衢州市数学中考二模试卷
- 格式:doc
- 大小:781.50 KB
- 文档页数:17
浙江省衢州市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△ABC 中,AB=4,BC=6,∠B=60°,将△ABC 沿射线BC 的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C 重合,则平移的距离和旋转角的度数分别为( )A .4,30°B .2,60°C .1,30°D .3,60°2.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D .3.已知5a =,27b =,且a b a b +=+,则-a b 的值为( )A .2或12B .2或12-C .2-或12D .2-或12- 4.若代数式11x x +-有意义,则实数x 的取值范围是( ) A .x≠1 B .x≥0 C .x≠0 D .x≥0且x≠15.﹣2018的绝对值是( )A .±2018B .﹣2018C .﹣12018D .20186.关于x 的不等式21x a --…的解集如图所示,则a 的取值是( )A .0B .3-C .2-D .1-7.估算18的值是在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间8.13-的绝对值是( )A .3B .3-C .13D .13- 9.在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误..的是( ) A .平均数为160B .中位数为158C .众数为158D .方差为20.310.一、单选题点P (2,﹣1)关于原点对称的点P′的坐标是( )A .(﹣2,1)B .(﹣2,﹣1)C .(﹣1,2)D .(1,﹣2)11.下列四个命题,正确的有( )个.①有理数与无理数之和是有理数②有理数与无理数之和是无理数③无理数与无理数之和是无理数④无理数与无理数之积是无理数.A .1B .2C .3D .412.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知数据x 1,x 2,…,x n 的平均数是x ,则一组新数据x 1+8,x 2+8,…,x n +8的平均数是____. 14.在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出_____环的成绩.15.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则∠AOB 等于 ______ 度.16.如果把抛物线y=2x 2﹣1向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是_____. 17.已知反比例函数21k y x+=的图像经过点(2,1)-,那么k 的值是__. 18.化简;22442x x x x-++÷(4x+2﹣1)=______. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在矩形ABCD 中,点E 在BC 上,AE AD =,DF ⊥AE ,垂足为F .求证.DF AB =若30FDC ∠=︒,且4AB =,求AD .20.(6分)如图,一枚运载火箭从距雷达站C 处5km 的地面O 处发射,当火箭到达点A ,B 时,在雷达站C 测得点A ,B 的仰角分别为34°,45°,其中点O ,A ,B 在同一条直线上.(1)求A,B两点间的距离(结果精确到0.1km).(2)当运载火箭继续直线上升到D处,雷达站测得其仰角为56°,求此时雷达站C和运载火箭D两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.1.)21.(6分)已知.化简;如果、是方程的两个根,求的值.22.(8分)已知关于x的方程220++-=.当该方程的一个根为1时,求a的值及该方程的另一根;x ax a求证:不论a取何实数,该方程都有两个不相等的实数根.23.(8分)综合与实践﹣猜想、证明与拓广问题情境:数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG.猜想证明(1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合.同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为:;(2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”…小丽:连接AF,图中出现新的等腰三角形,如△AFB,…小凯:不妨设图中不断变化的角∠BAF的度数为n,并设法用n表示图中的一些角,可证明结论.请你参考同学们的思路,完成证明;(3)创新小组的同学在图1中,发现线段CG∥DF,请你说明理由;联系拓广:(4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,∠ABC=α,其余条件不变,请探究∠DFG 的度数,并直接写出结果(用含α的式子表示).24.(10分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=300时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).25.(10分)如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽出的牌不放回.甲、乙约定:只有甲抽到的牌面数字比乙大时甲胜;否则乙胜.请你用树状图或列表法说明甲、乙获胜的机会是否相同.26.(12分)近日,深圳市人民政府发布了《深圳市可持续发展规划》,提出了要做可持续发展的全球创新城市的目标,某初中学校了解学生的创新意识,组织了全校学生参加创新能力大赛,从中抽取了部分学生成绩,分为5组:A组50~60;B组60~70;C组70~80;D组80~90;E组90~100,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.抽取学生的总人数是人,扇形C的圆心角是°;补全频数直方图;该校共有2200名学生,若成绩在70分以下(不含70分)的学生创新意识不强,有待进一步培养,则该校创新意识不强的学生约有多少人?27.(12分)为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.九宫格参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题分析:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60°故选B.考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定2.C【解析】【分析】根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案.【详解】解:A 、是轴对称图形,不是中心对称图形,故A 错误;B 、是轴对称图形,不是中心对称图形,故B 错误;C 、既是轴对称图形,也是中心对称图形,故C 正确;D 、既不是轴对称图形,也不是中心对称图形,故D 错误;故选:C.【点睛】本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断.3.D【解析】【分析】【详解】根据a =5=7,得a 5,b 7=±=±,因为a b a b +=+,则a 5,b 7=±=,则-a b =5-7=-2或-5-7=-12. 故选D.4.D【解析】试题分析:∵代数式11x +- ∴10{0x x -≠≥,解得x≥0且x≠1.故选D .考点:二次根式,分式有意义的条件.5.D【解析】分析:根据绝对值的定义解答即可,数轴上,表示一个数a 的点到原点的距离叫做这个数的绝对值. 详解:﹣2018的绝对值是2018,即20182018-=.故选D .点睛:本题考查了绝对值的定义,熟练掌握绝对值的定义是解答本题的关键,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.6.D【解析】【分析】首先根据不等式的性质,解出x≤12a -,由数轴可知,x≤-1,所以12a -=-1,解出即可; 【详解】解:不等式21x a -≤-,解得x<12a -, 由数轴可知1x <-, 所以112a -=-, 解得1a =-;故选:D .【点睛】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.C【解析】【分析】,推出45,即可得出答案.【详解】,∴45,4和5之间.故选:C .【点睛】本题考查了估算无理数的大小和二次根式的性质,,题目比较好,难度不大.8.C【解析】【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决.在数轴上,点13-到原点的距离是13,所以,13-的绝对值是13,故选C.【点睛】错因分析容易题,失分原因:未掌握绝对值的概念.9.D【解析】解:A.平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意;B.按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C.数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D.这组数据的方差是S2=15[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,错误,故本选项符合题意.故选D.点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大.10.A【解析】【分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答.【详解】解:点P(2,-1)关于原点对称的点的坐标是(-2,1).故选A.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.11.A【解析】解:①有理数与无理数的和一定是有理数,故本小题错误;②有理数与无理数的和一定是无理数,故本小题正确;③例如+,0是有理数,故本小题错误;)=﹣2,﹣2是有理数,故本小题错误.点睛:本题考查的是实数的运算及无理数、有理数的定义,熟知以上知识是解答此题的关键.12.C【解析】【分析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<1,b>1,且|a|>|b|,∴a+b<1,ab<1,a﹣b<1,a÷b<1.故选:C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.8x【解析】【分析】根据数据x1,x2,…,x n的平均数为x=1n(x1+x2+…+x n),即可求出数据x1+1,x2+1,…,x n+1的平均数.【详解】数据x1+1,x2+1,…,x n+1的平均数=1n(x1+1+x2+1+…+x n+1)=1n(x1+x2+…+x n)+1=x+1.故答案为x+1.【点睛】本题考查了平均数的概念,平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.14.8【解析】为了使第8次的环数最少,可使后面的2次射击都达到最高环数,即10环.设第8次射击环数为x环,根据题意列出一元一次不等式62+x+2×10>89解之,得x>7x表示环数,故x为正整数且x>7,则x的最小值为8即第8次至少应打8环.点睛:本题考查的是一元一次不等式的应用.解决此类问题的关键是在理解题意的基础上,建立与之相应的解决问题的“数学模型”——不等式,再由不等式的相关知识确定问题的答案.15.108°【解析】【分析】如图,易得△OCD为等腰三角形,根据正五边形内角度数可求出∠OCD,然后求出顶角∠COD,再用360°减去∠AOC、∠BOD、∠COD即可【详解】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案为108°【点睛】本题考查正多边形的内角计算,分析出△OCD是等腰三角形,然后求出顶角是关键.16.y=2(x+1)2+1.【解析】原抛物线的顶点为(0,-1),向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(-1,1);可设新抛物线的解析式为y=2(x-h)2+k,代入得:y=2(x+1)2+1.17.32 k=-【解析】【分析】将点的坐标代入,可以得到-1=212k+,然后解方程,便可以得到k的值.【详解】∵反比例函数y=21kx+的图象经过点(2,-1),∴-1=21 2 k+∴k=−32;故答案为k =−3 2.【点睛】本题主要考查函数图像上的点满足其解析式,可以结合代入法进行解答18.-2x x- 【解析】【分析】直接利用分式的混合运算法则即可得出.【详解】 原式22444222x x x x x x ⎛⎫-+--⎛⎫=÷ ⎪ ⎪++⎝⎭⎝⎭, ()()22222x x x x x --⎛⎫=÷ ⎪++⎝⎭, ()()22222x x x x x -+⎛⎫=⋅- ⎪+-⎝⎭, 2x x-=-. 故答案为2x x --. 【点睛】此题主要考查了分式的化简,正确掌握运算法则是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)1【解析】分析:(1)利用“AAS”证△ADF ≌△EAB 即可得;(2)由∠ADF+∠FDC=90°、∠DAF+∠ADF=90°得∠FDC=∠DAF=30°,据此知AD=2DF ,根据DF=AB 可得答案.详解:(1)证明:在矩形ABCD 中,∵AD ∥BC ,∴∠AEB=∠DAF ,又∵DF ⊥AE ,∴∠DFA=90°,∴∠DFA=∠B ,又∵AD=EA ,∴△ADF ≌△EAB ,(2)∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,∴∠FDC=∠DAF=30°,∴AD=2DF ,∵DF=AB ,∴AD=2AB=1.点睛:本题主要考查矩形的性质,解题的关键是掌握矩形的性质和全等三角形的判定与性质及直角三角形的性质.20.(1)1.7km ;(2)8.9km ;【解析】【分析】(1)根据锐角三角函数可以表示出OA 和OB 的长,从而可以求得AB 的长;(2)根据锐角三角函数可以表示出CD ,从而可以求得此时雷达站C 和运载火箭D 两点间的距离.【详解】解:(1)由题意可得,∠BOC=∠AOC=90°,∠ACO=34°,∠BCO=45°,OC=5km ,∴AO=OC•tan34°,BO=OC•tan45°,∴AB=OB ﹣OA=OC•tan45°﹣OC•tan34°=OC (tan45°﹣tan34°)=5×(1﹣0.1)≈1.7km ,即A ,B 两点间的距离是1.7km ;(2)由已知可得,∠DOC=90°,OC=5km ,∠DCO=56°,∴cos ∠DCO=,OC CD即5cos56,CD =o ∵sin34°=cos56°,∴50.56CD=, 解得,CD≈8.9答:此时雷达站C 和运载火箭D 两点间的距离是8.9km .