北京八中乌兰察布分校_八年级数学下学期期中试题2(精选资料)新人教版
- 格式:doc
- 大小:178.01 KB
- 文档页数:5
人教版八年级第二学期下册期中模拟数学试卷(含答案)一、选择题(每小题3分,共30分)1.(3分)如图,在平行四边形ABCD中,∠A=40°,则∠C大小为()A.40°B.80°C.140°D.180°2.(3分)如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AB的长为()A.4B.C.3D.53.(3分)如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.4.(3分)已知P1(﹣1,y1),P2(2,y2)是一次函数y=﹣x+1图象上的两个点,则y1,y2的大小关系是()A.y1=y2B.y1<y2C.y1>y2D.不能确定5.(3分)函数y=x﹣2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角7.(3分)一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0B.x>0C.x<2D.x>28.(3分)在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形9.(3分)如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13B.14C.15D.1610.(3分)如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A.B.C.D.二、填空题(每小题3分,共30分)11.(3分)将正比例函数y=﹣2x的图象向上平移3个单位,则平移后所得图象的解析式是.12.(3分)若方程组的解是,则直线y=﹣2x+b与直线y=x﹣a的交点坐标是.13.(3分)如图,∠B=∠ACD=90°,BC=3,AB=4,CD=12,则AD=.14.(3分)在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,CD垂直于AB,垂足为点D,则DC=,AD=.15.(3分)已知菱形的两条对角线长分别为1和4,则菱形的面积为.16.(3分)如图,在平行四边形ABCD中,BE平分∠ABC,交AD于点E,AB=3cm,ED =1cm,则平行四边形ABCD的周长是.17.(3分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将纸片折叠使直角边落在斜边AB上且与AE重合,折痕为AD.则CD=.18.(3分)四边形ABCD中,已知∠A=∠B=∠C=90°,再添加一个条件,使得四边形ABCD为正方形,可添加的条件是.19.(3分)如图,在点A测得某岛C在北偏东60°方向上,且距A点18海里,某船以每小时36海里的速度从点A向正东方向航行,航行半小时后到达B点,此时测得岛C 在北偏东30°方向上,已知该岛周围16海里内有暗礁.B点与C岛的距离是B点暗礁区域(填内或外)20.(3分)弹簧挂上物体后会伸长,测得﹣弹簧的长度y(cm)与所挂重物的质量x(㎏)有下面的关系:那么弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式为.三、解答题(共8小题,满分40分)21.(5分)已知,一次函数y=kx+3的图象经过点A(1,4).(1)求这个一次函数的解析式;(2)分别求出图象与x轴,与y轴交点坐标.22.(5分)如图,在平行四边形ABCD中,点E、F分别在AD、BC上,且AE=CF,求证:四边形BFDE是平行四边形.23.(5分)如图,在△MBN中,已知BM=6,BN=7,MN=10,点A,C,D分别是MB,NB,MN的中点,(1)求证:四边形ABCD是平行四边形(2)四边形ABCD的周长为(直接写出答案).24.(5分)已知:如图,E是正方形ABCD对角线AC上一点,且AE=AB,EF⊥AC,交BC于F.求证:BF=EC.25.(5分)已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.26.(5分)在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.根据图象提供的信息,解答下列问题:(1)求出蜡烛燃烧时y与x之间的函数关系式并写出自变量取值范围;(2)求蜡烛从点燃到燃尽所用的时间.27.(5分)(1)自主阅读:在三角形的学习过程,我们知道三角形一边上的中线将三角形分成了两个面积相等三角形,原因是两个三角形的底边和底边上的高都相等,在此基础上我们可以继续研究:命题:两条平行线中,一条上的两点与另一条上任一点所构成的三角形面积相等.如图1,AD∥BC,连接AB,AC,BD,CD,则S△ABC=S△BCD.证明:分别过点A和D,作AF⊥BC于F.DE⊥BC于E,由AD∥BC,可得AF=DE,又因为S△ABC=×BC×AF,S△BCD=.所以S△ABC=S△BCD所以此命题为真(2)应用拓展:如图2,将大小不同的两个正方形放在一起,连接AF,CF,若大正方形的面积是80cm2,则图中阴影三角形的面积是cm2.请直接写出答案并用(1)中的命题结论说明理由28.(5分)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F 在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.附加题(5分)(答对计入总分100分封顶,答错或不答不扣分)29.以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.2016-2017学年北京四十一中八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:∵四边形ABCD是平行四边形,∴∠C=∠A=40°.故选:A.2.【解答】解:∵四边形ABCD是矩形,∴OA=AC,OB=八年级下册数学期中考试题【含答案】一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列各式没有意义的是()A.B.﹣C.D.2.(3分)矩形、菱形、正方形都一定具有的性质是()A.邻边相等B.四个角都是直角C.对角线相等D.对角线互相平分3.(3分)下列计算正确的是()A.+=B.=1C.÷=D.×=6 4.(3分)如图,若DE是△ABC的中位线,△ADE的周长为1,则△ABC的周长为()A.1B.2C.3D.45.(3分)如图,△ABC中,∠ACB=90°,∠B=55°,点D是斜边AB的中点,那么∠ACD的度数为()A.15°B.25°C.35°D.45°6.(3分)已知直角三角形的一个锐角为60度,斜边长为2,那么此直角三角形的周长是()A.2.5B.3C.+2D.+37.(3分)若3,m,5为三角形三边,化简:﹣得()A.﹣10B.﹣2m+6C.﹣2m﹣6D.2m﹣108.(3分)如图,E为▱ABCD外一点,且EB⊥BC,ED⊥CD,若∠E=65°,则∠A的度数为()A.65°B.100°C.115°D.135°9.(3分)如图,在△ABC中,AB=6,AC=10,BC边上的中线AD=4,则△ABC的面积为()A.30B.24C.20D.4810.(3分)将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF.若AB=3,则菱形AECF的面积为()A.1B.2C.2D.4二、填空题(共6小题,每小题4分,满分24分)11.(4分)计算:=.12.(4分)在▱ABCD中,若∠A+∠C=140°,那么∠D=.13.(4分)当x=时,有最小值.14.(4分)如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠FAB=.15.(4分)已知a、b、c是△ABC三边的长,且满足关系式+|c﹣a|=0,则△ABC的形状.16.(4分)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是.三、解答题17.(6分)计算:(2﹣3)218.(6分)先化简,再求值:÷(x﹣),其中x=﹣1.19.(6分)已知,如图四边形ABCD是平行四边形.(1)作∠ABC的平分线BE交AD于E点(用尺规作图,不要写作法,保留作图痕迹)(2)求证:AE=CD.20.(7分)如图,在△ABC中,∠BAC=120°,∠B=30°,AD⊥AB,垂足为A,CD=1cm,求AB的长.21.(7分)如图,在▱ABCD中,E、F为对角线BD上的两点,且BE=DF.求证:∠BAE =∠DCF.22.(7分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.23.(9分)已知x+1=,求下列问题:(1)证明:x2+2x=1;(2)利用(1)的结论,化简x4+2x3+2x﹣1.24.(9分)已知:如图,四边形ABCD中AB=BC=1,CD=,AD=1,且∠B=90°.试求:(1)∠BAD的度数.(2)四边形ABCD的面积(结果保留根号)25.(9分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.2017-2018学年广东省汕头市潮南区两英镇八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列各式没有意义的是()A.B.﹣C.D.【分析】根据二次根式中的被开方数必须是非负数进行判断即可.【解答】解:有意义,A错误;﹣有意义,B错误;无意义,C正确;=有意义,D错误,故选:C.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.2.(3分)矩形、菱形、正方形都一定具有的性质是()A.邻边相等B.四个角都是直角C.对角线相等D.对角线互相平分【分析】首先弄清楚矩形、菱形、正方形各自的性质,然后从备选答案中一个一个的判断,属于这三个图形的公共特征的就是正确的.【解答】解:A、矩形的邻边不相等,错故选项误,B、菱形的四个角不是直角,故选项错误,C、菱形的对角线不相等,故选项错误,D、三个图形中,对角线都互相平分,故选项正确.故选:D.【点评】本题考查了正方形的性质、矩形的性质、菱形的性质,主要从边、角、对角线三个方面考查的,正方形是平行四边形的最典型的图形.3.(3分)下列计算正确的是()A.+=B.=1C.÷=D.×=6【分析】根据二次根式的运算法则即可求出答案.【解答】解:(A)原式=+,故A错误;(B)原式=﹣,故B错误;(D)原式=,故D错误,故选:C.【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.4.(3分)如图,若DE是△ABC的中位线,△ADE的周长为1,则△ABC的周长为()A.1B.2C.3D.4【分析】根据三角形中位线定理得到DE∥BC,DE=BC,根据相似三角形的性质计算,得到答案.【解答】解:∵DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∵△ADE的周长为1,∴△ABC的周长为2,故选:B.【点评】本题考查的是三角形的中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.5.(3分)如图,△ABC中,∠ACB=90°,∠B=55°,点D是斜边AB的中点,那么∠ACD的度数为()A.15°B.25°C.35°D.45°【分析】先根据在直角三角形中,斜边上的中线等于斜边的一半,得出CD=BD,进而得到∠B=∠DCB=55°,再根据∠ACB=90°,即可得出∠ACD的度数.【解答】解:∵△ABC中,∠ACB=90°,点D是斜边AB的中点,∴CD=BD=AB,∴∠B=∠DCB=55°,又∵∠ACB=90°,∴∠ACD=90°﹣55°=35°,故选:C.【点评】本题主要考查了直角三角形斜边上中线的性质,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半.6.(3分)已知直角三角形的一个锐角为60度,斜边长为2,那么此直角三角形的周长是()A.2.5B.3C.+2D.+3【分析】根据直角三角形的性质:直角三角形中,30°所对的直角边是斜边的一半求得30°所对的直角边,然后利用勾股定理求得另一条直角边,即可解答.【解答】解:如图所示,Rt△ABC中,∠A=30°,AB=2,故BC=AB=×2=1,AC===,故此三角形的周长是+3.故选:D.【点评】本题考查了勾股定理和含30度角的直角三角形,熟悉直角三角形的性质:直角三角形中,30°所对的直角边是斜边的一半.熟练运用勾股定理是关键.7.(3分)若3,m,5为三角形三边,化简:﹣得()A.﹣10B.﹣2m+6C.﹣2m﹣6D.2m﹣10【分析】根据二次根式的性质即可求出答案.【解答】解:由三角形三边关系可知:2<m<8∴2﹣m<0,m﹣8<0∴原式=﹣(2﹣m)+(m﹣8)=﹣2+m+m﹣8=2m﹣10故选:D.【点评】本题考查二次根式的性质,解题的关键还是熟练运用二次根式的性质,本题属于基础题型.8.(3分)如图,E为▱ABCD外一点,且EB⊥BC,ED⊥CD,若∠E=65°,则∠A的度数为()A.65°B.100°C.115°D.135°【分析】根据EB⊥BC,ED⊥CD,可得∠EBC=90°,∠EDC=90°,然后根据四边形的内角和为360°,∠E=65°,求得∠C的度数,然后根据平行四边形的性质得出∠A =∠C,继而求得∠A的度数.【解答】解:∵EB⊥BC,ED⊥CD,∴∠EBC=90°,∠EDC=90°,∵在四边形EBCD中,∠E=65°,∴∠C=360°﹣∠E﹣∠EBC﹣∠EDC=115°,∵四边形ABCD为平行四边形,∴∠A=∠C=115°.故选:C.【点评】本题考查了平行四边形的性质及多边形的内角和,用到的知识点为:①四边形的内角和为360°,②平行四边形的对角相等.9.(3分)如图,在△ABC中,AB=6,AC=10,BC边上的中线AD=4,则△ABC的面积为()A.30B.24C.20D.48【分析】延长AD到E,使DE=AD,连接CE,如图所示,由D为BC的中点,得到CD =BD,再由一对对顶角相等,利用SAS得出△ADB与△EDC全等,由全等三角形的对应边相等得到AB=CE,由AE=2AD,AB的长,利用勾股定理的逆定理得到△ACE为直角三角形,即AE垂直于CE,利用垂直定义得到一对直角相等,△ABC的面积等于△ACE 的面积,利用三角形的面积公式即可得出结论.【解答】解:延长AD到E,使DE=AD,连接CE,∵D为BC的中点,∴DC=BD,在△ADB与△EDC中,∵,∴△ADB≌△EDC(SAS),∴CE=AB=6.又∵AE=2AD=8,AB=CE=6,AC=10,∴AC2=AE2+CE2,∴∠E=90°,则S△ABC =S△ACE=CE•AE=×6×8=24.故选:B.【点评】本考查的是勾股定理及逆定理,以及全等三角形的判定与性质,熟练掌握勾股定理的解本题的关键.10.(3分)将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF.若AB=3,则菱形AECF的面积为()A.1B.2C.2D.4【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【解答】解:∵四边形AECF是菱形,AB=3,∴假设BE=x,则AE=3﹣x,CE=3﹣x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC===,又∵AE=AB﹣BE=3﹣1=2,则菱形的面积是:AE•BC=2.