φ=π6, 故函数f (x )的解析式为f (x )=2sin(2x +π6). (2)变换过程如下:19.解 (1)由题意得A =3,12T =5π⇒T =10π, ∴ω=2πT =15.∴y =3sin(15x +φ),由于点(π,3)在此函数图象上,则有3sin(π5+φ)=3,∵0≤φ≤π2,∴φ=π2-π5=3π10. ∴y =3sin(15x +3π10). (2)当2k π-π2≤15x +3π10≤2k π+π2时,即10k π-4π≤x ≤10k π+π时,原函数单调递增. ∴原函数的单调递增区间为[10k π-4π,10k π+π](k ∈Z ).(3)m 满足⎩⎪⎨⎪⎧-m 2+2m +3≥0,-m 2+4≥0, 解得-1≤m ≤2.∵-m 2+2m +3=-(m -1)2+4≤4,∴0≤-m 2+2m +3≤2,同理0≤-m 2+4≤2.由(2)知函数在[-4π,π]上递增,若有: A sin(ω-m 2+2m +3+φ)>A sin(ω-m 2+4+φ),只需要:-m 2+2m +3>-m 2+4,即m >12成立即可,所以存在m ∈(12,2],使A sin(ω-m 2+2m +3+φ)>A sin(ω-m 2+4+φ)成立.20.解 (1)由表中数据知周期T =12,∴ω=2πT =2π12=π6, 由t =0,y =1.5,得A +b =1.5.由t =3,y =1.0,得b =1.0.∴A =0.5,b =1,∴y =12cos π6t +1. (2)由题知,当y >1时才可对冲浪者开放, ∴12cos π6t +1>1, ∴cos π6t >0,∴2k π-π2<π6t <2k π+π2, 即12k -3<t <12k +3.①∵0≤t ≤24,故可令①中k 分别为0,1,2,即0≤t <3或9<t <15或21<t ≤24,∴在规定时间上午8∶00至晚上20∶00之间,有6个小时时间可供冲浪者运动,即上午9∶00至下午3∶00.。
(时间:120分钟,满分:160分)一、填空题(本大题共14小题,每小题5分,共70分.将答案填在题中的横线上) 1.若sin α<0且tan α>0,则α是第________象限角. 答案:三2.若角α的终边经过点P (1,-2),则tan α的值为________. 解析:tan α=-21=-2.答案:-23.(2011·山东高考改编)若点(a,9)在函数y =3x 的图象上,则tan a π6的值为________.解析:由3a =9得,a =2. 所以tan a π6=tan π3= 3.答案: 3 4.tan 300°+cos 405°sin 405°的值是________.解析:tan 300°+cos 405°sin 405°=tan(360°-60°)+cos (360°+45°)sin (360°+45°)=tan(-60°)+cos 45°sin 45°=-tan 60°+1=1- 3. 答案:1- 35.若α是第三象限角,且tan α=512,则cos α的值为________.解析:∵tan α=512,∴sin αcos α=512,即sin α=512cos α.又∵cos 2α+sin 2α=1, ∴(512cos α)2+cos 2α=1∴169144cos 2α=1,即cos 2α=144169. 又∵α为第三象限角,∴cos α<0. ∴cos α=-1213.答案:-12136.已知sin ⎝⎛⎭⎫α+π12=13,则cos ⎝⎛⎭⎫α+7π12的值等于________. 解析:由已知得cos(α+7π12)=cos[(α+π12)+π2]=-sin(α+π12)=-13.答案:-137.若(sin θ+cos θ)2=2,θ∈⎝⎛⎭⎫0,π2,则θ=________. 解析:由(sin θ+cos θ)2=2,∴sin θ cos θ=12∴sin θ cos θsin 2θ+cos 2θ=12即tan θ1+tan 2 θ=12,又tan θ>0, ∴tan θ=1,又θ∈(0,π2).∴θ=π4.答案:π48.函数y =tan ⎝⎛⎭⎫x 2+π3的递增区间是________. 解析:令k π-π2<x 2+π3<k π+π2(k ∈Z),得2k π-5π3<x <2k π+π3(k ∈Z),故所求函数的单调递增区间是(2k π-5π3,2k π+π3)(k ∈Z).答案:(2k π-5π3,2k π+π3)(k ∈Z) 9.(2012·新课标全国卷改编)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx+φ)图像的两条相邻的对称轴,则 φ=________.解析:由题意得周期T =2(54π-14π)=2π,∴2π=2πω,即ω=1,∴f (x )=sin(x +φ),∴f (π4)=sin(π4+φ)=±1,f (5π4)=sin(5π4+φ)=±1. ∵0<φ<π,∴π4<φ+π4<54π,∴φ+π4=π2,∴φ=π4.答案:π410.函数y =cos 2x -sin x 的最大值是________. 解析:∵y =cos 2x -sin x =1-sin 2x -sin x =-(sin x +12)2+54,又∵-1≤sin x ≤1, ∴当sin x =-12时,y max =54.答案:5411.已知函数f (x )=2sin(ωx +φ)的图象如图所示,则f (7π12)=________.解析:由图象可知A =2,32T =π,从而可知T =2πω=2π3,ω=3,得f (x )=2sin(3x +φ), 又由f (π4)=0可取φ=-3π4,于是f (x )=2sin(3x -3π4),则f (7π12)=2sin(7π4-3π4)=0.