【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想和锐角三角函数解答.21. (1) ;(2)-4.【分析】(1)先通分,再进行同分母的减法运算,然后约分得到原式(2)利用根与系数的关系得到然后利用整体代入的方法计算. 【详解】解:(1).(2)∵、是方程, ∴, ∴ 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程的两根时,, 也考查了分式的加减法. 22.(1)12,32-;(2)证明见解析. 【解析】 试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1,∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.23. (1) GF=GD ,GF ⊥GD;(2)见解析;(3)见解析;(4) 90°﹣2. 【解析】【分析】 (1)根据四边形ABCD 是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,点D 关于直线AE 的对称点为点F ,即可证明出∠DBF=90°,故GF ⊥GD ,再根据∠F=∠ADB ,即可证明GF=GD ;(2)连接AF ,证明∠AFG=∠ADG ,再根据四边形ABCD 是正方形,得出AB=AD ,∠BAD=90°,设∠BAF=n ,∠FAD=90°+n ,可得出∠FGD=360°﹣∠FAD ﹣∠AFG ﹣∠ADG=360°﹣(90°+n )﹣(180°﹣n )=90°,故GF ⊥GD ;(3)连接BD ,由(2)知,FG=DG ,FG ⊥DG ,再分别求出∠GFD 与∠DBC 的角度,再根据三角函数的性质可证明出△BDF ∽△CDG ,故∠DGC=∠FDG ,则CG ∥DF ;(4)连接AF ,BD ,根据题意可证得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根据菱形的性质可得∠ADB=∠ABD=12α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+12α)+12α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG . 【详解】解:(1)GF=GD ,GF ⊥GD ,理由:∵四边形ABCD 是正方形,∴∠ABD=∠ADB=45°,∠BAD=90°,∵点D 关于直线AE 的对称点为点F ,∠BAD=∠BAF=90°,∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,∴∠DBF=90°,∴GF ⊥GD ,∵∠BAD=∠BAF=90°,∴点F ,A ,D 在同一条线上,∵∠F=∠ADB ,∴GF=GD ,故答案为GF=GD ,GF ⊥GD ;(2)连接AF ,∵点D 关于直线AE 的对称点为点F ,∴直线AE 是线段DF 的垂直平分线,∴AF=AD ,GF=GD ,∴∠1=∠2,∠3=∠FDG ,∴∠1+∠3=∠2+∠FDG ,∵四边形ABCD 是正方形,∴AB=AD ,∠BAD=90°,设∠BAF=n ,∴∠FAD=90°+n ,∵AF=AD=AB ,∴∠FAD=∠ABF ,∴∠AFB+∠ABF=180°﹣n ,∴∠AFB+∠ADG=180°﹣n ,∴∠FGD=360°﹣∠FAD ﹣∠AFG ﹣∠ADG=360°﹣(90°+n )﹣(180°﹣n )=90°,∴GF ⊥DG ,(3)如图2,连接BD ,由(2)知,FG=DG ,FG ⊥DG ,∴∠GFD=∠GD F=12(180°﹣∠FGD )=45°, ∵四边形ABCD 是正方形,∴BC=CD ,∠BCD=90°,∴∠BDC=∠DBC=12(180°﹣∠BCD )=45°, ∴∠FDG=∠BDC ,∴∠FDG ﹣∠BDG=∠BDC ﹣∠BDG ,∴∠FDB=∠GDC ,在Rt △BDC 中,sin ∠DFG=DG DF =sin45°=22, 在Rt △BDC 中,sin ∠DBC=DC DB =sin45°2, ∴DG DC DF DB=, ∴DG DF DC DB =, ∴△BDF ∽△CDG ,∵∠FDB=∠GDC ,∴∠DGC=∠DFG=45°,∴∠DGC=∠FDG ,∴CG ∥DF ;(4)90°﹣2α,理由:如图3,连接AF ,BD ,∴AD=AF ,∠1=∠2,∠AMD=90°,∠DAM=∠FAM ,∴∠DAM=90°﹣∠2=90°﹣∠1,∴∠DAF=2∠DAM=180°﹣2∠1,∵四边形ABCD 是菱形,∴AB=AD ,∴∠AFB=∠ABF=∠DFG+∠1,∵BD 是菱形的对角线,∴∠ADB=∠ABD=12α, 在四边形ADBF 中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+12α)+α+(180°﹣2∠1)=360°∴2∠DFG+2∠1+α﹣2∠1=180°,∴∠DFG=90°﹣2α.【点睛】 本题考查了正方形、菱形、相似三角形的性质,解题的根据是熟练的掌握正方形、菱形、相似三角形的性质.24.(Ⅰ)点P 的坐标为(231).(Ⅱ)2111m t t 666=-+(0<t <11). (Ⅲ)点P 的坐标为(11133,1)或(11+133,1). 【解析】【分析】(Ⅰ)根据题意得,∠OBP=90°,OB=1,在Rt △OBP 中,由∠BOP=30°,BP=t ,得OP=2t ,然后利用勾股定理,即可得方程,解此方程即可求得答案.(Ⅱ)由△OB′P 、△QC′P 分别是由△OBP 、△QCP 折叠得到的,可知△OB′P ≌△OBP ,△QC′P ≌△QCP ,易证得△OBP ∽△PCQ ,然后由相似三角形的对应边成比例,即可求得答案.(Ⅲ)首先过点P 作PE ⊥OA 于E ,易证得△PC′E ∽△C′QA ,由勾股定理可求得C′Q 的长,然后利用相似三角形的对应边成比例与2111m t t 666=-+,即可求得t 的值: 【详解】 (Ⅰ)根据题意,∠OBP=90°,OB=1. 在Rt △OBP 中,由∠BOP=30°,BP=t ,得OP=2t .∵OP 2=OB 2+BP 2,即(2t )2=12+t 2,解得:t 1=23,t 2=-23(舍去).∴点P 的坐标为(23,1).(Ⅱ)∵△OB′P 、△QC′P 分别是由△OBP 、△QCP 折叠得到的,∴△OB′P ≌△OBP ,△QC′P ≌△QCP .∴∠OPB′=∠OPB ,∠QPC′=∠QPC .∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°.∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ .又∵∠OBP=∠C=90°,∴△OBP ∽△PCQ .∴OB BP PC CQ=. 由题意设BP=t ,AQ=m ,BC=11,AC=1,则PC=11-t ,CQ=1-m .∴6t 11t 6m =--.∴2111m t t 666=-+(0<t <11). (Ⅲ)点P 的坐标为(11133-,1)或(11+133,1). 过点P 作PE ⊥OA 于E ,∴∠PEA=∠QAC′=90°.∴∠PC′E+∠EPC′=90°.∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A .∴△PC′E ∽△C′QA .∴''=PE PC AC C Q. ∵PC′=PC=11-t ,PE=OB=1,AQ=m ,C′Q=CQ=1-m ,∴22AC C Q AQ 3612m ''=-=-.∴.∵6116=--t t m ,即6116-=-t t m ,∴63612=-t m ,即.将2111m t t 666=-+代入,并化简,得2322360-+=t t .解得:1211131113t ,t 33-+==. ∴点P 的坐标为(11+133,1)或(11133+,1). 25.甲、乙获胜的机会不相同.【解析】试题分析:先画出树状图列举出所有情况,再分别算出甲、乙获胜的概率,比较即可判断.∴∴甲、乙获胜的机会不相同.考点:可能性大小的判断 点评:本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.26.(1)300、144;(2)补全频数分布直方图见解析;(3)该校创新意识不强的学生约有528人.【解析】【分析】(1)由D 组频数及其所占比例可得总人数,用360°乘以C 组人数所占比例可得;(2)用总人数分别乘以A 、B 组的百分比求得其人数,再用总人数减去A 、B 、C 、D 的人数求得E 组的人数可得;(3)用总人数乘以样本中A 、B 组的百分比之和可得.【详解】解:(1)抽取学生的总人数为78÷26%=300人,扇形C 的圆心角是360°×120300=144°, 故答案为300、144;(2)A 组人数为300×7%=21人,B 组人数为300×17%=51人, 则E 组人数为300﹣(21+51+120+78)=30人,补全频数分布直方图如下:(3)该校创新意识不强的学生约有2200×(7%+17%)=528人.【点睛】考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.27.(1)12;(2)14【解析】试题分析:(1)利用概率公式直接计算即可;(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.试题解析:(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.考点:列表法与树状图法;概率公式.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。
浙江省衢州市2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知抛物线y=ax2+bx+c与反比例函数y= bx的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.2.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180°D.抛一枚硬币,落地后正面朝上3.正比例函数y=2kx的图象如图所示,则y=(k-2)x+1-k的图象大致是()A.B.C.D.4.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,点F是BD的中点.若AB=10,则EF=()A.2.5 B.3 C.4 D.55.下列事件中,属于不确定事件的是()A.科学实验,前100次实验都失败了,第101次实验会成功B.投掷一枚骰子,朝上面出现的点数是7点C.太阳从西边升起来了D.用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形6.已知点M、N在以AB为直径的圆O上,∠MON=x°,∠MAN= y°,则点(x,y)一定在()A.抛物线上B.过原点的直线上C.双曲线上D.以上说法都不对7.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )A.8374y xy x+=⎧⎨-=⎩B.8374x yx y+=⎧⎨-=⎩C.8374x yx y-=⎧⎨+=⎩D.8374y xy x-=⎧⎨+=⎩8.已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程2x3x m0-+=的两实数根是A.x1=1,x2=-1 B.x1=1,x2=2C.x1=1,x2=0 D.x1=1,x2=39.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣310.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A.2 B.﹣2 C.4 D.﹣411.如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧»AC的长是()A .12πB .13πC .23πD .43π 12.抛物线y=ax 2﹣4ax+4a ﹣1与x 轴交于A ,B 两点,C (x 1,m )和D (x 2,n )也是抛物线上的点,且x 1<2<x 2,x 1+x 2<4,则下列判断正确的是( )A .m <nB .m≤nC .m >nD .m≥n二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若点(a ,b )在一次函数y=2x-3的图象上,则代数式4a-2b-3的值是__________14. “五一”期间,一批九年级同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费.若设参加游览的同学一共有x 人,为求x ,可列方程_____.15.已知二次函数2y ax bx c =++的图象如图所示,若方程2ax bx c k ++=有两个不相等的实数根,则k的取值范围是_____________.16.△ABC 中,∠A 、∠B 都是锐角,若sinA =32,cosB =12,则∠C =_____. 17.已知点P (1,2)关于x 轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 .18.已知α ,β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足11αβ+=﹣1,则m 的值是____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图已知△ABC ,点D 是AB 上一点,连接CD ,请用尺规在边AC 上求作点P ,使得△PBC 的面积与△DBC 的面积相等(保留作图痕迹,不写做法)20.(6分)计算:4sin30°+(120﹣|﹣2|+(12)﹣2 21.(6分)计算:(12)﹣2327(﹣2)0+|28| 22.(8分)已知在梯形ABCD 中,AD ∥BC ,AB=BC ,DC ⊥BC ,且AD=1,DC=3,点P 为边AB 上一动点,以P为圆心,BP为半径的圆交边BC于点Q.(1)求AB的长;(2)当BQ的长为409时,请通过计算说明圆P与直线DC的位置关系.23.(8分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE 的长(结果保留根号).24.(10分)武汉二中广雅中学为了进一步改进本校九年级数学教学,提高学生学习数学的兴趣.校教务处在九年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查:我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A-非常喜欢”、“ B-比较喜欢”、“ C-不太喜欢”、“ D-很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计.现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是,图②中A所在扇形对应的圆心角是;(3)若该校九年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?25.