故选:C.【点评】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题(共6小题,每小题4分,满分24分)11.(4分)计算:=4﹣π.【分析】首先判断π﹣4的符号,然后根据绝对值的性质即可化简.【解答】解:∵π<4,∴π﹣4<0,∴原式=4﹣π.故答案是:4﹣π.【点评】本题考查了绝对值的性质,正确理解当a>0时|a|=a;当a=0时|a|=0;当a <0时|a|=﹣a,是关键.12.(4分)在▱ABCD中,若∠A+∠C=140°,那么∠D=110°.【分析】由四边形ABCD是平行四边形,可得∠A=∠C,又由∠A+∠C=140°,即可求得∠A的度数,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠D=180°﹣∠A=110°.故答案为:110°.【点评】此题考查了平行四边形的性质.此题比较简单,注意掌握平行四边形的对角相等定理的应用是解此题的关键.13.(4分)当x=时,有最小值.【分析】直接利用二次根式的定义结合(a≥0),进而得出x的值,求出答案.【解答】解:当2x﹣5=0时,则x=,则x=时,有最小值.故答案为:.【点评】本题考查了二次根式的定义.一般形如(a≥0)的代数式叫做二次根式.当a≥0时,表示a的算术平方根;当a小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根).14.(4分)如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠FAB=22.5°.【分析】根据正方形的性质可得出∠CAB=45°,根据菱形的性质可得出AF平分∠CAB,从而得出∠FAB的度数.【解答】解:∵四边形ABCD为正方形,AC为对角线,∴∠DAC=∠CAB=45°.∵四边形AEFC为菱形,AF为对角线,∴AF平分∠CAB,∴∠FAB=∠CAB=22.5°.故答案为:22.5°.【点评】本题考查了正方形的性质以及菱形的性质,解题的关键是根据菱形的性质找出AF平分∠CAB.本题属于基础题,难度不大,解决该题型题目时,牢记各特殊图形的性质是关键.15.(4分)已知a、b、c是△ABC三边的长,且满足关系式+|c﹣a|=0,则△ABC的形状等腰直角三角形.【分析】根据非负数的性质可得c﹣a=0,c2+a2﹣b2=0,再解可得a=c,c2+a2=b2,根据勾股定理逆定理可得△ABC的形状是等腰直角三角形.【解答】解:∵+|c﹣a|=0,∴c﹣a=0,c2+a2﹣b2=0,解得:a=c,c2+a2=b2,∴△ABC的形状是等腰直角三角形,故答案为:等腰直角三角形.【点评】此题主要考查了勾股定理逆定理,以及非负数的性质,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.16.(4分)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是.【分析】根据直角三角形性质求出CE长,利用勾股定理即可求出AB的长.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵EF=3,∴CE==2,∴AB=,故答案为:.【点评】本题考查了平行线性质,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的应用,此题综合性比较强.三、解答题17.(6分)计算:(2﹣3)2【分析】利用完全平方公式计算.【解答】解:原式=12﹣12+18=30﹣12.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(6分)先化简,再求值:÷(x﹣),其中x=﹣1.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=÷=•=,当x=﹣1时,原式==.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.19.(6分)已知,如图四边形ABCD是平行四边形.(1)作∠ABC的平分线BE交AD于E点(用尺规作图,不要写作法,保留作图痕迹)(2)求证:AE=CD.【分析】(1)以点B为圆心,任意长为半径画弧,交AB,BC于两点,分别以这两点为圆心,大于这两点的距离为半径画弧,在△ABC内交于一点O,作射线BO,交AD于点E即可;(2)利用角平分线的性质以及平行线的性质求出∠ABE=∠AEB即可得出答案.【解答】(1)解:如图所示:(2)证明:∵BE平分∠ABC,∴∠ABE=∠EBC,∵AD∥BC,∴∠AEB=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∵四边形ABCD是平行四边形,∴AB=CD,∴AE=CD.【点评】本题考查了三角形的角平分线的画法以及角平分线的性质以及平行线的性质等知识,利用角平分线的性质得出解题关键.20.(7分)如图,在△ABC中,∠BAC=120°,∠B=30°,AD⊥AB,垂足为A,CD=1cm,求AB的长.【分析】根据等腰三角形的性质和三角形内角和定理,易求得∠BAC=120°,故∠DAC =∠C=30°,由此可证得△ADC是等腰三角形,即可求出AD的长,再根据含30度角的直角三角形的性质即可求出AB的长.【解答】解:在△ABC中,∠BAC=120°,∠B=30°,∴∠C=180°﹣120°﹣30°=30°,∠DAC=120°﹣90°=30°;即∠DAC=∠C,∴CD=AD=1cm.在Rt△ABD中,AB==.【点评】此题主要考查等腰三角形的判定和性质以及三角形内角和定理的应用;求得∠DAC=30°是正确解答本题的关键.21.(7分)如图,在▱ABCD中,E、F为对角线BD上的两点,且BE=DF.求证:∠BAE =∠DCF.【分析】先由平行四边形的性质得出AB=CD,∠ABE=∠CDF,再加上已知BE=DF 可推出△ABE≌△DCF,得证.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠ABE=∠CDF,在△ABE和△DCF中,∴△ABE≌△DCF(SAS),∴∠BAE=∠DCF.【点评】此题考查了平行四边形的性质与全等三角形的判定和性质,关键是证明BE和DF所在的三角形全等.22.(7分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.【分析】根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【解答】证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴BE=CD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴▱BECD是矩形.【点评】本题考查了矩形的判定.矩形的定义:有一个角是直角的平行四边形是矩形.23.(9分)已知x+1=,求下列问题:(1)证明:x2+2x=1;(2)利用(1)的结论,化简x4+2x3+2x﹣1.【分析】(1)将式子x+1=,两边平方,然后整理化简即可证明结论成立;(2)根据(1)中的结果,将所求式子变形即可解答本题.【解答】(1)证明:∵x+1=,∴(x+1)2=2,∴x2+2x+1=2,∴x2+2x=1;(2)∵x2+2x=1,∴x4+2x3+2x﹣1=x2(x2+2x)+2x﹣1=x2+2x﹣1=1﹣1=0.【点评】本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.24.(9分)已知:如图,四边形ABCD中AB=BC=1,CD=,AD=1,且∠B=90°.试求:(1)∠BAD的度数.(2)四边形ABCD的面积(结果保留根号)【分析】(1)连接AC ,由勾股定理求出AC 的长,再根据勾股定理的逆定理判断出△ACD 的形状,进而可求出∠BAD 的度数;(2)由(1)可知△ABC 和△ADC 是Rt △,再根据S 四边形ABCD =S △ABC +S △ADC 即可得出结论.【解答】解:(1)连接AC ,∵AB =BC =1,∠B =90°∴AC =又∵AD =1,DC =∴()=12+()2即CD 2=AD 2+AC 2∴∠DAC =90°∵AB =BC =1∴∠BAC =∠BCA =45°∴∠BAD =135°;(2)由(1)可知△ABC 和△ADC 是Rt △,∴S 四边形ABCD =S △ABC +S △ADC=1×1×+1××=+.【点评】本题考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.25.(9分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.【分析】(1)利用平行线的性质及中点的定义,可利用AAS证得结论;(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE=DE,在△AFE和△DBE中,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵AD为BC边上的中线∴DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,=AC▪DF=×4×5=10.∴S菱形ADCF【点评】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.八年级(下)期中考试数学试题(含答案)一、选择题(本大题共10小题,共20.0分)1.下列根式不是最简二次根式的是()A. B. C. D.2.正方形的面积是4,则它的对角线长是()A. 2B.C.D. 43.能判定四边形ABCD为平行四边形的题设是()A. ,B. ,C. ,D. ,4.下列计算正确的是()A. B.C. D.5.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则ABC的度数为()A. B. C. D.6.矩形具有而一般的平行四边形不一定具有的特征()A. 对角相等B. 对角线相等C. 对角线互相平分D. 对边相等7.若=a,=b,则=()A. B. C. D.8.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A. B. C. D.9.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A. 34B. 26C.D.10.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A. 7B. 9C. 10D. 11二、填空题(本大题共8小题,共24.0分)11.若有意义,则x的取值范围是______.12.如图,已知OA=OB,那么数轴上点A所表示的数是______.13.如图,▱ABCD中,AB的长为8,DAB的角平分线交CD于E,若DE:EC=3:1,则BC的长为______ .14.计算:= ______ .15.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为______.16.如图,矩形ABCD的对角线相交于点O,AB=4cm,AOB=60°,则AC= ______ cm.17.如图,菱形ABCD的边长是4cm,E是AB的中点,且DE⊥AB,则菱形ABCD的面积为______cm2.18.观察下列各式:=2,=3,=4,…请你找出其中规律,并将第n(n≥1)个等式写出来______.三、计算题(本大题共2小题,共20.0分)19.计算:(1)(-4)-(3-2)(2).20.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?四、解答题(本大题共4小题,共36.0分)21.请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图甲,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中的每一个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得x=由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长.于是,画出如图乙所示的分割线,拼出如图丙所示的新的正方形.请你参考小东同学的做法,解决如下问题:现有10个边长为1的小正方形,排列形式如图丁,请把它们分割后拼接成一个新的正方形.要求:在图丁中画出分割线,并在图戊的正方形网格图(图中的每一个小正方形的边长均为1)中用实线画出拼接成的新正方形.说明:直接画出图形,不要求写分析过程.22.如图,▱ABCD中,点E,F分别在BC,AD上,且AF=CE,求证:AE=CF.23.如图所示,在矩形ABCD中,对角线AC,BD相交于点O,BOC=120°,AC=6,求:(1)AB的长;(2)矩形ABCD的面积.24.如图,平行四边形ABCD中,AB=3cm,BC=5cm,B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=______cm时,四边形CEDF是矩形;②当AE=______cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)答案和解析1.【答案】D【解析】解:=.故选D根据最简二次根式的判断标准即可得到正确的选项.此题考查了最简二次根式,熟练掌握最简二次根式的定义是解本题的关键.2.【答案】C【解析】解:设正方形的对角线为x,∵正方形的面积是4,∴边长的平方为4,∴由勾股定理得,x==2.故选C.设正方形的对角线为x,然后根据勾股定理列式计算即可得解.本题考查了勾股定理,正方形的性质,熟记定理和性质是解题的关键.3.【答案】B【解析】解:A、AB∥CD,AD=BC不能判定四边形ABCD为平行四边形,故此选项错误;B、AB=CD,AD=BC判定四边形ABCD为平行四边形,故此选项正确;C、A=B,C=D不能判定四边形ABCD为平行四边形,故此选项错误;D、AB=AD,CB=CD不能判定四边形ABCD为平行四边形,故此选项错误;故选:B.根据两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形可得答案.此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.4.【答案】C【解析】解:A、2+4不是同类项不能合并,故A选项错误;B、=2,故B选项错误;C、÷=3,故C选项正确;D、=3,故D选项错误.故选:C.A、根据合并二次根式的法则即可判定;B、根据二次根式的乘法法则即可判定;C、根据二次根式的除法法则即可判定;D、根据二次根式的性质即可判定.此题主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.在进行根式的运算时要先化简再计算可使计算简便.5.【答案】C【解析】解:根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴ ABC=45°.故选:C.根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键.6.【答案】B【解析】解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,。
