浅析高速铁路振动产生的噪声及防治措施
- 格式:docx
- 大小:205.09 KB
- 文档页数:5
高速列车振动与噪声控制技术高速列车作为现代交通工具的重要组成部分,其载客效率和舒适性是受到广泛关注的。
其中,振动与噪声问题是高速列车舒适性和安全性的重要考虑因素。
因此,高速列车振动与噪声控制技术的研究与应用具有重要意义。
本文将从高速列车振动机理、噪声特征和控制技术三个方面对此展开探讨。
一、高速列车振动机理高速列车的行驶过程中,由于轮轨、车体、电机转子、传动系统等多种因素的综合作用,会产生各种振动力。
振动力作用到列车车体上,引起车体振动,从而引起列车内外噪声。
高速列车振动机理的探讨可以从振动源、振动传递和振动响应三个方面展开。
1. 振动源高速列车振动源主要包括轮轨交互作用、电机转子不平衡、牵引/制动扭矩、侧风等因素。
其中,轮轨交互作用是最主要的振动源之一。
由于车轮和轨道之间的接触是点接触,而轮子径向力和横向力都是非零的,轮轨间的力学特性非常复杂。
例如,轮轨垂向作用力会引起轨道的弹性变形,而弹性变形又会引起轮轨接触点的移动,从而引起车轮的弯曲和扭转振动。
此外,列车电机转子和传动系统的不平衡也是振动源之一。
2. 振动传递高速列车的振动不仅会在车体内产生传递,也会向车轮、轨道和周边土壤等延伸。
振动传递可分为车体内部传递和车体与外界媒介之间的传递。
车体内部的振动传递通常沿着车体结构的固有频率进行,而车体与外界媒介的振动传递则涉及到空气、土地、结构等多种不同媒介的耦合。
3. 振动响应高速列车振动响应的特征与振动源、振动传递和车体结构的动态特性有关。
通常,列车在低速行驶时受到的振动力强度较小,随着速度的增加,振动力强度逐渐变大。
此外,列车在桥梁、隧道等路段行驶时,还受到地形变化、路面不平等因素的影响。
车体的结构也会对振动响应产生影响,例如,车体刚度越大,振动响应越小。
二、高速列车噪声特征高速列车行驶过程中产生的噪声可以分为空气噪声和结构噪声两种类型。
空气噪声主要是由车体开启空气产生的,而结构噪声则是由车体的振动引起的。
高速列车的振动与噪声控制技术研究引言高速列车是现代化交通运输的重要组成部分,而其振动与噪声控制技术研究则是实现高速列车安全、舒适、环保的重要保障。
振动与噪声控制技术的研究范围广泛,涉及到机车车体、车门、车窗、车底、轮轴、轮胎等多个部件,需要从结构设计、材料选配、工艺优化等角度入手,不断优化改进,以达到降低车辆振动和噪声的目的。
第一章高速列车振动控制技术研究高速列车在运行过程中会产生振动,若振动幅值过大,会造成列车失控甚至可能引发事故。
因此,对高速列车振动的控制是非常重要的。
1.1高速列车振动产生的原因高速列车振动主要是由以下几个方面产生的:(1)铁路轨道不平整:铁路轨道的不平整会导致列车的垂向振动,产生轮轴和车辆的弯曲振动。
(2)车体弹性变形振动:车体弹性变形振动是对车体在运行过程中受到的多种载荷所产生的振动响应。
(3)列车空气动力学力振动:列车在运行过程中会受到空气动力学力的影响,由此产生的振动称为列车空气动力学力振动。
1.2高速列车振动控制的方法高速列车振动控制的方法可以分为主动控制和被动控制两类:(1)主动控制:主动控制是指对高速列车进行主动控制,以降低其振动幅值。
主动控制的方法有:主动悬挂系统、积极转向系统、主动减震系统等。
