当前位置:文档之家› 盐胁迫对植物的影响

盐胁迫对植物的影响

盐胁迫对植物的影响
盐胁迫对植物的影响

盐胁迫对植物影响

摘要:土壤盐渍化是现代农业生产所面临的主要问题之一。植物为了抵御盐分胁迫,它们积极地适应生存环境,产生了一系列生理生化的改变以调节水分及离子平衡,维持正常的光合作用。本文主要从盐胁迫对植物细胞生理生化的影响、植物对盐的适应性及抗盐机理和盐对种子萌发的影响,在Nacl胁迫下,对种子发芽势、发芽率、发芽指数、活力指数等问题进行分析,探讨植物种子在不同盐分浓度下的耐盐性和提高植物的耐盐性,减轻土壤盐渍化危害。

关键词:Nacl胁迫;发芽率;发芽势;土壤盐渍化

To Summarize on Salt Stress on Plants

Abstract:Soil salinization is one of the main problems facing in a modern agricultural

production .Plants to resist salt stress, they actively adapt to the living environment,a series of physiological and biochemical changes in order to regulate water and ion balance and maintain normal photosynthesis. This article from the salt stress on plant cell physiology and biochemistry of plant adaptation to salt and salt tolerance mechanisms and the influence of salt on seed germination in Nacl stress on seed germination potential,germination rate,germination index,vigor index Problems are analyzed to explore the seeds under different salinity tolerance and improve the salt tolerance of plants to reduce soil salinity hazards.

Key words:Nacl stress;germination rate ;ermination energy;soil salinization 土壤盐渍化是人类面临的生态危机之一,土壤的盐碱化问题日益威胁着人类赖以生

存的有限的土地资源。全国有各种盐渍土地1亿hm2,其中现代盐渍土约0.373亿hm2,残余盐渍土约0.446亿hm2,其它潜在盐渍土约0.173亿hm2。盐碱地2.7×107hm2,其中7×107hm2为农田。土壤次生盐渍化面积在逐年增加,盐胁迫己成为世界范围内影响农业生产最重要的环境胁迫因子。如何提高植物的耐盐性、盐渍土的生物治理和综合开发是未来农业的重大课题。因此,了解盐胁迫的发生机理,盐胁迫下植物的生理生化变化,探讨盐胁迫作用机理及提高植物抗盐性的途径具有重要的理论意义[1]。中国的盐渍化土壤主要分布在东北、华北和西北地区。近年来,随着温室、大棚生产的发展,设施内土壤次生盐渍化程度不断加重,产量逐年下降,已成为国内外设施栽培中普遍存在的问题。提高植物的耐盐性是减轻土壤盐渍化危害的重要措施[2]。

1.盐胁迫对细胞生理生化特性的影响

1.1对细胞膜透性的影响在盐逆境中,植物细胞的质膜透性增加。耐盐性较强的植物细胞膜稳定性较强,质膜透性增加较少,伤害率低;而耐盐性弱的植物则相反。盐胁迫使葡萄愈伤组织和叶片的细胞膜透性增加,用Nacl溶液处理葡萄2d,当Nacl的浓度≤100mmol/L时,叶片细胞膜透性变化小;当Nacl的浓度>100mmol/L时,叶片细胞膜透性增加显著;当Nacl 浓度在75~200mmol/L时,叶片细胞膜透性随处理时间的延长明显增大。盐处理能使无花果叶片质膜透性增加,且增加幅度与品种耐盐性呈负相关。

1.2对细胞渗透调节物质的影响在盐胁迫下,果树体内常合成和积累一些渗透调节物质,主要有甘氨酸甜菜碱和脯氨酸等少数几种,以降低细胞渗透势,适应盐渍环境。甜

菜碱的积累能提高细胞的渗透调节能力,维持细胞膜的稳定性和完整性。目前的研究主要集中在甜菜碱醛脱氢酶(BADH)活性和转BADH基因植物方面。刘凤华等将山菠菜BADH 转入草莓,结果表明转基因草莓中该基因的转录水平、BADH活性明显提高,同时转基因草莓的耐盐性提高。果树在盐渍条件下都发生游离Pro的积累,且游离Pro的积累有利于果树耐盐性的提高。汪良驹等报道,盐诱无花果叶片的游离脯氨酸质量摩尔浓度随Nacl 浓度的增加呈“S”型变化,当Nacl浓度在200~300mmol/L时,游离脯氨酸的增加量最大。

1.3对无机离子的影响在盐胁迫下,Na+大量进入细胞,细胞内Na+增加,而K+外渗,使Na+/K+值增大,从而打破原有的离子平衡,当Na+/K+比值增大到阈值时植物即受害。低质量分数盐胁迫使石榴、桃叶片K+/Na+值明显提高,高质量分数盐胁迫使K+/Na+值降低,且存活植株各部K+/Na+>1,死亡植株(石榴135mmol/L盐处理,桃50mmol/L盐处理)的K+/Na+<1。苹果砧木小金海棠在盐胁迫下叶片和根系中Na+均随盐浓度的升高而迅速增加,但叶片中增加幅度明显小于根系中的增加幅度,而K+含量变化不明显。Nacl 处理的沙枣叶片积累Na+水平随外界盐浓度增大而提高,K+的含量略低于对照。Cl-是主要毒害离子,随着土壤Nacl浓度的提高,银杏、石榴、葡萄、桃和猕猴桃等5种落叶果树地上和地下部Cl-的浓度增加,但不同树种的表现差异明显。生长在盐胁迫下的酸橙植株叶片主要离子紊乱,表现在Na+与Ca2+对细胞壁上离子位点的竞争,过多的Na会抑制对Ca2+的吸收。Nacl处理增加了柑橘叶片中Na+和Cl+元素的质量分数,降低了Ca、Mg和K元素的质量分数,P、Fe、Mn、Zn、Cu等元素的质量分数无显著变化[3]。

2.植物的盐适应及抗盐机理

植物的抗盐机理实际就是解决高盐分浓度环境下植物如何生存的问题,即植物如何实现既要从低水势的介质中获取水分和养分,又不影响本身的代谢和生长发育的双重目标。植物的抗盐方式基本上是两种,一是避盐(逃避盐害) ,它是指通过降低盐类在体内积累,从而避免盐类的危害而实现的;二是耐盐(忍受盐害) ,它是指通过生理的或代谢的适应,而忍受已进入细胞的盐类。事实上植物对任何不良环境条件(逆境)的抗御能力都可以分为避性和耐性,即所谓的“逃避”和“忍受” 。

2.1避盐机理

2.1.1植物吸收了盐分并不在体内积存而主动地排泄到茎叶表面,而后通过雨水刷、风吹、昆虫粘附等方式脱落,从而降低植物体内的盐分。这是盐生植物最通常方式,如柽柳和匙叶草等。它们具有盐腺的构造,通过盐腺排盐(排出的主要为钠盐) 。这些植物在正常的环境下长势反而较差,甚至不能存活,属“真盐生植物” 。有些植物可将吸收的盐分转移到老叶中积累,老叶最后脱落,以此来阻止盐分在体内的过量积累。有的植物可通过自由吐水将盐分排出体外[4]。

2.1.2植物通过薄壁细胞的大量增加,吸收和储藏大量水分或增加其肉质化程度而把吸进的盐类进行稀释,即通过吸水与加快生长速率,以冲淡细胞内盐分浓度,使植物体内的盐浓度保持在较低的水平。如红树虽然每天接受1.7mmol/ L 盐分,但叶片的盐浓度保持恒定(510~560mmol/ L)。有些植物还能将大部分盐分贮存在液泡内,降低细胞质内盐离子浓度,使植物免受盐渍伤害。

2.1.3植物可通过细胞质膜的调节降低根细胞对某些离子的透性而“拒绝” 一部分子离子进入细胞。另外,植物根部能向土壤分泌根系分泌物,主要成分为有机酸和氨基酸类,它们能与土壤溶液中的某些离子起螯合或络合作用,所以在一定范围内能减少对这些离子的吸收。

2.2植物的耐盐机理耐盐是指通过生理或代谢过程来适应细胞内的高盐环境的现象。这对盐生植物与非盐生植物的抗盐能力都有特别重要的意义。耐性机理有如下三个:2.2.1渗透调节它是耐盐的最常见方式,它是指在一定的胁迫范围内,一些植物通过细胞内累积对原生质无伤害的物质,来调节细胞渗透势,而起抗渗透胁迫作用的耐盐方