答案:012.sin 2,cos 1,tan 2的大小顺序是________. 解析:sin 2>0,cos 1>0, tan 2<0.∵cos 1=sin(π2-1),sin 2=sin(π-2),又0<π2-1<π-2<π2且y =sin x 在(0,π2)上是增函数,从而sin(π2-1)<sin(π-2),即cos 1<sin 2. ∴tan 2<cos 1<sin 2. 答案:tan 2<cos 1<sin 213.在函数①y =sin |x |,②y =|sin x |,③y =sin ⎝⎛⎭⎫2x +2π3,④y =cos ⎝⎛⎭⎫2x +2π3中,最小正周期为π的函数为________.解析:y =sin |x |不是周期函数,其余三个函数的最小正周期均为π. 答案:②③④14.将函数y =cos(x -π3)的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移π6个单位,所得函数图象的对称轴为________.解析:y =cos(x -π3)图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得函数y 1=cos(12x -π3)的图象,再向左平移π6个单位,得函数y 2=cos[12(x +π6)-π3]=cos(12x -π4)的图象.由x 2-π4=k π(k ∈Z),得x =2k π+π2(k ∈Z)即为所求的全部对称轴. 答案:x =2k π+π2(k ∈Z)二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)已知单位圆上一点P ⎝⎛⎭⎫-32,y ,设以OP 为终边的角为θ(0<θ<2π),求θ的正弦值、余弦值.解:∵P 在单位圆上,∴y 2+34=1.∴y =±12.当y =12时,sin α=12,cos α=-32.当y =-12时,sin α=-12,cos α=-32.16.(本小题满分14分)已知f (x )=a sin(3π-x )+b tan(π+x )+1(a 、b 为非零常数).(1)若f (4)=10,求f (-4)的值; (2)若f ⎝⎛⎭⎫π5=7,求f ⎝⎛⎭⎫995π的值. 解:∵f (x )=a sin(2π+π-x )+b tan(x +π)+1 =a sin x +b tan x +1,∴f (-x )=a sin(-x )+b tan(-x )+1 =-a sin x -b tan x +1, ∴f (x )+f (-x )=2.(1)∵f (4)=10, f (4)+f (-4)=2, ∴f (-4)=2-f (4)=2-10=-8. (2)∵f (π5)=7,f (π5)+f (-π5)=2,∴f (-π5)=2-f (π5)=2-7=-5.∴f (99π5)=f (20π-π5)=a sin(20π-π5)+b tan(20π-π5)+1=a sin(-π5)+b tan(-π5)+1=f (-π5)=-5.17.(本小题满分14分)已知sin(α-3π)=2cos(α-4π). (1)求sin (π-α)+5cos (2π-α)2sin ⎝⎛⎭⎫3π2-α-cos ⎝⎛⎭⎫π2+α的值;(2)求sin 2α+2sin αcos α-cos 2α+2的值. 解:由已知,得-sin(3π-α)=2cos(4π-α). ∴-sin(π-α)=2cos(-α). ∴sin α=-2cos α. ∵cos α≠0,∴tan α=-2.(1)原式=sin α+5cos α-2sin (π2-α)+sin α=sin α+5cos α-2cos α+sin α=tan α+5-2+tan α=-2+5-2-2=-34.(2)原式=sin 2 α+2sin αcos α-cos 2αsin 2α+cos 2α+2=tan 2α+2tan α-1tan 2α+1+2 =4+2×(-2)-14+1+2=95.18.(本小题满分16分)已知函数f (x )=a +2b sin ⎝⎛⎭⎫x +π4的图象过点(0,1),当x ∈⎣⎡⎦⎤0,π2时,f (x )的最大值为22-1.(1)求f (x )的解析式;(2)当x ∈⎣⎡⎦⎤0,π12时,求f (x )的最值. 解:(1)由f (0)=1,∴a +2b sin π4=1即a +b =1.①又x +π4∈[π4,34π],∴x +π4=π2时,f (x )有最大值.∴a +2b =22-1.②由①②知a =-1,b =2, f (x )=22sin(x +π4)-1.(2)可以,因为将图象沿x 轴右移π4个单位再向上平移一个单位得函数f (x )=22sin x 的图象.19.(本小题满分16分)已知函数f (x )=A sin(ωx +φ),x ∈R(其中A >0,ω>0,0<φ<π2)的周期为π,且图象上一个最低点为M (2π3,-2).(1)求f (x )的解析式; (2)当x ∈[0,π12]时,求f (x )的最值. 解:(1)由最低点为M (2π3,-2),得A =2.由T =π,得ω=2πT =2ππ=2.由点M (2π3,-2)在图象上,得2sin(4π3+φ)=-2,即sin(4π3+φ)=-1.所以4π3+φ=2k π-π2(k ∈Z).故φ=2k π-11π6(k ∈Z).又φ∈(0,π2),所以φ=π6.所以f (x )=2sin(2x +π6).(2)因为x ∈[0,π12],所以2x +π6∈[π6,π3].所以当2x +π6=π6,即x =0时,f (x )取得最小值1;当2x +π6=π3,即x =π12时,f (x )取得最大值 3.20.