内蒙古乌兰察布市2021年八年级下学期数学期中考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是()A .B .C .D .2. (2分)有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在下列13名同学成绩的统计量中只需知道一个量,它是()A . 众数B . 方差C . 中位数D . 平均数3. (2分)已知三组数据:①2,3,4;②3,4,5;③1,, 2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有()A . ②B . ①②C . ①③D . ②③4. (2分)若一次函数y=(3-k)x-k的图象不经过第二象限,则k的取值范围是()A . k>3B . 0<k≤3C . 0≤k<3D . 0<k<35. (2分)下列说法:1)对角线互相垂直的四边形是菱形;2)对角线相等的平行四边形是矩形;3)对角线互相垂直平分的四边形是正方形;4)两组对角相等的四边形是平行四边形;5)一组对边平行,一组对边相等的四边形是等腰梯形.其中正确的有()个.A . 1B . 2C . 3D . 46. (2分)若一次函数y=kx+b的图象经过一、三、四象限,则k,b应满足()A . k>0,b>0B . k>0,b<0C . k<0,b>0D . k<0,b<07. (2分) (2017八下·宜兴期中) 矩形具有而菱形不一定具有的性质是()A . 对角线互相垂直B . 对角线相等C . 对角线互相平分D . 对角相等8. (2分)下列四点中,在直线y=2x -1上的点是()A . (-2,4)B . (1,1)C . (1,3)D . (2,4)9. (2分)(2019·南通) 如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0<α<120°)得到,与BC,AC分别交于点D,E.设,的面积为,则与的函数图象大致为()A .B .C .D .10. (2分)如图,周长为16的菱形ABCD中,点E,F分别在AB,AD边上,AE=1,AF=3,P为BD上一动点,则线段EP+FP的长最短为()A . 3B . 4C . 5D . 6二、填空题 (共8题;共8分)11. (1分)一个直角三角形的两条直角边分别为3cm,4cm,则这个直角三角形斜边上的高为________ cm.12. (1分)已知一组数据x1 , x2 , x3 , x4 , x5的方差是,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的方差是________13. (1分)△ABC的周长为8,AB=AC=x,BC=y,则y与x的函数关系式是(写出自变量x的取值范围)________.14. (1分) (2015七下·邳州期中) 已知,在△ABC中,∠A=80°,那么∠B=∠C=________度.15. (1分) (2020八上·苍南期末) 如图,直角坐标系中直线y=x+2和直线y=ax+c相交于点P(m,3),则方程组的解为________。
内蒙古乌兰察布市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017八上·揭西期中) 要使二次根式有意义,字母必须满足的条件是()A . ≥1B . ≥-1C . >-1D . >12. (2分)(2020·宿州模拟) 如图,O是平行四边形ABCD的对角线交点,E为AB中点,DE交AC于点F,若平行四边形ABCD的面积为16. 则△DOE面积是()A . 1B .C . 2D .3. (2分) (2020八上·怀柔期末) 下列各式中,是最简二次根式的是().A .B .C .D .4. (2分) (2018八上·无锡期中) 下列各组数中的三个数作为三角形的边长,其中能构成直角三角形的是()A . 1,,B . 2, 3, 4C . 5,6,7D . 7,8,95. (2分) (2019九上·马山期中) 如图,点O是▱ABCD的对称中心,EF是过点O的任意一条直线,它将平行四边形分成两部分,四边形ABFE和四边形EFCD的面积分别记为S1 , S2 ,那么S1 , S2之间的关系为()A . S1>S2B . S1<S2C . S1=S2D . 无法确定6. (2分)已知a、b、c是△ABC三边的长,则+|a+b﹣c|的值为()A . 2aB . 2bC . 2cD . 2(a一c)7. (2分) (2017九上·顺德月考) 若顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是()A . 平行四边形B . 矩形C . 对角线相等的四边形D . 对角线互相垂直的四边形8. (2分)当x=-2时,二次根式的值为()A . 1B . ±1C . 3D . ±39. (2分)若一个菱形的边长为2,则这个菱形两条对角线长的平方和为()A . 16B . 8C . 4D . 110. (2分) (2019八上·江阴月考) 如图,已知△ABC中,∠ABC=50°,P为△ABC内一点,过点P的直线MN分别交AB,BC于点M、N.若M在PA的中垂线上,N在PC的中垂线上,则∠APC的度数为()A . 100°B . 105°C . 115°D . 无法确定二、填空题 (共5题;共5分)11. (1分) (2019八下·鹿邑期中) 如果最简二次根式与可以合并成一个二次根式,则________.12. (1分)计算﹣ =________.13. (1分)如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α为________ 度时,两条对角线长度相等.14. (1分) (2018八下·集贤期末) 如图,小华将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为________.15. (1分) (2017八下·平定期中) 探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…可发现,4= ,12= ,24= …请写出第5个数组:________.三、解答题 (共7题;共72分)16. (15分) (2017八上·乌拉特前旗期末) 计算:(1)(﹣2)3﹣()﹣1+(﹣1)0+(﹣)2017×(1.5)2016(2)(2a+1)(2a﹣1)﹣(a+2)2﹣3a(a+1)(3)(﹣1)÷ .17. (5分)(2017·海珠模拟) 如图,AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且AE=AF.求证:△ACE≌△ACF.18. (12分)如图,在平面直角坐标系中,梯形ABCD的坐标为A(0,0),B(0,8),C(8,8),D(12,0),点P,Q分别从B,D出发以1个单位/秒和2个单位/秒的速度向C,O运动,设运动时间为t(s)(﹣点到达,另一点也停止运动).(1)写出线段CD的中点坐标________,梯形面积为________;(2)当t为何值时,四边形PQDC为平行四边形?(3)当t为何值时,四边形PQDC为等腰梯形?19. (15分) (2017八下·东城期中) 已知:直线与轴交于点,与轴交于点,坐标原点为.(1)求点,点的坐标.(2)求直线与轴、轴围成的三角形的面积.(3)求原点到直线的距离.20. (5分) (2019八上·平川期中) 如图,在矩形ABCD中,AB=15,BC=8,E是AB上一点,沿DE折叠使A 落在DB上,求AE的长.21. (10分)谋小区有一块长为 m,宽为 m的空地,现要对该空地植上草萍进行绿化,解答下面的问题: (其中 , , 结果保留整数)(1)求该空地的周长。
内蒙古乌兰察布市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·咸安模拟) 民族图案是数学文化中的一块瑰宝.下列图案中,既是中心对称图形也是轴对称图形的是()A .B .C .D .2. (2分) (2017八上·江门月考) 若分式有意义,则x的取值范围是()A . x≠0B . x≠C . x>D . x<3. (2分)某校八年级(3)班体训队员的身高(单位:cm)如下:169,165,166,164,169,167,166,169,166,165,获得这组数据方法是().A . 直接观察B . 查阅文献资料C . 互联网查询D . 测量4. (2分)下列各式中最简分式是()A .B .C .D .5. (2分)(2020·郑州模拟) 如图,▱ABCD的对角线AC、BD相交于点O,则下列条件中不能判定四边形ABCD 为矩形的是()A . AB=ADB . OA=OBC . AC=BDD . DC⊥BC6. (2分)已知三角形的两边长是4和6,第三边的长是方程的根,则此三角形的周长为()A . 10B . 12C . 14D . 12或147. (2分) (2018八上·新疆期末) 下列式子中,与分式的值相等的是()A .B .C . -D . -8. (2分)在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是()A . ∠ABC=90°B . AC⊥BDC . AB=CDD . AB∥CD9. (2分)小颖同学借了一本书,共280页,要在两周借期内读完,当她读了一半时,发现平均每天要多读21页才能在借期内读完,她读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中,正确的是()A .B .C .D .10. (2分)如图,AD是△ABC的中线,AE=EF=FC,则下列关系式:①=,②=,③=,其中正确的是()A . ①②B . ①③C . ②③D . ①②③二、填空题 (共8题;共9分)11. (1分) (2018七上·宝丰期末) 对某校八年级的980名学生的身高情况进行考察,从中抽取100名学生的身高,则这个问题中的样本为________.12. (1分)如果分式的值为0,那么x的值为________ .13. (1分)(2018·泸县模拟) ⊙O的半径为4cm,则⊙O的内接正三角形的周长是________ cm.14. (1分)已知,则k的值是________.15. (1分)方程的解是________16. (2分) (2017七下·岱岳期中) 如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′位置,若∠EFB=65°,则∠AED′=________°.17. (1分)(2019·苏州模拟) 在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B 的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为________ cm.18. (1分) (2017八下·宜兴期中) 如图,在正方形ABCD中,AB=2cm,对角线AC、BD交于点O,点E以一定的速度从A向B移动,点F以相同的速度从B向C移动,连结OE、OF、EF.则线段EF的最小值是________cm.三、解答题 (共10题;共65分)19. (10分) (2019八上·北京期中) 分式计算:(1)(2)(3)(4)先化简,再求值:,其中m=1.20. (10分) (2017八下·简阳期中) 解方程:(1);(2).21. (5分) (2018八上·柘城期末) 先化简,再求值:÷ - ,其中a=(3- )0+- .22. (2分) (2018八下·江都月考) 如图,在四边形ABCD中,AD∥BC,AD≠BC,∠B=90⁰,AG∥CD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG.(1)求证:四边形DEGF是平行四边形;(2)当点G是BC的中点时,求证:四边形DEGF是菱形23. (10分)(2016·云南) 如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠D BC的值;(2)求证:四边形OBEC是矩形.24. (12分)(2017·武汉模拟) 为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.25. (2分) (2019九上·湖州月考) 一粒木质中国象棋棋子“車”,它的正面雕刻一个“車”字,它的反面是平的,将棋子从一定高度下抛,落地反弹后可能是“車”字面朝上,也可能是“車”字朝下.由于棋子的两面不均匀,为了估计“車”字朝上的机会,某实验小组做了棋子下抛实验,并把实验数据整理如下:(1)请将表中数据补充完整,并画出折线统计图中剩余部分.(2)如果实验继续进行下去,根据上表数据,这个实验的频率将接近于该事件发生的机会,请估计这个机会约是多少?(3)在(2)的基础上,进一步估计:将该“車”字棋子,按照实验要求连续抛2次,则刚好使“車”字一次字面朝上,一次朝下的可能性为多少?26. (10分)(2017·黄冈模拟) 某文化用品商店用1 000元购进一批“晨光”套尺,很快销售一空;商店又用1 500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?27. (2分) (2018七上·宁波期中) 在下面给出的数轴中,点A表示1,点B表示-2,回答下面的问题:(1) A、B 之间的距离是________;(2)观察数轴,与点A的距离为5的点表示的数是:________;(3)若将数轴折叠,使点A与-3表示的点重合,则点B与数________表示的点重合;(4)若数轴上M、N两点之间的距离为2018(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M: ________;N:________.28. (2分) (2019九上·长春期末) 如图①,在Rt△ABC中,∠C = 90°,AB = 10,BC = 6.点P从点A 出发,沿折线AB—BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动.点Q从点C出发,沿CA方向以每秒个单位长度的速度运动.点P、Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.(1)求线段AQ的长.(用含t的代数式表示).(2)当PQ与△ABC的一边平行时,求t的值.(3)如图②,过点P作PE⊥AC于点E,以PE、QE为邻边作矩形PEQF,点D为AC的中点,连结DF.直接写出DF将矩形PEQF分成两部分的面积比为1:2时t的值.图②参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共65分)19-1、19-2、19-3、19-4、20-1、20-2、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、27-1、27-2、27-3、27-4、28-1、28-2、。