式。渗透调节物质的特征是分子量小、十分易溶于水、在生理pH值范围内不带净电荷、能为细胞膜所保持住、很少引起酶结构的变化;它们的生成又必须是迅速的,而且要积到足以引起渗透调节作用的量。它们一般为多元醇和偶极含氮化合物,在高等植物中最主要的是脯氨酸和甜菜碱两种。高等植物的脯氨酸存在于原生质中,它在抗性中的作用有两点:①作为渗透调节物质,适合于用来保持原生质与环境的渗透平衡,防止水分散发;

②保持膜结构的完整性,因为脯氨酸与蛋白质的相互作用能增加蛋白质的可溶性和减少可溶性蛋白的沉淀,增强蛋白质的可溶性和减少可溶性蛋白的沉淀,增强蛋白质和蛋白质间的水合作用。在受到胁迫时,脯氨酸大量积累,甚至达到正常水平的几十倍到几百倍。甜菜碱作用在盐生植物中累积在细胞原生质里,形成低渗透势,从而与液泡中的盐分保持渗透平衡,保持植物在盐渍条件下的正常生理活动。

2.2.2消除盐对酶或代谢产生的毒害作用。很多抗盐植物的某些酶活性要求有高盐环境,如玉米幼苗用Nacl 处理时可提高过氧化物酶活性,大麦幼苗在盐渍条件下仍保持丙酮酸激酶的活性,但不耐盐的植物则缺乏这种特性。抗盐植物在代谢上的特点就是高盐下保持一些酶的活性,维持正常的代谢[5]。

2.2.3通过代谢物与盐类结合,减少游离离子对原生质的破坏作用。如细胞内广泛存在的清蛋白,它能提高亲水胶体对盐凝固作用的抵抗力,从而避免了原生质受电解质影响而凝固。同时当细胞内氢离子浓度与含水量发生变化,以及盐类进入细胞时,它可对原生质起到一定的稳定作用。植物质膜上存在一种水孔蛋白,这种蛋白可以在膜上形成选择性的水运输通道,允许水分子线形自由通过,而将离子或其它有机物拒之门外。水孔蛋白的活力对于植物耐盐极为重要,有证据表明,在受到盐胁迫时植物通过控制水孔蛋白的活性来抵御逆境。一些肉质植物在盐渍或水分胁迫下可以改变光合碳同化途径,即由C3途径变为CAM途径。如日中花;有些盐生植物也可以从C3转变成C4途径[6]。另外,盐生植物的耐盐机制还可分为非酶促保护系统和酶促保护系统。非酶促保护系统包括GSH、ASA、VE、类胡萝卜素等。此外酚类、类黄酮化合物、脯氨酸、甘露醇、多胺、激动素等也有清除活性氧的功效。在正常条件下,植物体内的活性氧的产生和淬灭是处于动态平衡的;盐胁迫下,这种平衡被打破,若保护系统不能及时淬灭过量的活性氧,就可导致生物膜受损等一系列伤害。因此,活性氧清除系统对植株抗盐生理有十分重要的作用,如类胡萝素可竞争性地利用光合系统渗漏的能量阻止活性氧的形成有些脂溶性的抗氧化物,GSH等则直接清除活性氧或作为次级抗氧化物还原氧化型的抗氧化物。酶促保护系统包括SOD、POT、CAT 等酶,其中,SOD是抗氧化系统中一种极为重要和在生物体内普遍存在的金属酶。在酶促保护系统中,SOD 处于核心地位[7]。

3.盐对种子萌发的影响

虽然大多数研究认为盐胁迫对种子萌发有显著的抑制作用,但关于低浓度促进萌发也时有报道[8] 。张淑艳等[9]发现,盐胁迫下,草地早熟禾种子的活力指数总体呈下降趋势,但低浓度下个别品种活力指数超过了对照。种子能否在盐胁迫下萌发成苗,是植物在盐碱条件下生长发育的前提,因此在盐胁迫下研究种子萌发状况具有重要的意义。虽然目前还没有植物种子萌发阶段与后期生长阶段耐盐性相关的证据,但充分了解盐对种子萌发的影响,探索盐害机理是十分必要的。盐浓度影响种子的萌发主要有三方面效应,即增效效应、负效效应和完全抑制效应。低浓度盐分对种子萌发有促进作用,随盐分升高,种子发芽率、发芽指数和活力指数均降低,盐浓度过高会抑制种子萌发。浓度0.4 %以下的盐胁迫能促进荆条、白蜡和沙枣种子的萌发,随着盐浓度增加种子萌发受到不良影响,光照对植物种子的萌发有明显的促进作用。夏至草种子的发芽率、发芽势、发芽指数、胚根、胚轴生长也均随着盐浓度的增加呈下降趋势,对无芒雀麦的研究也得出相似的结论.在不同钠盐胁迫下,碱性盐( NaHCO、Na2CO) 较中性盐(NaCl) 更显著地降低了高冰草种子的发芽率。由此可见,不同的盐分对种子萌发影响效应不同。

发芽指标的计算公式

1)发芽势的测定发芽势(GE) = 发芽初期(规定日期)正常发芽粒数/供试种子数×100%

2)发芽率的测定发芽率(GP) = 发芽终期(规定日期)正常发芽粒数/供试种子数×100%

3)发芽指数的测定发芽指数(GI) =∑Gt/Dt ( 式中Gt 为在t 时间的每日新增发芽数,Dt为相应天数)

4)活力指数的测定活力指数(VI)=S×GI (S:幼苗平均鲜重)[10]

4.小结与讨论

植物耐盐性的大小由植物的遗传性决定,植物耐盐性状是一种典型的数量性状,是受多基因控制决定而表现出来的,其分子机制十分复杂,涉及多种基因和大分子的协同作用[11]。其中与耐盐性密切相关的是植物的发育阶段和植物种类及品种,盐分抑制种子萌发,其抑制程度随着盐浓度的增加而增大。植物耐盐性状是一种典型的数量性状,是受多基因控制决定而表现出来的,其分子机制十分复杂,涉及多种基因和大分子的协同作用,因此在不同盐分浓度下,树种耐盐性指标不是完全相同的。植物适应环境的结构机理是复杂的,不同环境导致植物体结构的不同,盐渍环境不但影响植物的生长,而且诱导其结构和形态发生变化变化了的盐生植物结构,特征就是对盐碱逆境的适应[12]。

参考文献:

[1]李影丽.Nacl胁迫对4树种生理生化和光合特性影响的研究[J].浙江林学院.2008.06(2):62~64.

[2]李青峰.Nacl胁迫对黒籽南瓜和白籽南瓜种子发芽的影响[J].河北省永清中学,2010.2,(02) :50~51.

[3] 刘遵春,刘用生.盐胁迫对果树生理生化的影响及耐盐性指标的研究进展[J].安徽农业科学,2006,(14) :33~34.

[4]郑国琦,许兴,徐兆桢.耐盐分胁迫的生物学机理及其基因工程研究进展[J].生命科学研究学报,2002 ,23(1) :22~23.

[5]杜秀敏,殷文璇.植物中活性氧的产生及清除机制[J].生物工程学报,2001 ,17(2) :121~122.

[6]蒯本科,顾红雅.渗透胁迫诱导的植物体内信号及相关基因克隆研究[J].资源科学,1999 ,21(9) :42~43.

[7] 赵可夫.盐分胁迫和水分胁迫对盐生和非盐生植物细胞膜脂过氧化作用的效应[J].植物学报,1993 ,35 (7) :519~523.

[8] Balakrishnan K,Rajendran C,Kulandaivelu G.Differential responses of iron,magnesium,and z inc deficiency on pigment composition,nutrient content ,and photosynthetic activity in tropical fruit crops[J].Photosynthetica,2000,38:477-479 .

[9] Hormann H,Neubauer C,Schreiber U.On the relationship between chlorophyll fluorescence quenching and the quantum yield of electron trans port in isolated thylak oids[J].Photosynth.Res,1994,40:93-106 .[10] 李存桢,刘小京,黄玮,乔海龙.不同盐分胁迫对中亚滨藜种子萌发及其恢复的影响[J].河北农业大学学报,2005,(06):46~47.

[11] 夏尚光,张金池,梁淑英.Nacl胁迫对3种榆树幼苗生理特性的影响[J].河北农业大学学报,2008,(02) :53~56.