(2)被动控制:被动控制是指采用非主动控制方法对高速列车进行振动控制,如改变材料、减小刚度等方法。
1.3主动振动控制技术——主动悬挂系统主动悬挂系统是一种可以响应路面不平整性并调整悬挂刚度的控制系统,可以有效控制列车的振动。
主动悬挂系统通常包含有悬挂器、传感器、控制系统等元素,通过对传感器的指令,控制系统可以实时响应悬挂系统的调整,以适应不同的路面状况。
主动悬挂系统在高速列车振动控制中是一项非常重要的技术。
该技术可以通过改变悬挂系统的刚度和阻尼来降低列车振动,大大提高列车的运行稳定性和安全性。
第二章高速列车噪声控制技术研究高速列车在运行过程中还会产生大量的噪声,这些噪声会对乘客及周围环境造成影响。
高速铁路车辆振动与噪声控制技术研究高速铁路作为一种重要的交通运输方式,不仅提供了高效快速的出行方式,还对城市经济的发展和人民生活产生了积极的影响。
然而,高速铁路运行过程中产生的车辆振动和噪声给乘客乘坐体验和周边环境带来了一定的不便和污染。
因此,研究高速铁路车辆振动与噪声控制技术具有重要的现实意义。
高速铁路车辆振动和噪声产生的原因主要有三个方面:车辆本身的特性、路轨质量和环境噪声。
首先,车辆本身的振动源包括轮对、轮轴、车体和车厢等。
在高速行驶过程中,轮轴会受到不平衡负荷的作用,从而引起车辆振动。
其次,路轨质量是影响车辆振动的重要因素之一。
路轨的不平整度和道床的稳定性都会对车辆振动产生一定影响。
最后,环境噪声主要指高速铁路运行过程中产生的空气噪声和机械噪声等。
针对高速铁路车辆振动与噪声控制技术的研究,可以从以下几个方面展开:1.车辆结构优化:通过对车辆结构的优化设计,减小车辆自身振动源的强度和频率。
例如,采用轻质材料和先进的制造工艺来减轻车体和车厢的重量,降低振动引起的噪声。
此外,使用特殊的减振材料和隔声材料来改善车内噪声水平。
2.路轨维护与提升:加强对路轨质量的监测和维护,提高路轨的平整度和稳定性,减小路轨引起的振动传递。
同时,研发新型的路轨材料和结构,改进路轨的减振和隔声性能。
3.减少环境噪声:通过采用隔音施工技术和环境保护措施,减少高速铁路运行过程中产生的空气噪声和机械噪声。
例如,在高速铁路路段周围设置隔音围挡和隔音墙,采用隔音隔振的铁路桥梁和隧道设计,降低噪声对周边居民的影响。
4.智能化监测与控制技术:利用传感器和监测系统对高速铁路车辆振动和噪声进行实时监测和控制。
通过建立模型和算法,实现对振动和噪声的精确预测和控制,及时采取有效的措施进行调整和修正。
同时,通过智能化的调度和运行管理,优化列车行驶速度和车辆间距,减小振动和噪声的产生。
5.乘客保护与舒适性提升:通过改进车厢和座椅的设计,提高乘客座椅的减振和隔声性能,减少乘客在高速运行过程中的不适感。
高速列车动力系统的振动与噪声控制随着交通事业的快速发展,高速列车成为如今现代化的重要交通工具之一。
然而,随之而来的问题是高速列车动力系统所产生的振动和噪声。
这些振动和噪声对列车乘客的舒适性产生了负面影响,同时也增加了列车设备的维护成本。
因此,高速列车动力系统的振动与噪声控制成为了一个重要的课题。
要控制高速列车动力系统的振动与噪声,首先需要对振动和噪声的产生机理进行深入了解。
高速列车动力系统产生的振动主要来自于列车轮对与长轨距的交互作用。
当列车行驶时,轮对与轨道之间的接触面会产生不断的冲击力,从而引发振动。
此外,列车的传动系统、制动系统以及悬挂系统等也会产生振动。