(10分)王老师对试卷讲评课中九年级学生参与的深度与广度进行评价调查,每位学生最终评价结果为主动质疑、独立思考、专注听讲、讲解题目四项中的一项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在扇形的圆心角度数为度;(3)请将频数分布直方图补充完整;(4)如果全市九年级学生有8000名,那么在试卷评讲课中,“独立思考”的九年级学生约有多少人?26.(12分)在平面直角坐标系中,一次函数34y x b=-+的图象与反比例函数kyx=(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).求一次函数和反比例函数解析式.若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.根据图象,直接写出不等式34kx bx-+>的解集.27.(12分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间之间的函数关系式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析: 根据抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解: ∵抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选B.点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.2.C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.B【解析】试题解析:由图象可知,正比函数y=2kx的图象经过二、四象限,∴2k<0,得k<0,∴k−2<0,1−k>0,∴函数y=(k−2)x+1−k图象经过一、二、四象限,故选B.4.A【解析】【分析】先利用直角三角形的性质求出CD的长,再利用中位线定理求出EF的长.【详解】∵∠ACB=90°,D为AB中点∴CD=∵点E、F分别为BC、BD中点∴.故答案为:A.【点睛】本题考查的知识点是直角三角形的性质和中位线定理,解题关键是寻找EF与题目已知长度的线段的数量关系.5.A【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、是随机事件,故A符合题意;B、是不可能事件,故B不符合题意;C、是不可能事件,故C不符合题意;D、是必然事件,故D不符合题意;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.B【解析】【分析】由圆周角定理得出∠MON 与∠MAN 的关系,从而得出x 与y 的关系式,进而可得出答案.【详解】∵∠MON 与∠MAN 分别是弧MN 所对的圆心角与圆周角,∴∠MAN=12∠MON , ∴12y x = , ∴点(x ,y)一定在过原点的直线上.故选B.【点睛】本题考查了圆周角定理及正比例函数图像的性质,熟练掌握圆周角定理是解答本题的关键.7.C【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:8374x y x y -=⎧⎨+=⎩, 故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.8.B【解析】试题分析:∵二次函数2y x 3x m -+=(m 为常数)的图象与x 轴的一个交点为(1,0),∴213m 0m 2-+=⇒=.∴2212x 3x m 0x 3x 20x 1x 2-+=⇒-+=⇒==,.故选B . 9.A【解析】【分析】方程变形后,配方得到结果,即可做出判断.【详解】方程2410x x +=﹣,变形得:241x x =﹣﹣,配方得:24414x x +=+﹣﹣,即223x =(﹣),故选A .【点睛】本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.10.B【解析】【分析】利用待定系数法求出m ,再结合函数的性质即可解决问题.【详解】解:∵y =mx (m 是常数,m≠0)的图象经过点A (m ,4),∴m 2=4,∴m =±2,∵y 的值随x 值的增大而减小,∴m <0,∴m =﹣2,故选:B .【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.C【解析】【分析】由切线的性质定理得出∠OAB=90°,进而求出∠AOB=60°,再利用弧长公式求出即可.【详解】∵AB 是⊙O 的切线,∴∠OAB=90°,∵半径OA=2,OB 交⊙O 于C,∠B=30°,∴∠AOB=60°,∴劣弧ACˆ的长是:602180π⨯=23π, 故选:C.【点睛】本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算. 12.C【解析】分析:将一般式配方成顶点式,得出对称轴方程2x =,根据抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,得出()()244410a a a =--⨯->V ,求得 0a >,距离对称轴越远,函数的值越大,根据121224x x x x <<+<,,判断出它们与对称轴之间的关系即可判定.详解:∵()2244121y ax ax a a x =-+-=--,∴此抛物线对称轴为2x =,∵抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,∴当24410ax ax a -+-=时,()()244410a a a =--⨯->V ,得0a >, ∵121224x x x x <<+<,,∴1222x x ,->-∴m n >,故选C .点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大,二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】根据题意,将点(a ,b )代入函数解析式即可求得2a-b 的值,变形即可求得所求式子的值.【详解】∵点(a ,b )在一次函数y=2x-1的图象上,∴b=2a-1,∴2a-b=1,∴4a-2b=6,∴4a-2b-1=6-1=1,故答案为:1.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.14.3004x-﹣300x=1.【解析】原有的同学每人分担的车费应该为3004x-,而实际每人分担的车费为300x,方程应该表示为:3004x-﹣300x=1.故答案是:3004x-﹣300x=1.15.5k<【解析】分析:先移项,整理为一元二次方程,让根的判别式大于0求值即可.详解:由图象可知:二次函数y=ax2+bx+c的顶点坐标为(1,1),∴244ac ba-=1,即b2-4ac=-20a,∵ax2+bx+c=k有两个不相等的实数根,∴方程ax2+bx+c-k=0的判别式△>0,即b2-4a(c-k)=b2-4ac+4ak=-20a+4ak=-4a(1-k)>0∵抛物线开口向下∴a<0∴1-k>0∴k<1.故答案为k<1.点睛:本题主要考查了抛物线与x轴的交点问题,以及数形结合法;二次函数中当b2-4ac>0时,二次函数y=ax2+bx+c的图象与x轴有两个交点.16.60°.【解析】【分析】先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【详解】∵△ABC中,∠A、∠B都是锐角sinA=2,cosB=12,∴∠A=∠B=60°.∴∠C=180°-∠A-∠B=180°-60°-60°=60°.故答案为60°.【点睛】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.17.y=﹣1x+1.【解析】【分析】由对称得到P′(1,﹣2),再代入解析式得到k 的值,再根据平移得到新解析式.【详解】∵点P (1,2)关于x 轴的对称点为P′,∴P′(1,﹣2),∵P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣1,则y=﹣1x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣1x+1.故答案为y=﹣1x+1.考点:一次函数图象与几何变换.18.3.【解析】【分析】可以先由韦达定理得出两个关于α、β的式子,题目中的式子变形即可得出相应的与韦达定理相关的式子,即可求解.【详解】得α+β=-2m-3,αβ=m 2,又因为211+-2m-3+===-1m αβαβαβ,所以m 2-2m-3=0,得m=3或m=-1,因为一元二次方程()22230x m x m +++=的两个不相等的实数根,所以△>0,得(2m+3)2-4×m 2=12m+9>0,所以m >4-3,所以m=-1舍去,综上m=3. 【点睛】 本题考查了根与系数的关系,将根与系数的关系与代数式相结合解题是解决本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.见解析【解析】【分析】三角形的面积相等即同底等高,所以以BC 为两个三角形的公共底边,在AC 边上寻找到与D 到BC 距离相等的点即可.【详解】作∠CDP=∠BCD,PD与AC的交点即P.【点睛】本题考查了三角形面积的灵活计算,还可以利用三角形的全等来进行解题. 20.1.【解析】【分析】按照实数的运算顺序进行运算即可.【详解】原式14124,2=⨯+-+=1.【点睛】本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及绝对值,熟练掌握各个知识点是解题的关键.21.2【解析】【分析】直接利用零指数幂的性质以及负指数幂的性质、绝对值的性质、二次根式以及立方根的运算法则分别化简得出答案.【详解】解:原式=4﹣2﹣2=2.【点睛】本题考查实数的运算,难点也在于对原式中零指数幂、负指数幂、绝对值、二次根式以及立方根的运算化简,关键要掌握这些知识点.22.(1)AB长为5;(2)圆P与直线DC相切,理由详见解析.【解析】【分析】(1)过A作AE⊥BC于E,根据矩形的性质得到CE=AD=1,AE=CD=3,根据勾股定理即可得到结论;(2)过P作PF⊥BQ于F,根据相似三角形的性质得到PB=259,得到PA=AB-PB=209,过P作PG⊥CD于G交AE于M,根据相似三角形的性质得到PM=169,根据切线的判定定理即可得到结论.【详解】(1)过A作AE⊥BC于E,则四边形AECD是矩形,∴CE=AD=1,AE=CD=3,∵AB=BC,∴BE=AB-1,在Rt△ABE中,∵AB2=AE2+BE2,∴AB2=32+(AB-1)2,解得:AB=5;(2)过P作PF⊥BQ于F,∴BF=12BQ=209,∴△PBF∽△ABE,∴PB BF AB BE=,∴20954 PB=,∴PB=259,∴PA=AB-PB=209,过P作PG⊥CD于G交AE于M,∴GM=AD=1,∵DC⊥BC∴PG∥BC∴△APM∽△ABE,∴AP PM AB BE=,∴20954PM=,∴PM=169,∴PG=PM+MG=259=PB,∴圆P与直线DC相切.【点睛】本题考查了直线与圆的位置关系,矩形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.23.CE的长为(4+)米【解析】【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【详解】过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=CH AH,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×33,∵DH=1.5,∴3,在Rt△CDE中,∵∠CED=60°,sin∠CED=CD CE,∴CE=23 1.532+=(4+3)(米), 答:拉线CE 的长为(4+)米.考点:解直角三角形的应用-仰角俯角问题24.(1)答案见解析;(2)B ,54°;(3)240人.【解析】【分析】(1)根据D 程度的人数和所占抽查总人数的百分率即可求出抽查总人数,然后利用总人数减去A 、B 、D 程度的人数即可求出C 程度的人数,然后分别计算出各程度人数占抽查总人数的百分率,从而补全统计图即可;(2)根据众数的定义即可得出结论,然后利用360°乘A 程度的人数所占抽查总人数的百分率即可得出结论;(3)利用960乘C 程度的人数所占抽查总人数的百分率即可.【详解】解:(1)被调查的学生总人数为65%120÷=人,C 程度的人数为120(18666)30-++=人,则A 的百分比为18100%15%120⨯=、B 的百分比为66100%55%120⨯=、C 的百分比为30100%25%120⨯=, 补全图形如下:(2)所抽取学生对数学学习喜欢程度的众数是B 、图②中A 所在扇形对应的圆心角是36015%54︒⨯=︒.故答案为:B ;54︒;(3)该年级学生中对数学学习“不太喜欢”的有96025%240⨯=人答:该年级学生中对数学学习“不太喜欢”的有240人.【点睛】此题考查的是条形统计图和扇形统计图,结合条形统计图和扇形统计图得出有用信息是解决此题的关键.25.(1)560; (2)54;(3)详见解析;(4)独立思考的学生约有840人.【解析】【分析】(1)由“专注听讲”的学生人数除以占的百分比求出调查学生总数即可;(2)由“主动质疑”占的百分比乘以360°即可得到结果;(3)求出“讲解题目”的学生数,补全统计图即可;(4)求出“独立思考”学生占的百分比,乘以2800即可得到结果.【详解】(1)根据题意得:224÷40%=560(名),则在这次评价中,一个调查了560名学生;故答案为:560;(2)根据题意得:84560×360°=54°,则在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;故答案为:54;(3)“讲解题目”的人数为560-(84+168+224)=84,补全统计图如下:(4)根据题意得:2800×168840 560⨯=(人),则“独立思考”的学生约有840人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.(1)y=﹣34x+32,y=-6x;(2)12;(3) x<﹣2或0<x<4.【解析】【分析】(1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求△ABF的面积;(3)直接根据图象可得.【详解】(1)∵一次函数y=﹣34x+b的图象与反比例函数y=kx(k≠0)图象交于A(﹣3,2)、B两点,∴3=﹣34×(﹣2)+b ,k =﹣2×3=﹣6 ∴b =32,k =﹣6 ∴一次函数解析式y =﹣3342x +,反比例函数解析式y =6x -. (2)根据题意得:33426y x y x ⎧+⎪⎪⎨-⎪⎪⎩=﹣= , 解得:211242,332x x y y ⎧=⎧=-⎪⎪⎨⎨==-⎪⎪⎩⎩, ∴S △ABF =12×4×(4+2)=12 (3)由图象可得:x <﹣2或0<x <4【点睛】本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键.27. (1)见解析(2)300(3)2小时【解析】【分析】【详解】解:(1)设甲组加工的零件数量y 与时间x 的函数关系式为y kx =.根据题意,得6360k =,解得60k =.所以,甲组加工的零件数量y 与时间x 的函数关系式为:60y x =.(2)当2x =时,100y =.因为更换设备后,乙组工作效率是原来的2倍, 所以,10010024.8 2.82a -=⨯-.解得300a =. (3)乙组更换设备后,乙组加工的零件的个数y 与时间x 的函数关系式为100100( 2.8)100180y x x =+-=-.当0≤x≤2时,6050300x x +=.解得3011x =.舍去. 当2<x≤2.8时,10060300x +=.解得103x =.舍去. 当2.8<x≤4.8时,60100180300x x +-=.解得3x =.所以,经过3小时恰好装满第1箱.当3<x≤4.8时,601001803002x x +-=⨯.解得398x =.舍去. 当4.8<x≤6时.603003002x +=⨯.解得5x =. 因为5-3=2,所以,再经过2小时恰好装满第2箱.。