[12] 杨美娟,杨德奎,李法曾.中亚滨藜盐囊泡对Nacl胁迫的响应[J].湖北农业科学,2009,(04) :60~62.

果树耐盐性研究进展

果树耐盐性研究进展 摘要:果树在长期的进化过程中,形成了丰富的遗传多样性,存在大量特异的 资源,蕴藏着珍贵的特有基因。加强对这些资源遗传多样性研究,挖掘有价值基因,阐明果树耐盐蛋白的功能及调控机制在科学研究上具有重要的意义。植物耐 盐性是一个受多基因控制的数量性状,克隆耐盐相关基因,通过遗传工程手段提 高果树的抗盐性,培育耐盐碱果树品种还有待进一步的努力。 关键词:果树;耐盐性;研究;进展 1 果树耐盐机制 1.1 渗透调节 盐胁迫下,果树的渗透调节主要通过积累无机离子和小分子有机物质实现的,特别是轻度和中度盐胁迫条件下主要由渗透调节作出响应,从而降低根际区土壤 水势。对积累无机离子获得渗透调节的果树来讲,排盐越有效,其主动渗透调节 的能力越差。参与果树渗透调节的无机离子主要有Na+、K+和Cl-,但这几种离子 在不同的果树中是不同的。有些果树选择K+而排除Na+,有些果树选择Na+而排 除K+。虽然盐胁迫可引起Cl-含量的增加,但有人认为Cl-是作为平衡Na+或K+电 荷的物质被动进入细胞内,对植物的渗透调节作用不大。果树体内积累更多的无 机离子将影响果实的品质,有机物质的积累显得更为重要。在果树中发现有多种 相溶性有机物质,如含N化合物(脯氨酸、甜菜碱、氨基酸、多胺)和糖类及其 衍生化合物等。这些相溶性物质可以维持细胞膨压,而且能稳定细胞中酶分子的 活性构象,保护酶免受盐离子的直接伤害,以及能量和N的利用库。 1.2 离子的选择 吸收盐土植物和淡土植物根系细胞质都不能忍受高浓度的盐,因此在盐条件 下这些植物或者是限制过多的盐进入(即拒盐),或者是把Na+离子分配到各个 不同组织中从而便利代谢功能(即分配原理)。限制过多的Na+进入到根系细胞 或者木质部的一种途径是维持一个最佳的细胞质K+/Na+比值。一般地,在轻度或 中度盐害条件下,拒盐是十分有效的,但是高盐条件下盐土植物通过分配原理抵 抗盐胁迫。拒盐是相对的,无论是耐盐还是盐敏感的果树,细胞内都含有一定浓 度的Na+。与植物拒盐性非常相关的是果树对离子的选择吸收。由Na+引起的K+ 吸收减少是众所周知的竞争过程。较高的K+/Na+选择性与柑橘的耐盐性有关。除 了离子的选择还可对离子比进行选择运输。盐胁迫下耐盐的油橄榄品种具有较高 的K+/Na+比,梢K+/Na+高于根K+/Na+。 1.3 离子区域化 盐胁迫下,果树吸收Na+、Cl-等离子必须累积于液泡中,否则会干扰细胞质 及叶绿体等细胞器中的生理生化代谢。盐分积累于液泡中是维持细胞质中高 K+/Na+的最有效机理之一。一个盐敏感的大麦品种细胞质中Na+离子水平是耐盐 品种的10倍。中度盐胁迫条件下,一些植物似乎对主要的离子(如K+、Ca2+、Mg2+和NO-3)产生选择性,将其分配到幼叶;在重度盐胁迫条件下,对NO-3没有吸收。盐离子区域化依赖离子的跨膜运输。 2 果树对盐胁迫的生理应答 2.1 细胞膜透性 膜系统是植物盐害的主要部位,细胞膜是感受逆境胁迫最敏感的部位之一。 葡萄、枣和苹果叶片的细胞膜透性均随NaCl胁迫浓度的升高而增大。发现水杨酸可以降低NaCl胁迫下阿月浑子叶片的电解质渗漏率,降低相对含水量以减轻盐害。

博士论文 涝害胁迫研究进展

中国农业大学博士学位论文第一章植物的涝害胁迫及其适应帆制研究i挂胜 文献综述 第一章植物的涝害胁迫及其适应机制研究进展 土壤中存在的水分超过田问持水量而对植物产生的伤害称为涝害。涝害是世界上许多国家的重火灾害,根据联合国粮农组织(FAO)的报告和国际土壤协会绘制的世界土壤图估算.世界上水分过多的土壤约占12%。我国也是涝害严重的国家。黄淮海平原、长江中下游、东南沿海、松花江和辽河中下游等地是主要的产粮基地.同时也是洪涝灾害发生较多的地区,尤以黄 淮海平原和睦江中下游最为严重,占全国受灾面积的3/4以上(刘祖祺,1994)。根据国家统计 局、中国气象局、国家防汛抗旱总指挥部办公室共同核定.2000年全国农作物受涝面积732.3 万公顷.其中成灾432.1万公顷.绝收132.4万公顷.造成的经济损失仅次子旱灾。因此,了解 植物对水涝胁迫响应的分子机理,从而合理地选择和定向培育耐涝性品种,对于我国的农业生 产具有重要的理论和现实意义。本文将就目前本研究领域的进展作一概述。 1.涝害胁迫和植物反应 涝害对植物的危害主要原因不在于水自身,而是由于水诱导的次生胁迫而造成的。涝害排除了十壤孔隙中的气体,减少了植物组织与大气问的气体交换(因为气体,特别是氧气,在水中比在空气中的扩散速率降低了10,000倍)(Armstrong。1979),这导致根部区域形成缺氧或厌氧环境,这是涝害各种反应中的主要决定因子。由于土壤中的氧气迅速亏缺,引起十壤和厌氧微生物产生了许多对植物有害的物质,如硫化物、二氧化碳、酸、醛、酮等,这些化合物将随着淹水的不同程度影响着植物的正常生长和发育。另外,在植物体内由于淹水缺氧,导致根部厌氧代谢,发酵产生的乙醇、乙醛等物质对细胞具有毒性,对蛋白质结构造成破坏(Pemta,1992):乳酸发酵产生的乳酸及液泡H+外渗等原因会导致细胞质酸中毒(Roberts,1985):发酵还会使线粒体结构破坏,细胞能荷F降,细胞中氧自由基增加,保护酶活性下降,质膜透性剧增,导致细胞严重的厌氧伤害(Fan,1988:Robers,1992:Sachs,1986)。植物对涝害会作出一系列反应,最早的反应之一就是气孔的关闭,虽然在一定时间内,甚至在较长时间内淹水并不引起植株叶片水分亏缺,有时还会提高叶片的水势.但仍会很快引起气孔关闭,叶片气孔阻力增加。由于气孔关闭,导致受涝植物光合作用迅速下降.光合作用下降的后期又相继地与羧化酶受抑制、失绿、叶子衰老和脱落有关。同时碳水化台物的运输速率下降。此外,淹水还会使植物表现出矿质元素吸收的变化,激素含量和平衡的改变,晟后导致生氏的抑制,直至死亡(姜华武,1999;王文泉,2001:卓仁英,2001)。 2.涝害胁迫下植物代谢途径的改变 植物受涝时,由于根部区域缺氧不能进行正常的有氧代谢,而为了维持正常的或至少是最低的生命活动,能量的供应也是必不可少的。因此在厌氧条件F,细胞能量的供应主要依赖于 无氧发酵途径产生ATP。在受涝时.主要有三种活跃的发酵途径:乙醇发酵途径、乳酸发酵途 径平【1植物特有的丙氨酸发酵途径(由谷氨酸飘I丙酮酸通过丙氨酸氪基转移酶产生丙氩酸的过程,__中国农业大学博士学位论文第一章植物的涝害胁迫及其适应机制研究进展 幽1一1)。动物中只有乳酸发酵途径。乙醇和乳酸发酵途径广泛存在于兼性厌氧细菌和酵母中。 庚氧诱导的不键庚氯诱导的