人教版数学八年级下学期期中测试卷二一、选择题(本大题共10 小题,每小题3 分,共30 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3 分)计算的结果为()A.10 B.5 C.3 D.22.(3 分)使二次根式有意义的x 的取值范围是()A.x≠2 B.x>2 C.x≤2 D.x≥23.(3 分)下列计算正确的是()A.﹣=B.+ =C.3 ﹣=2 D.2+ =24.(3 分)下列各组数中,以a、b、c 为边的三角形不是直角三角形的是()A.a=1,b=,c=B.a=,b=2,c=C.a=,b=,c=D.a=7,b=24,c=255.(3 分)下列命题中,是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形6.(3 分)如图,点A(﹣4,4),点B(﹣3,1),则AB 的长度为()A.2B.C.2D.7.(3 分)如图,桌面上的正方体的棱长为2,B 为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B 点,则它运动的最短路程为()A.B.4 C.D.58.(3 分)若a,b,c 为直角三角形的三边,则下列判断错误的是()A.2a,2b,2c 能组成直角三角形B.0a,10b,10c 能组成直角三角形C.能组成直角三角形D.能组成直角三角形9.(3 分)如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使得其面积为原矩形面积的一半,则平行四边形ABCD 的内角∠BCD 的大小为()A.100°B.120°C.135°D.150°10.(3 分)将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN 为折痕,若正方形EFGH 与五边形MCNGF 的面积之比为4:5,则的值为()A.B.C.D.二、填空题:(本大题共6 小题,每小题3 分,共18 分)11.(3 分)化简:+()2=.12.(3 分)若a=2+,b=2﹣,则ab 的值为.13.(3 分)若平行四边形中两个内角的度数比为1:2,则其中较小的内角为.14.(3 分)如图,在3×3 的正方形网格中,每个小正方形边长为1,点A,B,C 均为格点,以点A 为圆心,AB 长为半径作弧,交格线于点D,则CD 的长为.15.(3 分)如图,有一四边形空地ABCD,AB⊥AD,AB=3,AD=4,BC=12,CD=13,则四边形ABCD 的面积为.16.(3 分)如图,△ACB 和△ECD 都是等腰直角三角形,CA=CB,CE=CD,△ABC 的顶点A 在△ECD 的斜边上,若AE=,AD=,则AC 的长为.三、解答题:(本大题共7 小题,共72 分.解答应写出文字说明、演算步骤或证明过程)17.(8 分)计算:(I)(+ )+(﹣);(II)2 ×÷5 .18.(8 分)已知x=2﹣,求代数式(7+4 )x2+(2+ )x+ 的值.19.(10 分)已知四边形ABCD,∠A=∠B=∠C=∠D.求证:四边形ABCD 是矩形.20.(12 分)如图,在每个小正方形的边长为1 的网格中,点A、B、C 均在格点上.(1)直接写出AC 的长为,△ABC 的面积为;(2)请在如图所示的网格中,用无刻度的直尺作出AC 边上的高BD,并保留作图痕迹;(3)求BD 的长.21.(10 分)如图,在△ABC 中,∠ACB=90°,CD⊥AB 于D,M 是斜边的中点.(I)若BC=1,AC=3,求CM 的长;(II)若∠ACD=3∠BCD,求∠MCD 的度数.22.(12 分)在△ABC 中,AB=AC=5.(1)若BC=6,点M、N 在BC、AC 上,将△ABC 沿MN 折叠,使得点C 与点A 重合,求折痕MN 的长;(2)点D 在BC 的延长线上,且BC:CD=2:3,若AD=10,求证:△ABD 是直角三角形.23.(12 分)如图,将一个正方形纸片AOBC 放置在平面直角坐标系中,点A(0,6),B(6,0),动点E 在边AO 上,点F 在边BC 上,沿EF 折叠该纸片,使点O 的对应点M 始终落在边AC 上(点M 不与A,C 重合),点B 落在点N 处,MN 与BC 交于点P.(I)求点C 的坐标;(II)当点M 落在AC 的中点时,求点E 的坐标;(III)当点M 在边AC 上移动时,设AM=t,求点E 的坐标(用t 表示).人教版数学八年级下学期期中测试卷二参考答案与试题解析一、选择题(本大题共10 小题,每小题3 分,共30 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3 分)计算的结果为()A.10 B.5 C.3 D.2【分析】直接利用二次根式的乘法运算法则计算得出答案.【解答】解:=5.故选:B.2.(3 分)使二次根式有意义的x 的取值范围是()A.x≠2 B.x>2 C.x≤2 D.x≥2【分析】利用当二次根式有意义时,被开方式为非负数,得到有关x 的一元一次不等式,解之即可得到本题答案.【解答】解:∵二次根式有意义,∴x﹣2≥0,解得:x≥2,故选:D.3.(3 分)下列计算正确的是()A.﹣=B.+ =C.3 ﹣=2 D.2+ =2【分析】先把各个二次根式化成最简二次根式再合并判断即可.【解答】解:A、,错误,不符合题意;B、,错误,不符合题意;C、,正确,符合题意;D、,错误,不符合题意;故选:C.4.(3 分)下列各组数中,以a、b、c 为边的三角形不是直角三角形的是()A.a=1,b=,c=B.a=,b=2,c=C.a=,b=,c=D.a=7,b=24,c=25【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.【解答】解:A、12+()2=()2,符合勾股定理的逆定理,是直角三角形,故此选项错误;B、22+()2=()2,符合勾股定理的逆定理,是直角三角形,故此选项错误;C、()2+()2≠()2,不符合勾股定理的逆定理,不是直角三角形,故此选项正确;D、72+242=252,符合勾股定理的逆定理,是直角三角形,故此选项错误.故选:C.5.(3 分)下列命题中,是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形【分析】根据特殊四边形的判定定理进行判断即可.【解答】解:A、对角线互相平分的四边形是平行四边形,正确;B、对角线相等的四边形是矩形,还可能是等腰梯形,错误;C、对角线互相垂直的四边形是菱形,还可能是梯形,错误;D、对角线互相垂直平分的四边形是菱形,错误;故选:A.6.(3 分)如图,点A(﹣4,4),点B(﹣3,1),则AB 的长度为()A.2 B.C.2 D.【分析】根据题意,可以得到AC 和BC 的长,然后利用勾股定理,即可得到AB 的长,本题得以解决.【解答】解:作BC∥x 轴,作AC∥y 轴交BC 于点C,∵点A(﹣4,4),点B(﹣3,1),∴AC=3,BC=1,∵∠ACB=90°,∴AB==,故选:B.7.(3 分)如图,桌面上的正方体的棱长为2,B 为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B 点,则它运动的最短路程为()A.B.4 C.D.5【分析】正方体侧面展开为长方形,确定蚂蚁的起点和终点,根据两点之间线段最短,根据勾股定理可求出路径长,【解答】解:如图,它运动的最短路程AB==,故选:C.8.(3 分)若a,b,c 为直角三角形的三边,则下列判断错误的是()A.2a,2b,2c 能组成直角三角形B.0a,10b,10c 能组成直角三角形C.能组成直角三角形D.能组成直角三角形【分析】根据勾股定理得出a2+b2=c2(设 c 为最长边),再逐个判断即可.【解答】解:∴a,b,c 为直角三角形的三边,设c 为最长边,∴a2+b2=c2,A.∵a2+b2=c2,∴4a2+4b2=4c2,即(2a)2+(2b)2=(2c)2,∴以2a,2b,2c 为边能组成直角三角形,故本选项不符合题意;B.∵a2+b2=c2,∴100a2+100b2=100c2,即(10a)2+(10b)2=(10c)2,∴以10a,10b,10c 为边能组成直角三角形,故本选项不符合题意;C.∵a2+b2=c2,∴a2+ b2=c2,即()2+()2=()2,∴以,,为边能组成直角三角形,故本选项不符合题意;D.∵()2+()2≠()2,∴以,,为边不能组成直角三角形,故本选项符合题意;故选:D.9.(3 分)如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使得其面积为原矩形面积的一半,则平行四边形ABCD 的内角∠BCD 的大小为()A.100°B.120°C.135°D.150°【分析】作AE⊥BC 于点E.根据面积的关系可以得到AB=2AE,进而可得∠ABE=30°,再根据平行四边形的性质即可求解.【解答】解:如图,作AE⊥BC 于点E.∵矩形的面积=BC•CF=2S=2BC•AE,平行四边形ABCD∴CF=2AE,∴AB=2AE,∴∠ABE=30°,∵AB∥CD,∴∠BCD=180°﹣∠ABE=150°.故选:D.10.(3 分)将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN 为折痕,若正方形EFGH 与五边形MCNGF 的面积之比为4:5,则的值为()A.B.C.D.【分析】连接HF,直线HF 与AD 交于点P,根据正方形EFGH 与五边形MCNGF 的面积之比为4:5,设正方形EFGH 与五边形MCNGF 的面积为4x2,5x2,可得GF=2x,根据折叠可得正方形ABCD 的面积为24x2,进而求出FM,最后求得结果.【解答】解:如图,连接HF,直线HF 与AD 交于点P,∵正方形EFGH 与五边形MCNGF 的面积之比为4:5,设正方形EFGH 与五边形MCNGF 的面积为4x2,5x2,∴GF2=4x2,∴GF=2x,∴HF==2 x,由折叠可知:正方形ABCD 的面积为:4x2+4×5x2=24x2,∴PM2=24x2,∴PM=2 x,∴FM=PH=(PM﹣HF)=(2 x﹣2 x)=(﹣)x,∴==.故选:A.二、填空题:(本大题共6 小题,每小题3 分,共18 分)11.(3 分)化简:+()2=10 .【分析】根据二次根式的性质计算.【解答】解:原式=5+5=10.12.(3 分)若a=2+,b=2﹣,则ab 的值为 1 .【分析】直接利用平方差公式计算得出答案.【解答】解:∵a=2+ ,b=2﹣,∴ab=(2+ )×(2﹣)=4﹣3=1.故答案为:1.13.(3 分)若平行四边形中两个内角的度数比为1:2,则其中较小的内角为60°.【分析】首先设平行四边形中两个内角的度数分别是x°,2x°,由平行四边形的邻角互补,即可得方程x+2x=180,继而求得答案.【解答】解:设平行四边形中两个内角的度数分别是x°,2x°,则x+2x=180,解得:x=60,∴其中较小的内角是:60°.故答案为:60°.14.(3 分)如图,在3×3 的正方形网格中,每个小正方形边长为1,点A,B,C 均为格点,以点A 为圆心,AB 长为半径作弧,交格线于点D,则CD 的长为3﹣.【分析】由勾股定理求出AB,再由勾股定理求出DE,即可得出CD 的长.【解答】解:连接AB,AD,如图所示:∵AD=AB==2 ,∴DE==,∴CD=3﹣.故答案为:3﹣.15.(3 分)如图,有一四边形空地 ABCD ,AB ⊥AD ,AB =3,AD =4,BC =12,CD =13,则四边形ABCD 的面积为 36 .【分析】连接 BD ,先根据勾股定理求出 BD ,进而判断出△BCD 是直角三角形,最后用面积的和即可求出四边形 ABCD 的面积.【解答】解:如图,连接 BD ,∵在 Rt △ABD 中,AB ⊥AD ,AB =3,AD =4,根据勾股定理得,BD =5,在△BCD 中,BC =12,CD =13,BD =5,∴BC 2+BD 2=122+52=132=CD 2,∴△BCD 为直角三角形,∴S 四边形 ABCD =S △ABD +S △BCD= AB •AD + BC •BD= ×3×4+ ×12×5=36.故答案为:36.16.(3 分)如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,△ABC 的顶点 A 在△ ECD 的斜边上,若 AE = ,AD = ,则 AC 的长为 .【分析】连接 BD ,根据等腰直角三角形性质和全等三角形的性质可得 AE =BD =,根据勾股定理可求 BC 的长,即可求解.【解答】解:如图,连接 BD ,∵△ACB 和△ECD 都是等腰直角三角形,∴CE=CD,AC=BC,∠ECD=∠ACB=90°,∠CED=∠EDC=45°,∴∠ACE=∠DCB,且CE=CD,AC=BC,∴△ACE≌△BCD(SAS),∴AE=BD=,∠CED=∠CDB=45°,∵∠ADB=∠EDC+∠CDB,∴∠ADB=90°,∴AB2=AD2+DB2=3+7=10,∴AB=,∵AC2+BC2=AB2,∴AC=BC=,故答案为.三、解答题:(本大题共7 小题,共72 分.解答应写出文字说明、演算步骤或证明过程)17.计算:(I)(+ )+(﹣);(II)2 ×÷5 .【分析】(I)直接化简二次根式进而合并得出答案;(II)直接利用二次根式的乘除运算法则计算得出答案.【解答】解:(I)(+ )+(﹣)=2 +2 + ﹣=3 + ;(II)2 ×÷5=4 ×÷5=3×=.18.已知x=2﹣,求代数式(7+4 )x2+(2+ )x+ 的值.【分析】首先计算x2的值,然后代入所求的式子利用平方差公式计算,最后合并同类二次根式即可.【解答】解:x2=(2﹣)2=7﹣4 ,则原式=(7+4 )(7﹣4 )+(2+ )(2﹣)+=49﹣48+1+=2+ .19.已知四边形ABCD,∠A=∠B=∠C=∠D.求证:四边形ABCD 是矩形.【分析】证出∠A=∠B=∠C=∠D=90°,直接利用三个角是直角的四边形是矩形,进而得出即可.【解答】证明:∵四边形ABCD,∠A=∠B=∠C=∠D,∠A+∠B+∠C+∠D=360°,∴∠A=∠B=∠C=∠D=90°,∴四边形ABCD 是矩形.20.如图,在每个小正方形的边长为1 的网格中,点A、B、C 均在格点上.(1)直接写出AC 的长为,△ABC 的面积为9 ;(2)请在如图所示的网格中,用无刻度的直尺作出AC 边上的高BD,并保留作图痕迹;(3)求BD 的长.【分析】(1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据题意画出线段BD 即可;(3)根据三角形的面积公式即可得到结论.【解答】解:(1)AC==,S△ABC=4×5﹣×2×4﹣×2×5﹣×1×4=9,故答案为,9;(2)如图所示,BD 即为所求,(3)∵S△ABC=AC•BD=BD=9,∴BD=.21.如图,在△ABC 中,∠ACB=90°,CD⊥AB 于D,M 是斜边的中点.(I)若BC=1,AC=3,求CM 的长;(II)若∠ACD=3∠BCD,求∠MCD 的度数.【分析】(I)先利用勾股定理求出AB,再根据直角三角形斜边上的中线等于斜边的一半的性质即可得到CM 的长;(Ⅱ)先求出∠BCD,再根据直角三角形两锐角互余求出∠B,根据直角三角形斜边上的中线等于斜边的一半可得AM=MC,根据等边对等角可得∠ACM=∠A,再求出∠MCD=45°.【解答】解:(Ⅰ)∵在△ABC 中,∠ACB=90°,BC=1,AC=3,∴AB==,∵M 是斜边的中点,∴CM=AB=;(Ⅱ)∵∠ACB=∠ACD+∠BCD=90°,∠ACD=3∠BCD,∴∠ACD=90°×=67.5°,∵CD⊥AB,∴∠A+∠ACD=90°,∴∠A=22.5°,∵CM=AB=AM,∴∠ACM=∠A=22.5°,∴∠MCD=∠ACD﹣∠ACM=67.5°﹣22.5°=45°.22.