水轮机转轮叶片裂纹分析及处理
- 格式:pdf
- 大小:12.32 KB
- 文档页数:1
混流式水轮机转轮裂纹原因分析及预防措施混流式水轮机转轮裂纹原因分析及预防措施水轮机转轮,特别是中、高比速混流式水轮机转轮中的裂纹现象,在世界各地普遍存在。
国外的例子有埃及的阿斯旺高坝、美国的大古力700 MW机,俄罗斯的布拉茨克等。
国内有岩滩、李家峡、小浪底、五强溪、二滩等大型水电站,在投运后水轮机转轮都不同程度的浮现了裂纹。
转轮裂纹严重影响电站的安全运行和经济效益,引起人们的极大关注。
1转轮裂纹的产生原因转轮为什么会产生裂纹,人们对此做过许多研究,不时地提出一些假设。
笔者把转轮裂纹分为规律性裂纹和非规律性裂纹两类。
规律性裂纹是指不同叶片上的裂纹具有大体一致的规律,所有叶片都开裂,裂纹的部位和走向也大致相同。
非规律性裂纹或者只在个别叶片上发生,或者不同叶片上裂纹的部位、走向和其他特征各不相同。
其产生的普通原因分述如下。
1.1规律性裂纹失效分析结果表明-绝大多数规律性裂纹是疲劳裂纹,断口呈现明显的贝壳纹。
叶片疲劳来源于作用其上的交变载荷,而交变载荷又由转轮的水力自激振动引起,这可能是卡门涡列、水力弹性振动或者水压力脉动所诱发。
1.1.1卡门涡列(1)黄坛口水电站1958年投运的4台HL310-LJ-230水轮机,运行不久转轮叶片出水边根部即发生总计67条裂纹。
后来查明,在某些水头下,当机组出力在5~8 MW时,叶片出水边卡门涡列频率与叶片自振频率耦合而引起共振,动应力急剧增加,使叶片疲劳开裂。
采取修整叶片出水边厚度和形状,提高卡门涡列频率,避开了共振,转轮安全运行多年,再没有发生问题。
(2)小浪底水电站水头范围68~141 m,额定出力306 MW。
水轮机转轮上冠和下环为13.5不锈钢铸件,叶片由13.5不锈钢热模压后数控加工,再用309 L奥氏体不锈钢焊丝焊成整体。
由于是异种钢焊接,转轮焊后不进行消除应力处理。
为适应电站水头变幅大和多泥沙的运行条件,水轮机供应商采取了低比转速,小的出口直径(D 2/D 1=0.88),较大的导叶相对高度(b 0/D 1=0.236),肥大的叶片头部,较厚的叶片出水边(δ=38 mm),喷涂碳化钨和设置筒形阀等技术措施。
水电厂水轮机转轮叶片的裂纹处理及防控发表时间:2019-09-19T09:04:31.097Z 来源:《电力设备》2019年第8期作者:陈健[导读] 摘要:在本篇文章中主要将某水电厂中的水轮机组作为实例,在针对水轮机组展开日常检修时,利用超声波技术探测出转轮叶片上存有裂纹,深入分析水轮机组中转轮叶片出现裂纹的主要原因,进而针对裂纹提出科学、有效的处理方式与防控对策,旨在为相关人员提供微薄的参考依据。
(松花江水力发电有限公司吉林丰满发电厂 132108)摘要:在本篇文章中主要将某水电厂中的水轮机组作为实例,在针对水轮机组展开日常检修时,利用超声波技术探测出转轮叶片上存有裂纹,深入分析水轮机组中转轮叶片出现裂纹的主要原因,进而针对裂纹提出科学、有效的处理方式与防控对策,旨在为相关人员提供微薄的参考依据。
关键词:水电厂;水轮机转轮叶片;裂纹处理及防控在某水电厂中一共具备15台水轮机组,总容量约在63万kw左右平均每台机组的实际容量约为4.2万kw左右,整个水电厂属于较为综合的电厂,将灌溉、航运以及发电等集于一体。
其中出现裂纹问题的水轮机组型号是GZ932-WP-750,转轮的直径约为7.5m,额定流量约为492m³/s左右,在整个水轮机的转轮上共有四个叶片,材质为马氏体的不锈钢并通过真空的精密方法所制作。
在相关人员针对所有水轮机组展开日常检查时,通过超声波技术探测出所有机组中的三组都存有不同程度的裂纹,这些裂纹不仅会影响叶片的正常运行,还会对整个机组的实际运作造成直接影响。