植物对盐胁迫的反应

植物对盐胁迫的反应 植物对盐胁迫的反应及其抗盐机理研究进展 杨晓慧1,2,蒋卫杰1*,魏珉2,余宏军1 (1.中国农业科学院蔬菜花卉研究所,北京100081;2.山东农业大学园艺科学与工程学院,山东泰安271018) REVIEW ON PLANT RESPONSE AND RESISTANCE MECHANISM TO SALT STRESS YANG Xiao-hui1,2,JIANG Wei-jie1*,WEI Min2,YU Hong-jun1( 1.Institute of Vegetables and Flowers,Chinese Academy of Agricultural Science,Beijing100081,China;2.College of Horticulture Science and Engineering,Shandong Agriculture University,Taian 271018,China) Key words:Iron stress,Osmotic stress,Salt resistant mechanism,Plant 摘要:本文从植物形态发育、质膜透性、光合和呼吸作用以及能量代谢等方面概述了盐胁迫下植物的生理生化反应,分析了盐害条件下离子胁迫和渗透胁迫作用机理以及植物的耐盐机制:植物小分子物质的积累、离子摄入和区域化、基因表达和大分子蛋白质的合成等,并简要综述了植物抗盐的分子生物学研究进展。 关键词:离子胁迫;渗透胁迫;耐盐机制;植物 中图分类号:S601文献标识码:A文章编号:1000-2324(2006)

盐胁迫对植物的影响

盐胁迫对植物的影响 植物的抗盐性: 我国长江以北以及沿海许多地区,土壤中盐碱含量往往过高,对植物造成危害。这种由于土壤盐碱含量过高对植物造成的危害称为盐害,植物对盐害的适应能力叫抗盐性。根据许多研究报道,土壤含盐量超过0.2%~0.25%时就会造成危害。钠盐是形成盐分过多的主要盐类,习惯上把硫酸钠与碳酸钠含量较高的土壤叫盐土,但二者同时存在,不能绝对划分,实际上把盐分过多的土壤统称为碱土。世界上盐碱土面积很大,估计占灌溉农田的1/3,约4×107ha,而且随着灌溉农业的发展,盐碱面积将继续扩大。我国盐碱土主要分布于西北、华北、东北和海滨地区,盐碱土总面积约2~7×107ha,而且这些地区都属平原,盐地土层深厚,如能改良盐碱危害,发展农业的潜力很大,特别应值得重视。 土壤盐分过多对植物的危害: 1.生理干旱:土壤中可溶性盐类过多,由于渗透势增高而使土壤水势降低,根据水从高水势向低水势流动的原理,根细胞的水势必须低于周围介质的水势才能吸水,所以土壤盐分愈多根吸水愈困难,甚至植株体内水分有外渗的危险。因而盐害的通常表现实际上是旱害,尤其在大气相对湿度低的情况下,随蒸腾作用加强,盐害更为严重,一般作物在湿季耐盐性增强。 2.离子的毒害作用:在盐分过多的土壤中植物生长不良的原因,不完全是生理干旱或吸水困难,而是由于吸收某种盐类过多而排斥了对另一些营养元素的吸收,产生了类似单盐毒害的作用。 3.破坏正常代谢:盐分过多对光合作用、呼吸作用和蛋白质代谢影响很大。盐分过多会抑制叶绿素生物合成和各种酶的产生,尤其是影响叶绿素-蛋白复合体的形成。盐分过多还会使PEP羧化酶与RuBP 羧化酶活性降低,使光呼吸加强。生长在盐分过多的土壤中的作物(棉花、蚕豆、番茄等),其净光合速率一般低于淡土的植物,不过盐分过多对光合作用的影响是初期明显降低,而后又逐渐恢复,这似乎是一种适应性变化。盐分过多对呼吸的影响,多数情况下表现为呼吸作用降低,也有些植物增加盐分具有提高呼吸的效应,如小麦的根。呼吸增高是由于Na+活化了离子转移系统,尤其是对质膜上的Na+、K+与A TP活化,刺激了呼吸作用。盐分过多对植物的光合与呼吸的影响尽管不一致,但总的趋势是呼吸消耗增多,净光合速度降低,不利于生长。 一、实验目的 盐胁迫对植物生长发育的各个阶段都有不同程度的影响,如种子萌发、幼苗生长、成株生长等。不同种类的植物受盐胁迫影响的程度也各不相同。本实验主要观察Na2CO3对小麦种子萌发过程的影响,探讨小麦种子在盐胁迫下的萌发特性,对小麦的耐盐能力做出了初步评价。通过实验了解盐胁迫对植物(种子萌发)的影响;掌握种子萌发过程中发芽率、发芽势、发芽指数、芽长、总长、芽重、总重等各项指标的观察和计算方法;各项指标在盐胁迫条件下的变化趋势,绘制盐浓度与生长指标相关曲线,并分析盐胁迫对种子萌发的影响。 二、仪器设备和材料 电子天平;培养皿(直径120mm),滤纸(直径125mm定量滤纸若干),500ml、200ml烧杯,250ml 容量瓶,10ml移液管,玻璃棒,镊子,毫米刻度尺,剪刀;次氯酸钠、碳酸钠;小麦种子等。 三、实验方法和步骤 1.预处理 (1)种子的预处理:用10%的次氯酸钠消毒10min,蒸馏水冲洗数次后,于培养皿中做发芽实验。

植物水涝胁迫研究进展

植物水涝胁迫研究进展 摘要:本文概述了植物水涝胁迫的国外研究现状及进展,介绍了水涝胁迫对植物的主要危害,阐述了植物对耐涝的适应性机理,提出并讨论了在植物耐涝方面有待进一步探讨和研究的问题,以期为该领域的研究提供一定的参考。 关键词:水涝胁迫适应性机理研究进展 按照Levitt的分类,水分胁迫包括干旱胁迫(水分亏缺)和水涝胁迫(洪涝)。水涝胁迫对植物产生的伤害称为涝害。涝害是世界上许多国家的重大灾害。随着全球环境的不断恶化,生态系统严重破坏,全球气候异常加剧,雨量分布极不均衡,局部地区水灾不断,土壤淹水现象更是极为常见,世界各国都非常重视防涝抗洪、水土保持等问题的研究。我国也是一个洪涝灾害比较严重的国家,大约有2/3国土面积存在不同程度的涝害,危害极大。认识植物对水涝胁迫响应的机理,揭示其适应机制,从而合理地选择和定向培育耐涝性品种,减轻淹水对农业生产的危害,对于我国的农业生产具有重要的理论和现实意义。 一、水涝胁迫对植物的危害 植物对水的需有一定限度的,水分过多或过少,同样对植物不利,水分亏缺产生旱害,抑制植物生长;土壤水分过多产生涝害,植物生长不好,甚至烂根死苗[1]。涝害会影响植物的生长发育,尤其是旱生植物在水涝情况下其形态、生理都会受到严重影响,大部分维管植物在淹水环境中均表现出明显的伤害,甚至死亡。但涝害对植物的危害主要原因不在于水自身,而是由于水分过多所诱导的次生胁迫而造成的。 1.水涝胁迫对植物细胞膜的影响 当植物处于水涝状态时,细胞自由基的产生与清除之间的平衡遭到破坏,造成自由基的积累从而破坏膜的选择透性。晏斌等研究后认为,在涝渍胁迫下玉米体正常的活性氧代平衡破坏,首先是SOD活性受抑制,导致O2-增生。故认为叶片的涝渍伤害可能主要是过量O2-积累产生MDA,引起蛋白质、核酸分子发生交联反应和变性、破坏膜和生物大分子物质,加快