(本小题满分16分)设函数f (x )=sin(2x +φ)(-π<φ<0)的图象的一条对称轴是直线x =π8. (1)求φ的值;(2)求函数y =f (x )的单调减区间;(3)画出函数y =f (x )在区间[0,π]上的图象.解:(1)因为x =π8是函数f (x )=sin(2x +φ)的一条对称轴,所以sin(2×π8+φ)=±1,所以π4+φ=k π+π2,k ∈Z.因为-π<φ<0,所以φ=-3π4.(2)由(1)知φ=-3π4,因此y =sin(2x -3π4),由题意得2k π+π2≤2x -3π4≤2k π+3π2,k ∈Z.故k π+5π8≤x ≤k π+9π8,k ∈Z.所以函数y =sin(2x -3π4)的单调减区间为[k π+5π8,k π+9π8],k ∈Z.(3)由y =sin(2x -3π4)知:x 0 π8 3π8 5π8 7π8 π y-22-11-22[]故函数y =f (x )在区间[0,π]上的图象如图所示.。
班级姓名考号必修4第一章《三角函数》章末检测(时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题5分,共50分)1.sin 600°+tan 240°的值是()A.-32 B.32C.-12+ 3 D.12+ 32.把-114π表示成θ+2kπ(k∈Z)的形式,使|θ|的最小的θ值是()A.-34πB.-π4 C.π4 D.3π43.设α角属于第二象限,且⎪⎪⎪⎪cosα2=-cosα2,则α2角属于()A.第一象限B.第二象限C.第三象限D.第四象限4.已知tan α=34,α∈⎝⎛⎭⎫π,32π,则cos α的值是()A.±45 B.45C.-45 D.355.已知一扇形的弧所对的圆心角为54°,半径r=20 cm,则扇形的周长为() A.6π cm B.60 cmC.(40+6π) cm D.1 080 cm6.若点P(sin α-cos α,tan α)在第一象限,则在[0,2π)内α的取值范围是() A.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫π,5π4B.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4C.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫5π4,3π2D.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫3π4,π7.下列四个命题中,正确的是()A.函数y=tan⎝⎛⎭⎫x+π4是奇函数B.函数y=⎪⎪⎪⎪sin⎝⎛⎭⎫2x+π3的最小正周期是πC.函数y=tan x在(-∞,+∞)上是增函数D.函数y=cos x在区间⎣⎡⎦⎤2kπ+π,2kπ+74π(k∈Z)上是增函数8.为了得到函数y=sin⎝⎛⎭⎫2x-π6的图象,可以将函数y=cos 2x的图象() A.向右平移π6个单位长度B.向右平移π3个单位长度C.向左平移π6个单位长度D.向左平移π3个单位长度9.已知a是实数,则函数f(x)=1+a sin ax的图象不可能是()第9题 第13题10.把函数y =cos ⎝⎛⎭⎫x +4π3的图象向左平移φ (φ>0)个单位,所得的函数为偶函数,则φ的最小值是( )A.4π3B.2π3C.π3D.5π3二、填空题(本大题共5小题,每小题5分,共25分)11.已知tan α=2,则sin αcos α+2sin 2α的值是________. 12.函数f (x )=|sin x |的单调递增区间是________________.13.已知函数f (x )=2sin(ωx +φ)的图象如上图所示,则f (7π12)=___ ____.14.已知函数y =sin π3x 在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是____ __.15.方程sin πx =14x 的解的个数是 .三、解答题(本大题共6小题,共75分) 16.(本小题12分)求函数y =3-4sin x -4cos 2x 的最大值和最小值,并写出函数取最值时对应的x 的值.17.(本小题12分)求函数12y=log sin 2x 3π⎛⎫-⎪⎝⎭的单调递增区间.18.( 本小题12分)已知函数y =a cos ⎝⎛⎭⎫2x +π3+3,x ∈⎣⎡⎦⎤0,π2的最大值为4,求实数a 的值.19.(本小题12分)已知α是第三象限角,f (α)=sin (π-α)·cos (2π-α)·tan (-α-π)tan (-α)·sin (-π-α).(1)化简f (α);(2)若cos ⎝⎛⎭⎫α-32π=15,求f (α)的值;(3)若α=-1860°,求f (α)的值.20.( 本小题13分)在已知函数f (x )=A sin(ωx +φ),x ∈R ⎝⎛⎭⎫其中A >0,ω>0,0<φ<π2的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上一个最低点为M ⎝⎛⎭⎫2π3,-2. (1)求f (x )的解析式;(2)当x ∈⎣⎡⎦⎤π12,π2时,求f (x )的值域.21.(本小题14分)已知函数f (x )=A sin(ωx +φ) (A >0且ω>0,0<φ<π2)的部分图象,如图所示.(1)求函数解析式;(2)若方程f (x )=a 在⎝⎛⎭⎫0,5π3上有两个不同的实根,试求a 的取值范围.