一、水电厂水轮机转轮叶片出现裂纹的主要原因在日常检查中探测出水轮机组中的转轮叶片上存有裂纹状况后,某水电厂立即停止了水轮机组的运行,并针对裂纹出现的主要原因展开全面分析,最终发现导致叶片出现裂纹现象的主要原因有以下两方面:第一方面,如果水轮机组处于非最佳情况下或低水头情况下运行的话,就会导致水轮机组的工作状况差,在转轮的出口处水流会逐渐变成环流,这样在水管的尾部会形成旋状的涡带,这种涡带会随着水流而有所移动,如果移动到水管壁的话就会变成压力脉动,最终严重增加水轮机组的振动状况。
混流式水轮机转轮裂纹原因及预防措施的探讨【摘要】混流式水轮机转轮叶片裂纹故障严重影响了水电站的安全稳定运行和经济效益的发挥。
本文就混流式水轮机转轮裂纹原因及预防措施进行了探讨,结合了具体的工程实例,对机组运行情况和转轮裂纹现象作了详细的阐述,分析了产生的原因,并提出了相应有效的措施,以期能为预防混流式水轮机转轮措施裂纹而提供参考。
【关键词】混流式水轮机;转轮裂纹;原因;预防措施所谓的混流式水轮机,又称法兰西斯水轮机,水流从四周径向流入转轮,然后近似轴向流出转轮,转轮由上冠,下环和叶片组成。
其结构紧凑,效率较高,能适应很宽的水头范围,是目前世界各国广泛采用的水轮机型式之一。
但是,混流式水轮机转轮叶片若出现裂纹故障,将会严重影响水电站的安全稳定运行和经济效益的发挥,所以必须及时采取措施针对裂纹故障现象进行治理,以确保水电站的安全稳定运行。
1 概述某水电站第一台机组投运后的停机维护中就发现水轮机转轮叶片出现裂纹,在后续机组维护中同样发现了叶片裂纹。
某水电站首台机组投运至今已近15年,但是水轮机转轮裂纹频现的状况并未彻底消除,每年轮修中几乎都会发现裂纹,裂纹处理已成为每年机组检修中的主要工作。
1.1 机组运行情况目前已建成水电站中调节性能较好的特大型骨干电源,不仅每年向系统提供巨大的清洁电力能源,并在系统中承担调峰、调频、调压和事故备用等任务,在我省电网中发挥着重要的作用。
1.2 水轮机基本参数及结构特点水轮机额定功率为582MW,最大功率为612MW,公称直径6257mm,额定转速142.9r/min,额定水头165m。
转轮为全不锈钢分瓣铸焊结构,#1叶片和相对的#7叶片对称分剖,共13个叶片转轮上冠、叶片、下环的材质均为ASTMA743MGradeCA-6NM马氏体不锈钢。
转轮上冠把合方式为卡栓式结构。
与以往的螺栓把合结构相比,这种结构可以减薄上冠的壁厚,从而节省昂贵的不锈钢材料。
叶片采用数控机床加工,叶片最大厚度为188mm。
小浪底转轮叶片裂纹产生原因分析及处置办法胡宝玉张利新钟光华摘要小浪底水利枢纽几乎所有的发电机组转轮初期运行都出现裂纹,为此小浪底工程建管局组织了多次国内专家和制造厂商研讨会,最后得出疲劳破坏是引发小浪底转轮叶片裂纹的原因,由水流作用在转轮入口的水力弹性脉动与旋转轴系的固有频率(轴向和扭转)共振所形成的,叶片出口边卡门涡频率与转轮高阶自振频率一路作用的高变应力增进裂纹的快速进展。
采用在上冠出水边处加焊300mmX300mm的补强三角块修复裂纹,增加补气装置,修整出水边等处置办法来修复裂纹。
关键词小浪底水轮机转轮叶片裂纹小浪底水利枢纽是黄河上最后一级大型综合利用水利枢纽,其电站地下厂房内共装机6台,单机容量30万kW,总装机容量180万kW。
水轮机的型式为混流式,设计比转速ns为162.6m·kW,额定转速min,额定水头112m,额定流量296m3/s,最大水头141m,最小水头68m,额定出力万kW,最大出力万kW。
转轮直径D1为6.356m,转轮出口直径D2为5.6m,转轮出口相对直径D2/D1,为,小浪底机组的导叶高度b0为1.5m,b0/D1为,导叶散布圆直径D0为7.239m,D0/D1为,固定导叶和活动导叶之间装设有筒阀。
为了抗磨,水轮机设计中,取消了上冠减压装置,从而使水推力比常规设计增加约1万kN。
一、转轮裂纹及现象小浪底首台机组(6号机)于1999年12月27日开始并网发电,现在上游水位约205m,下游水位约134m,毛水头71m。