环境污染对生物的影响

[案例分析]生物教学:环境污染对生物的影响1 教学活动对象:高一学生 教学活动准备:开放生物实验室,并准备学生活动所需的各类仪器装置;实验所需各种生物、各类污染物等主要由学生自己采集、准备。 教学活动过程:该主题的教学活动过程主要分为以下步骤: (1) 教师提出课题“环境污染对生物的影响”。 (2) 学生调查学校周围环境中的主要污染现象,分析污染原因。如让学生走访区环保局和环境监测站,随同专业人员采集黄浦江水样、测定水样,调查学校周围环境的空气、水质和绿化现状等。 (3) 学生经过对周边环境的各类污染因素与常见生物的关系的调查和分析后,组成若干课题研究小组(每组3-5人),各自选定实验研究项目。 (4) 各小组相互评议实验研究项目,进行可行性论证,然后确定实验研究项目。 (5) 各小组设计具体的实验研究方案。实验方案中应包括以下内容:①研究题目;②研究目的;③实验原理;④所需材料(应具有可行性);⑤具体实验步骤;⑥预期结果。 (6) 师生分别作实验准备。 (7) 在课堂内,各组学生按照自己的实验方案进行操作。小组成员之间应相互协作,相互切磋,共同解决实验中出现的问题。 (8) 各组间相互交流实验研究的过程和结果,相互进行评议和质询,提出自己的不同看法。 各组在听取评议的基础上进一步完善实验或提出进一步研究的方案。 (9) 学生写出实验研究报告,提出自己对实验研究结果的见解。 在“环境污染对生物的影响”教学案例中,学生的探究活动分为形成概念和问题、制定学习计划、开展探究活动、总结发现四个阶段。在第一阶段,教师就“环境污染对生物产生的影响”这一现象要求学生进行多种体验,通过调查活动学生形成一系列概念和问题,从而引发学生探究的兴趣。第二阶段开始划分学习小组并进行小组讨论,以选定各自的实验研究项目,制定实验研究计划。第三阶段主要依靠学生自己开展探究活动,教师给予学生适度的辅导。探究的最后阶段是以实验报告的形式来进行总结活动,教师明确提出了实验报告的格式和要求等,并预先制定了相应的量规用于评价学生的整个学习和探究过程。 1.研究课题:环境污染对生物的影响。 2.活动目标: 在活动中提高学生的环保意识和科研意识; 在实验研究的过程中促进学生发展创造性思维; 培养学生设计和操作实验的能力; 培养学生相互合作的精神。 3.参加活动对象:高-年级部分学生(由学生自由报名)。 4,活动的准备: 开放生物实验室,并准备学生活动所需的各类仪器装置。实验所需各种生物、各类污染物等主要由学生自己采集、准备。 5.活动过程: (1)教师就课题"环境污染对生物的影响"概述进行科学实验与研究的基本方法。 (2)学生调查学校周围环境中的主要污染现象,分析污染原因。如让学生走访区环保局和环境监测站,随同1案例来源:上海故业中学费循蛟老师https://www.doczj.com/doc/9a10500659.html,/3_anli/3_jijin/jijin_008.htm

植物耐盐性研究进展3

第5卷第3期北华大学学报(自然科学版)Vol.5No.3 2004年6月JOURNAL OF BEIHUA UN IV ERSIT Y(Natural Science)J un.2004 文章编号:100924822(2004)0320257207 植物耐盐性研究进展 于海武1,李 莹2 (1.北京林业大学生物科学与技术学院,北京 100083;2.北华大学林学院,吉林吉林 132013) 摘要:综述了植物的耐盐机理和植物耐盐育种的研究情况,讨论了耐盐基因工程研究中存在的一些问题,并重点对现有植物的耐盐性筛选和抗渗透胁迫基因工程中的诱导渗透调节剂合成做了论述. 关键词:耐盐性;耐盐机理;基因工程;渗透调节剂 中图分类号:S332.6 文献标识码:A  盐碱土是陆地上分布广泛的一种土壤类型,约占陆地总面积的25%.在我国,从滨海到内陆,从低地到高原都分布着不同类型的盐碱土壤[1],我国盐碱土的总面积约有3000多万hm2,其中已开垦的有600多万hm2,还有2000多万hm2盐荒地等待开垦利用[1].此外,全国约有600多万hm2,约占耕地总面积10%的次生盐渍化土壤.盐碱土主要分布在平原地区,地形平坦,土层深厚,一般都有较丰富的地下水源,对发展农业生产,尤其对于实现农业机械化、水利化极为有利,是一类潜力很大的土壤资源.目前,人们主要通过2种方式来利用盐碱地:1是通过合理的排灌、淡水洗涤、施用化学改良药剂来改造土壤[2],为植物创造有利的生长环境.实践证明,这种方法成本高,效果也不理想;2是选育和培育耐盐植物品种来适应盐渍环境并最终达到改善环境的目的,此方法更加具有应用前景. 1 植物的耐盐机理 植物耐盐性差别很大.根据植物耐盐能力的不同,可将植物分成非盐生和盐生植物2类.赵可夫等又将盐生植物分为3类:真盐生植物、泌盐盐生植物和假盐生植物[1].目前大部分的耐盐性研究工作都是以真盐生植物为基础开展的,所以对它的耐盐机理也就研究得比较多.近年来,在筛选和培育耐盐细胞系、转移渗透调节剂合成基因、合理利用盐诱导基因等方面都开展了许多研究工作,并取得了一些成果.许多研究表明:植物要适应盐渍化的生境,必须具备克服盐离子毒害(离子胁迫)和抵抗低水势(渗透胁迫)的能力,否则就无法生存[3,4].马建华等认为:植物在高盐土壤中主要先受到水分胁迫,而后就是离子胁迫[5].所以在耐盐机理中人们对离子区隔化和渗透调节做了相对较多的研究. 1.1 离子区隔化 许多真盐生植物通过调节离子的吸收和区隔化来抵抗或减轻盐胁迫.在植物体内积累过多的盐离子就会给细胞内的酶类造成伤害,干扰细胞的正常代谢.研究表明,盐胁迫条件下,植物细胞中积累的大部分无机离子被运输并贮藏在液泡中,使得植物因为渗透势降低而吸收水分,同时,避免了过量的无机离子对代谢造成的伤害,这就是离子的区隔化.在耐盐植物和非耐盐植物中都存在离子区隔化,这说明离子区隔化可能是植物所普遍具有的能力[6].盐的区隔化作用主要是依赖位于膜上的“泵”实现离子跨膜运输完成的[7,8].这种运输系统需要A TP酶,A TP水解产生能量将H+“泵”到液泡膜外,造成质子电化学梯度,驱动钠离子的跨膜运输,从而实现盐离子的区隔化.Na+积累于液泡维持了细胞质中较低的Na+/K+比例也是植物耐盐的特点之一[9]. 收稿日期:2003212204 基金项目:国家“973”计划项目(G1999016005) 作者简介:于海武(1977-),男,在读硕士,主要从事杨树抗逆性育种研究.

PSAG12-ipt基因转化植株研究进展

PSAG12-ipt基因转化植株研究进展 张根良1,2 王文泉2 (1华南热带农业大学农学院, 儋州571737;2中国热带农业科学院热带生物技术研究所, 海 口571101) 摘要: 叶片衰老是一种程序性死亡过程; ipt ( isopentenyl transferas ) 基因转化植株, 可以催化调控内源细胞分裂素合成, 延缓转化株叶片衰老。SAG12 基因启动子能够控制ipt 基因在植株下部衰老叶片中表达。介绍了ipt 基因和SAG12 基因启动子的来源和应用, 以及PSAG12-ipt基因的产生和转化植株在国内的研究概况。 关键词: SAG12 ipt 细胞分裂素叶片衰老叶片衰老是一种典型的细胞程序性死亡, 它表现在叶绿素、脂类、蛋白质和RNA 的减少, 有助于提高植物的适应性; 它可以作为作物选择的一个重要指标来增加作物的遗传改良潜力。目前, 对于叶片衰老的机制已经在生理生化、分子水平得到一定的阐明, 获得了一些与衰老有关的基因。并且发现在衰老进程中, 植物激素, 包括生长素、赤霉素、乙烯、脱落酸和细胞分裂素起着非常重要的作用。其中, 细胞分裂素作为植物衰老过程中的一个关键因子得到了广泛的关注。已有研究通过转化ipt 基因增加植物内源的细胞分裂素, 可以延缓植物叶片的衰老, 增强植物对非生物逆境的抗性。ipt 基因来源于土壤农杆菌( Agrobacterium tumefaciens) 的Ti 质粒, 编码一种异戊烯基转移酶, 催化和调控细胞分裂素的合成。Medford( 1989) 等[1]利用ipt 基因转化烟草和拟南芥, 用来源于玉米的hsp70 作为热诱导启动子,调控ipt 基因的表达, 受热激诱导后的转基因植物表现出叶片衰老的延迟, 细胞分裂素显著增加, 但没有诱导的转基因植物在细胞分裂素增加后, 出现了许多影响生长和发育的有害症状, 如侧芽的脱落, 茎杆和叶面积的减少, 根生长的停止等。Gan 和Amasino( 1995) [2]采用了一种全新的策略来转化ipt基因, 利用细胞分裂素的自调控来减缓转基因烟草叶片的衰老, 而不改变其它的表型性状; 转化的ipt基因处于高度特异的-与衰老相关启动子SAG12 的控制之下, 融合的PSAG12-ipt 基因只在衰老的底部成熟叶片中表达。简要介绍了ipt基因编码特性和SAG12 启动子在ipt 表达中的作用, 以及表达基因在转化植株中的应用。 1 叶片抗衰老基因ipt 的产生和作用 植物激素在植株生长和发育中具有重要的作用, 其中细胞分裂素参与了细胞分裂的调控、延缓衰老和促进侧芽的生长; 这使研究学者试图通过改变内源细胞分裂素含量来控制这些过程。但是植物本身的细胞分裂素合成相关基因并没有分离得到,使得根癌农杆菌中的ipt 基因得到了广泛的关注。1984 年Akiyoshi 等从根癌农杆菌中将编码异戊烯基转移酶( ipt)的基因分离了出来, 并阐明了异戊烯基转移酶是细胞分裂素生物合成步骤中的一个关键限速酶, 它促