必修4第一章《三角函数》章末检测参考答案1.B 2.A 3.C 4.C.5.C.6.B 7.D.8.B 9.D 10.B11.2 12.⎣⎡⎦⎤k π,k π+π2,k ∈Z 13.0 14.8 15. 716.解 y =3-4sin x -4cos 2x=4sin 2x -4sin x -1=4⎝⎛⎭⎫sin x -122-2, 令t =sin x ,则-1≤t ≤1,∴y =4⎝⎛⎭⎫t -122-2 (-1≤t ≤1). ∴当t =12,即x =π6+2k π或x =5π6+2k π(k ∈Z )时,y min =-2;当t =-1,即x =3π2+2k π (k ∈Z )时,y max =7.17.解 y =log 2⎣⎡⎦⎤-sin ⎝⎛⎭⎫2x -π3log 212=-log 2⎣⎡⎦⎤-sin ⎝⎛⎭⎫2x -π3, ∵2>1,由复合函数的单调性知,要求sin ⎝⎛⎭⎫2x -π3的单调递增且小于0恒成立. ∴2x -π3在第四象限.∴2k π-π2<2x -π3<2k π(k ∈Z ).解得:k π-π12<x <k π+π6(k ∈Z ).∴原函数的单调递增区间为⎝⎛⎭⎫-π12+k π,π6+k π,k ∈Z .18.解 ∵x ∈⎣⎡⎦⎤0,π2,∴2x +π3∈⎣⎡⎦⎤π3,4π3, ∴-1≤cos ⎝⎛⎭⎫2x +π3≤12. 当a >0,cos ⎝⎛⎭⎫2x +π3=12时,y 取得最大值12a +3, ∴12a +3=4,∴a =2. 当a <0,cos ⎝⎛⎭⎫2x +π3=-1时,y 取得最大值-a +3, ∴-a +3=4,∴a =-1,综上可知,实数a 的值为2或-1.19.解 (1)f (α)=sin α·cos (-α)·[-tan (π+α)]-tan α[-sin (π+α)]=-sin α·cos α·tan α-tan α·sin α=cos α.(2)∵cos ⎝⎛⎭⎫α-32π=cos ⎝⎛⎭⎫32π-α=-sin α,又cos ⎝⎛⎭⎫α-32π=15,∴sin α=-15. 又α是第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=-265.(3)f (α)=f (-1 860°)=cos(-1 860°)=cos 1 860°=cos(5×360°+60°)=cos 60°=12.20.解 (1)由最低点为M ⎝⎛⎭⎫2π3,-2得A =2.由x 轴上相邻两个交点之间的距离为π2,得T 2=π2,即T =π,∴ω=2πT =2ππ=2.由点M ⎝⎛⎭⎫2π3,-2在图象上得2sin ⎝⎛⎭⎫2×2π3+φ=-2,即sin ⎝⎛⎭⎫4π3+φ=-1, 故4π3+φ=2k π-π2(k ∈Z ),∴φ=2k π-11π6(k ∈Z ).又φ∈⎝⎛⎭⎫0,π2,∴φ=π6,故f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)∵x ∈⎣⎡⎦⎤π12,π2,∴2x +π6∈⎣⎡⎦⎤π3,7π6, 当2x +π6=π2,即x =π6时,f (x )取得最大值2;当2x +π6=7π6,即x =π2时,f (x )取得最小值-1,故f (x )的值域为[-1,2].21.解 (1)由图象易知函数f (x )的周期为T =4⎝⎛⎭⎫7π6-2π3=2π,A =1,所以ω=1.方法一 由图可知此函数的图象是由y =sin x 的图象沿x 轴负方向平移π3个单位得到的,故φ=π3,其函数解析式为f (x )=sin ⎝⎛⎭⎫x +π3. 方法二 由图象知f (x )过点⎝⎛⎭⎫-π3,0,则sin ⎝⎛⎭⎫-π3+φ=0, ∴-π3+φ=k π,k ∈Z .∴φ=k π+π3,k ∈Z ,又∵φ∈⎝⎛⎭⎫0,π2,∴φ=π3, ∴f (x )=sin ⎝⎛⎭⎫x +π3. (2)方程f (x )=a 在⎝⎛⎭⎫0,5π3上有两个不同的实根等价于y =f (x )与y =a 的图象在⎝⎛⎭⎫0,5π3上有两个交点,在图中作y =a 的图象,如图为函数f (x )=sin ⎝⎛⎭⎫x +π3在⎝⎛⎭⎫0,5π3上的图象, 当x =0时,f (x )=32,当x =5π3时,f (x )=0,由图中可以看出有两个交点时,a ∈⎝⎛⎭⎫32,1∪(-1,0).。
三角函数(必修4第一章)过关检测题时间:90分钟 满分:100分一、选择题(每小题4分,共40分) 1.下列各角中与-30°角终边不相同的是( ) A .330° B .-750° C .1 770° D .-1 410° 2.若-π2<α<0,则点(tanα,cosα)位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.已知α∈(π2,3π2),tan(α-3π)=-34,则sin(π-α)+sin(π2+α)的值为( )A .±15B .-15 C.15 D .-754.sin(π+α)+cos(π2+α)=-m ,则cos(3π2-α)+2sin(6π-α)等于( )A .-2m 3B .-3m 2 C.2m 3 D.3m25.将函数y =sin4x 的图象向左平移π12个单位,得到y =sin(4x +φ)的图象,则φ等于( )A .-π12B .-π3 C.π3 D.π126.已知函数f(x)=2sin(ωx +φ)(ω>0,-π2≤φ≤π2)的图象与y =2直线相交的两个相邻交点间的距离为π,且f(0)=3,则( )A .ω=12,φ=π6B .ω=12,φ=π3C .ω=2,φ=π6D .ω=2,φ=π37.已知函数f(x)=sin(2π-2x),则该函数的图象( ) A .关于点(π4,0)对称 B .