在△ABC 中,AB=AC=5.(1)若BC=6,点M、N 在BC、AC 上,将△ABC 沿MN 折叠,使得点C 与点A 重合,求折痕MN 的长;(2)点D 在BC 的延长线上,且BC:CD=2:3,若AD=10,求证:△ABD 是直角三角形.【分析】(1)如图1,过A 作AD⊥BC 于D,根据等腰三角形的性质得到BD=CD=3,求得AD =4,根据折叠的性质得到AM=CM,AN=AC=,设AM=CM=x,根据勾股定理即可得到结论;(2)如图2,过A 作AE⊥BC 于E,根据等腰三角形的性质得到BE=CE=BC,设BC=2t,CD =3t,AE=h,得到BE=CE=t,根据勾股定理和勾股定理的逆定理即可得到结论.【解答】解:(1)如图1,过A 作AD⊥BC 于D,∵AB=AC=5,BC=6,∴BD=CD=3,∴AD=4,∵将△ABC 沿MN 折叠,使得点C 与点A 重合,∴AM=CM,AN=AC=,设AM=CM=x,∴MD=x﹣3,∵AD2+DM2=AM2,∴42+(x﹣3)2=x2,解得:x=,∴MN===;(2)如图2,过 A 作AE⊥BC 于E,∵AB=AC,∴BE=CE=BC,∵BC:CD=2:3,∴设BC=2t,CD=3t,AE=h,∴BE=CE=t,∵AB=5,AD=10,∴h2+t2=52,h2+(4t)2=102,联立方程组解得,t=(负值舍去),∴BD=5 ,∵AB2+AD2=52+102=125=(5 )2=BD2,∴△ABD 是直角三角形.23.如图,将一个正方形纸片AOBC 放置在平面直角坐标系中,点A(0,6),B(6,0),动点E 在边AO 上,点F 在边BC 上,沿EF 折叠该纸片,使点O 的对应点M 始终落在边AC 上(点M 不与A,C 重合),点B 落在点N 处,MN 与BC 交于点P.(I)求点C 的坐标;(II)当点M 落在AC 的中点时,求点E 的坐标;(III)当点M 在边AC 上移动时,设AM=t,求点E 的坐标(用t 表示).【分析】(I)根据正方形的性质可得AC⊥OA,CB⊥OB,结合A,B 两点坐标可求解;(II)根据中点的定义可得AM=3,设OE=x,则EM=OE=x,AE=6﹣x,利用勾股定理可求解x 值,进而求解E 点坐标;(III)设点E 的坐标为(0,a),由勾股定理可求解a 值,进而求解E 点坐标.【解答】解:(I)∵正方形AOBC,A(0,6),B(6,0),∴OA=AC=CB=OB=6,且每个内角都是90°,即AC⊥OA,CB⊥OB,∴C(6,6);(II)∵M 为AC 的中点,∴AM=AC=3,设OE=x,则EM=OE=x,AE=6﹣x,在Rt△AEM 中,EM2=AM2+AE2,∴(6﹣x)2+32=x2,解得x=,∴E(0,);(III)设点E 的坐标为(0,a),由题意得OE=EM=a,AE=6﹣a,AM=t,在Rt△EAM 中,EM2=AM2+AE2,∴a2=(6﹣a)2+t2,解得a=,∴点E 的坐标为(0,).。
内蒙古乌兰察布市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八下·北京期末) 下面各问题中给出的两个变量x , y ,其中y是x的函数的是()① x是正方形的边长,y是这个正方形的面积;② x是矩形的一边长,y是这个矩形的周长;③ x是一个正数,y是这个正数的平方根;④ x是一个正数,y是这个正数的算术平方根.A . ①②③B . ①②④C . ②④D . ①④2. (2分) (2019八下·哈尔滨期中) 圆周长公式C=2πr ,下列说法正确是().A . 是变量,2是常量B . 是变量,是常量C . 是变量, 是常量D . 是变量 , 是常量3. (2分)若是正比例函数,则m的值为()A .B .C . 1或-1D . 或4. (2分) (2019八上·重庆期末) 以下各组数为三角形的三边长,其中能够构成直角三角形的是()A . ,,B . 7,24,25C . 8,13,17D . 10,15,205. (2分)(2018·安徽模拟) 如图所示,在矩形ABCD中,AB=,BC=2,对角线AC,BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是()A .B .C . 1D . 1.56. (2分) (2019七下·福州期末) 用一根长为10cm的绳子围成一个三角形,若所围成的三角形中一边的长为2cm,且另外两边长的值均为整数,则这样的围法有()A . 1种B . 2种C . 3种D . 4种7. (2分) (2017九上·成都开学考) 下列说法中错误的是()A . 一组对边平行且一组对角相等的四边形是平行四边形B . 每组邻边都相等的四边形是菱形C . 四个角相等的四边形是矩形D . 对角线互相垂直的平行四边形是正方形8. (2分)(2018·衡阳) 下列命题是假命题的是A . 正五边形的内角和为540°B . 矩形的对角线相等C . 对角线互相垂直的四边形是菱形D . 圆内接四边形的对角互补9. (2分)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC的长是()A . 2B . 4C . 2D . 410. (2分)(2017·阳谷模拟) 已知抛物线y=ax2+bx+c的图像如图所示,则下列结论:①abc>0;②a+b+c=2;③b>1;④a<.其中正确的结论是()A . ①②B . ②③C . ③④D . ②④二、填空题 (共10题;共11分)11. (1分)(2018·安徽模拟) 函数y= 的自变量x的取值范围是________.12. (1分) (2019七下·丹东期中) 校园里栽下一棵小树高1.8 米,以后每年长0.3米,则n年后的树高L 米与年数n年之间的关系式为________.13. (1分)(2017·盘锦模拟) 如图,在△ABC中,AB=5,AC=12,BC=13,△ABD、△ACE、△BCF都是等边三角形,则四边形AEFD的面积S=________.14. (1分) (2020八上·武进月考) 如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=6,则CP的长为________.15. (2分)如图,点A,B,C是⊙O上的点,OA=AB,则∠C的度数为________ .16. (1分)(2020·黄石模拟) 如图,在Rt△ABC中,腰AC=BC=1,按下列方法折叠Rt△ABC,点B不动,使BC落在AB上,点A不动,使AB落在AC的延长线上;点C不动,使CA落在CB上,设点A、B、C对应的落点分别为A′、B′、C′,则△A′B′C′的面积是________.17. (1分) (2019九下·临洮月考) 如图,,,分别为,的中点,若,,则的长是________.18. (1分) (2018八下·越秀期中) 如图所示,在平行四边形ABCD中,AD⊥BD,∠A=60°,如果AD=4,那么平行四边形的周长是________。
乌兰察布市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2020七下·桦南期中) 线段MN在直角坐标系中的位置如图所示,线段M1N1与MN关于y轴对称,则点M的对应的点M1的坐标为()A . (4,2)B . (-4,2)C . (-4,-2)D . (4,-2)2. (2分)(2019·海门模拟) 一个不透明的信封中装有四张完全相同的卡片上分别画有等腰梯形、矩形、菱形、圆,现从中任取一张,卡片上画的恰好既是中心对称图形又是轴对称图形的概率是()A .B .C .D . 13. (2分) (2017八下·大丰期中) 在代数式、、、中,分式的个数有()A . 2B . 3C . 4D . 54. (2分) (2017八下·大丰期中) 下列叙述错误的是()A . 平行四边形的对角线互相平分B . 菱形的对角线互相平分C . 菱形的对角线相等D . 矩形的对角线相等5. (2分) (2017八下·大丰期中) 如图,是深圳市某校七、八两个年级男生参加课外活动人数的扇形统计图.根据统计图,下面对两个年级参加篮球活动的人数判断正确的是()A . 七年级比八年级多B . 八年级比七年级多C . 两个年级一样多D . 无法确定哪个年级多6. (2分) (2017八下·大丰期中) 如图,把一个矩形的纸片按图示对折两次,然后剪下一部分,为了得到一个钝角为110°的菱形,剪口与第二次折痕所成角的度数应为()A . 70°或20°B . 55°或45°C . 55°或35°D . 55°或65°二、填空题 (共10题;共10分)7. (1分) (2018七上·江阴期中) 一个盖着瓶盖的瓶里装着一些水,如图所示根据图中标明的数据计算瓶子的容积是________ .8. (1分)有六张完全相同的卡片,其正面分别标有数字:﹣2,,π,0,,,将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数字为无理数的概率是________.9. (1分) (2017·天山模拟) 有5张看上去无差别的卡片,上面分别写着0,π,,,1.333.随机抽取1张,则取出的数是无理数的概率是________.10. (1分) (2015九下·郴州期中) 在m2□6m□9的“□”中任意填上“+”或“﹣”号,所得的代数式为完全平方式的概率为________.11. (1分)从﹣2、1、这三个数中任取两个不同的数相乘,积是无理数的概率是________.12. (1分)在一个袋中,装有五个除数字外其它完全相同的小球,球面上分别写有1,2,3,4,5这5个数字.小芳从袋中任意摸出一个小球,球面数字的平方根是无理数的概率是________ .13. (1分)(2019·鄂尔多斯模拟) 下列说法正确的是________.(填写正确说法的序号)①在角的内部,到角的两边距离相等的点在角的平分线上;②一元二次方程x2﹣3x=5无实数根;③ 的平方根为±4;④了解北京市居民”一带一路”期间的出行方式,采用抽样调查方式;⑤圆心角为90°的扇形面积是π,则扇形半径为2.14. (1分) (2019七下·呼和浩特期末) 以下四个命题:① 的立方根是②要调查一批灯泡的使用寿命适宜用抽样调查③两条直线被第三条直线所截同旁内角互补④已知与其内部一点 ,过点作 ,作 ,则 .其中假命题的序号为________.15. (1分) (2017八下·大丰期中) 已知关于x的方程的解是负数,则n的取值范围为________.16. (1分) (2017八下·大丰期中) 若代数式的值为整数,则满足条件的整数x有________.三、解答题 (共11题;共127分)17. (20分) (2017七下·陆川期末) 综合题(1)计算(﹣)﹣| ﹣ |(2)解方程组(3)解不等式1﹣>(4)解不等式组,并把它的解集表示在数轴上.18. (10分)(2018·青岛模拟) 计算(1)化简:( +n)÷ ;(2)关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,求m的取值范围.19. (15分) (2017八下·大丰期中) 如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点.以格点为顶点分别按下列要求画图:(1)在图1中,画出一个平行四边形,使其面积为6;(2)在图2中,画出一个菱形,使其面积为4;(3)在图3中,画出一个矩形,使其邻边不等,且都是无理数.20. (5分) (2017八下·大丰期中) 先化简,然后在﹣2≤a≤2中选择一个你喜欢的整数代入求值.21. (8分) (2017八下·大丰期中) 在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5996116290480601a0.640.58b0.600.601摸到白球的频率(1)上表中的a=________;b=________(2)“摸到白球”的概率的估计值是________(精确到0.1);(3)试估算口袋中黑、白两种颜色的球各有多少只?22. (15分) (2017八下·大丰期中) 某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有3000名学生,请估计该校喜爱电视剧节目的人数.23. (10分) (2017八下·大丰期中) 如图,AC是平行四边形ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;(2)若AB=4,AC=4 ,求平行四边形ABCD的面积.24. (8分) (2017八下·大丰期中) 我们把分子为1的分数叫做单位分数,如,,,…任何一个单位分数都可以拆分成两个不同的单位分数的和,如 = + , = + , = + ,…(1)根据对上述式子的观察,你会发现 = + ,则a=________,b=________;(2)进一步思考,单位分数 = + (n是不小于2的正整数),则x=________(用n的代数式表示)(3)计算: + + +…+ .25. (10分) (2017八下·大丰期中) 在正方形ABCD中,(1)如图1,若点E,F分别在边BC,CD上,AE,BF交于点O,且∠AOF=90°.求证:AE=BF.(2)如图2,将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G.若DC=5,CM=2,求EF的长.26. (11分) (2017八下·大丰期中) 甲、乙两商场自行定价销售某一商品.(1)甲商场将该商品提价25%后的售价为1.25元,则该商品在甲商场的原价为________元;(2)乙商场定价有两种方案:方案一 将该商品提价20%;方案 二将该商品提价1元.某顾客发现在乙商场用60元钱购买该商品,按方案二 购买的件数是按方案 一购买的件数的2倍少10件,求该商品在乙商场的原价是多少?(3)甲、乙两商场把该商品均按原价进行了两次价格调整.甲商场:第一次提价的百分率是a,第二次提价的百分率是b;乙商场:两次提价的百分率都是(a>0,b>0,a≠b).请问甲、乙两商场,哪个商场的提价较多?请说明理由.27. (15分) (2017八下·大丰期中) 探究题(1)【证法回顾】证明:三角形中位线定理.已知:如图1,DE是△ABC的中位线.求证:DE∥BC,DE= BC.证明:添加辅助线:如图1,在△ABC中,延长DE (D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF;请继续完成证明过程:(2)【问题解决】如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.(3)【拓展研究】如图3,在四边形ABCD中,∠A=105°,∠D=120°,E为AD的中点,G、F分别为AB、CD 边上的点,若AG=3 ,DF=2,∠GEF=90°,求GF的长.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共10分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共11题;共127分)17-1、17-2、17-3、17-4、18-1、18-2、19-1、19-2、19-3、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、。