浙江省衢州市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知M=9x2-4x+3,N=5x2+4x-2,则M与N的大小关系是()A.M>N B.M=N C.M<N D.不能确定2.下列算式中,结果等于x6的是()A.x2•x2•x2B.x2+x2+x2C.x2•x3D.x4+x23.如图,正方形ABCD的顶点C在正方形AEFG的边AE上,AB=2,AE=42,则点G 到BE的距离是()A.165B.3625C.3225D.1854.如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①ac<1;②a+b=1;③4ac﹣b2=4a;④a+b+c<1.其中正确结论的个数是()A.1 B.2 C.3 D.45.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中5 个黑球,从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100 1000 5000 10000 50000 100000摸出黑球次数46 487 2506 5008 24996 50007根据列表,可以估计出m 的值是()A.5 B.10 C.15 D.206.某校航模小分队年龄情况如表所示,则这12名队员年龄的众数、中位数分别是()年龄(岁)12 13 14 15 16人数 1 2 2 5 2A.2,14岁B.2,15岁C.19岁,20岁D.15岁,15岁7.若一组数据2,3,4,5,x的平均数与中位数相等,则实数x的值不可能是( )A.6 B.3.5 C.2.5 D.18.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)9.不等式5+2x <1的解集在数轴上表示正确的是( ).A.B.C.D.10.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是()A.4个B.3个C.2个D.1个11.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间t(小时)之间的函数图象是A.B.C.D.12.下列运算正确的是()A.2a﹣a=1 B.2a+b=2ab C.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.关于x的一元二次方程260x x b-+=有两个不相等的实数根,则实数b的取值范围是________.14.某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20m的点B处,用高为0.8m的测角仪测得筒仓顶点C的仰角为63°,则筒仓CD的高约为______m.(精确到0.1m,sin63°≈0.89,cos63°≈0.45,t an63°≈1.96)15.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为.16.如图,在平面直角坐标系xOy中,△DEF可以看作是△ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABC得到△DEF的过程:_____.17.如图,一次函数y1=kx+b的图象与反比例函数y2=mx(x<0)的图象相交于点A和点B.当y1>y2>0时,x的取值范围是_____.18.已知a+=3,则的值是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,菱形ABCD 中,已知∠BAD=120°,∠EGF=60°, ∠EGF 的顶点G 在菱形对角线AC 上运动,角的两边分别交边BC 、CD 于E 、F .(1)如图甲,当顶点G 运动到与点A 重合时,求证:EC+CF=BC ; (2)知识探究:①如图乙,当顶点G 运动到AC 的中点时,请直接写出线段EC 、CF 与BC 的数量关系(不需要写出证明过程);②如图丙,在顶点G 运动的过程中,若ACt GC=,探究线段EC 、CF 与BC 的数量关系; (3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=65,当t >2时,求EC 的长度.20.(6分)图1是一商场的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转37︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据:sin370.6︒≈,cos370.8︒≈,2 1.4≈)21.(6分)如图,点A 是直线AM 与⊙O 的交点,点B 在⊙O 上,BD ⊥AM ,垂足为D ,BD 与⊙O 交于点C ,OC 平分∠AOB ,∠B =60°.求证:AM 是⊙O 的切线;若⊙O 的半径为4,求图中阴影部分的面积(结果保留π和根号).22.(8分)先化简代数式222xx 11x x x 2x 1-⎛⎫-÷ ⎪+++⎝⎭,再从12x -≤≤范围内选取一个合适的整数作为x 的值代入求值。
浙江省衢州市2021版中考数学二模试卷(I)卷姓名:________ 班级:________ 成绩:________一、填空题 (共6题;共6分)1. (1分) (2019七上·江苏期中) 实数a,b,c在数轴上的对应点的位置如图所示,化简=________.2. (1分)(2020·哈尔滨模拟) 在函数中,自变量x的取值范围是________.3. (1分) (2017八上·秀洲月考) 如图,在△ABC中,AB=AC,AD平分∠BAC,AD=3,BC=8,则AC=________。
4. (1分)(2020·南岸模拟) 如图,平行四边形ABCD的对角线AC与BD相交于点O,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AO,AB于点M,N;②以点O为圆心,以AM长为半径作弧,交OC于点M';③以点M'为圆心,以MN长为半径作弧,在∠COB内部交前面的弧于点N';④过点N'作射线ON'交BC于点E.若AB=8,则线段OE的长为________.5. (1分)(2020·开远模拟) 用半径为6cm,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为________cm.6. (1分)(2017·孝感模拟) 如图所示,有一些点组成形如四边形的图形,每条“边”(包括顶点)有n(n >1)个点,当n=2017时,这个图形总的点数S=________.二、选择题 (共8题;共16分)7. (2分)(2016·福田模拟) 2的倒数是()A . 2B . ﹣2C .D . ﹣8. (2分) (2016九上·平凉期中) 下列命题中真命题是()A . 全等的两个图形是中心对称图形B . 中心对称图形都是轴对称图形C . 轴对称图形都是中心对称图形D . 关于中心对称的两个图形全等9. (2分)已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为()A . 21×10-4千克B . 2.1×10-6千克C . 2.1×10-5千克D . 2.1×千克10. (2分) (2019七上·嵊州期中) 下列说法正确的个数为()(1)0是绝对值最小的有理数;(2)-1乘以任何数仍得这个数;(3)0除以任何数都等于0;(4)数轴上原点两侧的数互为相反数;(5)一个数的平方是正数,则这个数的立方也是正数;(6)一对相反数的平方也互为相反数A . 0个B . 1个C . 2个D . 3个11. (2分)有一组数据x1 , x2 ,…xn的平均数是2,方差是1,则3x1+2,3x2+2,…+3xn+2的平均数和方差分别是()A . 2,1B . 8,1C . 8,5D . 8,912. (2分)(2016·河北) 下列运算结果为x-1的是()A .B .C .D .13. (2分)(2017·七里河模拟) 在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A . x(x﹣1)=10B . =10C . x(x+1)=10D . =1014. (2分)点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A . 40°B . 100°C . 40°或140°D . 40°或100°三、解答题 (共9题;共80分)15. (5分)(2020·太仓模拟) 已知|a-1|+=0,求方程+bx=1的解.16. (8分)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图:(1)本次检测抽取了大、中、小学生共________ 名,其中小学生________ 名.(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为________ 名.(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.17. (11分)如图,已知长方形OABC的顶点A在x轴上,顶点C在y轴上,OA=18,OC=12,D、E分别为OA、BC上的两点,将长方形OABC沿直线DE折叠后,点A刚好与点C重合,点B落在点F处,再将其打开、展平.(1)点B的坐标是________;(2)求直线DE的函数表达式;(3)设动点P从点D出发,以1个单位长度/秒的速度沿折线D→A→B→C向终点C运动,运动时间为t秒,求当S△PDE=2S△OCD时t的值.18. (10分) (2020八上·金山期末) 如图,已知直角坐标平面内的两点A(3,2),点B (6,0)过点B作Y轴的平行线交直线OA于点C(1)求直线OA所对应的函数解析式(2)若某一个反比例函数的图像经过点A,且交BC于点D,联结AD,求△ACD的面积.19. (6分)一个不透明的袋子中装有大小、质地完全相同的3只球,球上分别标有2,3,5三个数字.(1)从这个袋子中任意摸一只球,所标数字是奇数的概率是________;(2)从这个袋子中任意摸一只球,记下所标数字,不放回,再从这个袋子中任意摸只球,组成一个两位数,求所组成的两位数是5的倍数的概率.20. (5分)如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°.现在请你帮助课外活动小组算一算塔高DE大约是多少米?(结果精确到个位)(参考数据:sin25.6°≈0.4,cos25.6°≈0.9,tan25.6°≈0.5,sin61.4°≈0.9,cos61.4°≈0.5,tan61.4°≈1.8)21. (10分)(2020·哈尔滨模拟) 今年 3 月 12 日植树节期间,学校预购进 A、B 两种树苗,若购进 A 种树苗 3 棵,B 种树苗 5 棵,需 2100 元,若购进 A 种树苗 4 棵,B 种树苗 10棵,需 3800 元.(1)求购进 A、B 两种树苗的单价;(2)若该单位准备用不多于 8000 元的钱购进这两种树苗共 30 棵,求 A 种树苗至少需购进多少棵?22. (15分)(2017·南漳模拟) 如图,△ABC中,∠ACB=90°,tanA= ,点D是边AC上一点,连接BD,并将△BCD沿BD折叠,使点C恰好落在边AB上的点E处,过点D作DF⊥BD,交AB于点F.(1)求证:∠ADF=∠EDF;(2)探究线段AD,AF,AB之间的数量关系,并说明理由;(3)若EF=1,求BC的长.23. (10分) (2019九上·开州月考) 如图1,在平面直角坐标系中,抛物线与x 轴交于A,B两点(点A在点B左侧),与y轴交于点D,点C为抛物线的顶点,过B,C两点作直线BC,抛物线上的一点F的横坐标是,过点F作直线FG//BC交x轴于点G.(1)点P是直线BC上方抛物线上的一动点,连接PG与直线BC交于点E,连接EF,PF,当的面积最大时,在x轴上有一点R,使PR+CR的值最小,求出点R的坐标,并直接写出PR+CR的最小值;(2)如图2,连接AD,作AD的垂直平分线与x轴交于点K,平移抛物线,使抛物线的顶点C在射线BC上移动,平移的距离是t,平移后抛物线上点A,点C的对应点分别为点A′,点C′,连接A′C′,A′K,C′K,A′C′K 是否能为等腰三角形?若能,求出t的值;若不能,请说明理由.参考答案一、填空题 (共6题;共6分)1-1、2-1、3-1、4-1、5-1、6-1、二、选择题 (共8题;共16分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共9题;共80分)15-1、16-1、16-2、16-3、17-1、17-2、17-3、18-1、18-2、19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、。