关于点(π2,0)对称C .关于直线x =3π4对称 D .关于直线x =π对称8.已知函数y =3sin2x 的值域为[3,3],则下列范围可作为该函数定义域的为( ) A .[0,5π12] B .[π12,2π3] C .[-π12,π12] D .[π12,5π12]9.函数y =|tanx|·cosx(0≤x <32π且x ≠π2)的图象是( )10.给定函数:①f(x)=xcos(3π2+x),②g(x)=1+sin 2(π+x),③p(x)=cos(cos(π2+x))中,偶函数的个数是( )A .3B .2C .1D .0 二、填空题(每小题4分,共28分)11.若扇形圆心角的弧度数为2,且扇形弧所对的弦长也是2,则这个扇形的面积为________.12.设0≤θ<2π,如果sinθ<0且cos2θ<0,则θ的取值范围是________.13.已知tanα=2,则sin 2α+2sinαcosα=________.14.若α是第三象限角,则1-2sin (π-α)cos (π-α)=________.15.已知函数y =2sinωx(ω>0)的图象与直线y +2=0的相邻的两个公共点之间的距离为2π3,则ω的值为________. 16.已知函数f(x)=3sin(ωx -π6)(ω>0)和g(x)=2cos(2x +φ)+1的图象的对称轴完全相同,若x ∈[0,π2],则f(x)的取值范围是________.17.定义在R 上的函数f(x):当sinx ≤cosx 时,f(x)=cosx ;当sinx >cosx 时,f(x)=sinx.给出以下结论: ①f(x)是周期函数; ②f(x)的最小值为-1;③当且仅当x =2kπ(k ∈Z )时,f(x)取最大值; ④当且仅当2kπ-π2<x <(2k +1)π(k ∈Z )时,f(x)>0;⑤f(x)的图象上相邻最低点的距离是2π.其中正确命题的序号是________(把你认为正确命题的序号都填上).三、解答题(第18题10分,第19题10分,第20题12分,共32分) 18.已知0<α<π2,若cos α-sin α=-55,求2cos αsin α-cos α+11-tan α的值.19.1+tan (π+α)1+tan (2π-α)=3+22,求cos 2(π-α)+sin (3π2+α)·cos (π2+α)+2sin 2(α-π)的值.20.已知函数f (x )=2sin(2x +π6)(1)求f (x )的单调减区间;(2)求f (x )图象上与原点最近的对称中心的坐标.答案详细解析1、解析:∵330°=360°-30°,-750°=-2×360°-30°,1 770°=5×360°-30°,-1 410°=-4×360°+30°. ∴与-30°角终边不相同的是-1 410°. 答案:D2、解析:∵-π2<α<0,∴α为第四象限角,∴tanα<0,cosα>0.∴(tanα,cosα)是第二象限的点. 答案:B3、解析:∵tan(α-3π)=-tan(3π-α)=-tan(π-α)=tanα, ∴tanα=-34.∵α∈(π2,3π2),∴sinα=35,cosα=-45.∴sin(π-α)+sin(π2+α)=sinα+co sα=-15.答案:B4、解析:由已知得:-sinα-sinα=-m ,∴sinα=m2,所求式子=-(sinα+2sinα)=-3sinα=-3m2.因此B 项对.答案:B5、解析:y =sin4x 的图象向左平移π12个单位后,得到y =sin4(x +π12),即y =sin(4x +π3),即φ=π3.因此C 项对.答案:C6、解析:由已知f(x)的最小正周期为π,则2πω=π,∴ω=2,则f(x)=2sin(2x +φ).又∵f(0)=3,则f(0)=2sinφ=3,∴sinφ=32, ∵-π2≤φ≤π2,∴φ=π3.答案:D7、解析:由已知f(x)=-sin2x ,令2x =kπ,k ∈Z ,得x =kπ2,k ∈Z ,则对称中心为(kπ2,0),k ∈Z ,故B 项正确.令2x =kπ+π2,k ∈Z ,x =kπ2+π4,k ∈Z ,即对称轴为x =kπ2+π4,k∈Z ,故C 、D 两项不正确.答案:B8、解析:由已知3≤3sin2x ≤3,∴12≤sin2x ≤1.∴2kπ+π6≤2x ≤2kπ+5π6,k ∈Z ,∴kπ+π12≤x ≤kπ+5π12,k ∈Z .从而D 项正确.答案:D9、解析:由已知y =|tanx|cosx(0≤x <3π2且x ≠π2)可化为y =⎩⎨⎧sinx (0≤x <π2或π≤x <3π2)-sinx (π2<x <π).从而C 项正确.答案:C10、解析:①f(x)=xsinx ,f(-x)=-xsin(-x)=xsinx ,∴f(x)为偶函数.②g(x)=1+sin 2x ,g(-x)=1+sin 2(-x)=1+sin 2x =g(x),∴g(x)为偶函数.③p(x)=cos[cos(π2+x)]=cos(-sinx)=cos(sinx),p(-x)=cos[sin(-x)]=cos(-sinx)=cos(sinx)=p(x).∴p(x)为偶函数.答案:A11、解析:由题意得扇形的半径为1sin 1,由扇形面积公式S =12αr 2得S =12×2×1sin 21=1sin 21. 答案:1sin 2112、解析:∵0≤θ<2π,且sinθ<0,∴π<θ<2π,由cos2θ<0得2kπ+π2<2θ<2kπ+3π2,即kπ+π4<θ<kπ+3π4(k ∈Z ),∵π<θ<2π,∴k =1,θ的取值范围是5π4<θ<7π4.