内蒙古乌兰察布市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八上·江津期末) 若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A . 50°B . 80°C . 65°或50°D . 50°或80°2. (2分)有下列说法:(1)若a<b,则-a>-b;(2)若xy<0,则x<0,y<0;(3)若x<0,y<0,则xy<0;(4)若a<b,则2a<a+b;(5)若a<b,则;(6)若,则x >y。
其中正确的说法有()A . 2个B . 3个C . 4个D . 5个3. (2分)下列多项式中不能用平方差公式分解的是()A . a2-b2B . -x2-y2C . 49x2-y2z2D . 16m4n2-25p24. (2分)已知点P(3﹣m,m﹣1)在第一象限,则m的取值范围在数轴上表示正确的是()A .B .C .D .5. (2分) (2019八上·灌云期末) 如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为()A . x<1B . x>1C . x≥1D . x≤16. (2分)(2011·南宁) 将x3﹣4x分解因式的结果是()A . x(x2﹣4)B . x(x+4)(x﹣4)C . x(x+2)(x﹣2)D . x(x﹣2)27. (2分)下列说法中正确的是()A . 无理数的相反数也是无理数B . 无理数就是带根号的数C . 平行四边形既是中心对称图形,又是轴对称图形D . 无限小数都是无理数。
8. (2分) (2017八上·永定期末) 如图,在△ 中,,,BC=4cm,点D为AB的中点,则()A . 3cmB . 4cmC . 5cmD . 6cm9. (2分) (2017八上·潮阳月考) 如图,ΔABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于D,DE⊥AB 于E,且AB=6cm,则ΔDEB的周长为()A . 4cmB . 6cmC . 10cmD . 以上都不对10. (2分)(2018·鄂尔多斯模拟) 如图.在△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心、适当长为半径作圆弧,分别交边AC,AB于点M、N;②分别以点M和点N为圆心、大于MN一半的长为半径作圆弧,在∠BAC内,两弧交于点P;③作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A . 15B . 30C . 45D . 60二、填空题 (共5题;共5分)11. (1分) (2017七下·江苏期中) 因式分解:9a-6b= ________.12. (1分) (2019八下·谢家集期中) 如图3,在□ABCD中,AB=5,AD=8,DE平分∠ADC,则BE=________13. (1分)(2017·高邮模拟) 如图,△ABC中,AB=12,AC=8,AD、AE分别是其角平分线和中线,过点C 作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为________.14. (1分) (2018八上·江北期末) 如图,中,,,的垂直平分线交于,交于,,则 ________.15. (1分)(2014·南京) 铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为________cm.三、解答题 (共5题;共55分)16. (10分) (2016八上·县月考) 把下列各式分解因式。
2019-2020学年北京八中八年级(下)期中数学试卷一、选择题(每题3分,共30分)1.(3分)下列二次根式中,属于最简二次根式的是()A.B.C.D.2.(3分)下列各式中,计算正确的是()A.B.=﹣2C.=3D.23.(3分)已知n是正整数,是整数,则n的值可以是()A.5B.7C.9D.104.(3分)如图,▱ABCD的对角线交点是直角坐标系的原点,BC∥x轴,若顶点C坐标是(5,3),BC=8,则顶点D的坐标是()A.(3,﹣3)B.(﹣3,3)C.(5,﹣3)D.(3,﹣5)5.(3分)如图,在▱ABCD中,AB=3,AD=5,∠BCD的平分线交BA的延长线于点E,则AE的长为()A.3B.2.5C.2D.1.56.(3分)已知a=3,b=2,c=,将其按照从小到大的顺序排列,正确的是()A.b<c<a B.b<a<c C.a<c<b D.c<a<b 7.(3分)如图,小明将一张长为20cm,宽为15cm的长方形纸(AE >DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm 8.(3分)如图,菱形ABCD,E是对角线AC上一点,将线段DE绕点E顺时针旋转角度2α,点D恰好落在BC边上点F处,则∠DAB 的度数为()A.αB.90°﹣αC.180°﹣2αD.2α9.(3分)有公共边的两个直角三角形,称为“双生直角三角形”.下列给定的数组中,不能构成“双生直角三角形”边长的是()A.3,4,5,12,13B.,4,,3,5C.7,15,20,24,25D.5,6,8,10,510.(3分)如图,矩形ABCD中,AB=9,AD=3,点E从D向C 以每秒1个单位的速度运动,以AE为一边在AE的左上方作正方形AEFG同时垂直于CD的直线MN也从C向D以每秒2个单位的速度运动,当点F落在直线MN上,设运动的时间为t,则t的值为()A.1B.4C.D.二、填空题(每题3分,共30分)11.(3分)已知二次根式,写出x的范围.12.(3分)化简二次根式:=,=.13.(3分)计算:=,()2=.14.(3分)如图,在△ABC中,∠B=30°,∠BAC=105°,AB=6,则∠C=°,BC的长是.15.(3分)如图,菱形ABCD的对角线长分别为2和4,EF∥DC分别交AD,BC于点E,F,在EF上任取两点G,H,那么图中阴影部分的面积为.16.(3分)如图,已知△ABC中,∠BAC=68°,点D、E、F分别是三角形三边AB,AC,BC的中点,AM是三角形BC边上的高,连接DM,EM,EF,则∠DME=°,∠DFE=°.17.(3分)已知,如图,四边形ABCD,AC,BD交于点O,请从给定四个条件:①AB=CD;②AD∥BC;③∠BAD=∠BCD;④BO=DO中选择两个,使得构成四边形可判定为平行四边形.你的选择是.18.(3分)已知a+=7,则=,a﹣=.19.(3分)我们学完二次根式后,爱思考的小鲍和小黄提出了一个问题:我们可以算22,3﹣2的值,我们可以算,的值吗?金老师说:也是可以的,你们可以查阅资料来进行学习.他们查阅资料后,发现了这样的结论:(a≥0),例如:,=8,那请你根据以上材料,写出=,=.20.(3分)已知,如图:一张矩形纸片ABCD,AB=6,AD=8,E为AD边上一动点,将矩形沿BE折叠,要使点A落在BC上,则折痕BE的长度是;若点A落在AC上,则折痕BE与AC 的位置关系是;若翻折后A点的对应点是A'点,连接DA',则在点E运动的过程中,DA'的最小值是.三、解答题(21题12分,22题4分,23题5分,24题6分,25题6分,26题7分,共40分)21.(12分)计算(1);(2)2;(3).22.(4分)小易同学在数学学习时,遇到这样一个问题:如图,已知点P在直线l外,请用一把刻度尺(仅用于测量长度和画直线),画出过点P且平行于l的直线,并简要说明你的画图依据.小易想到一种作法:①在直线l上任取两点A、B(两点不重合);②利用刻度尺连接AP并延长到C,使PC=AP;③连接BC并量出BC中点D;④作直线PD.∴直线PD即为直线l的平行线.(1)请依据小易同学的作法,补全图形.(2)证明:∵PC=AP,∴P为AC的中点,又∵D为BC中点,∴PD∥AB().(3)你还有其他画法吗?请画出图形,并简述作法.作法:23.(5分)求代数式a+的值,其中a=﹣2020.如图是小亮和小芳的解答过程.(1)的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质:;(3)求代数式a+2的值,其中a=﹣2019.24.(6分)如图,已知等腰△ABC,AB=AC,AD平分∠BAC,E为AD上一动点,作EF平行AB,交AC于F,在AB上取一点G,使得AG=CF,连接GF.(1)根据题意补全图形;(2)求证四边形BEFG是平行四边形;(3)若∠BAC=50°,写出一个∠ABE的度数,使得四边形BEFG 是菱形.25.(6分)如图,每个小正方形的边长都是1.A、B、C、D均在网格的格点上.(1)直接写出四边形ABCD的面积与BC、BD的长度;(2)∠BCD是直角吗?请说出你的判断理由.(3)找到一个格点E,并画出四边形ABED,使得其面积与四边形ABCD的面积相等.26.(7分)如图,在正方形ABCD中,点E在边CD上(点E与点C、D不重合),过点E作FG⊥BE,FG与边AD相交于点F,与边BC的延长线相交于点G.(1)BE与FG有什么样的数量关系?请直接写出你的结论:;(2)DF、CG、CE的数量之间具有怎样的关系?并证明你所得到的结论.(3)如果正方形的边长是1,FG=1.5,直接写出点A到直线BE 的距离.一、填空题(5分)27.(5分)如图,在矩形ABCD中,AB=6,BC=8.(1)如果E、F分别是AD、BC的中点,G是对角线AC上的点,∠EGF=90°,则AG的长为;(2)如果E、F分别是AD、BC上的点,G,H是对角线AC上的点.下列判断正确的是.①在AC上存在无数组G,H,使得四边形EGFH是平行四边形;②在AC上存在无数组G,H,使得四边形EGFH是矩形;③在AC上存在无数组G,H,使得四边形EGFH是菱形;④当AG=时,存在E、F、H,使得四边形EGFH是正方形.二、作图题(6分)28.(6分)下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.三、探究题(9分)29.(9分)学完二次根式一章后,小易同学看到这样一题:“函数y =中,自变量x的取值范围是什么?”这个问题很简单,根据二次根式的性质很容易得到自变量x的取值范围.联想到一次函数,小易想进一步研究这个函数的图象和性质.以下是他的研究步骤:第一步:函数y=中,自变量x的取值范围是.第二步:根据自变量取值范围列表:x﹣101234……y=01m2……m=.第三步:描点画出函数图象.在描点的时候,遇到了,这样的点,小易同学用所学勾股定理的知识,找到了画图方法,如图所示:你能否从中得到启发,在下面的y轴上标出表示2、m、的点,并画出y=的函数图象.第四步:分析函数的性质.请写出你发现的函数的性质(至少写两条):;第五步:利用函数y=图象解含二次根式的方程和不等式.(1)请在上面坐标系中画出y=x的图象,并估算方程=x的解.(2)不等式>x的解是.2019-2020学年北京八中八年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.【解答】解:A、=4,不合题意;B、=,不合题意;C、=2,不合题意;D、为最简二次根式,符合题意,故选:D.2.【解答】解:(A)与不是同类二次根式,故不能合并,故A错误.(B)原式=2,故B错误.(D)原式=6×3=18,故D错误.故选:C.3.【解答】解:A、当n=5时,==2,不是整数,故A不符合题意;B、当n=7时,=,不是整数,故B不符合题意;C、当n=9时,==2,不是整数,故C不符合题意;D、当n=10时,==7,是整数,故D符合题意.故选:D.4.【解答】解:∵平行四边形ABCD的对角线交点是直角坐标系的原点,BC∥x轴,BC=8,C(5,3),∴B(﹣3,3),B与D关于原点O对称,∴D(3,﹣3);故选:A.5.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠E=∠ECD,∵CE平分∠BCD,∴∠BCE=∠ECD,∴∠E=∠BCE,∴BE=BC=5,∴AE=BE﹣AB=5﹣3=2;故选:C.6.【解答】解:∵a=3=,b=2=,c==,∴b<c<a;故选:A.7.【解答】解:延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15﹣3)2+(20﹣4)2=122+162=400,所以BC=20.则剪去的直角三角形的斜边长为20cm.故选:D.8.【解答】解:如图,连接BE,∵四边形ABCD是菱形,∴CD=BC,∠DAB=∠DCB,∠ACD=∠ACB,在△DCE和△BCE中,,∴△DCE≌△BCE(SAS),∴DE=BE,∠EDC=∠EBC,∵将线段DE绕点E顺时针旋转角度2α,∴DE=EF,∠DEF=2α,∴BE=DE=EF,∴∠EBF=∠EFB,∴∠EDC=∠EBC=∠EFB,∵∠EFB+∠EFC=180°,∴∠EDC+∠EFC=180°,∵∠EDC+∠EFC+∠DEF+∠DCF=360°,∴∠DCF=180°﹣2α=∠DAB,故选:C.9.【解答】解:A.∵32+42=52,52+122=132,∴能组成两个直角三角形,公共边的长度是5,即是“双生直角三角形”,故本选项不符合题意;B.∵32+42=52,()2+()2≠32,()2+()2≠42,()2+()2≠52,∴不能组成两个直角三角形,即不是“双生直角三角形”,故本选项符合题意;C.∵72+242=252,152+202=252,∴能组成两个直角三角形,公共边的长度是25,即是“双生直角三角形”,故本选项不符合题意;D.∵62+82=102,52+(5)2=102,∴能组成两个直角三角形,公共边的长度是10,即是“双生直角三角形”,故本选项不符合题意;故选:B.10.【解答】解:过点F作FH⊥CD,交直线CD于点H,则∠EHF =90°,如图所示:∵四边形ABCD为矩形,∴∠ADE=90°,∴∠ADE=∠EHF,∵在正方形AEFG中,∠AEF=90°,AE=EF,∴∠AED+∠HEF=90°,∵∠HEF+∠EFH=90°,∴∠AED=∠EFH,在△ADE和△EHF中,,∴△ADE≌△EHF(AAS),∴AD=EH=3,由题意得:t+2t=3+9,∴t=4,故选:B.二、填空题(每题3分,共30分)11.【解答】解:由题意得,x﹣2≥0,解得,x≥2,故答案为:x≥2.12.【解答】解:==,=.故答案为:,.13.【解答】解:(+2)(﹣2)=5﹣4=1.(1﹣2)2=1﹣4+12=13﹣4.故答案为:1,13﹣4.14.【解答】解:如图,过点A作AD⊥BC于D,∵∠B=30°,AB=6,∴AD=AB=3,∠BAD=90°﹣30°=60°,由勾股定理得,BD=,∵∠BAC=105°,∴∠CAD=105°﹣60°=45°,∴△ACD是等腰直角三角形,∴CD=AD=3,∠C=45°,∴BC=BD+CD=3+3.故答案为:45;3+3.15.【解答】解:∵四边形ABCD是菱形,对角线长分别为2和4,∴AB∥DC,AD∥BC,菱形ABCD的面积=×2×4=4,∵EF∥DC,∴EF∥DC∥AB,∴四边形ABFE和四边形CDEF是平行四边形,∴△ABH的面积=平行四边形ABFE的面积,△CDG的面积=平行四边形CDEF的面积,∴△ABH的面积+△CDG的面积=菱形ABCD的面积=2,∴图中阴影部分的面积=4﹣2=2;故答案为:2.16.【解答】解:∵∠BAC=68°,∴∠B+∠C=180°﹣68°=112°,∵AM是三角形BC边上的高,∴∠AMB=∠AMC=90°,在Rt△AMB中,D是AB的中点,∴DM=AB=DB,∴∠DMB=∠B,同理可得,∠EMC=∠C,∴∠DMB+∠EMC=∠B+∠C=112°,∴∠DME=180°﹣(∠DMB+∠EMC)=68°,∵点D、E、F分别是三角形三边AB,AC,BC的中点,∴DF、EF分别是△ABC的中位线,DF∥AC,EF∥AB,∴∠DFB=∠C,∠EFC=∠B,∴∠DFB+∠EFC=∠B+∠C=112°,∴∠DFE=180°﹣(∠DFB+∠EFC)=68°,故答案为:68;68.17.