机组运行6个月,共运行1000多小时,于2000年5月28日停机小修。
小修期间,在6月3日发觉转轮的13个叶片出水边接近上冠处有11个叶片出现裂纹(后经着色探伤,肯定另两个叶片也有轻微裂纹),裂纹长度 100~400mm不等,大部份为贯穿(端面)型裂纹,所有裂纹形状相似,起始点在叶片负压面与出水端面交线上,距上冠约50mm,裂纹起始端与叶片出水边垂直,后以不规则抛物线形向叶片中心延伸,其中有一个叶片同时出现沿焊缝方向的裂纹,裂纹尾端扩展为树枝状(见图1叶片裂纹及修补示用意)。
51第42卷 第2期2019年2月Vol.42 No.2Feb.2019水 电 站 机 电 技 术Mechanical & Electrical Technique of Hydropower Station1 引言随着我国经济的不断发展,资源消耗的速度也在不断的加快,水电站的发展越来越普及,成为了社会主义建设中不可或缺的重要组成。
转轮是抽水蓄能电站水轮机中的核心部件,在实际的运行过程中,由于机组发电和抽水工况频繁正转和反转,运行工况复杂,水轮机转轮作为水轮机重要受力结构部件,该区域在机组运行中容易发生裂纹,近些年水轮机转轮出现多起裂纹问题,使机组被迫停役。
转轮裂纹的出现,不仅为机组的安全稳定运行带来了极大的威胁,为抽蓄电站的正常经营带来了经济损失和社会损失,所以要想确保水电站安全稳定运行,必须通过无损检测技术对水轮机转轮定期探伤,及时发现并有效处理转轮裂纹问题。
采取有效的预防控制措施,确保机组运行安全性和稳定性。
本文介绍了黑麋峰抽水蓄能电站3号、4号机转轮在检修中发现的裂纹,其特征以及修复工艺控制,综合分析裂纹成因,根本清除裂纹隐患,结合厂家建议,提出电厂在机组运行方式以及维护检修方面预防转轮裂纹事故的参考建议。
2 转轮裂纹成因分析转轮裂纹通常是在多个因素(比如交变外载荷、机组运行时的振动、结构存在薄弱环节、工程制造过程中的缺陷等)的综合作用下产生,以下对黑麋峰电站转轮裂纹成因从水力设计、结构强度计算及材料选择、制造工艺及控制流程等方面进行分析说明。
2.1 黑麋峰电站机组转轮参数黑麋峰电站水泵水轮机(HLNTP-LJ-504)转轮为单级、立轴、混流可逆式转轮,叶片整体铸造、数控加工。
转轮上冠、叶片和下环组合焊接。
3号机和4号机的水泵水轮机上冠、叶片、下环材质均为铸造马氏体不锈钢制造,材料类型为ZG0Cr13Ni4Mo (对应美标ASTM A743 CA6NM ),为保证制造(包括焊接、打磨)操作空间,转轮下环分内环、外环,转轮两次装焊、焊后整体退火。
例析水电站转轮叶片裂纹的处理艺0 緒论×××水电站位于四川省石棉县境内的松林河干流上,电站安装有3台单机容量43MW的立式混流式水轮发电机组,总装机129MW,单机额定流量为26m3/s 转轮型号为HLD307C,直径2050mm,转轮为铸焊结构,上冠、下环及15个叶片单独加工后组焊为一体。
上冠、下环及和叶片材料均为ZG06Cr13Ni6Mo。
首台机组于2007年6月投入商业运行。
×××三台机组在投运后转轮不同程度地都出现裂纹,最为严重的是2011年7月中旬,1#水轮发电机组在在运行过程中转轮叶片出现掉块,水导摆度突然增大,导致水力不平衡,水轮机转轮叶片裂纹的频繁产生,对机组安全运行构成很大威胁,也给电厂带来极大的经济损失。
因此,分析裂纹产生原因,并对易产生裂纹部位进行无损探伤检查,对及时处理缺陷,消除事故隐患是十分必要的。
1 裂纹产生原因分析1.1 铸造缺陷及焊接缺陷铸造气孔、铸造砂眼等在外部应力的作用下可能会成为裂纹源,造成裂纹的产生。
由于转轮叶片与上冠、下环的厚度相差大,在冷却过程中易产生缩孔、疏松等。
铸焊结构的转轮,若焊接工艺不当或焊工没有按照焊接工艺的要求进行焊接,在焊缝及热影响区也会出现气蚀和裂纹(如图1、图2)。