答案:(5π4,7π4)13、解析:sin 2α+2sinαcosα=sin 2α+2sinαcosαsin 2α+cos 2α=tan 2α+2tanα1+tan 2α=4+41+4=85.答案:8514、解析:1-2sin (π-α)cos (π-α)=1+2sinαcosα =sin 2α+cos 2α+2sinαcosα=|sinα+cosα|, 又α在第三象限,∴sinα<0,cosα<0, ∴|sinα+cosα|=-(sinα+cosα). 答案:-(sinα+cosα)15、解析:依题意可知:y =2sinωx(ω>0)的图象与直线y +2=0的相邻的两个公共点之间的距离即为y =2sinωx(ω>0)的图象上两个最小值之间的距离,而y =2sinωx(ω>0)的图象上两个最小值之间的距离为一个周期,由T =2πω=2π3ω=3.答案:316、解析:∵f(x)与g(x)的对称轴完全相同, ∴f(x)与g(x)的周期相同. 知ω=2,∴f(x)=3sin(2x -π6),当x ∈[0,π2]时,2x -π6∈[-π6,56π],sin(2x -π6)∈[-12,1]f(x)的取值范围是[-32,3].答案:[-32,3]17、解析:f(x)=⎩⎪⎨⎪⎧sinx ,sinx >cosxcosx ,sinx ≤cosx ,其图象如图所示:观察图象可知f(x)是以2π为最小正周期的周期函数,故①正确;最小值为-22,当x =2kπ+π2时,f(x)也取最大值,故②③错误;观察图象知④⑤正确.答案:①④⑤18、解:将cos α-sin α=-55两边平方,得1-2sin αcos α=15, 则sin αcos α=25.∴(sin α+cos α)2=1+2sin αcos α=1+2×25=95.又0<α<π2,则sin α+cos α=355.解方程组⎩⎨⎧sin α+cos α=355cos α-sin α=-55,得sin α=255,cos α=55,tan α=sin αcos α=2.故2cos αsin α-cos α+11-tan α=2×25-55+11-2=5-95.19、解:由已知得1+tan α1-tan α=3+22,∴tan α=2+224+22=1+22+2=22,∴cos 2(π-α)+sin (3π2+α)cos (π2+α)+2sin 2(α-π)=cos 2α+(-cos α)·(-sin α)+2sin 2α=cos 2α+sin αcos α+2sin 2α =cos 2α+sin αcos α+2sin 2αsin 2α+cos 2α=1+tan α+2tan 2α1+tan 2α=1+22+11+12=4+23. 20、解:因为f (x )=2sin(2x +π6).所以(1)由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z )得,k π+π6≤x ≤k π+2π3(k ∈Z ).∴f (x )的单调减区间为[k π+π6,k π+2π3](k ∈Z ).(2)由sin(2x +π6)=0得2x +π6=k π(k ∈Z ),即x =k π2-π12(k ∈Z ).∴f (x )图象上与原点最近的对称中心坐标是(-π12,0).。
章末过关检测卷(一) 第1章 三 角 函 数(测试时间:120分钟 评价分值:150分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·广东卷)已知sin ⎝⎛⎭⎪⎫5π2+α=15,那么cos α=( )A .-25B .-15 C.15 D.25解析:sin ⎝ ⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫2π+π2+α=sin ⎣⎢⎡⎦⎥⎤π2+α=cos α=15,故选C. 答案:C2.(2014·四川卷)为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点( )A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 解析:根据三角函数图象的平移和伸缩变换求解.y =sin 2x 的图象向左平移12个单位长度得到函数y =sin 2⎝⎛⎭⎪⎫x +12的图象,即函数y =sin(2x +1)的图象.答案:A3.(2013·大纲卷)已知α是第二象限角,sin α=513,则cos α=( )A .-1213B .-513 C.513 D.1213解析:∵α是第二象限角,且sin α=513,∴cos α=-1213.故选A.答案:A4.如果函数f (x )=sin(πx +θ)(0<θ<2π)的最小正周期是T ,且当x =2时取得最大值,那么( )A .T =2,θ=π2B .T =1,θ=πC .T =2,θ=πD .T =1,θ=π2解析:T =2π|ω|,当ωx +θ=2k π+π2(k ∈Z)时取得最大值.由题意知T =2ππ=2,又当x =2时,有2π+θ=2k π+π2,∴θ=2(k -1)π+π2,0<θ<2π.∴k =1.则θ=π2,故选A.答案:A5.(2013·福建卷)将函数f (x )=sin(2x +θ)⎝ ⎛⎭⎪⎫-π2<θ<π2的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P ⎝ ⎛⎭⎪⎫0,32,则φ的值可以是( )A.5π3 B.5π6 C.π2 D.π6解析:把P ⎝ ⎛⎭⎪⎫0,32代入f (x )=sin(2x +θ)⎝ ⎛⎭⎪⎫-π2<θ<π2,解得θ=π3,所以g (x )=sin ⎝ ⎛⎭⎪⎫2x +π3-2φ,把P ⎝⎛⎭⎪⎫0,32代入得,φ=k π或φ=k π-π6,故选B.