2022年浙江省衢州市柯城区中考数学二模试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. −3的倒数是( )A. 3B. −3C. 13D. −132. 据新华体育报道,国际奥委会新闻发言人在新闻发布会上透露,北京冬奥会开幕式中国大陆地区观看人数约3.16亿人.其中3.16亿用科学记数法表示为( )A. 3.16B. 31.6×107C. 3.16×108D. 0.316×1093. 如图所示的几何体是由7个相同的小正方体组成的立体图形,则下列四个图形中是它的俯视图的是( )A.B.C.D.4. 下列计算正确的是( )A. a2⋅a3=a6B. (a2)3=a6C. a6−a2=a4D. a5+a5=a105. 若二次根式√1−x在实数范围内有意义,则下列各数中,x可取的值是( )A. 4B. πC. √2D. 16. 不等式组{x −2<1−2x ≤4的解集( )A. x ≥−2B. −2<x <3C. x >3D. −2≤x <37. 在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是( )A. 14 B. 13 C. 37 D. 478. 《张丘建算经》中有这样一首古诗:甲乙隔溪牧羊,二人互相商量;甲得乙羊九只,多乙一倍正当;乙说得甲九只,两人羊数一样;问甲乙各几羊,让你算个半晌.如果设甲有羊x 只,乙有羊y 只,那么可列方程组( )A. {x +9=2(y −9)y +9=xB. {x +9=2(y −9)y +9=x −9C. {x +9=2yy +9=x −9D. {x +9=2yy +9=x9. 当1≤x ≤3时,二次函数y =x 2−2ax +3的最小值为−1,则a 的值为( ) A. 2 B. ±2 C. 2或52 D. 2或13610. 如图,正方形ABCD 的顶点B 在x 轴上,点A ,点C 在反比例函数y =kx (k >0,x >0)图象上.若直线BC 的函数表达式为y =12x −4,则反比例函数表达式为( )A. y =6xB. y =12xC. y =16xD. y =24x二、填空题(本大题共6小题,共24.0分)11. 若a−b b=23,则ab =______.12. 若扇形的半径为3,圆心角120°,为则此扇形的弧长是 . 13. 计算:a+ba−b +2a−b a−b=______.14. 一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s(km)与慢车行驶的时间t(ℎ)之间的关系如图,则点B 点的坐标为______.15. 如图,15个形状大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角为60°,A 、B 、C 都在格点上,点D 在过A 、B 、C 三点的圆弧上,若E 也在格点上,且∠AED =∠ACD ,则cos∠AEC =______.16. 如图,在平面直角坐标系中,四边形ABOC 是正方形,点A 的坐标为(1,1),AA⏜1是以点B 为圆心,BA 为半径的圆弧;A 1A 2⏜ 是以点O 为圆心,OA 1为半径的圆弧,A 2A 3⏜ 是以点C 为圆心,CA 2为半径的圆弧,A 3A 4⏜ 是以点A 为圆心,AA 3为半径的圆弧,继续以点B 、O 、C 、A 为圆心按上述作法得到的曲线AA1A2A3A4A5…称为正方形的“渐开线”,那么点A5的坐标是______,点A2022的坐标是______.三、解答题(本大题共8小题,共66.0分。
浙江省衢州市2020版数学中考模拟试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·盐津月考) |﹣8|的相反数是()A . ﹣8B . 8C .D .2. (2分) (2019八下·廉江期末) 下列各式中,运算正确的是()A .B .C .D .3. (2分)(2018·黑龙江模拟) 在下列运算中,正确的是().A . (-2x)2·x3=4x6B . x2÷x=xC . (4x2)3=4x6D . 3x2-(2x)2=x24. (2分) (2019九下·柳州模拟) 把不等式组的解集在数轴上表示正确的是()A .B .C .D .5. (2分) (2017九上·成都开学考) 下列说法中错误的是()A . 一组对边平行且一组对角相等的四边形是平行四边形B . 每组邻边都相等的四边形是菱形C . 四个角相等的四边形是矩形D . 对角线互相垂直的平行四边形是正方形6. (2分)(2019·安徽) 在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A . 60B . 50C . 40D . 157. (2分) (2016九上·连州期末) 若一个正n边形的每个内角为156°,则这个正n边形的边数是()A . 13B . 14C . 15D . 168. (2分) (2017九上·双城开学考) 抛物线y=x2﹣bx+8的顶点在x轴上,则b的值一定为()A . 4B . ﹣4C . 2或﹣2D . 4 或﹣49. (2分)如图,为了测量山高AC,在水平面B处测得山顶A的仰角是()A . ∠AB . ∠ABCC . ∠ABDD . 以上都不对10. (2分) (2018九上·前郭期末) 一元二次方程x2﹣4x+5=0的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 只有一个实数根D . 没有实数根二、解答题 (共8题;共65分)11. (5分) (2020八上·东台期末) 计算:12. (5分)(2018·安徽模拟) 先化简,再求值:,其中13. (5分)已知:如图,在平行四边形ABCD中,E,F分别是AB,DC上的两点,且AE=CF.求证:BD,EF互相平分.14. (10分)(2018·鼓楼模拟) 转转盘和摸球是等可能概率下的经典模型.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.15. (5分) (2020八上·吴兴期末) 某电梯的额定限载量为1000千克.两人要用电梯把一批货物从底层搬到顶层,已知这两个人的体重分别为70千克和60千克,货物每箱重50千克,问他们每次最多只能搬运货物多少箱?16. (5分) (2018八上·山东期中) 如图所示.请你至少用二种办法,在△ABC中画三条线段.把这个三角形分成面积相等的四部分,并证明其中的一种。
2024年浙江省初中学业水平考试押题卷(一)数学试题卷考生须知:1.全卷分试题卷I 、试题卷Ⅱ和答题卷.试题卷共4页,有三个大题,24个小题.满分为120分,考试时长为120分钟.2.请将学校、班级、姓名和准考证号分别填写在答题卷的规定位置上.3.答题时,把试题卷I 的答案在答题卷I 上对应的选项位置用2B 铅笔涂黑、涂满.将试题卷Ⅱ的答案用黑色字迹的钢笔或签字笔书写,答案必须按照题号顺序在答题卷Ⅱ各题目规定区域内作答,做在试题卷上或超出答题区域书写的答案无效.4.不允许使用计算器.一、选择题(本题有10小题,每小题3分,共30分)1.下列四个数在数轴上表示的点,距离原点最近的是( )A .B .C .D .2.如图是常见的化学仪器,其中主视图与左视图不相同的是( )A .B .C .D .3.下列消防标志符号,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.下列计算正确的是( )A.B .C .D .5.如图,一根3m 长的木头斜靠在垂直于地面的墙上,当端点A 离地面的高度为1m 时,木头的倾斜角的余弦的值为( )1- 1.5-0.5+1+22a a b b =22a b a b a b -=+-11a a b b +=+112325m m m +=AB AC AB αcos α6.某中学个班参加春季植树活动,具体植树情况统计如下表植树数目班级数目142571则该校班级种植树木的中位数和众数分别为( )A .,7B .,7C .,D .,7.不等式组的整数解的个数是( )A .3个B .4个C .5个D .6个8.四边形具有不稳定性,教材是在平行四边形概念的基础上学习矩形定义的,教材提出的情景问题是:“在这些平行四边形中,有没有一个面积最大的平行四边形”,因此通过平行四边形变形可以得到矩形.某同学将平行四边形的边与边分别绕点A 、点逆时针旋转,得到矩形,若此时、、恰好共线,cm ,cm ,那么边扫过的面积为( )A .B .C .D .89.如图,直线交坐标轴于点,,交反比例函数于点,,若,则的值为( )32030404550607047.55047.56050603112272x x -⎧≥⎪⎨⎪-≤⎩ABCD AD BC B ABC D ''C 'D B 2AB =4=AD CD 8-4123π-364y x =-+A B k y x=M N MN AM BN =+k10.如图,正方形和正方形的点、、在同一条直线上,点为的中点,连结、、,则已知下列哪条线段的长度,一定能求出线段的长.( )A .B .C .D .二、填空题(本题有6小题,每小题3分,共18分)11.因式分解: .12.一个游戏转盘如图所示,红色扇形的圆心角为,让转盘自由转动,当转盘停止时,指针落在红色区域的概率是 .13.如图,是凸透镜的主光轴,点是光心,点是焦点.若蜡烛的像为,测量得到,蜡烛高为6cm ,则像的长 cm .\14.如图,是的直径,切于点,的平分线交于点,若,,则的长为 .15.在《九章算术》中描述了这样一个问题:今有客马,日行三百里.客去忘持衣,日已三4ABCD CEFG B C E M AF DM CM CF DM CF CM DG AF24ab a -=72︒MN O F PM NB :2:1OM ON =BN =AB O BC O B ACB ∠AB P 5AC =3BC =OP分之一,主人乃觉.持衣追及,与之而还.至家视日四分之三.问:主人马不休,日行几何?翻译成现代语言是:客人的马一天能行三百里.客人早晨离去时,忘记带走自己的衣物.他走了三分之一日,主人才发觉.于是,主人拿着他的衣服骑上马去追.追上交还衣服后又立即返家,此时这一天已过去了四分之三.问:主人的马一天能跑多少里?假如主人骑马的速度不变,则主人骑马的速度为 里/日.16.如图,在等腰中,,,点在边上运动,连接,将绕点顺时针旋转,交斜边于点.则点从点运动到点的过程中,点运动的路径长为 .三、解答题(本题有8小题,共72分,各题都必须写出必要的解答过程)17.计算:18.某同学为了调查人们选择快递公司的原因,制作了如下表的调查报告(不完整).调查方式随机抽样调查调查对象电商卖家500人普通人500人调查问卷内容选择快递公司的原因(请选择一项在方框内打钩)价格优惠☐ 寄件方便口 配送速度口 服务态度好口调查结果Rt ABC△90C ∠=︒1AC BC ==D BC AD AD D 90︒AB E D C B E ()0202445-︒结合调查信息,回答下列问题:(1)计算扇形统计图中“服务态度好”这一原因的圆心角度数.(2)普通人的500份调查问卷中选择“寄件方便”的有几人?(3)如果你是电商业务员,请说明你会依据哪一项来选择合作的快递公司.19.如图是的网格,网格边长为1,的顶点在格点上.已知的外接圆,仅用无刻度的直尺在给定的网格中完成画图(两题都要保留作图痕迹).(1)找出的外接圆的圆心,并求的长.(2)在圆上找点,使得.20.科学实验证明,力的大小是可以测量的,弹簧秤是利用弹簧“受力大,伸长长”的特征制成的.在弹性限度内,实验室某种弹簧的长度与所挂物体质量的图象是如图所示的一条线段.(1)求关于的函数解析式.(2)当弹簧长度为时,所挂重物的质量是多少克?21.在复习了整式的运算后,数学老师让同学们总结:(为整数)成立时,,要满足的条件.请解答下列问题:(1)经过讨论,小郑同学总结了三种使(为整数)成立情形,请帮小郑同学补充完整:①;②;③___________.66⨯ABC ABC ABC O ABC D CB CD =()cm y ()g x y x 14cm 1n a =n a n 1n a =n 00a n ≠⎧⎨=⎩1a n =-⎧⎨⎩为偶数=a(2)若,求的值.22.【作品设计】如图1,是小明为趣味数学课设计的一个.其设计的意思是:三角形具有稳定性,表示大家学习数学的坚定信心,两个有公共顶点的三角形表示积极向上的态度;三个三角形合在一起表示合作学习的重要性.【数学原理】如图2,是小明设计时的数学原理图.即将两块形状相同,大小不相同的直角三角形纸片放入中,其中,圆心在直角边上.连接并延长,交于点.【设计制作】为参加评比,需要把作品制作出来.如果要求作品的,,那么小明觉得需要解决以下问题:问题1:需要找多大的圆形材料.问题2:需要知道点离开点的距离和点离开点的距离.【问题解决】(1)求:的半径.(2)求证:.(3)求的长.23.已知二次函数.()22110x x +--=x 1ogo 1ogo O 90CAB CED ∠=∠=︒O AB CO DE F 20cm BC =24cm DC =E B F D O ECF EDC △∽△DF ()243y x m x m =-+++(1)证明该二次函数过一定点.(2)当时,有最小值,请直接写出此时的取值范围.(3)过,的直线与二次函数图象的另一个交点为,若,,中,当其中一个点是另两点连线的中点时,求的值.24.定义:在四边形中,若一条对角线能平分一个内角,则称这样的四边形为“可折四边形”.例:如图1,在四边形中,,则四边形是“可折四边形”.利用上述知识解答下列问题.(1)在平行四边形、矩形、菱形、正方形中,一定是“可折四边形”的有:__________.(2)在四边形中,对角线平分.①如图1,若,,求的最小值.②如图2,连接对角线,若刚好平分,且,求的度数.③如图3,若,,对角线与相交于点,当,且为等腰三角形时,求四边形的面积.11x m ≤≤+y 2m -m (),0A m ()()0,30B m m +>C A B C m ABCD ABD DBC ∠=∠ABCD ABCD BD ABC ∠60ABC ∠=︒4BD =AD CD +AC DC ACE ∠25BDC ∠=︒DAC ∠60ABC ∠=︒AD CD =AC BD E 6BC =AEB △ABCD参考答案与解析1.C 【分析】本题考查了绝对值的意义,依题意,选项的每个数值的绝对值最小即为距离原点最近, 即可作答.【详解】解:∵,,∴的位置距离原点最近,故选:C .2.A【分析】本题考查了几何体的三视图.熟练掌握从前面看到的是主视图,从左边看到的是左视图是解题的关键.根据从前面看到的是主视图,从左边看到的是左视图对各选项进行判断即可.【详解】解:由题意知,A 中主视图与左视图不相同,符合要求;B 、C 、D 中主视图与左视图相同,不符合要求;故选:A .3.D【分析】本题考查了中心对称图形和轴对称图形的定义.寻找对称中心、对称轴是解题的关键;根据轴对称图形和中心对称的定义逐项判断即可.【详解】A .可以找到对称轴,使图形两侧能够完全重合,是轴对称图形,找不到一点旋转后与原图重合,不是中心对称图形,故选项不符合题意;B .找不到一点旋转后与原图重合,不是中心对称图形,找不到一条对称轴,使图形两侧能够完全重合,不是轴对称图形,故选项不符合题意;C .可以找到对称轴,使图形两侧能够完全重合,是轴对称图形,找不到一点旋转后与原图重合,不是中心对称图形,故选项不符合题意;11, 1.5 1.5,0.50.5,11-=-=+=+=1.5110.5∴->-=+>+0.5+180︒180︒180︒D .可以找到对称轴,使图形两侧能够完全重合,是轴对称图形,也可以到一点旋转后与原图重合,是中心对称图形,故选项符合题意;故选:D .4.B【分析】本题考查分式的基本性质,分式加减运算,解题的关键是熟练运用分式的基本性质,分式加减运算法则,本题属于基础题型.根据分式的基本性质和分式加减运算法则,逐项判断即可.【详解】解:A .,故选项错误,不符合题意;B .,故选项正确,符合题意;C .,故选项错误,不符合题意;D .,故选项错误,不符合题意.故选:B .5.A【分析】本题考查解直角三角形的应用,解题的关键是将题目中的条件进行转化,得到所求问题需要的条件即的长.根据题意可以求得的长度,从而可得的值.【详解】解:由题意可知,在中,,,故答案为:A .6.D【分析】本题考查了中位数,众数.熟练掌握中位数,众数是解题的关键.根据中位数,众数的定义求解作答即可.【详解】解:由题意知,中位数为第位数的平均数即,众数为,故选:D .7.B180︒22≠a a b b()()22a b a b a b a b a b a b+--==+--11a ab b +≠+1123532666m m m m m+=+=BC BC cos αRt ABC △m m AB AC ==3,1BC ∴===cos BC AB ∴==α1011、5050502+=60【分析】此题考查了一元一次不等式组的整数解,正确求出每个不等式的解集是解答本题的关键.