(图1:转轮叶片出水边穿透性裂纹及气蚀)(图2 转轮叶片出水边掉块)1.2 应力集中转轮在水压力及离心力的作用下,大应力区主要分布在转轮叶片周边上,按第三强度理论计算得出,转轮叶片存在四个高应力区,他们的位置在叶片进水边正面(压力分布面)靠近上冠处;叶片出水边正面的中部;叶片出水边背面靠近上冠处;叶片与下环连接区内(如图1、2)。
1.3 运行原因由于汛期、枯水期发电量和电价系数等问题,电站要考虑最优经济效益,导致机组在低负荷或震动区运行,会使叶片在交变应力作用下产生裂纹或裂纹情况加剧。
2 裂纹处理2.1 阻止裂纹延伸通常裂纹的两端尾部内应力接近材料的极限强度,在外力或热应力的影响下还会继续延伸。
混流式机组转轮裂纹原因分析及解决办法摘要:转轮是水电厂混流式水轮机设备的核心部件,作为能量转换站,其性能对混流式水轮机的性能有着决定性的影响。
由于各方面的原因,混流式水轮机转轮通常会出现不同程度的破坏,从而对混流式水轮机的运行及水电厂的生产造成严重的影响。
相关人员应不定期地对混流式水轮机机组进行检查,及时发现混流式水轮机转轮存在的问题,并积极采取维修措施。
在进行焊接补焊时,应严格按照操作规范,采取正确的焊接工艺进行,从而提高焊接质量,确保混流式水轮机的正常、安全运行。
关键词:混流式水轮机;裂纹原因;措施随着我国经济的不断发展,资源消耗的速度也在不断的加快,水电站的发展越来越普及,成为了社会主义建设中不可或缺的重要组成。
转轮是抽水蓄能电站混流式水轮机中的核心部件,在实际的运行过程中,由于机组发电和抽水工况频繁正转和反转,运行工况复杂,混流式水轮机转轮作为混流式水轮机重要受力结构部件,该区域在机组运行中容易发生裂纹,近些年混流式水轮机转轮出现多起裂纹问题,使机组被迫停役。
转轮裂纹的出现,不仅为机组的安全稳定运行带来了极大的威胁,为抽蓄电站的正常经营带来了经济损失和社会损失,所以要想确保水电站安全稳定运行,必须通过无损检测技术对混流式水轮机转轮定期探伤,及时发现并有效处理转轮裂纹问题。
采取有效的预防控制措施,确保机组运行安全性和稳定性。
一、概述转轮是各种类型水轮机正常运行不可缺少的核心部件,其主要功能就是将水能转换为机械能。
而且转轮也在一定程度上直接决定着水轮机的过流能力强弱、水力效率高低、运转工况的稳定与否以及汽蚀性能是否良好的关键因素。
在实际操作中,转轮的各个部分设计和制造必须要充分满足水力设计的型线要求,必须要具有高强度且具备较强的抗汽蚀的能力以及耐磨损的性能。
根据水轮机转轮所转换水流能量的形式不同,可以将水轮机分为反击式和冲击式水轮机两大类。
将水流的位能、压能和动能转换成固体机械能的水轮机称为反击式水轮机。
水轮机转轮叶片裂纹分析及处理
水轮机转轮的叶片出现裂纹会严重威胁水电厂的安全经济运行。
通过对水轮机转轮叶片进行有限元计算分析,得出应力过于集中通常是叶片裂纹产生的主要原因,此外,叶片也存在设计、制造、运行方面的问题,为此,介绍了水轮机转轮叶片
裂纹金属无损探伤的常用处理方法和一般工艺。
水轮机转轮叶片裂纹的频繁产生,对机组安全运行构成很大威胁,也给电厂带来极大的经济损失,因此,分析裂纹产生原因,并对易产生裂纹部位进行无损探伤检查,对及时处理缺陷,消除事故隐患是十分必要的。
1裂纹产生原因分析
1.1应力集中
采用有限元计算分析得出,转轮在水压力及离心力的作用下,大应力区主要分布在转轮叶片周边上,按第三强度理论计算的相当应力沿叶片周边的分布。
转轮叶片存在四个高应力区,他们的位置在叶片进水边正面(压力分布面)靠近上冠处;叶片出水边正面的中部;叶片出水边背面靠近上冠处;叶片与下环连接区内。
1.2铸造缺陷及焊接缺陷
铸造气孔、铸造砂眼等在外部应力的作用下可能会成为裂纹源,造成裂纹的产生。
由于转轮叶片与上冠、下环的厚度相差大,在冷却过程中易产生缩孔、疏松等。
铸焊结构的转轮,若焊接工艺不当或焊工没有按照焊接工艺的要求进行焊接,在焊缝及热影响区也会出现裂纹。