植物盐胁迫及其抗性生理研究进展解读

植物盐胁迫及其抗性生理研究进展 李艺华1罗丽2 (1、漳州华安县科技局华安 363800 2、福建农林大学园艺学院福州 350002 摘要:盐胁迫是制约农作物产量的主要逆境因素之一。本文综合了几年来植物盐胁迫研究的报道,对盐胁迫下植物生理生化和生长发育变化、植物自身生理系统的响应以及增强植物抗盐胁迫的方法进行综述和讨论。 关键词:植物抗盐胁迫生理 中图分类号:Q945.7 文献标识码:A 文章编号:1006—2327—(200603—0046—04 盐胁迫是目前制约农作物产量的主要逆境因素之一[1],既有渗透胁迫又有离子胁迫[2]。随着土壤盐渍化面积的扩展,许多非盐生植物因受盐胁迫而导致产量和品质的快速下降,已成为中国西北部和沿海地区迫切解决的难题。迄今,植物盐胁迫这方面有较多的研究报道,多数侧重于某一植物或是植物某一生长阶段耐盐胁迫性与抗盐胁迫性的研究,缺少对植物抗盐胁迫有一个较为系统的综合阐述。鉴于植物抗盐胁迫的研究面的广泛性和分散性,本文综合了几年来抗盐胁迫研究报道,对植物抗盐胁迫的生理机制做一个综合阐述,为阐明植物对盐胁迫的反应机制提供一个较系统的理论依据。 1 盐胁迫对植物生理生化和生长发育的影响 盐胁迫对植物生理生化的影响可分为三方面:离子毒害、渗透胁迫和营养亏缺。离子毒害作用包括过量的有毒离子钠和氯对细胞膜系统的伤害,导致细胞膜透性的增大,电解质的外渗以及由此而引起的细胞代谢失调;渗透胁迫是由于根系环境中盐分浓度的提高、水势下降而引起的植物吸水困难;营养亏缺则是由于根系吸收过程中高浓度Na和Cl 离子存在,干扰了植物对营养元素K、Ca和N的吸收,造成植物体内营养元素的缺乏,影响植物生长发育[1]。大量试验结果表明,盐胁迫不同程度地影响植物的光合作用、呼吸作用和渗透作用,影响植物的同、异化功能[3],当盐

盐碱土现状及植物耐盐性研究的意义

1 盐碱土现状及植物耐盐性研究的意义 盐碱土是民间对盐土和碱土的统称。土壤含盐量在0.1%-0.2%以上,或者土壤胶体吸附一定数量的交换性钠,碱化度在15%-20%以上,对作物的正常生长产生严重影响,这样的土属于盐碱土,盐碱土又称盐渍土。在亚洲、非洲和北美西部地区有不同程度的分布,是一种重要的土地资源。按照形成原因,盐碱土包括原生盐渍化土地和次生盐渍土。据不完全统计,全世界大约有9.5亿公顷盐碱地[1-2]。由于世界范围内环境问题日益加剧,未经处理的工业废水乱排,工业垃圾废料不规范的堆积,世界范围内乱砍滥伐普遍存在,原始森林和原始湿地破坏严重,全球气候日趋异常;在农业生产中,节水农业尚未普及,大水漫灌等浇灌方式依然流行,在许多发展中国家,为了增加片面增加土地的单位面积产量,不合理的使用化肥,诸多自然或人为因素,导致世界范围内的次生盐渍土地日益增多,农业的可持续发展受到严重抑制[3-6]。中国的盐碱地主要分布在华北、东北和西北的内陆干旱、半干旱地区,东部沿海的滨海地区也有分布。世界人口逐年增多,可供耕地则因人为的不合理利用以及自然灾害频发而日渐减少,人均可耕地面积更是呈直线下降。然而,与此同时,世界范围内大面积的盐碱地仍未得到有效的利用。对盐碱地的综合开发利用日益走入人们的视野,人们试图从农业、化学、生物等方向对盐碱土地进行开发利用。依据改良措施的不同,对于盐碱地的开发利用可以取得不同的效果。改良盐土可以通过排水、洗盐等措施,或用种植绿肥、施有机肥或种水稻等农作物对其盐进行改良。这些方法对盐碱土的改良虽然有一定的效果,但是效果不稳定,并且在实践应用中,大量的人力、物力以及财力的投入无形中极大增加了该项措施的成本[7]。这种方法治标却不能治本。通过引种盐土植物,培育新的耐盐品种,利用盐生植物对盐碱土壤的改良作用,这种方式称为生物措施。生物措施可以将盐碱土中的盐分、离子富集在植物体中,从而从根本上解决盐碱土上植物无法正常生长的现状,选择适当的经济作物,既可以获得可观的经济效益,还能绿化环境,获得生态效益。 由于盐渍化会降低作物的发芽率,普通作物在盐碱条件下难以生长存活,因此耐盐碱作物的引进及品种的培育,成为当前研究的热点[8]。种植植物可以增加盐碱地的植被覆盖面积,减少土壤水分蒸发,降低土壤盐分;另外利用某些植物

二氧化硫对植物的影响 word (1)

二氧化硫对植物的影响 张涛 20135937 摘要:近年来SO2污染比较严重,它对植物有着多方面的影响。植物既受到SO2污染的影响,又对SO2的影响具有一定程度的修复能力。本文总结了关于SO2单一污染物对植物生理生化的直接影响以及其适应机制,并提出对这方面研究的展望。 关键词:二氧化硫;植物;抗氧化酶 我国是以煤为主要能源的国家,所以我国的大气污染主要是以SO 2 污染为主。特别是近30年来我国经济的高速发展,更使煤炭以及石油的消耗量达到 了一个前所未有的高度,加剧了SO 2的排放污染。SO 2 是我国当前最主要 的大气污染物,在个别地区污染相当严重。SO 2 可通过气孔进入植物叶片细 胞后快速溶于细胞中,在细胞内释放出H+、HSO 3-和SO 3 2-等,从而对细 胞产生直接或间接的伤害。也可与其它大气污染物进行化学反应,生成各种硫酸盐,这些成分随雨水共同降落成为“酸雨”,能够导致土壤和水系的酸化,干扰植物的代谢,对生态系统有很大的破坏作用,从而间接地危害人类健康。关 于SO 2 污染环境对植物生理生化及生长发育的影响已引起了众多学者的关 注,并己取得了长足的进展。近年来,在SO 2 的植物伤害症状、伤害机理、对生理生化指标、植物组织结构影响等方面取的研究得了许多进展。 1.二氧化硫对植物形态的影响 李利红,仪慧兰[1]等采用室内培养及密闭箱静态熏气方法,研究了不同浓 度SO 2暴露对拟南芥叶片形态的影响,结果显示:SO 2 暴露对拟南芥成熟 叶片的伤害主要是叶面伤害斑的出现和叶片枯死,伤