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,继而得出答案.【详解】解:解不等式①得,,解不等式②得,,故不等式组的解集是,其整数解有1,2,3,4共4个,故答案为:B .8.A【分析】本题考查了旋转的性质,矩形的性质,勾股定理,熟练掌握旋转的性质是解题的关键.连接,,以A 为圆心,的长为半径,作,以B 为圆心,的长为半径,作,平行四边形的面积就是扫过的面积.【详解】解:连接,,以A 为圆心,的长为半径,作,以B 为圆心,的长为半径,作,扫过的面积为,及,围成的面积,即平行四边形的面积就是扫过的面积.由旋转可知,, ,是平行四边形,中,,,3112272x x -⎧≥⎪⎨⎪-≤⎩①②1x ≥4.5x ≤x ≤≤1 4.5DD 'CC 'AD DD'BC CC'CC D D ''CD DD 'CC 'AD DD'BC CC'CD DD' CC 'C D ''CD CC D D ''CD cm CD C D AB CD C D ''''=== ,2cm AD AD BC ''===4CC D D ''∴Rt ABD ∴BD ===C D BC BD ''∴=-=-4,故答案为:A .9.C【分析】本题考查的是一次函数与反比例函数的综合应用,平行线分线段成比例,一元二次方程根与系数的关系,先根据,可得,过点作轴的垂线,垂足分别为,可得,根据,联立直线与反比例函数解析式,根据一元二次方程根与系数的关系,即可求解.【详解】解:∵∴如图所示,过点作轴的垂线,垂足分别为,∴∴,即∵∴设的横坐标为∴联立即∴(CC D D S CD C D '''∴=⋅=⨯-=- 248MN AM BN =+12MN AB =,M N x ,C D 12CD OB =214x x -=MN AM BN=+12MN AB=,M N x ,C D AO MC ND∥∥AM MN NB OC CD DB ==MN CD AB OB=12MN AB =12CD OB=,M N 12,x x 214x x -=364y x ky x ⎧=-+⎪⎪⎨⎪=⎪⎩23604x x k -+-=121248,3kx x x x +==∴解得:故选:C .10.C 【分析】本题考查了直角三角形的性质,正方形的性质,全等三角形的判定与性质,在正方形中证明三角形全等,并运用全等的性质解题是中考的热点,本题作辅助线,构造出全等三角形是解题的关键.连接并延长交于H ,根据两直线平行,内错角相等可得,然后利用“角边角”证明和全等,根据全等三角形对应边相等可得,,再求出,然后根据等腰直角三角形的性质解答.【详解】解:连接并延长交于H ,四边形和四边形是正方形,三点在同一直线上,,,是直角三角形,为的中点,,在和中,,,,,214x x -===9k =GM AD MAH MFG ∠=∠AHM △FGM △HM GM =AH FG =DH DG =GM AD ABCD CEFG ,,B C E AD GF ∴∥,90MAH MFG CDA ∴∠=∠∠=︒GDH ∴ M AF AM FM ∴=AHM △FGM MAH MFG AM FMAMH FMG ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA AHM FGM ∴ ≌HM GM ∴=AH FG =是的中点,即,,,即,是等腰直角三角形,所以知道的长度,可求出,一定能求出线段的长.故答案为:C .11.【分析】本题考查了因式分解,熟练掌握提公因式是解题的关键.直接运用提公因式法因式分解即可.【详解】故答案为:12.##0.2【分析】本题主要考查概率,熟练掌握概率的求解公式是解题的关键.由图可得红色区域所对的圆心角为,然后根据概率公式可求解.【详解】解:由图可得:红色区域所对的圆心角为,∴;故答案为.13.3【分析】本题考查了相似三角形的应用.由题意得,列出比例式,代入数据即可求解.【详解】解:由题意得,∴,∵,,M ∴H G DM GH =12AD CD AH FG CG ===,A D A H C D C G∴-=-DG DH =DGH ∴ DG GH DM ()4a b a -24ab a -()4a b a =-()4a b a -1572︒72︒7213605P ︒==︒15PMO BNO ∽△△PMO BNO ∽△△PM OM BN ON=:2:1OM ON =6cm PM =∴,故答案为:3.14.##【分析】过点P 作于点D ,根据勾股定理求出,根据角平分线的性质得出,证明,得出,设,则,根据勾股定理得出,求出x 的值,最后求出结果即可.【详解】解:过点P 作于点D ,如图所示:∵是的直径,切于点,∴,∴,∵,,∴,∴,∵的平分线交于点,,∴,∵,∴,∴,∴,设,则,根据勾股定理得:,∴,()13cm 2BN PM ==120.5PD AC⊥4AB ==PD PB =Rt Rt CPD CPB ≌3CD BC ==PD PB x ==4AP x =-()22242x x -=+PD AC ⊥AB O BC O B AB BC ⊥90ABC ∠=︒5AC =3BC =4AB ==2AO BO ==ACB ∠AB P PD AC ⊥PD PB =PC PC =Rt Rt CPD CPB ≌3CD BC ==532AD =-=PD PB x ==4AP x =-222AP DP AD =+()22242x x -=+解得:,∴.故答案为:.【点睛】本题主要考查了切线的性质,勾股定理,角平分线的性质,三角形全等的判定和性质,解题的关键是作出辅助线,熟练掌握相关的判定和性质.15.780【分析】本题考查一元一次方程的实际应用,设主人的马的速度为x 里/日,根据主人追上客人时两人行驶路程相等列方程,即可求解.【详解】解:设主人的马的速度为x 里/日,根据题意,得,解得,即主人骑马的速度为780里/日.故答案为:780.16.【分析】本题考查了轨迹、相似三角形的判定和性质 、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.过点E 作,再根据等腰三角形的性质得,再证明,,设,,得,整理方程得根据方程有解,得,求出y 的最大值和最小值,得,根据再返回B 点,即可得出结论。
衢州市2020年中考数学二模试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)已知,,则的值为()A . 5B . 6C . 3D . 42. (2分)下列计算正确的是()A . a2+a3=a5B . a6÷a3=a3C . a2•a3=a6D . (a3)2=a93. (2分)甲、乙两人同时沿着一条笔直的公路朝同一方向前行,开始时,乙在甲前2千米处,甲、乙两人行走的路程S(千米)与时间t(时)的函数图象(如图所示),下列说法正确的是()A . 乙的速度为4千米/时B . 经过1小时,甲追上乙C . 经过0.5小时,乙行走的路程约为2千米D . 经过1.5小时,乙在甲的前面4. (2分) (2020·常州模拟) 五箱苹果的质量(单位:kg)分别为:19,22,21,20,19,则这五箱苹果质量的众数和中位数分别为()A . 19和21B . 19和20C . 19和19D . 19和225. (2分)下列条件能判断两个三角形全等的是()①两角及一边对应相等;②两边及其夹角对应相等;③两边及一边所对的角对应相等;④两角及其夹边对应相等A . ①③B . ②④C . ①②④D . ②③④6. (2分)已知相交两圆的半径分别为4和7,则它们的圆心距可能是()A . 2B . 3C . 6D . 11二、填空题 (共12题;共12分)7. (1分)计算: +(﹣1)0+(﹣1)22=________.8. (1分)(2012·北海) 在函数y= 中,自变量x的取值范围是________.9. (1分) (2019九上·大田期中) 若是方程的一个根,则的值是________.10. (1分)(2019·株洲) 若二次函数的图象开口向下,则 ________0(填“=”或“>”或“<”).11. (1分)(2020·黄冈模拟) 关于x的一元二次方程的两个实数根的平方和为12,则m的值为________.12. (1分) (2017八下·丽水期末) 如图,点A、B分别在双曲线和上,四边形ABCO为平行四边形,则□ABCO的面积为________13. (1分) (2017九上·东台期末) 小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是________.14. (1分)(2019·上海) 小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该校区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约________千克.15. (1分)(2020·涡阳模拟) 如图4,,、相交于点,且.设,,那么向量 ________.(用向量、表示)16. (1分)如图,分别切⊙ 于点,若,点为⊙ 上任一动点,则的大小为________°.17. (1分)(2019·龙湾模拟) 如图,在平面直角坐标系中,,点是线段上一点,将沿翻折得到,且满足 . 若反比例函数图象经过点,则的值为________.18. (1分) (2019九上·成都开学考) 如图,△ABC绕点A顺时针旋转45°得到△ ,若∠BAC=90°,AB=AC= ,则图中阴影部分的面积等于________.三、解答题 (共7题;共80分)19. (10分)(2020·宁波模拟)(1)解不等式组,并把解集在数轴上表示出来。
EAOD C 2023年浙江省衢州市中考数学模拟检测试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.如图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的21的概率是( ) A .61 B .31C .21 D .322.如图, 已知CD 为⊙O 的直径,过点D 的弦DE 平行于半径OA,若∠D 的度数是50o ,则∠C 的度数是( ) A .50o B . 40oC . 30oD .25o3.如图,抛物线顶点坐标 P (1,3),则函数y 随自变量 x 的增大而减小的x 的取值范围是( ) A .x ≥3 B .x ≤3 C .x ≥1D .x ≤14.二次函数22(1)4y x =-+-的最大值是( )A .2-B .4C .1-D .-4 5.有两块同样大小且含60°角的三角板,把它们相等的边拼在一起(两块三角板不重叠),可以拼出的四边形的个数( ) A .1B .2C .3D .46.△DEF 由△ABC 平移得到的,点A (-1,-4)的对应点为D (1,-l ),则点B (1,1)的对应点E ,点C (-1,4)的对应点F 的坐标分别为( ) A .(2,2),(3,4) B .(3,4),(1,7) C .(-2,2),(1,7) D .(3,4),(2,-2) 7.二次函数21(2)32y x =--的二次项系数、一次项系数、常数项分别为( ) A . 12,-2,-3B .12,-2,-1C .12,4,-3D .12,-4,`18.下列函数中,其图象同时满足两个条件①y 随着x 的增大而增大;②与y 轴的正半轴相交.则它的解析式为( ) A .у=-2χ-1B .у=-2χ+1C .у=2χ-1D .у=2χ+19.小数表示2610-⨯结果为( ) A . 0.06 B . -0.006C .-0.06D .0.00610.若21x y =⎧⎨=-⎩是下列某二元一次方程组的解,则这个方程组为( ) A . 351x y x y +=⎧⎨+=⎩B . 325x y y x =-⎧⎨+=⎩C . 251x y x y -=⎧⎨+=⎩D . 231x yx y =⎧⎨=+⎩11. 已知0x y +=,6xy =-, 则33x y xy +的值是( ) A .72 B .16 C .0 D .-72 12.下列多项式中不能用平方差公式分解的是( )A .-a 2+b 2B .-x 2-y 2C .49x 2y 2-z 2D .16m 4-25n 2p 213.7 的相反数的14减去-8 的倒数的 2 倍的差等于( ) A .2B . -2C .112-D .11214.济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S (吨)与时间t (小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( ) A .4小时 B .4.4小时 C .4.8小时 D .5小时 15.已知线段AB=3 cm ,延长BA 到C 使BC=5 cm ,则AC 的长是( )A .11 cmB .8 cmC .3 cmD .2 cm二、填空题16.如图是一束平行的阳光从教室的窗户射入的平面示意图,光线与地面所成角60°,在教室地面的影长 MN= 23m ,若窗户的下檐到教室地面的距离 BC= lm ,则窗户的上檐地面的距离 AC 为 m .17.如图,△ABC 中,AB=AC=5,BC=6,E 是BC 上任意一点,ED ∥AB ,EF ∥AC ,那么□ADEF 的周长是 .18.如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉未进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的21.。