【解答】解:选择②③或②④;理由如下:选择②③时,∵AD∥BC,∴∠BAD+∠ABC=180°,∵∠BAD=∠BCD,∴∠BCD+∠ABC=180°,∴AB∥CD,∴四边形ABCD是平行四边形;选择②④时,∵AD∥BC,∴∠OAD=∠OCB,在△OAD和△OCD中,,∴△OAD≌△OCD(AAS),∴OA=OC,又∵OB=OD,∴四边形ABCD是平行四边形;故答案为:②③或②④.18.【解答】解:∵a+=7,∴====3;a﹣=±=±=±=±3.故答案为3;±3.19.【解答】解:;.故答案为:;4.20.【解答】解:若将矩形沿BE折叠,点A落在BC上,∴AB=AE=6,∴BE=6,若将矩形沿BE折叠,点A落在AC上,∴AC⊥BE,如图,连接BD,∵AB=6,AD=8,∴BD===10,若翻折后A点的对应点是A'点,∴BA=BA'=6,∴点A'在以点B为圆心,6为半径的圆上,∴当点A'在线段BD上时,DA'有最小值=10﹣6=4,故答案为:6;AC⊥BE;4.三、解答题(21题12分,22题4分,23题5分,24题6分,25题6分,26题7分,共40分)21.【解答】解:(1)原式=×4﹣3×+=2﹣+=+;(2)原式=6÷5==;(3)原式=﹣1+2﹣+2=﹣.22.【解答】解:(1)如图,(2)故答案为三角形中位线定理;(3)如图,过P点作直线MP交直线l于点Q,作∠MPN=∠PQG,则直线PN∥直线l.23.【解答】解:(1)∵a=﹣2020,∴1﹣a=1﹣(﹣2020)=2021,故小芳开方时,出现错误,故答案为:小芳;(2)错误的原因在于未能正确地运用二次根式的性质:=|a|,故答案为:=|a|;(3)a+2=a+2,∵a=﹣2019,∴a﹣3<0,∴原式=a+2(3﹣a)=a+6﹣2a=6﹣a=6﹣(﹣2019)=6+2019=2025,即代数式a+2的值是2025.24.【解答】(1)解:如图,(2)证明:∵AB=AC,AG=CF,∴AF=BG,∵AD平分∠BAC,∴∠BAD=∠CAD,∵EF∥AB,∴∠AEF=∠EAB,∴∠AEF=∠F AE,∴EF=AF,∴EF=BG,而BG∥EF,∴四边形BEFG是平行四边形;(3)解:当FG=FE时,四边形BEFG为菱形,而FE=F A,∴F A=FG,∴∠FGA=∠FAG=50°,∵GF∥BE,∴∠ABE=∠AGF=50°,即当∠ABE=50°时,四边形BEFG是菱形.25.【解答】解:(1)由题意:S四边形ABCD=5×5﹣×1×5﹣×2×5﹣×1×2﹣×1×3﹣1=.BC==,BD==4.(2)结论:∠BCD不是直角.理由:∵CD==,BC=,BD=4,∴BC2+CD2=34,BD2=32,∴BC2+CD2≠BD2,∴∠BCD不是直角.(3)如图点E或点E′即为所求.26.【解答】解:(1)过点F作FH∥DC交BC于H,∵四边形ABCD是正方形,∴∠BCD=90°,BC=CD,AD∥BC,∵FH∥DC,∴∠FHG=90°,FH=CD,∵∠BCD=90°,FG⊥BE,∴∠EBC+∠BEC=90°,∠EBC+∠G=90°,∴∠G=∠BEC,在△BEC和△FGH中,,∴△BEC≌△FGH(AAS),∴BE=FG,故答案为:BE=FG;(2)DF+CG=CE,理由如下:∵FH∥DC,AD∥BC,∠BCD=90°,∴四边形FHCD为矩形,∴DF=HC,由(1)得,△BEC≌△FGH,∴HG=CE,∵HG=HC+CG=DF+CG,∴DF+CG=CE;(3)连接AE,过点A作AP⊥BE于P,∵△BEC≌△FGH,∴BE=FG=1.5,∵正方形的边长为1,∴△ABE的面积=×1×1=,则×BE×AP=,即××AP=,解得,AP=,即点A到直线BE的距离为.一、填空题(5分)27.【解答】解:(1)如图,∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,AD=BC,∴AC===10,∵AD∥BC,∴∠EAO=∠FCO,∵E、F分别是AD、BC的中点,∴AE=CF=BF=DE,∴四边形ABFE是平行四边形,∴EF=AB=6,在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),∴EO=FO=3,AO=CO=5,当点G在点O上方时,∵∠EGF=90°,EO=FO,∴GO=EO=3,∴AG=AO﹣GO=5﹣3=2,当点G'在点O下方时,∵∠EG'F=90°,EO=FO,∴G'O=EO=3,∴AG'=AO+G'O=5+3=8,综上所述:AG=2或8;(2)①在AC上存在无数组G,H,使得四边形EGFH是平行四边形,故该说法正确;②在AC上存在无数组G,H,使得四边形EGFH是矩形,故该说法正确;③在AC上存在无数组G,H,使得四边形EGFH是菱形,故该说法正确;④当AG=时,存在E、F、H,使得四边形EGFH是正方形,故答案为①②③④.二、作图题(6分)28.【解答】解:(1)根据剪拼前后图形的面积相等,得出拼成的正方形的边长==4,(2)如图,②③都属于平移,(3)如图乙:或者三、探究题(9分)29.【解答】解:第一步:∵x+1≥0,∴x≥﹣1,∴x的取值范围是x≥﹣1,故答案为:x≥﹣1;第二步:当x=2时,m==,故答案为:;第三步:根据勾股定理,得=,=,=,函数图象如图所示:第四步:根据函数图象可知:该函数的两条性质(答案不唯一):性质一:当x≥﹣1时,y随x的增大而增大;性质二:函数图象只有一个点在x轴上,其余的都在x轴上方;故答案为:当x≥﹣1时,y随x的增大而增大;函数图象只有一个点在x轴上,其余的都在x轴上方;第五步:(1)函数图象如下:利用函数图象可知:根据函数的交点估算方程=x的解是:x≈1.6;(2)根据函数图象可知:不等式>x的解是﹣1≤x<1.6.故答案为:﹣1≤x<1.6。
5 5 5 5 一、选择题 2022 北京八中初二下学期期中数学1.以下图形中,既是轴对称图形又是中心对称图形的是〔 〕.A .等腰直角三角形B .平行四边形C .圆D .等边三角形 2.一元二次方程 x 2 - 2x - 1 = 0 的根的情况为〔 〕. A .有两个相等的实数根 B .有两个不相等的实数根C .只有一个实数根D .没有实数根3. △ABC 中, D 、E 、F 分别为 AB 、AC 、BC 的中点,假设△DEF 的周长为6 ,那么△ABC 周长为〔 〕. A . 3 B . 6 C .12D . 244.以下三角形中不.是.直角三角形的是〔 A .三个内角之比为5 : 6 :1 〕. B .其中一边上的中线等于这一边的一半C .三边之长为9 、 40 、 41D .三边之比为1.5 : 2 : 35.假设平行四边形的一边长为7 ,那么它的两条对角线长可以是〔 〕.A .12 和 2B . 3和 4C .14 和16D . 4 和86.如下图:数轴上点 A 所表示的数为a ,那么 a 的值是〔 〕. A . - 1B . - + 1C . + 1D . - 27.如图,平行四边形 ABCD 的两条对角线相交于点O ,点 E 是 AB 边的中点,图中与△ADE 面积相等的三角形〔不.包.括.△ADE〕共有〔 〕个. A .3 B . 4C .5 D .6 8.如图,把边长为1的正方形 ABCD 绕顶点 A 逆时针旋转30︒ 到正方形 AB 'C 'D ' ,那么它们的公共局部的面积等于〔 〕.A .B . 33 C . D . 3233 3 221419. △ABC 中, AB = 15 , AC = 20 , BC 边上的高 AD = 12 ,那么BC 的长为〔 〕. A . 25 B . 7 C . 25 或7 D .14 或 410.如图,在矩形 ABCD 中, AC 是对角线,将 ABCD 绕点 B 顺时针旋转90︒ 到GBEF 位置, H 是EG 的中点,假设 AB = 6 BC = 8 ,那么线段CH 的长为〔 〕.A . 2B .C . 2D . 二、填空题.11.将代数式 x 2 - 4x + 2 配方的结果是 . 12.方程 y 2 + 4 y - 45 = 0 的根为 .13.以下给出的条件中,不能判定四边形 ABCD 是平行四边形的为 〔填序号〕.① AB = CD , AD = BC ;② AD = BC , AD ∥BC ;③ AB = CD , ∠B = ∠D ;④ AB ∥CD ,∠A = ∠C 14.如图,宽度为1的两个长方形纸条所交锐角为 60︒ ,那么两纸条重叠局部的面积是.15.如图, △DEF 是由△ABC 绕着某点旋转得到的,那么这点的坐标是. 16.如图,在平行四边形 ABCD 中,∠DAB 的角平分线交CD 于 E ,假设 DE : EC = 3 :1, AB 的长为8 ,那么BC 的长为 .17.如图,直线l 上有三个正方形 a , b , c ,假设 a , c 的面积分别为 4 和10 ,那么b 的面积为 .51018.关于x 的方程(k -1)x2 -(2k + 3)x+(k + 3)= 0 有实数根,那么k 满足.19.如图平行四边形ABCD 中,∠C = 90︒,沿着直线BD 折叠,使点C 落在C'处,BC'交AD 于E ,AD = 16 ,AB = 8 ,那么DE 的.20.如图,点O(0 , 0) ,B(0 , 1) 是正方形OBB1C 的两个顶点,以它的对角线OB1为一边作正方形OB1B2C1,以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,再以正方形OB2B3C2的对角线OB3为一边作正方形OB3B4C3,K ,依次进行下去,那么点B6的坐标是.三.解答题.21.解以下一元二次方程:〔1〕(x -1)2= 2 .〔2 〕2x2 - 4x - 7 = 0 .22.:如图,在平行四边形ABCD 中,E 、F 是对角线AC 上的两点,且AE =CF .求证:四边形BFDE 是平行四边形.23.如图,在四边形 ABCD 中,对角线 AC 、BD 交于点 E ,∠BAC = 90︒ ,∠CED = 45︒ ,∠DCE = 30︒ ,DE = 2 ,BE = 2 .求CD 、 AC 的长.四、作图题24.根据题意作出图形,并答复相关问题:请在.网.格.中.设计一个图案〔图中每个小三角形都是边长为1的等边三角形〕,要求所设计的图案既是轴对称图形,又是中心对称图形,并且图案的顶点在格点上,面积等于3 笔涂黑..请将你所设计的图案用铅五.解答题25.义卖活动中某班以每件 21 元的价格购进一批商品,假设每件商品售价为 x 元,那么可卖出(350 -10x )件.此班方案盈利400 元,因为将商品卖给本校师生,所以限定每件商品利润不得超过20% ,问每件商品售价多少元?26.设 E 、F 分别在正方形 ABCD 的边 BC ,CD 上滑动保持且 ∠EAF = 45︒ .假设 AB = 5 ,求△ECF 的周长. 2 327.当m 是什么整数时,关于x 的一元二次方程mx2 - 4x + 4 = 0 与x2 - 4mx + 4m2 - 4m - 5 = 0 的根都是整数.28.在平行四边形ABCD 中,∠A =∠DBC ,过点D 作DE =DF ,且∠EDF =∠ABD ,连接EF 、EC ,M 、N 、P 分别为EF 、EC 、BC 的中点,连接NP .请你发现∠ABD 与∠MNP 满足的等量关系,并证明.- (-2) + (-2)2 - 4 ⨯1⨯ (-1) - (-2) - (-2)2 - 4 ⨯1⨯ (-1)- (-4) + (-4)2 - 4 ⨯ 2 ⨯ (-7) 2 一、选择题. 2022-2022 学年度第二学期期中练习题答案题目 1 2 3 4 5 67 8 9 10 答案 C B C D C AC B CD 二、填空题. 11. (x - 2)2 - 2 14. 2 3 312. -9 , 513.③ 15. (0 , 1)16. 617.14 18. k ≥ - 21419.1020. (-8 , 0)三、解答题.21.〔1〕解: x 2 - 2x + 1 = 2 ,x 2 - 2x - 1 = 0 ,x 1 = 2 ⨯1 = 1 + x 2 = 2 ⨯1 = 1 - 〔 2 〕解:2x 2- 4x - 7 = 0 , x = 2 ⨯ 2x = 4 + 16 + 56= 4 + 72 = 4 + 6 2 = 2 + 3 2,1 x = 4 - 4 4 42 16 + 56 = 2 -3 2 .4 222.证明:连接 BD ,交 AC 于O ,∵四边形 ABCD 是平行四边形,∴ OB = OD , OA = OC ,∵ AE = CF ,∴ OA - AE = OC - CF ,∴ OE = OF ,∴四边形 BFDE 是平行四边形.23.解:过点 D 作 DH ⊥ AC ,∵ ∠CED = 45︒ , DH ⊥ EC , DE = 2 ,∴ EH = DH , 2 2 ,.,3 2 3 3 ∵ EH 2 + DH 2 = ED 2 ,∴ EH 2 = 1,∴ EH = DH = 1,又∵ ∠DCE = 30︒ ,∴ DC = 2 , HC = ,∵ ∠AEB = 45︒ , ∠BAC = 90︒ ,BE = 2 ,∴ AB = AE = 2 ,∴ AC = 2 + 1 + = 3 + .四、作图题.24.解:整理得: x 2 - 56x + 775 = 0,解得 x 1 = 25 , x 2 = 31.∵ 21⨯ (1 + 20%) = 25.2 ,而 x 1≤25.2 , x 2 > 25.2 ,∴舍去 x 2 = 31,那么取 x = 25 .当 x = 25 时, 350 - 10x = 350 - 10 ⨯ 25 = 100 .故该商店要卖出100 件商品,每件售 25 元.26.证明:延长CB 到 F ' ,使 BF ' = DF ,在正方形 ABCD 中, AB = AD , ∠ABC = ∠D = 90︒ ,∴ ∠ABF ' = 180︒ - ∠ABC = 90︒ = ∠D ,∴ △ABF ' ≌ △ADF 〔 SAS 〕,∴ AF ' = AF , ∠1 = ∠2 ,∴ ∠EAF ' = ∠1 + ∠3 = ∠2 + ∠3 = 90︒ - ∠EAF = 45︒ = ∠EAF ,又∵ EA = EA ,∴ △EAF ' ≌△EAF 〔 SAS 〕,∴ EF ' = EF .C △CEF = EC + CF + EF= EC + CF + EF '=EC +BE +CF +BF'=BC +CF +DF=BC +CD= 2 A B= 10 .27.解:∵关于x 的一元二次方程mx2 - 4x + 4 = 0与x2 - 4mx + 4m2 - 5 = 0 有解,那么m ≠ 0 ,∴∆≥0mx2 - 4x + 4 = 0,∴ ∆=16 - 16m≥0 ,即m≤1;x2 - 4mx + 4m2 - 5 = 0,∆=16m2 - 16m2 + 16m + 20≥0 ,∴4m + 5≥0 ,m≥-5 ;4∴ -5≤m≤1,而m 是整数,4所以m = 1,m = 0〔舍去〕,m =-1〔一个为x2 + 4x - 4 = 0 ,另一个为x2 + 4x + 3 = 0 ,冲突,故舍去〕,当m = 1时,mx2 - 4x + 4 = 0 ,即x2 - 4x + 4 = 0 ,方程的解是x1 =x2 = 2 ;x2 - 4mx + 4m2 - 5 = 0,即x - 4x - 5 = 0 ,方程的解是x1 = 5,x2 =-1;当m = 0 时,mx2 - 4x + 4 = 0 时,方程是-4x + 4 = 0 不是一元二次方程,故舍去.