害程度与暴露浓度和时间呈正相关,暴露于低浓度SO 2 时叶面无伤害斑,随 时间推移有少数叶片边缘卷曲,但在停止暴露后恢复正常;中浓度时暴露的植株叶片出现大小不等的透明斑,随着暴露时间的延长,伤害症状发展为坏死斑, 暴露于高浓度SO 2 的植株,叶片很快出现不规则形的黄色坏死斑,坏 死斑的面积随暴露时间的延长而扩大,之后叶片大量枯死。但在脱离高浓度S O 2 后伤害性斑点不再增加,并能继续生长发育。 SO 2暴露对拟南芥植株的生长发育具有双向作用,较低浓度SO 2 暴露 对植株的生长发育有一定的促进作用,高浓度SO 2 暴露会抑制植株的生长发育,使株高、单株叶片数和单叶面积呈浓度依赖性减少。 2二氧化硫对植物生理生化的影响 2.1二氧化硫对植物气孔的影响 气孔是植物与外界环境间气体交换的主要通道,气体污染物主要通过气孔进入叶组织,因此气孔在大气污染物对植物的影响中占有相当重要的地位。高吉喜 [2]通过试验表明:通常情况下 SO2 促使植物气孔关闭,但也有某些植物经S O 2熏气后气孔关闭。气孔对SO 2 浓度的反应通常是SO 2 浓度越大,气孔 反应越快。 2.2二氧化硫对植物细胞膜的影响 细胞膜是植物细胞的重要组成部分,起着调节控制细胞内外物质交流的屏障作用,当植物处在不利环境条件下时,刺激首先作用于细胞膜。大量观察研 究表明,细胞膜也是SO 2作用的最初部位,在植物接触高浓度SO 2 后,膜 首先受到损伤,继而膜透性发生改变。植物膜透性对SO 2 的反应差异通常与 植物的抗性有关,抗SO 2强的植物,细胞膜对SO 2 的反应不敏感,反之则很

植物对盐胁迫的反应及其抗盐机理研究进展

山东农业大学学报(自然科学版),2006,37(2):302~305 Journa l of Shandong Agricu lt ura lUn i versity(Natura l Sc i ence) 文#献#综#述 植物对盐胁迫的反应及其抗盐机理研究进展 杨晓慧1,2,蒋卫杰1*,魏珉2,余宏军1 (1.中国农业科学院蔬菜花卉研究所,北京100081;2.山东农业大学园艺科学与工程学院,山东泰安271018) REV IE W ON PLANT RESPONSE AND RE SISTANCE M ECHAN IS M TO S ALT STRESS YANG X i a o-hu i1,2,JI A NG We i-jie1*,WE IM i n2,Y U H ong-jun1 (1.I n stitute ofV egetab l es and Flo wers,Ch inese A cade m y ofAgricu l tural Sci ence,Beijing100081,Ch i na; 2.Coll ege ofH orti cu lt u re Science and Engi n eeri ng,Shandong Agricu l tureU n i versit y,Ta i an271018,Ch i na) K ey words:Iron stress,Os motic stress,Salt resistantm echan i s m,Plant 摘要:本文从植物形态发育、质膜透性、光合和呼吸作用以及能量代谢等方面概述了盐胁迫下植物的生理生化反应,分析了盐害条件下离子胁迫和渗透胁迫作用机理以及植物的耐盐机制:植物小分子物质的积累、离子摄入和区域化、基因表达和大分子蛋白质的合成等,并简要综述了植物抗盐的分子生物学研究进展。 关键词:离子胁迫;渗透胁迫;耐盐机制;植物 中图分类号:S601文献标识码:A文章编号:1000-2324(2006)02-0302-04 1植物对盐胁迫的反应 1.1盐胁迫对植物形态发育的影响 盐胁迫对植物个体形态发育的整体表现为抑制组织和器官的生长,加速发育过程,缩短营养生长和开花期。P laut等(1985)研究发现,90mmol/L NaC l胁迫抑制甜菜块根的干物质积累,但低浓度NaC l可增加叶面积。Nunes(1984)认为这主要是细胞体积增加而不是细胞分裂的结果。盐分对佛手瓜的生长及腋芽的萌动均有抑制作用,幼苗的生长速度与中期细胞指数的变化具有一致性,说明盐分影响植物生长的途径是通过细胞的有丝分裂来完成的[2]。在NaC l胁迫(0.1%、0. 2%、0.3%、0.4%)条件下,马铃薯试管苗生长受到显著抑制,且随着盐浓度的增加,各处理间差异加大[3]。戴伟民等[4]研究发现,随盐浓度的增加,番茄幼苗的下胚轴粗度、侧根数逐渐减少,根干重逐渐降低。根据牟永花的研究,50、100mm ol/L NaC l使番茄株高和干物质积累均有不同程度的降低,但对根冠比无影响[5]。用25、50mmol/L NaC l处理黄瓜幼苗,发现植株株高、鲜重和干重均降低[6]。杨秀玲等[7]也发现,随着N aC l浓度(75、100、125、150mm ol/L)的增高,黄瓜幼苗地上和地下部鲜重以及根冠比(R/T)也均表现为下降。 1.2盐胁迫对植物生理生化代谢的影响 1.2.1水分平衡与质膜透性Levltt在1980年即指出,不同环境胁迫作用于植物时都会发生水胁迫。在盐胁迫下,植物细胞脱水,膜系统破坏,位于膜上的酶功能紊乱,各种代谢无序进行,导致质膜透性的改变。而且,高浓度NaC l可置换细胞膜结合的Ca2+,使膜结合Na+增加,膜结构和功能破坏,细胞内的K+、磷和有机溶质外渗。 1.2.2光合作用盐胁迫下,植物组织因缺水而引起气孔关闭,叶绿体受损,光合相关酶失活或变性,光合速率下降,同化产物合成减少。叶绿体是植物光合作用的主要场所,而类囊体膜是光能吸收、传递和转换的结构基础,植物进行光能吸收、传递和转换的各种色素蛋白复合体都分布在类囊体膜上。盐胁迫下,过量盐离子积累使类囊体膜糖脂含量显著下降,不饱和脂肪酸含量降低,而饱和脂肪酸含量升高,从而影响细胞膜的光合特性。叶绿素是类囊体膜上色素蛋白复合体的重要组成部分,所以盐胁迫下叶绿素含量的降低必将影响色素蛋白复合体的功能,使垛叠状态的类囊体膜比例减小,叶绿体中基粒数量和质量下降,光合强度降低[8]。 R ub isco(核酮糖-1,5-二磷酸羧化酶)和PEP(磷酸烯醇式丙酮酸)羧化酶是光合作用的两种重要酶。盐胁迫下,收稿日期:2005-06-25 基金项目:基金项目:国家863项目(2004AA247030,2004AA247010);国家科技攻关项目(2004BA521B01);农业部蔬菜遗传与生理重点开放实验室项目. 作者简介:杨晓慧(1980-),女,硕士研究生,从事设施园艺与无土栽培. *通讯作者:Aut hor f or correspo ndence.E-m a i:l ji ang w@j m ai.l https://www.doczj.com/doc/9a10500659.html,

盐分胁迫对植物生长和生理影响

盐分胁迫对植物生长生理的影响 张华新,刘正祥等研究了光叶漆、银水牛果等11种树种后发现,盐胁迫后,各树种的苗高生长量下降、生物量累积减少,且随着处理浓度的增加均呈下降趋势,,各树种的根冠比值增大1 王润贤,周兴元,葛晋纲等人对草的研究后发现,在草坪草适应范围之内,根系活力和蛋白质含量呈先升后降的趋势,如超过忍受范围则持续下降。随盐分胁迫强度的增加和胁迫时间的延长,草坪草叶片的WSD上升,脯氮酸含量均表现为先升后降的趋势,但因胁迫程度和草种的不同,其峰值和下降幅度有较大差异。各项生理指标变化的趋势因草种的不同而有较大的差异,与其耐盐性有关,可以作为判定草坪草抗盐能力的评定依据。2 孙方行,李国雷对刺槐进行3天和17天盐胁迫处理后发现,MDA含量和细胞膜透性存在极显著正相关。叶绿素浓度和可溶性蛋白含量也存在极显著关。SOD活性和叶绿素浓度成负相关。从逐步回归分析可以看出细胞膜透性是影响高生长的主要指标3 张金香,钱金娥等人发现,经过前处理的1/2海水区中生长的苗木其叶、茎、根的生长量均超过淡水区中生长的苗木。说明一定程度的耐盐锻炼能够增强苗木对盐碱、干旱环境的适应能力4 张士功,高吉寅,宋景芝发现,6-苄基腺嘌呤、水杨酸、阿斯匹林,硝酸钙能够在一定程度上限制幼苗对Na+的吸收,阻滞其向地上部分运输的数量和速度。提高体内K+含量、向上运输效率,降低地上部分对Na+、K+的选择性(SNa+、K+>,同时6-苄基腺嘌呤还能够促进幼苗根系对Cl-的吸收,并有效地将Cl-限制在根部,阻滞Cl-向上运输,相对降低地上部分的Cl,这些都有利于