2020年浙江省衢州市衢江区中考数学二模试卷一、选择题(本大题共10个小题,每小题3分,共30分.请在答题纸上将符合题意的正确选项涂黑,不选多选、错选均不给分.)1.﹣2的绝对值是()A.2B.﹣2C.D.﹣2.2020年全球新冠肺炎爆发.我国在全国人民的共同努力下,3月份疫情得到有效控制.但国际形势不容乐观.截止2020年5月17日国外新冠肺炎累计确诊约4640000,数字4640000用科学记数法可以表示成为()A.464×104B.46.4×105C.4.64×106D.0.464×1073.下列几何体中,俯视图为三角形的是()A.B.C.D.4.已知∠A=36°,则∠A的余角为()A.154°B.144°C.64°D.54°5.2020年创建文明城市正火热进行中.某校九5班需要挑选1名文明小卫士,小倩、小琳、小凯都报了名,梁老师从3名报名的同学中随机选取1名,则选中小凯的概率是()A.1B.C.D.6.下面是一位同学做的四道题:①(﹣2a)2=4a2;②(a+b)2=a2+b2;③a8÷a3=a2;④a3•a4=a12.其中做对的一道题的序号是()A.①B.②C.③D.④7.把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2﹣2D.y=(x+1)2﹣28.有一等腰直角三角形纸片,以它的对称轴为折痕,将三角形对折,得到的三角形还是等腰直角三角形(如图)依照上述方法将原等腰直角三角形折叠四次,所得小等腰直角三角形的周长是原等腰直角三角形周长的()A.B.C.D.9.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行十二日,问良马几何日追及之?”意思是:现有良马每天行走240里,驽马每天行走150里,驽马先走12天,问良马几天可以追上驽马?如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是()A.(20,4800)B.(32,4800)C.(20,3000)D.(32,3000)10.如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE=()A.B.C.2D.二、填空题(本大题共6个小题,每小题4分,共24分.请将答案填在答题纸的对应位置上.)11.计算:﹣24÷8=.12.在平行四边形ABCD中,∠A=50°,则∠B=度.13.二次函数y=(x+1)2+3的最小值是.14.已知关于x的不等式2x﹣m>﹣3的解如图所示,则m=.15.如图,物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上半部分圆锥的母线长为2cm,则下半部分圆锥的侧面积为cm2.16.如图,四边形OABC是平行四边形,点C在x轴上,反比例函数y=(x>0)图象经过点A(5,12),且与边BC交于点D.(1)反比例函数y=的解析式为;(2)若AB=BD,点D的坐标为.三、解答题(本大题共8小题,共66分.请在答题纸的相应位置写出文字说明、证明过程或演算步骤.)17.计算:+(+1)0﹣2sin45°.18.解方程:=.19.如图,已知在等边三角形ABC的边AC、BC上各取一点P、Q,且AP=CQ,AQ、BP 相交于点O,(1)求证:△ABP≌△ACQ;(2)求∠BOQ的度数.20.为评估九年级学生在“新冠肺炎”疫情期间“空中课堂”的学习效果,某中学抽取了部分参加调研测试的学生成绩作为样本,并把样本分为优、良、中、差四类,绘制成了如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?并补全条形统计图;(2)求扇形统计图中“优”的圆心角度数;(3)该校九年级共有600人参加了这次调研测试,请估算该校九年级共有多少名学生的成绩达到了优秀?21.如图,已知△ABC内接于⊙O,AB为⊙O的直径,BD⊥AB,交AC的延长线于点D.(1)E为BD的中点,连接CE,求证:CE是⊙O的切线;(2)若AC=3CD,求∠A的大小.22.在抗击新冠病毒期间,某公司为了员工们的身心健康,在休息日用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物释放过程中,y与x成反比例,如图所示,根据题中提供的信息,解答下列问题:(1)写出从药物燃烧到释放过程中,y与x之间的两个函数关系式及相应的自变量的取值范围;(2)据测定,当空气中每立方米的含药量低到0.45毫克以下时,人员方可入室,那么从药物燃烧开始,至少需要经过多少分钟后,人员才能进入教室?23.如图1,剪刀式升降平台由三个边长为4米的菱形和两个腰长为4米的等腰三角形组成,其中,AM∥A0N,B,B0分别在AM和A0N上可以滑动,A1,C1,B0始终在同一直线上.(1)为了安全起见,要求∠B1的度数不超过120°.①当∠B1的度数等于60°时,求输送货物的高度(AA0);②该吊车在作业时,能否将货物输送到30米的高度,并说明理由:(≈1.414,≈1.732).(2)如图2,是一个抛物线形的拱状建筑物,其底部最大跨度为8米,顶部的最大高度为24米.如图3,该平台在作业时,其顶部A,M两点恰好同时抵住抛物线,且AM=8米,请求出此时∠B1的度数.24.定义:若四边形的一条对角线把它分成两个全等的三角形,则称这个四边形为等角四边形,并且称这条对角线为这个四边形的等分线,显然矩形是等角四边形,两条对角线都是它的等分线.(1)如图网格中存在一个△ABC,请在图1,图2中分别找一个点D,并连接AD,BD,使得四边形ADBC是以AB为等分线的等角四边形.(2)已知,如图3,在平面直角坐标系中,直线y=﹣x+m与x轴相交于点A(8,0),与y轴相交于点B.①求m的值.②若点C的坐标为(5,0),点P、点Q是△OAB边上的两个动点,当四边形OCPQ是以OP为等分线的等角四边形时,求BQ的长.参考答案一、选择题(本大题共10个小题,每小题3分,共30分.请在答题纸上将符合题意的正确选项涂黑,不选多选、错选均不给分.)1.﹣2的绝对值是()A.2B.﹣2C.D.﹣【分析】根据负数的绝对值等于它的相反数解答.解:﹣2的绝对值是2,即|﹣2|=2.故选:A.2.2020年全球新冠肺炎爆发.我国在全国人民的共同努力下,3月份疫情得到有效控制.但国际形势不容乐观.截止2020年5月17日国外新冠肺炎累计确诊约4640000,数字4640000用科学记数法可以表示成为()A.464×104B.46.4×105C.4.64×106D.0.464×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.据此解答即可.解:数字4640000用科学记数法可以表示成为4.64×106.故选:C.3.下列几何体中,俯视图为三角形的是()A.B.C.D.【分析】注意几何体的特征,主视图与左视图的高相同,主视图与俯视图的长相等,左视图与俯视图的宽相同.解:根据俯视图的特征,应选C.故选:C.4.已知∠A=36°,则∠A的余角为()A.154°B.144°C.64°D.54°【分析】根据余角的定义可计算求解.解:∵∠A=36°,∴∠A的余角为90°﹣36°=54°,故选:D.5.2020年创建文明城市正火热进行中.某校九5班需要挑选1名文明小卫士,小倩、小琳、小凯都报了名,梁老师从3名报名的同学中随机选取1名,则选中小凯的概率是()A.1B.C.D.【分析】根据题意,可以先画出相应的树状图,然后即可得到总的可能性和抽到小凯的可能性,从而可以得到选中小凯的概率.解:树状图如下:由上可得,一共有3种可能性,其中抽到小凯的可能性有1种,故选中小凯的概率是,故选:C.6.下面是一位同学做的四道题:①(﹣2a)2=4a2;②(a+b)2=a2+b2;③a8÷a3=a2;④a3•a4=a12.其中做对的一道题的序号是()A.①B.②C.③D.④【分析】根据积的乘方①进行判断;根据完全平方公式对②进行判断;根据同底数幂的除法对③进行判断;根据同底数幂的乘法对④进行判断.解:①(﹣2a)2=4a2,所以①正确;②(a+b)2=a2+2ab+b2,所以②错误;③a8÷a3=a5,所以③错误;④a3•a4=a7,所以④错误.故选:A.7.把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2﹣2D.y=(x+1)2﹣2【分析】抛物线y=﹣x2的顶点坐标为(0,0),向左平移1个单位,再向下平移2个单位后所得的抛物线的顶点坐标为(﹣1,﹣2),根据顶点式可确定所得抛物线解析式.解:依题意可知,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣1,﹣2),所以所得抛物线解析式为:y=﹣(x+1)2﹣2.故选:B.8.有一等腰直角三角形纸片,以它的对称轴为折痕,将三角形对折,得到的三角形还是等腰直角三角形(如图)依照上述方法将原等腰直角三角形折叠四次,所得小等腰直角三角形的周长是原等腰直角三角形周长的()A.B.C.D.【分析】根据折叠的性质可知折叠一次后得到的等腰直角三角形与原等腰直角三角形是相似三角形,再根据相似比求周长比.解:由于折叠一次后得到的等腰直角三角形与原等腰直角三角形是相似三角形,得到的相似比=现在的斜边:原来的斜边=,∴折叠四次,所得小等腰直角三角形的周长是原等腰直角三角形周长的()4=倍.故选:B.9.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行十二日,问良马几何日追及之?”意思是:现有良马每天行走240里,驽马每天行走150里,驽马先走12天,问良马几天可以追上驽马?如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是()A.(20,4800)B.(32,4800)C.(20,3000)D.(32,3000)【分析】根据题意可以得到关于t的方程,从而可以求得点P的坐标,本题得以解决.解:设良马t天追上驽马,240t=150(t+12),解得,t=20,20天良马行走的路程为240×20=4800(里),故点P的坐标为(20,4800),故选:A.10.如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE=()A.B.C.2D.【分析】连接OC构建全等三角形,证明△ODC≌△OEB,得DC=BE;把CD+CE转化到同一条线段上,即求BC的长;通过等腰直角△ABC中斜边AB的长就可以求出BC=,则CD+CE=BC=.解:连接OC,∵等腰直角△ABC中,AB=,∴∠B=45°,∴cos∠B=,∴BC=×cos45°=×=,∵点O是AB的中点,∴OC=AB=OB,OC⊥AB,∴∠COB=90°,∵∠DOC+∠COE=90°,∠COE+∠EOB=90°,∴∠DOC=∠EOB,同理得∠ACO=∠B,∴△ODC≌△OEB,∴DC=BE,∴CD+CE=BE+CE=BC=,故选:B.二、填空题(本大题共6个小题,每小题4分,共24分.请将答案填在答题纸的对应位置上.)11.计算:﹣24÷8=﹣3.【分析】先确定符号,然后将除法转化为乘法进行计算.解:原式=﹣24×=﹣3,故答案为:﹣3.12.在平行四边形ABCD中,∠A=50°,则∠B=130度.【分析】在平行四边形ABCD中,因为∠A和∠B是一组相邻的内角,由平行四边形的性质可知,∠A+∠B=180°,代值求解.解:∵▱ABCD中,BC∥AD,∴∠A+∠B=180°,∴∠B=180°﹣∠A=180°﹣50°=130°.故答案为130.13.二次函数y=(x+1)2+3的最小值是3.【分析】根据二次函数的性质求解即可.解:因为a=1>0,所以二次函数y=(x+1)2+3的最小值为3,故答案为3.14.已知关于x的不等式2x﹣m>﹣3的解如图所示,则m=﹣1.【分析】根据数轴得出不等式的解集,再利用移项合并,将x系数化为1表示出解集,列出关于m的方程,求出方程的解即可得到m的值.解:不等式变形得:2x>m﹣3,解得:x>,由数轴得到解集为x>﹣2,∴=﹣2,解得:m=﹣1.故答案为:﹣1.15.如图,物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上半部分圆锥的母线长为2cm,则下半部分圆锥的侧面积为2cm2.【分析】先证明△ABD为等腰直角三角形得到∠ABD=45°,BD=AB,再证明△CBD 为等边三角形得到BC=BD=AB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积.解:∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD=AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD=AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,∴下面圆锥的侧面积=×2=2cm.故答案为:2.16.如图,四边形OABC是平行四边形,点C在x轴上,反比例函数y=(x>0)图象经过点A(5,12),且与边BC交于点D.(1)反比例函数y=的解析式为y=;(2)若AB=BD,点D的坐标为(8,).【分析】解法1:(1)把点A(5,12)代入y=(x>0),即可得到答案;(2)连接AD并延长交x轴于E,构造等腰△CDE,进而得到点E的坐标,根据待定系数法求得直线AE的解析式,再解方程组即可得到点D的坐标;解法2:过D作DH⊥x轴于H,过A作AG⊥x轴于G,依据△AOG∽△DCH,即可设CH=5k,DH=12k,CD=13k,进而得出D(13﹣8k,12k),再根据反比例函数y=(x >0)的图象经过点D,即可得到k的值,进而求得D的坐标.解:解法1:(1)∵反比例函数y=(x>0)的图象经过点A(5,12),∴k=12×5=60,∴反比例函数的解析式为y=,故答案为:y=;(2)如图,连接AD并延长交x轴于E,由A(5,12),可得AO==13,∴BC=13,∵AB∥CE,AB=BD,∴∠CED=∠BAD=∠ADB=∠CDE,∴CD=CE,∴AB+CE=BD+CD=13,即OC+CE=13,∴OE=13,∴E(13,0),由A(5,12),E(13,0),可得AE的解析式为y=﹣x+,解方程组,可得,,∴点D的坐标为(8,).故答案为:(8,);解法2:如图,过D作DH⊥x轴于H,过A作AG⊥x轴于G,∵点A(5,12),∴OG=5,AG=12,AO=13=BC,∵∠AOG=∠DCH,∠AGO=∠DHC=90°,∴△AOG∽△DCH,∴可设CH=5k,DH=12k,CD=13k,∴BD=13﹣13k,∴OC=AB=13﹣13k,∴OH=13﹣13k+5k=13﹣8k,∴D(13﹣8k,12k),∵反比例函数y=(x>0)的图象经过点A(5,12)和点D,∴5×12=(13﹣8k)×12k,解得k=,∴D的坐标为(8,).故答案为(8,).三、解答题(本大题共8小题,共66分.请在答题纸的相应位置写出文字说明、证明过程或演算步骤.)17.计算:+(+1)0﹣2sin45°.【分析】先化简二次根式,零指数幂,代入特殊角三角函数值,然后再计算.解:原式=2+1﹣2×=2+1﹣=+1.18.解方程:=.【分析】方程两边同时乘以x(x﹣1)化成整式方程,解方程检验后,即可得到分式方程的解.解:方程两边同时乘以x(x﹣1)得:2x=x﹣1,解得:x=﹣1,检验:当x=﹣1时,x(x﹣1)≠0,∴x=﹣1是原分式方程的解.19.如图,已知在等边三角形ABC的边AC、BC上各取一点P、Q,且AP=CQ,AQ、BP 相交于点O,(1)求证:△ABP≌△ACQ;(2)求∠BOQ的度数.【分析】(1)根据全等三角形的判定定理SAS证得结论;(2)利用(1)中全等三角形的对应角相等得到∠BOQ=∠BAC=60°.解:(1)如图,在等边△ABC中,AB=AC,∠BAC=∠C=60°,在△ABP与△ACQ中,,∴△ABP≌△ACQ(SAS);(2)由(1)知,△ABP≌△ACQ,∴∠ABP=∠CAQ,∴∠BOQ=∠ABO+∠BAQ=∠CAQ+∠BAQ=∠BAC=60°,即∠BOQ的度数是60°.20.为评估九年级学生在“新冠肺炎”疫情期间“空中课堂”的学习效果,某中学抽取了部分参加调研测试的学生成绩作为样本,并把样本分为优、良、中、差四类,绘制成了如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?并补全条形统计图;(2)求扇形统计图中“优”的圆心角度数;(3)该校九年级共有600人参加了这次调研测试,请估算该校九年级共有多少名学生的成绩达到了优秀?【分析】(1)由良的人数除以占的百分比得到调查的总人数,乘以20%即可得到结果;从而补全条形统计图;(2)成绩类别为“优”的扇形所占的百分比=成绩类别为“优”的人数÷被抽取的学生总数,它所对应的圆心角的度数=360°×成绩类别为“优”的扇形所占的百分比;(3)利用样本估计总体思想求解可得.解:(1)22÷44%=50(人),“中”的人数为:50﹣10﹣22﹣8=10(人),补全图形如下:(2)扇形统计图中“优”的圆心角度数为:=72°;(3)600×=120(人),答:估计该校九年级共有120名学生的成绩达到了优秀.21.