故m = 1.28.解:∠ABD +∠MNP = 180︒.证明:如图,分别连接BE 、CF .∵四边形ABCD 是平行四边形,∴ AD∥BC ,AB∥DC ,∠A =∠DCB ,∴∠ABD =∠BDC .∵∠A =∠DBC ,∴∠DBC =∠DCB .∴DB =DC ①.∵∠EDF =∠ABD ,∴∠EDF =∠BDC .∴ ∠BDC -∠EDC =∠EDF -∠EDC .即∠BDE =∠CDF ②.又DE =DF ,③由①②③得△BDE ≌ △CDF .∴ EB =FC ,∠DBE =∠DCF .∵ N 、P 分别为EC 、BC 的中点,∴NP∥EB ,NP =1EB .2同理可得MN∥FC ,MN =1FC .2∴ NP =NM .∵NP∥EB ,∴∠NPC =∠EBC .∴∠ENP =∠NCP +∠NPC =∠NCP +∠EBC .∵MN∥FC ,∴ ∠MNE =∠FCE =∠MNC +∠NCF =∠MNC +∠DBE .∴∠MNP =∠MNE +∠ENP =∠MNC +∠DBE +∠NCP +∠EBC =∠DBC +∠DCB = 180︒-∠BDC = 180︒-∠ABD .∴ ∠ABD +∠MNP = 180︒.2022-2022 学年度第二学期期中练习题数学试卷局部答案解析一、选择题〔此题共30 分,每题 3 分〕1.【答案】C【解析】A .等腰直角三角形是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180︒后它的两局部能够重合;即不满足中心对称图形的定义.故错误;B .平行四边形不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两局部能够重合;即不满足轴对称图形的定义.是中心对称图形.故错误;C .是轴对称图形,也是中心对称图形.故正确;D 、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180︒后它的两局部能够重合;即不满足中心对称图形的定义,故错误.应选C.2.【答案】B【解析】∵ a = 2 , b =-2 , c =-1,∴∆=b2- 4ac =(-2)2- 4 ⨯ 2 ⨯(-1)= 12 > 0 ,∴方程有两个不相等的实数根.应选B.3.【答案】C【解析】∵ D 、E 、 F 分别为AB 、AC 、BC 的中点,∴ AB = 2EF ,BC = 2DE ,AC = 2DF ,∵ DF +EF +DE = 6 ,∴ AB +BC +AC = 2EF + 2DE + 2DF =12 .应选C.4.【答案】D【解析】A .种三个内角分别为75︒、90︒、15︒,所以是直角三角形;B .根据直角三角形判定定理可得它是直角三角形;C .∵ 92 +402 =412 ,∴它是直角三角形;D .三边关系不符合勾股定理,∴它不是直角三角形.应选D.5.【答案】C【解析】如图,平行四边形ABCD 中,AB = 7 ,设两条对角线AC 、BD 的长分别是x ,y .∵四边形ABCD 为平行四边形,5 5 ⎨ 1 1 ⎩∴OA = OC , OB = OD ∴OA = 1 x , OB = 1y , 2 2 ⎧OA + OB > AB ∴在△AOB 中, , ⎩OA - OB < AB ⎧ 1 x + 1 y > 7 ⎪ 2 2即: ⎨ ⎪ x - ⎩ 2 2, y < 7⎧x + y > 14 解得: ⎨x - y < 14 , 将四个选项分别代入方程组中,只有C 选项满足. 应选 C .6.【答案】A【解析】设图示三角形的顶点为 D 、 B 、C ;其中 D 为顶点, B 在数轴-1点, C 为数轴1点. 由图可知: BC = 2 , DC = 1,由三角形勾股定理可知: DB = ,AB = DB ,故: a = -1. 应选 A .7.【答案】C【解析】设平行四边形 ABCD 的面积为 S ,∵ F 是边 BC 的中点,1 ∴ △ABF 面积 = 4S △ACF 面积 = 1 S , 4∵ E 是边 AB 的中点,∴ △ADE 面积 = 1S , 4△BDE 面积 = 1 S , 4 ∵平行四边形的对角线互相平分,∴ S △AOB = S △BOC = S △COD = S △AOD = 1S , 4所以,与△ABF 面积相等的三角形有:△ACF 、△ADE 、△BDE 、△AOB 、△BOC 、△COD 、△AOD 共有7 个.故 选C . 8.【答案】B⎪152 -122202 -122152 -122 AC2 -AD2202 -1223【解析】如图,作B'F ⊥AD ,垂足为F ,WE ⊥B'F ,垂足为E ,∵四边形WEFD 是矩形,∠BAB'= 30︒,∴∠B'AF = 60︒,∠FB'A = 30︒,∠WB'E = 60︒,∴B'F =AB'sin60︒= 3,AF =AB'cos60︒=1,W E =DF =AD -AF =1,EB'=WE'cot 60︒= 2 2 23,EF =B'F -B'E =3 ,6 3∴S = 3,S =3,S =3,△B'FA 8△B'EW 24WEFD 6∴公共局部的面积△B'FA△B'EW +SWEFD=3.应选B.9.【答案】C【解析】如图1,锐角△ABC 中,AB =15 ,AC = 20 ,BC 边上高AD =12 ,在Rt△ABD 中AB = 15 ,AD =12 ,由勾股定理得BD = == 9 ,在Rt△ADC 中AC = 20 ,AD = 12 ,由勾股定理得DC = ==16 ,BC 的长为BD +DC = 9 + 16 = 25 .如图2 ,钝角△ABC 中,AB =15 ,AC = 20 ,BC 边上高AD =12 ,在Rt△ABD 中AB = 15 ,AD =12 ,由勾股定理得BD = == 9 ,在Rt△ACD 中AC = 20 ,AD = 12 ,由勾股定理得DC =BC =CD -BD =7 .应选C.==16 ,10.【答案】D【解析】过H 作HP ⊥BC 于P ,那么HP =1BE = 4 ,2BP =1BG = 3 ,2AB2 -AD2AC2 -AD2AB2 -AD2=S +SHP 2 + PC 2 41-4 - 42 - 4 ⨯1⨯ (-45) 2 3 3 2 3 32 3 3∴PC = BC - BP = 5 , ∴ CH = =. 应选D .二、填空题.11.【答案】(x - 2)2 - 2【解析】 x 2 - 4x + 2 = (x - 2)2 - 2 .故答案为(x - 2)2 - 2 .12.【答案】5 ,-9 【解析】 y 2 + 4 y - 45 = 0 ,由求根公式得 x 1 = -4 - 14= -4 + 14 2 2= 5 ,x = = = -9 .故答案为5 , -9 . 2 2 2 13.【答案】③【解析】①. AB = CD , AD = BC ,即四边形 ABCD 的两组对边相等,那么该四边形是平行四边形,故本选项不符合题意;②. AD = BC , AD ∥BC ,即四边形 ABCD 的一组对边平行且相等,那么该四边形是平行四边形,故本选项不符合题;③. AB = CD ,∠B = ∠D ,即四边形 ABCD 的一组对边相等,一组对角相等,所以不能判定该四边形是平行四边形.故本选项符合题意;④.∵ AB ∥CD ,∴ ∠A + ∠D = 180︒ ,∠B + ∠C = 180︒ ,∵ ∠A = ∠C ,∴ ∠B = ∠D ,∴四边形 ABCD 是平行四边形,故本选项不符合题意;应选 C .14.【答案】 【解析】过点 B 作 BE ⊥ AD 于点 E , BF ⊥ CD 于点 F ,根据题意得: AD ∥BC , AB ∥CD , BE = BF = 1cm ,∴四边形 ABCD 是平行四边形,∵ ∠BAD = ∠BCD = 60︒ ,∴ ∠ABE = ∠CBF = 30︒ ,∴ AB = 2 AE ,BC = 2CF , ∵ AB 2 = AE 2 + BE 2 ,∴ AB = , 同理: BF = , ∴AB = BC , ∴四边形 ABCD 是菱形,∴ AD = ,-4 + 42 - 4 ⨯1⨯ (-45) 2 3 3⎨ ⎩∴ S = AD ⨯ BE = 2 3 ⨯1= 2 3 菱形ABCD 3 315.【答案】(0 , 1)【解析】如图,连接 AD 、 BE ,作线段 AD 、 BE 的垂直平分线,两线的交点即为旋转中心O ' .其坐标是(0 , 1) .故答案为(0 , 1) .16.【答案】6 【解析】∵ AB ∥CD ,∴ ∠BAE = ∠AED ,又∠BAE = ∠DAE ,∴ ∠DAE = ∠AED ,∴ AD = DE ,∵DE : EC = 3 :1, ∴AD : CD = 3 : 4 , 根据平行四边形的对边相等,得 AD = BC = AB = 6 .17.【答案】14【解析】∵ ∠ACB + ∠ECD = 90︒ , ∠DEC + ∠ECD = 90︒ ,∴∠ACB = ∠DEC , ∵ ∠ABC = ∠CDE , AC = CE ,在△ABC 和△CDE 中,⎧∠ACB = ∠DEC ⎪∠ABC = ∠CDE , ⎪ AC = CE∴ △ABC ≌ △CDE 〔 AAS 〕,∴B C = DE ∴根据勾股定理的几何意义, b 的面积 = a 的面积 +c 的面积 ∴ b 的面积 =a 的面积 +c 的面积 = 4 + 10 = 14 .18.【答案】 k ≥ - 21 4【解析】当 k - 1 ≠ 0 即 k ≠ 1时,∆= ⎡⎣- (2k + 3)⎤⎦2 - 4(k - 1)(k + 3)≥0 ,解 k ≥ - 21 且 k ≠ 1;4当 k - 1 = 0 时,即 k = 1时,-(2 ⨯1+3) x + (1 + 3) = 0,即 x = 4 有实根,综上 k ≥ -21 . 5 419.【答案】10【解析】∵矩形 ABCD 沿着直线 BD 折叠,使点C 落在C '处, ∴ ∠1 = ∠2 ,而∠1 = ∠3,∴∠2 = ∠3, ∴ E D = EB ,设 ED = EB = x ,而 AD = 16 , AB = 8 ,∴AE = 16 - x , 在 Rt △ABE 中, EB 2 = AB 2 + AE 2 ,即 x 2 = (16 - x )2+ 82 ,解得 x = 10 , ∴ DE 的长为10 .20.【答案】(-8 , 0)【解析】根据题意和图形可看出每经过一次变化,都顺时针旋转 45︒ ,边长都乘以, ∵从 B 到 B 6 经过了6 次变化,∵45︒ ⨯ 6 = 270︒ , ∴位置在 x 轴的负半轴上.∵ ( 2 )6 = 8 ,∴点 B 6 的坐标是(-8 , 0) .。
北京八中乌兰察布分校2015-2016学年八年级数学下学期期中试题
注意事项:
1.答卷前,考生务必将自己的姓名、考号填写在答题卡上。
2. 将答案写在答题卡上。
写在本试卷上无效。
3. 考试结束后,将答题卡交回。
一、选择题(本题共12小题,每小题3分,共36分)
1.已知是二次根式,则a的值可以是()
A.﹣2 B.﹣1 C.2 D.﹣7
2.以下四组木棒中,哪一组的三条能够刚好做成直角三角形的木架()
A.7厘米,12厘米,15厘米B.7厘米,12厘米,13厘米
C.8厘米,15厘米,16厘米D.3厘米,4厘米,5厘米
3.正方形具有,而菱形不一定具有的性质是()
A.四条边都相等B.对角线垂直且互相平分
C.对角线相等D.对角线平分一组对角
4.已知m=+1,n=,则m和n的大小关系为()
A.m=n B.mn=1 C.m=﹣n D.mn=﹣1
5.在一块平地上,张大爷家屋前9米远处有一颗大树,在一次强风中,这课大树从离地面6米处折断倒下,量得倒下部分的长是10米,大树倒下时能砸到张大爷的房子吗?()
A.一定不会B.可能会
C.一定会D.以上答案都不对
6.在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=()
A.110°B.30°C.50°D.70°
7.若=﹣a成立,则满足的条件是()
A.a>0 B.a<0 C.a≥0D.a≤0
8.估计×+的运算结果是()
A.3到4之间B.4到5之间C.5到6之间D.6到7之间
9.如图,已知阴影部分是一个正方形,AB=4,∠B=45°,此正方形的面积()
A.16 B.8 C.4 D.2
10.如图,由四个边长为1的正方形构成的田字格,只用没有刻度的直尺在田字格中最多可以作长
为的线段()
A.4条B.6条C.7条D.8条
11.若平行四边形中两个内角的度数比为1:3,则其中较小的内角是()
A.30°B.45°C.60°D.75°
12.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:
①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;
其中正确结论的是()
A.①②③B.①②④C.①③④D.②③④
二、填空题(本题共8小题,每小题3分,共24分)
13.二次根式是一个整数,那么正整数a最小值是.
14.一个四边形的边长依次为a、b、c、d,且a2+b2+c2+d2﹣2ac﹣2bd=0,则这个四边形的性状
是.
15.已知一个三角形的三条边的长分别为、和,那么这个三角形的最大内角度数
为.
16.在▱ABCD中,∠ABC和∠BCD的平分线分别交AD于点E和点F,AB=3cm,EF=1cm,则▱ABCD的边AD的长是.
17.计算:( +)2015×(﹣)2015= .
18.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B
的最短路程为dm.
19.如图,正方形OABC的边长为6,点A、C分别在x轴,y轴的正半轴上,点D(2,0)在OA上,P是OB上一动点,则PA+PD的最小值为.
(19题图)(20题图)
20.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是
三、解答题(21题10分,22题8分,23题10分,24题10分,25题10分,26题12分)
21.(本题共2小题,共10分)
(1).已知:x=+,y=﹣,求代数式x2﹣y2+5xy的值.
(2).实数a和b在数轴上的对应点如图所示,化简: +|a﹣b|.
22.(8分)如图,已知,在四边形ABCD中:AO=BO=CO=DO.求证:四边形ABCD是矩形.
23.(10分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC.若AB=12,求EF的长.
24.(10分)如图,在四边形ABCD中,AB∥CD,AB=12,BC=17,CD=20,AD=15.
(1)请你在图中添加一条直线,将四边形ABCD分成一个平行四边形和一个三角形.
(2)求四边形ABCD的面积?
25(10分)如图,北部湾海面上,一艘解放军军舰在基地A的正东方向且距A地60海里的B处训练,突然接到基地命令,要该舰前往C岛,接送一名病危的渔民到基地医院救治.已知C岛在A的北偏东30°方向,且在B的北偏西60°方向,军舰从B处出发,平均每小时行驶30海里,需要多
少时间才能把患病渔民送到基地医院.(精确到0.1小时,≈1.7)
26.(12分)如图,已知△ABC和△DEF是两个边长都为10cm的等边三角形,且B、D、C、F都在同一条直线上,连接AD、CE.
(1)求证:四边形ADEC是平行四边形;
(2)若BD=4cm,△ABC沿着BF的方向以每秒1cm的速度运动,设△ABC运动的时间为t秒.
①当点B匀动到D点时,四边形ADEC的形状是形;
②点B运动过程中,四边形ADEC有可能是矩形吗?若可能,求出t的值;若不可能,请说明理由.。