而噪声主要是由于振动的产生而产生的空气和结构传导所引起的。
要控制振动与噪声,可以从振动与噪声产生源、传导途径和接收端三个方面入手。
首先,通过改进列车动力系统的设计,减少振动和噪声的产生源。
例如,采用新型的悬挂系统和轮对材料,提高轮对和轨道间的接触性能,减少冲击力的产生,从而降低振动的程度。
此外,改善传动系统和制动系统的设计,减少机械摩擦和冲击,也可以有效地减少振动和噪声。
其次,通过改进振动传导途径,减小振动和噪声在车体和结构中的传播。
例如,在列车车体和悬挂系统中添加减振器和隔音材料,可以有效地减缓振动和噪声的传播速度。
此外,合理设置车体和结构的固定点,减少共振现象的发生,对振动和噪声的控制也具有重要意义。
最后,通过改善接收端的设计,降低振动和噪声对乘客的影响。
例如,在列车车厢内部设置隔音、减振措施,可以有效地减少噪声对乘客产生不适的问题。
同时,合理设计座椅和乘客区域的布局,使乘客在列车行驶过程中能够感受到最小的振动。
除了以上的措施,高速列车动力系统的振动与噪声控制还需要综合运用各种技术手段。
例如,利用数值模拟和仿真技术,对振动和噪声的特性进行预测和分析,从而指导优化设计。
同时,利用现代信号处理技术,对振动和噪声信号进行处理和分析,提取有用的信息,为优化控制提供依据。
高速列车轨道冲击与噪声控制一、介绍高速列车轨道冲击与噪声控制是现代交通领域的重要课题之一。
随着高速列车运行速度的不断提高,轨道冲击和噪声问题也日益凸显,给列车乘客和周边居民带来了不小的困扰。
因此,如何有效控制高速列车轨道冲击与噪声成为了交通工程领域的研究热点之一。
二、高速列车轨道冲击问题及解决方法1. 高速列车轨道冲击问题高速列车的运行速度较快,列车行经轨道时会造成轨道的较大振动,导致轨道冲击现象。
轨道冲击问题主要表现为列车与轨道之间的撞击、震动和振动,给乘客和列车设备造成不小的损害。
2. 解决方法为了解决高速列车轨道冲击问题,可以采取以下措施:(1)加强轨道结构强度和稳定性,提高轨道对列车行驶的承载能力;(2)采用新型轨道材料,提高轨道的耐久性和抗冲击能力;(3)优化列车的运行速度和轮轨系统的设计,减小列车与轨道之间的相互作用力;(4)加强轨道维护和检修,及时发现和解决因轨道冲击引起的问题。
三、高速列车噪声问题及控制措施1. 高速列车噪声问题高速列车运行时会产生较大的运行噪声,给列车内外的乘客和周边居民带来很大的噪声污染。
高速列车噪声主要来自列车的机械噪声、空气动力噪声和轨道噪声。
2. 控制措施为了控制高速列车噪声,可以采取以下措施:(1)优化列车设计,减少列车本身的噪声产生;(2)改进列车车轮和轨道之间的相互作用,降低摩擦和震动产生的噪声;(3)采用隔音材料和结构,减少噪声的传播和扩散;(4)优化列车的运行速度和轨道设计,减少空气动力噪声的产生。
四、高速列车轨道冲击与噪声控制的研究进展1. 传统方法过去,针对高速列车轨道冲击与噪声控制主要采用传统的减振和隔音方法,如使用减振器和隔音材料来降低冲击与噪声的传导和扩散效果。
这些传统方法在一定程度上可以缓解问题,但效果有限。
2. 新技术方法近年来,随着科技的进步,一些新技术和新材料被应用于高速列车轨道冲击与噪声控制中,取得了较好的效果。
例如,利用新型材料制造轨道,可以大幅降低轨道冲击和噪声;通过调整列车运行速度和轮轨系统的设计,可以优化列车与轨道之间的相互作用,降低噪声产生;利用智能控制技术,可以精确控制列车的运行,减少冲击与噪声。