如图,已知△ABC内接于⊙O,AB为⊙O的直径,BD⊥AB,交AC的延长线于点D.(1)E为BD的中点,连接CE,求证:CE是⊙O的切线;(2)若AC=3CD,求∠A的大小.【分析】(1)连接OC,根据等腰三角形的性质得到∠A=∠1,根据三角形的中位线的性质得到OE∥AD,得到∠2=∠3,根据全等三角形的性质得到∠OCE=∠ABD=90°,于是得到CE是⊙O的切线;(2)由AB为⊙O的直径,得到BC⊥AD,根据相似三角形的性质得到BC2=AC•CD,得到tan∠A==,于是得到结论.解:(1)连接OC,∵OA=OC,∴∠A=∠1,∵AO=OB,E为BD的中点,∴OE∥AD,∴∠1=∠3,∠A=∠2,∴∠2=∠3,在△COE与△BOE中,,∴△COE≌△BOE,∴∠OCE=∠ABD=90°,∴CE是⊙O的切线;(2)∵AB为⊙O的直径,∴BC⊥AD,∵AB⊥BD,∴△ABC∽△BDC,∴,∴BC2=AC•CD,∵AC=3CD,∴BC2=AC2,∴tan∠A==,∴∠A=30°.22.在抗击新冠病毒期间,某公司为了员工们的身心健康,在休息日用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物释放过程中,y与x成反比例,如图所示,根据题中提供的信息,解答下列问题:(1)写出从药物燃烧到释放过程中,y与x之间的两个函数关系式及相应的自变量的取值范围;(2)据测定,当空气中每立方米的含药量低到0.45毫克以下时,人员方可入室,那么从药物燃烧开始,至少需要经过多少分钟后,人员才能进入教室?【分析】(1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(12,9)代入即可,从图上读出x的取值范围;药物燃烧后,设出y与x之间的解析式y=,把点(12,9)代入即可;(2)把y≤0.45代入反比例函数解析式,求出相应的x的值即可.解:(1)设药物燃烧时y关于x的函数关系式为y=k1x(k1>0),代入(12,9)为9=12k1,解得k1=,设药物燃烧后y关于x的函数关系式为y=(k2>0),代入(12,9)为9=,解得k2=108.所以药物燃烧时y关于x的函数关系式为y=x(0≤x≤12),药物燃烧后y关于x的函数关系式为y=(x>12);(2)结合实际,令y=中,y≤0.45,解得x≥240.即从药物燃烧开始,至少需要经过240分钟后,学生才能进入教室.23.如图1,剪刀式升降平台由三个边长为4米的菱形和两个腰长为4米的等腰三角形组成,其中,AM∥A0N,B,B0分别在AM和A0N上可以滑动,A1,C1,B0始终在同一直线上.(1)为了安全起见,要求∠B1的度数不超过120°.①当∠B1的度数等于60°时,求输送货物的高度(AA0);②该吊车在作业时,能否将货物输送到30米的高度,并说明理由:(≈1.414,≈1.732).(2)如图2,是一个抛物线形的拱状建筑物,其底部最大跨度为8米,顶部的最大高度为24米.如图3,该平台在作业时,其顶部A,M两点恰好同时抵住抛物线,且AM=8米,请求出此时∠B1的度数.【分析】(1)①证明△A1C1A0、△A1A2C2、△A2A3C3和△A3A4A均为边长为4米的等边三角形,则AA0=4×4=16(米);②该吊车在作业时,不能将货物输送到30米的高度,由题意可求得∠A1A0C1=30°,利用余弦函数求得A0A1,再乘以4即可得出货物能输送到的最大高度,与30米比较即可;(3)以地面为x轴,顶部垂直于地面的直线为y轴,建立平面直角坐标系,用待定系数法求得解析式,再计算x=4时的函数值,从而可得一个菱形沿y轴方向的对角线长,则可得∠B1的度数.解:(1)①当∠B1的度数等于60°时,∵剪刀式升降平台由三个边长为4米的菱形和两个腰长为4米的等腰三角形组成,∴∠A1C1A0=∠B1=60°,A1C1=A0C1,∴△A1C1A0为边长为4米的等边三角形,∵菱形的对边平行,∴∠A2A1C2=∠A1A0C1=60°,∠A2C2A1=∠B1=60°,∠A1A2C2=∠A0A1C1=60°,∴△A1A2C2为边长为4米的等边三角形,同理可证△A2A3C3和△A3A4A均为边长为4米的等边三角形,∴AA0=4×4=16(米).∴输送货物的高度(AA0)为16米;②不能将货物输送到30米的高度,理由如下:∵∠B1的度数不超过120°.∴当∠B1=120°时,货物输送的高度最大,此时∠A1C1A0=∠B1=120°,∴∠A1A0C1=30°,∴A0A1=2×4×cos30°=4,∴输送货物的高度(AA0)为4×4 =16(米)<30米,∴不能将货物输送到30米的高度;(2)如图,以地面为x轴,顶部垂直于地面的直线为y轴,建立平面直角坐标系,则B(4,0),C(0,24),设抛物线的解析式为y=ax2+24,把B(4,0)代入,得:0=a×(4)2+24,解得a=﹣,∴y=﹣x2+24,∵AM=8米,∴把x=4代入得:y=16,∴一个菱形沿y轴方向的对角线为4,又∵菱形的边长为4米,∴∠B1=90°.即∠B1的度数为90°.24.定义:若四边形的一条对角线把它分成两个全等的三角形,则称这个四边形为等角四边形,并且称这条对角线为这个四边形的等分线,显然矩形是等角四边形,两条对角线都是它的等分线.(1)如图网格中存在一个△ABC,请在图1,图2中分别找一个点D,并连接AD,BD,使得四边形ADBC是以AB为等分线的等角四边形.(2)已知,如图3,在平面直角坐标系中,直线y=﹣x+m与x轴相交于点A(8,0),与y轴相交于点B.①求m的值.②若点C的坐标为(5,0),点P、点Q是△OAB边上的两个动点,当四边形OCPQ是以OP为等分线的等角四边形时,求BQ的长.【分析】(1)根据△ABC≌△ABD或△ABC≌△BAD,可画出图形;(2)①将点A(8,0)代入即可;②根据题意,分三种情况:Ⅰ,当点Q在OB上时,OQ=5,P是∠AOQ的平分线与AB 的交点时,Ⅱ,当四边形OCPQ是矩形时,当P,Q两点都在AB上时,分别画出图形进行计算.解:(1)由题意知:△ABC≌△ABD或△ABC≌△BAD∴可画出如图1、图2所示的两个等角四边形;(2)①∵直线y=﹣与x轴交于点A(8,0),将点A(8,0)代入得:﹣,解得:m=6;②由(1)知,直线解析式为y=﹣与y轴交于点B,∴B(0,6),根据题意,分三种情况:Ⅰ,当点Q在OB上时,OQ=5,P是∠AOQ的平分线与AB的交点时,∴BQ=OB﹣OQ=6﹣5=1;Ⅱ,当四边形OCPQ是矩形时,∵,∴,∴CP=,∴OQ=CP=,∴BQ=OB﹣OQ=6﹣=3.75;Ⅲ,当P,Q两点都在AB上时,∵OB=6,OA=8,∴AB=10,∴OH•AB=OB•OA,∴OH=4.8,∴BH==3.6,∴QH==1.4,∴BQ=BH﹣QH=3.6﹣1.4=2.2或BQ=BH+QH=3.6+1.4=5,综上所述,BQ的长为:1或3.75或2.2或5.。
第 1 页 共 17 页 衢州市数学中考二模试卷 姓名:________ 班级:________ 成绩:________ 一、 单选题 (共8题;共8分) 1. (1分) (2018七上·阜阳期末) 在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是( )
A . B . C . D . 2. (1分) (2016九上·萧山期中) 在一副52张扑克牌中(没有大小王)任抽一张牌是红桃的机会是( )
A . B . C . D . 0
3. (1分) (2017·哈尔滨模拟) 不等式组 的解集在数轴上表示为( ) A . B .
C . D . 4. (1分) (2016九上·南昌期中) 半径相等的圆的内接正三角形、正方形、正六边形的边长之比为( ) 第 2 页 共 17 页
A . 1: : B . : :1 C . 3:2:1 D . 1:2:3 5. (1分) (2020八上·新乡期末) 下列运算正确的是( ) A . B .
C . D . 6. (1分) 李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n人参加聚会,根据题意可列出方程为( )
A . =20 B . n(n-1)=20
C . =20 D . n(n+1)=20 7. (1分) 已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为( ) A . 15πcm2 B . 30πcm2 C . 60πcm2
D . 3cm2 8. (1分) 如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则下列结论中正确的有( ) (1)若通话时间少于120分,则A方案比B方案便宜20元 (2)若通话时间超过200分,则B方案比A方案便宜12元 (3)若通讯费用为60元,则B方案比A方案的通话时间多 (4)若两种方案通讯费用相差10元,则通话时间是145分或185分 第 3 页 共 17 页
A . 1个 B . 2个 C . 3个 D . 4个 二、 填空题 (共6题;共6分)
9. (1分) (2020·浦口模拟) - 的相反数是________; 的倒数是________. 10. (1分) (2020七下·溧阳期末) 水滴不断地滴在一块石头上,经过100年,石头上形成了一个深为6×10-2m的小洞,用科学计数法表示平均每月小洞增加的深度________m.
11. (1分) 如图,点D为△ABC边上的一点,连接CD,若∠ACD=∠B,AC= ,AB=3,则BD的长是________.
12. (1分) (2014·宜宾) 菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线长度是________cm. 13. (1分) (2018八上·巴南月考) 有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为2a+b,宽为3a+2b的大长方形,则需要C类卡片________张.
14. (1分) (2015九下·海盐期中) 如图,已知正方形ABCD的边长为12,BM=CN=5,CM,DN交于点O.则下列结论:
①DN⊥MC;②DN垂直平分MC;③sin∠OCD= ;④S△ODC=S四边形BMON中, 第 4 页 共 17 页
正确的有________(填写序号) 三、 解答题 (共9题;共20分) 15. (1分) 计算或化简下列各式
(1) ÷ • (2) a+2﹣ (3) ( + ﹣1)(x2﹣1) (4) ÷( ﹣x﹣2) (5) 先化简( + )÷ +1,然后选取一个a值代入求值. 16. (1分) (2014·杭州) 在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.
17. (3分) (2020·内乡模拟) 2020年的春节对于我们来说有些不一样,我们每一个人都在面临一个眼睛看不到的敌人,它叫病毒,残酷的病毒会让人惠上肺炎,在这个不能出门的悠长假期里,某中学随机对本校部分学生进行“假期中,我在家可以这么做! .扎实学习、 .快乐游戏、 .经典阅读、 .分担劳动、 .乐享健康”的网络调查,并根据调查结果绘制成如下两幅不完整的统计图(若每一位同学只能选择一项),请根据图中的信息回答下列问题.
(1) 这次调查的总人数是________人; (2) 请补全条形统计图,并说明扇形统计图中 所对应的圆心角是________度; (3) 若学校共有学生的1700人,则选择 有多少人?
18. (2分) 如图,直线y=2x+2与y轴交于点A,与反比例函数y= (x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2. 第 5 页 共 17 页
(1) 求反比例函数表达式; (2) 在y轴上是否存在点P,使以点P、A、H、M为顶点的四边形是平行四边形?如果存在,直接写出P点坐标;如果不存在,请说明理由.
(3) 点N(a,1)是反比例函数y= (x>0)图象上的点,在x轴上是否存在点Q,使得QM+QN的值最小?若存在,请求出点Q的坐标;若不存在,请说明理由. 19. (3分) (2014·茂名) 如图,某水上乐园有一个滑梯AB,高度AC为6米,倾斜角为60°,暑期将至,为改善滑梯AB的安全性能,把倾斜角由60°减至30°
(1) 求调整后的滑梯AD的长度; (2) 调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)
(参考数据: ≈1.41, , ≈2.45) 20. (3分) 某机场为了方便旅客换乘,计划在一、二层之间安装电梯,截面设计图如图所示,已知两层AD与BC平行,层高AB为8米,A、D间水平距离为 5米,∠ACB=21.5°
(1) 通过计算说明身高2.4米的人在竖直站立的情况下,搭乘电梯在D处会不会碰到头部; (2) 若采用中段加平台设计(如图虚线所示),已知平台MN∥BC,且AM段和NC段的坡度均为1:2(坡度是 第 6 页 共 17 页
指坡面的铅直高度与水平宽度的比),求平台MN的长度. (参考数据:sin21.5°= ,cos21.5°= ,tan21.5°= ) 21. (2分) (2020·平度模拟) 新冠肺炎疫情发生后,社会各界积极行动,以各种方式倾情支援湖北疫区。某车队需要将一批生活物资运送至湖北疫区。已知该车队计划每天运送的货物吨数y(吨)与运输时间x(天)之间满足如图所示的反比例函数关系。
(1) 求该车队计划每天运送的货物吨数y(吨)与运输时间x(天)之间的函数关系式(不需要写出自变量x的取值范围); (2) 根据计划,要想在5天之内完成该运送任务,则该车队每天至少要运送多少吨物资? (3) 为保证该批生活物资的尽快到位,该车队实际每天运送的货物吨数比原计划多了25%,最终提前了1天完成任务,求实际完成运送任务的天数。 22. (2分) (2017·广丰模拟) 如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45°.
(1) 试判断CD与⊙O的位置关系,并证明你的结论; (2) 若⊙O的半径为3,sin∠ADE= ,求AE的值. 23. (3分) (2019·成都模拟) 如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G. 第 7 页 共 17 页
(1) 求出抛物线C1的解析式,并写出点G的坐标; (2) 如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2 , 设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值: (3) 在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由. 第 8 页 共 17 页 参考答案 一、 单选题 (共8题;共8分) 1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 二、 填空题 (共6题;共6分)
9-1、 10-1、 11-1、 12-1、 13-1、 14-1、 三、 解答题 (共9题;共20分)
15-1、 第 9 页 共 17 页
15-2、 15-3、 15-4、
15-5、 第 10 页 共 17 页 16-1、 17-1、
17-2、 17-3、 第 11 页 共 17 页
18-1、 18-2、 第 12 页 共 17 页 18-3、 19-1、 19-2、