答案:B6.已知cos ⎝ ⎛⎭⎪⎫π2+α=35,且α∈⎝ ⎛⎭⎪⎫π2,32π,则tan α=( )A.43B.34 C .-34 D .±34解析:cos ⎝ ⎛⎭⎪⎫π2+α=-sin α=35,sin α=-35, ∵α∈⎝⎛⎭⎪⎫π2,32π,∴cos α=-45.∴tan α=34.答案:B7.(2013·四川卷)函数f (x )=2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<π2的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π3解析:T 2=1112π-512π,所以T =π,所以2πω=π,ω=2,f (x )=2sin(2x +φ),所以2×512π+φ=π2+2k π,k ∈Z.所以φ=-π3+2k π,k ∈Z.又-π2<φ<π2,所以φ=-π3.故选A. 答案:A8.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为( ) A .2 B. 3 C .1 D.32解析:由已知扇形所在圆的半径R =2ππ3=6,设该扇形内切圆半径为r ,则6-r =2r ,∴r =2.故选A.答案:A9.(2014·辽宁卷)将函数y =3sin ⎝ ⎛⎭⎪⎫2x +π3的图象向右平移π2个单位长度,所得图象对应的函数( )A .在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递减 B .在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递增C .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递减D .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递增 解析:利用平移变换得到解析式后,再利用y =sin x 的单调性逐一判断.y =3sin ⎝⎛⎭⎪⎫2x +π3的图象向右平移π2个单位长度得到y =3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π2+π3=3sin ⎝ ⎛⎭⎪⎫2x -23π. 令2k π-π2≤2x -23π≤2k π+π2得k π+π12≤x ≤k π+712π,k ∈Z ,则y =3sin ⎝ ⎛⎭⎪⎫2x -23π的增区间为⎣⎢⎡⎦⎥⎤k π+π12,k π+712π,k ∈Z. 令k =0得其中一个增区间为⎣⎢⎡⎦⎥⎤π12,712π,故B 正确.画出y =3sin ⎝ ⎛⎭⎪⎫2x -23π在⎣⎢⎡⎦⎥⎤-π6,π3上的简图,如图,可知y =3sin ⎝⎛⎭⎪⎫2x -23π在⎣⎢⎡⎦⎥⎤-π6,π3上不具有单调性,故C ,D 错误.答案:B10.函数y =3x -x2tan x 的定义域是( )A .(0,3]B .(0,π)C.⎝ ⎛⎭⎪⎫0,π2∪⎝ ⎛⎦⎥⎤π2,3D.⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,3解析:由y =3x -x 2tan x 有意义,得0≤x ≤3且x ≠k π+π2(k ∈Z),且x ≠k π(k ∈Z),∴x ≠0且x ≠π2.∴x ∈⎝ ⎛⎭⎪⎫0,π2∪⎝ ⎛⎦⎥⎤π2,3.故选C. 答案:C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 11.sin θ和cos θ为方程2x 2-mx +1=0的两根,则sin θ1-1tan θ+cos θ1-tan θ=解析:首先对原式化简,然后由根与系数的关系及三角函数基本关系式求出m ,进而得出结果.∵sin θ和cos θ为方程2x 2-mx +1=0的两根, ∴sin θ+cos θ=m2,①sin θcos θ=12.②把②代入①的平方可得,1=m 24-1,∴m =±2 2.∴sin θ+cos θ=± 2.∴sin θ1-1tan θ+cos θ1-tan θ=sin 2θsin θ-cos θ-cos 2θsin θ-cos θ=sin θ+cos θ=± 2. 答案:±212.已知角α的终边上一点P 与点A (-3,2)关于y 轴对称,角β的终边上一点Q 与点A 关于原点对称,那么sin α+sin β的值等于________.解析:点P 的坐标为(3,2),点Q 的坐标为(3,-2), ∴sin α=232+22=213,sin β=-232+22=-213. ∴sin α+sin β=0. 答案:013.(2014·江苏卷)已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是________.解析:利用函数y =cos x 与y =sin(2x +φ)(0≤φ<π)的交点横坐标,列方程求解.由题意,得sin ⎝ ⎛⎭⎪⎫2×π3+φ=cos π3,因为0≤φ<π,所以φ=π6.答案:π614.(2014·北京卷)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为解析:利用正弦型函数的对称性求周期.∵f (x )在⎣⎢⎡⎦⎥⎤π6,π2上具有单调性, ∴T 2≥π2-π6.∴T ≥2π3. ∵f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3,∴f (x )的一条对称轴为x =π2+2π32=7π12. 