高速铁路钢轨的振动与噪声控制技术随着高速铁路网络的不断扩展和运营的普及,高速铁路的运行安全、舒适性和环境影响等问题也变得越来越重要。
其中,高速铁路钢轨的振动与噪声对列车运行安全和周围环境的影响至关重要。
因此,开发有效的振动和噪声控制技术对于提高高速铁路的运行质量具有极其重要的意义。
高速铁路钢轨振动问题主要包括自振动和非自振动两个方面。
自振动是指钢轨本身因受到列车和风荷载作用而引起的振动,而非自振动则是外界因素(如车辆轮对不平衡、轨道不规则等)引起的振动。
这些振动不仅可能加速钢轨的疲劳和破坏,还会产生较大的噪声,影响周围居民的生活质量。
钢轨振动与噪声控制技术主要包括主动控制、被动控制和减振措施等。
主动控制是指根据振动与噪声的特征,通过施加外加力或扭矩控制钢轨的振动和噪声。
通过控制车辆的运行参数、轮轴布置和轮轴质量分布等方式,减小钢轨的振动。
主动控制技术具有响应速度快、控制效果好的优点,但其成本较高,安装和维护也相对繁琐,因此在实际应用中有一定的局限性。
被动控制则通过改变钢轨的结构和几何形状,以及在钢轨下方加装弹簧等减振和隔振装置来控制钢轨的振动和噪声。
这种方法具有投资和施工成本低、操作和维护简便等优势,不会对列车的正常运行产生干扰,因此在高速铁路建设中被广泛应用。
例如,在铺设钢轨时,可以采用混凝土枕木、橡胶垫等能够吸收和隔离振动的材料,同时也可以合理设计轨道线路的几何形状,减小钢轨的振动和噪声。
除主动控制和被动控制之外,还可以采用其他减振措施来控制钢轨的振动和噪声。
例如,在环境噪声因素较大的地区,可以在高速铁路两侧设置隔音屏障,以减少噪声的传播和影响。
此外,合理的维护和保养也是减少钢轨振动和噪声的重要手段,及时修复和更换老化和损坏的钢轨,减少钢轨的共振和噪声产生。
总之,高速铁路钢轨的振动与噪声控制技术对于提高运行质量、保障运行安全和改善环境质量具有重要意义。
通过主动控制、被动控制和减振措施等多种方法的综合应用,可以有效地控制钢轨的振动和噪声,提升高速铁路的运行效果和用户体验。
我国高速铁路噪声的危害和降低噪声方法分析我国高速铁路噪声的危害和降低噪声方法分析随着我国高速铁路的飞速发展,高铁噪声污染已成为突出的环境问题。
在我国第一次200km/h以上高速铁路论证会上,噪声污染被认为是高铁对社会产生的最大的环境污染因素。
随着我国路网密度的增加、列车运行速度的提高,列车运行噪声水平大大增加,给线路两侧的住宅带来严重的影响,尤其是医院、学校、居民区等对噪声比较敏感的区域。
国际上已把振动噪声列为七大环境公害之一,高速铁路的噪声问题日益受到各方关注。
如何降低铁路环境噪声对敏感点的影响,一直是环境保护工作者的重要任务之一。
因此,如何减小高铁噪声污染,是当前车辆制造和铁路建设中的一个十分重要的课题。
一、我国高速铁路的噪声源相对于普速铁路,高速铁路具有高速、高架、电气化等特点,因而其噪声传播的空间和时间也较普速铁路远,其噪声的构造也较普速铁路复杂。
尤其是高速铁路穿越人口稠密的区域时,问题尤其严重。
高速铁路噪声是由各种不同类型的噪声组合而成,按发生部位的不同,可分为轮轨噪声、空气动力性噪声、集电系统噪声和桥梁构造物噪声。
高速铁路噪声是上述四种噪声总集合的结果。
随着列车速度的增快而增大,在不同的列车速度和不同的减振降噪措施条件下,上述四种噪声影响的程度是不一样的。