提高小麦幼苗抗盐性和对盐分胁迫的适应性5 王强,石伟勇,符建荣,指出,叶面喷施海藻液肥能提高黄瓜根冠比和干物质含量,提高根系总吸收面积和活跃吸收面积。不同浓度的海藻液肥均能降低盐胁迫对叶片质膜的伤害,提高SOD、POD等酶的活性,降低膜脂过氧化产物MDA的积累,提高脯氨酸、可溶性糖、可溶性蛋白等渗透调节物质的含量6 许兴,郑国琦.等指出,在等渗条件下,NaCl胁迫引起的小麦叶片组织含水量的下降、胁迫伤害率的增大及叶片和根部的脯氨酸、可溶性糖、Na+、K+含量的增加,均大于PEG胁迫引起的变化7 郑国琦,许兴,徐兆桢研究了盐分胁迫对植物的伤害和探讨了植物的耐盐的生物学机理以及通过基于改良作物耐盐性的研究进程。8 吴忠东,王全九.研究发现,在不同的生育期降水量条件下,冬小麦对盐分胁迫有着不同的响应。生育期一般年和湿润年可以采用的最高矿化度为3 g/L,而在生育期偏旱年,如果不采取其他措施的条件下,可以采用的最高矿化度为2 g/L,该结果为合理开发利用当地的地下咸水资源提供了一定的依据。9 郭淑霞,龚元石在研究盐分胁迫对菠菜生长和吸氮量的影响后发现,对菠菜进行盐分胁迫,前 44 天,随着盐分胁迫程度增加,菠菜相对生长速率

作物耐盐性研究

作物耐盐性状研究进展 l 耐盐性含义和耐盐机制种类 由于土壤中可溶性盐类过量对作物造成的盐害,称为盐害或盐胁迫,包括渗透胁迫和离子效应两种类型。前者由于土壤中可溶性盐过多,土壤渗透势增高而水势降低,造成作物的吸水困难,即生理干旱;后者由于离子的拮抗作用,吸收盐类过多而排斥了对另一些营养元素的吸收,影响正常的代谢作用。作物对盐害的耐性称为耐盐性,把碳酸钠与碳酸氢钠为主的土壤称为碱土,把氯化钠与硫酸钠为主的土壤称为盐土,实际上难以绝对划分,把盐分过多的土壤称为盐碱土,简称盐土,相应的对耐盐碱性称为耐盐性[1]。 耐盐机制可分为6种:拒盐型、聚盐型、泌盐型、稀盐型、避盐型、活性氧清除等[2]。⑥有活性氧清除系统的植物通过SOD(超氧化物歧化酶)、POD(过氧化物酶)、CAT (过氧化氢酶)将活性氧清除出去,免受盐胁迫 一般盐土含盐量在0.2%~0.5%时就已对植物生长不利,而盐土表层含盐量往往可达0.6%~10%。 丙二醛时植物器官在逆境条件下发生膜脂过氧化作用的产物,可用于表示植物对逆境条件反应的强弱,从实验中也可证明小麦幼苗叶片中MDA含量随NaCl浓度的增加而增加,说明高浓度盐对植物生长产生了严重的伤害。

2 耐盐性的鉴定技术和指标 耐盐鉴定技术有直接鉴定法,如发芽鉴定(发芽率、发芽势)、形态鉴定(出苗率、盐害级别、苗期死叶率、相对生长量)和产量鉴定等;间接法有脯氨酸、甜菜碱、糖醇、多胺物质、钠钾离子含量的测定和酶活性的测定以及花粉萌发试验等。按照耐盐试验的地点分为水培、盐池、重盐碱大田。耐盐实验的对象又可分为群体、个体和单株和细胞。品种耐盐指标:耐盐系数、耐盐力(生物耐盐力、农业耐盐力)[4]。群体耐盐指标:发芽率、发芽势、盐害指数、成活苗率、相对成活苗率。目前,国内学术界一般把土壤基质含盐量达0.4%作为棉花耐盐鉴定的通用浓度[5]。叶武威等[6]采用盐池鉴定法,统计各材料在施盐10 d后(3叶期)的相对成活苗率(以生长点活为标准)来判断棉花的耐盐性,将棉花的耐盐性分为4级,即不耐(0-49.9%)、耐(50.0%一74.9%)、抗(75.0%一89.9%)、高抗(>90%)。 3 对耐盐机制的研究 泌盐是盐生植物适应盐渍环境的一条重要途径----滨藜、柽柳.盐腺的泌盐机理,是一个主动的生理过程。此类植物的叶片和茎部的表皮细胞在发育过程中分化成盐腺,通过盐腺把吸收到体内的盐分排出体

二氧化硫污染对绿色植物的影响

二氧化硫污染对绿色植物的影响 上海市园林学校(200051)胡天勤 化学与生活,1996(7) 随着人类对自然资源的不断开发和工农业生产的迅速发展,大量有毒有害物质任意排放,对我们周围环境带来了严重污染。 本文就二氧化硫这一主要大气污染物对绿色植物所产生的影响作一分析和探讨。 (一)二氧化硫的来源 在大氧中有许多污染物质,如二氧化硫、NOx、臭氧、烟尘等,其中以二氧化硫为主要污染源,原因是它来源广、危害大。据统计,全球每年向大气排放的二氧化硫多达2.4亿吨左右,单在我国,就有1400万吨之多,其污染量之大令人吃惊。二氧化硫污染大气,它来自以下凡方面: (1)煤、石油等燃料的燃烧是大气中二氧化硫的主要来源。煤炭中含硫,一般含量在3%~5%左右,燃烧后即被氧化成二氧化硫,由燃料燃烧所产生的二氧化硫大多从烟囱排入大气。 (2)钢铁、炼油、有色金属冶炼、化工、水泥等工厂企业,在生产流程及工艺操作过程中,也会排放相当量的二氧化硫气体。据统计,到本世纪末。全世界二氧化硫排放总量可达3.4吨左右。而当大气中二氧化硫的含量超出0。2~0。3PPm时,一些绿色植物将会受到严重的伤害。 (二)二氧化硫对植物的危害 大气中二氧化硫污染物对植物的危害方式一般有三种: 1。急性危害:高浓度的SO2气体会大大超出植物的承受能力,使植物在短时问内(1~2天或几小时内)发生叶片枯焦脱落,生长发育严重受阻,直到枯

萎死亡。 2。慢性危害:植物因长期在低浓度SO2污染的环境中,逐渐产生不易被人们所觉察的一些症状,使植物出现不同程度的生长不良。 3。隐性危害:植物长期在低浓度SO2影响下,并未表现出任何症状,但植物内部的生理活动已受到侵害,生长发育受阻。 (三)二氧化硫危害植物的化学机理 当二氧化硫通过植物叶片上的气孔进入叶子后,被叶肉吸收,转变成亚硫酸根离子然后又可转变成硫酸根离子,由于在植物体内SO2转变成SO32-的速度要比SO32-转变成SO42-快得多,所以当高浓度的二氧化硫进入植物体内后,会造成高浓度的SO32-的积累,而SO32-对植物的毒性比SO42-扩大30倍,从这一意义上分析,二氧化硫对植物造成的损害,实际上是由于其还原作用所引起的。 (1)对气孔机能的影响 当二氧化硫气体进入叶片以SO32-形式积累起来后;便会对气孔的开启和关闭机能带来影响,使气孔机能瘫痪,从而使大量二氧化硫气体进入植物体的细胞,加重对植物的危害。此外,由于植物气孔机能受阻,还会引起水份大量蒸腾,导致植物组织迅速枯萎。 (2)对叶片组织结构的破坏 当二氧化硫通过开放的气孔进入叶片组织后,溶解在细胞中,致使细胞内含物遭破坏或变形,引起外渗与原生质分离,使叶片组织结构遭到损害,海绵细胞与栅栏细胞发生质壁分离,其主要症状为:细胞失水变形、组织破碎。栅状组织细胞的排列层次紊乱、细胞间隙增大、叶片明显变薄等。 (3)对光合作用的影响

相关主题
文本预览
相关文档 最新文档