又∵f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6,∴f (x )的一个对称中心的横坐标为π2+π62=π3. ∴14T =7π12-π3=π4.∴T =π. 答案:π三、解答题(本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分12分)已知tan(2 013π+α)=3,试求: sin (α-3π)-2cos ⎝⎛⎭⎪⎫2 013π2+α-sin (-α)+cos (π+α)的值.解析:由tan(2 013π+α)=3, 可得 tan α=3, 故sin (α-3π)-2cos ⎝ ⎛⎭⎪⎫2 013π2+α-sin (-α)+cos (π+α)=-sin α+2sin αsin α-cos α =sin αsin α-cos α=tan αtan α-1=33-1=32.16.(本小题满分12分)已知s in θ-cos θ=15.(1)求sin θ·cos θ的值; (2)当0<θ<π时,求tan θ的值.解析:(1)(sin θ-cos θ)2=1-2sin θcos θ=⎝ ⎛⎭⎪⎫152=125⇒sin θcos θ=1225.(2)因为0<θ<π且sin θcos θ>0, 所以 0<θ<π2.由⎩⎪⎨⎪⎧sin θ-cos θ=15,sin θcos θ=1225 ⇒⎩⎪⎨⎪⎧sin θ=45,cos θ=35.得tan θ=sin θcos θ=43.17.(本小题满分14分)已知函数y =2a cos ⎝ ⎛⎭⎪⎫2x -π3+b 的定义域是⎣⎢⎡⎦⎥⎤0, π2,值域是[-5,1],求a 、b 的值.解析:∵0≤x ≤π2,∴-π3≤2x -π3≤2π3.∴-12≤cos ⎝⎛⎭⎪⎫2x -π3≤1. 当a >0时,-a +b ≤2a cos ⎝⎛⎭⎪⎫2x -π3+b ≤2a +b .由已知得,⎩⎪⎨⎪⎧-a +b =-5,2a +b =1,∴⎩⎪⎨⎪⎧a =2,b =-3.当a <0时,2a +b ≤2a cos ⎝⎛⎭⎪⎫2x -π3+b ≤-a +b .由已知得,⎩⎪⎨⎪⎧2a +b =-5,-a +b =1,∴⎩⎪⎨⎪⎧a =-2,b =-1.18.(本小题满分14分)(2014·北京卷)函数f (x )=3sin ⎝⎛⎭⎪⎫2x +π6的部分图象如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)在f (x )在区间⎣⎢⎡⎦⎥⎤-π2,-π12上的最大值和最小值.解析:(1)f (x )的最小正周期为π,x 0=7π6,y 0=3.(2)因为x ∈⎣⎢⎡⎦⎥⎤-π2,-π12,所以2x +π6∈⎣⎢⎡⎦⎥⎤-5π6,0.于是,当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.19.(本小题满分14分)设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ;(2)求函数y =f (x )的单调增区间.解析:(1)∵x =π8是函数y =f (x )的图象的对称轴,∴sin ⎝ ⎛⎭⎪⎫2×π8+φ=±1.∴π4+φ=k π+π2,k ∈Z. ∵-π<φ<0,∴φ=-3π4.(2)由(1)知φ=-3π4,因此y =sin ⎝ ⎛⎭⎪⎫2x -3π4. 由题意得2k π-π2≤2x -3π4≤2k π+π2,k ∈Z.即k π+π8≤x ≤k π+58π,k ∈Z ,所以函数y =sin ⎝⎛⎭⎪⎫2x -3π4的单调增区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8,k ∈Z.20.(本小题满分14分)2013年的元旦,N 市从0时到24时的气温变化曲线近似地满足函数y =A sin(ωx +φ)+b (A ,ω>0,|φ|≤π).从天气台得知:N 市在2013年的第一天的气温为1到9度,其中最高气温只出现在下午14时,最低气温只出现在凌晨2时.(1) 求函数y =A sin(ωx +φ)+b 的表达式.(2)若元旦当天M 市的气温变化曲线也近似地满足函数y 1=A 1sin(ω1x +φ1)+b 1,且气温变化也为1到9度,只不过最高气温和最低气温出现的时间都比N 市迟了4个小时.①求早上7时,N 市与M 市的两地温差;②若同一时刻两地的温差不超过2度,我们称之为温度相近,求2013年元旦当日,N 市与M 市温度相近的时长.解析:由已知可得:b =5,A =4,T =24⇒ω=π12.又最低气温出现在凌晨2时,则有2ω+φ=2k π-π2,又|φ|≤π⇒φ=-23π.则所求的函数表达式为y =4sin ⎝ ⎛⎭⎪⎫π12x -23π+5.(2)由已知得M 市的气温变化曲线近似地满足函数y 1=4sin ⎝ ⎛⎭⎪⎫π12x -π+5,y -y 1=4⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫π12x -23π-sin ⎝ ⎛⎭⎪⎫π12x -π=4⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫π12x -23π+sin π12x=4sin ⎝ ⎛⎭⎪⎫π12x -13π. ①当x =7时,y -y 1=4sin ⎝ ⎛⎭⎪⎫π12×7-13π=2 2.②由|y -y 1|≤2⇒-2≤4sin ⎝ ⎛⎭⎪⎫π12x -13π≤2⇒ 2≤x ≤6或14≤x ≤18.则2012年元旦当日,N 市与M 市温度相近的时长为8小时.。