二、高速铁路噪声的危害1、噪声损害听力:有关资料表明: 当人连续听摩托车声, 8小时以后听力就会受损; 若是在摇滚音乐厅, 半小时后, 人的听力就会受损;若在80分贝以上的噪音环境中生活,造成耳聋的可能性可达50%。
2、噪声损害视力:噪音会严重影响听觉器官,甚至使人丧失听力,尽人皆知。
然而,耳朵与眼睛之间有着微妙的内在“联系”,当噪音作用于听觉器官时,也会通过神经系统的作用而“波及”视觉器官,使人的视力减弱。
研究指出,噪音可使色觉、色视野发生异常。
调查发现,在接触稳态噪音的80名工人中,出现红、绿、白三色视野缩小者竟高达80%,比对照组增加85%。
高速列车车体振动与噪声控制一、引言高速列车是现代交通运输中不可或缺的一部分,它的速度快、效率高,但也存在着车体振动和噪声问题。
车体振动会影响列车的安全性和乘坐舒适度,噪声也会影响乘坐体验和沿线居民的正常生活。
因此,如何控制高速列车车体振动和噪声已经成为了一个研究的热点。
二、高速列车车体振动控制2.1 车体振动特点高速列车的车体振动主要是由于行车时的外力作用于车体上,因而产生的弯曲振动、横向振动和纵向振动。
这些震动会使列车车体、底盘、轮轴、车轮等受到不同程度的影响,所以,车体振动的控制需要考虑整个列车系统。
2.2 车体振动控制方法(1)加装减振器高速列车的运动速度非常快,这就需要设计合适的减振器来降低车体的震动。
常见的减振方式包括弹性减振、液压减振和可控减振等,这些减振器都可以通过调节其刚度、阻尼等参数来实现对车体振动的控制。
(2)改进车体结构车体结构的改进也是控制车体振动的重要方法。
优化车体的设计,包括材料、形状、刚度等,使其能更好地抵抗行车时的外力作用,减少振动的发生和传递。
(3)制定合理的速度和路线高速列车的行驶速度和路线也会影响车体振动的大小。
制定合理的速度和路线,选择适宜的轨道路基等建造方式,能够有效控制车体振动。
三、高速列车噪声控制3.1 噪声产生原因高速列车行驶时的噪声主要是由于车轮与轨道的摩擦声、空气阻力声和电器声等多因素共同产生的。
这些噪声不仅会影响乘坐体验和行车安全,还会对沿线居民的正常生活造成干扰。
3.2 噪声控制方法(1)控制车轮噪声车轮是高速列车产生噪声的主要根源之一,因此需要通过优化车轮的设计、制造和维护来实现噪声的控制。
比如使用更加光滑的轮胎、更加平整的轨道等。
(2)降低气动噪声高速列车离开轨道时会在周围的空气中产生压力波和涡流,这些不规则的气流会产生噪声。
因此,通过车体的外形设计、车门和车窗的关闭等方式来减少车体气动噪声也是噪声控制的一种方法。
(3)隔音措施除了控制噪声的产生外,隔音措施也是一种重要的噪声控制方法。
高速铁路运输气动噪声分析与降解方法探讨随着高速铁路运输的发展,气动噪声问题日益凸显。
气动噪声是指高速列车行驶时凭借空气流经引起的噪声,对周围居民和环境造成了一定的影响。
因此,对高速铁路运输气动噪声进行准确分析并提出降解方法是一个重要的课题。
在分析高速铁路运输气动噪声之前,我们首先要了解气动噪声的产生原因。
当高速列车行驶时,空气流经车体、车窗、车轮、电缆等部件,会产生涡流和尾迹,同时也会引起噪声。
这些噪声主要包括空气波噪声、涡流噪声和尾迹噪声。
因此,针对这些噪声成因,我们可以制定相应的降噪措施。
针对高速铁路运输气动噪声的分析方法有很多种,下面我们将介绍两种经常应用的方法。
首先是数值模拟方法。
这种方法基于计算流体力学的原理,通过数值模拟计算,并得到噪声的预测结果。
数值模拟方法在预测和分析气动噪声中应用广泛,其优点是可以快速计算出复杂流动条件下的噪声分布,提供详细的噪声信息。
此外,数值模拟方法还能够评估不同降噪方案的效果,并指导设计优化。
但是,数值模拟方法也存在一些限制,如计算量大、模拟结果与实际情况存在差距等。
另一种分析方法是实测数据分析法。
通过在实际运行的高速铁路上采集噪声数据,对其进行分析和处理。
这种方法可以直接反映铁路运输中的噪声情况,具有更高的可靠性。
实测数据分析法可通过测量、分析和比较来取得准确的噪声信息,并进一步对噪声来源和影响因素进行分析。
然后可以根据分析结果制定相应的降噪方案。
除了分析方法,还有一些常用的降噪方法可以应用于高速铁路运输气动噪声的控制与降低。
首先是提高车身设计。
通过优化车体外形、减小空气阻力,降低噪声源的产生。
例如,采用空气动力学设计来减小涡流的产生,减少气动噪声的辐射。
其次是采取隔音措施。
可以在车体内部和外部表面使用隔音材料,减少气动噪声的传播和振动。
同时,还可以使用隔音窗户和隔音门等设备,减少噪声对内部空间的传递。
第三是优化轨道设计。
适当改善铁路轨道的几何形状和结构参数,可以减少列车行驶过程中产生的噪声和振动。
高速铁路线路的噪声减振技术研究引言:近年来,随着高速铁路的不断发展,它已经成为现代交通系统的重要组成部分。
然而,高速铁路运营所带来的噪声问题也愈发凸显。
噪声对人们的生活和健康产生了不可忽视的影响,因此,研究高速铁路线路的噪声减振技术具有重要的意义。
一、噪声产生原因分析高速铁路线路产生的噪声主要来自两个方面,一是由列车运行引起的机械噪声,二是由列车经过轨道产生的轨道噪声。
机械噪声主要是由于列车的动力系统、轮轴系统和牵引系统等引起。
而轨道噪声则主要来自列车的车轮与轨道的摩擦。
因此,通过研究这两个方面的原因,可以有针对性地研究噪声减振技术。
二、噪声减振技术分类及原理1. 机械噪声减振技术机械噪声减振技术主要包括隔离、吸音和降噪等措施。
其中,隔离措施通过减少振动传递来降低噪声。
吸音措施则通过在列车内部的壁板、天花板和地板等位置表层加缓冲层,以吸收噪声。
降噪则通过改进列车的动力系统和牵引系统等,减少机械噪声的产生。
2. 轨道噪声减振技术轨道噪声减振技术主要包括隔离、降噪和复合改造等方式。
隔离措施主要通过改变轨道材料或改进轨道结构来减少振动的传递。
降噪则通过在轨道上方安装隔音层或采用减振材料来减少噪声。
而复合改造则是通过综合运用各种技术手段,以降低轨道噪声。
三、噪声减振技术的应用案例1. 悬吊式轨道减振系统该系统通过在轨道上方悬挂橡胶垫,以减少列车经过时产生的振动和噪声。
这种系统能够显著减少地下铁路和高架铁路所产生的噪声,提高周边居民的生活质量。
2. 空气减振系统空气减振系统利用空气弹簧的弹性来减振和降低列车噪声。
该系统通过在轨道上方安装橡胶减振器,减少列车经过时的噪声传播。
3. 轨道隔振板技术通过在轨道的底部安装隔振板,能够有效减少轨道噪声的传递。
该技术已经在某些高速铁路线路上得到应用,并取得了良好的减振效果。
四、噪声减振技术的挑战与展望尽管目前已经有了一些噪声减振技术,但仍然面临一些挑战。
首先,技术成本仍然较高,需要进一步降低成本,以推动技术的应用。
机械噪声测试与控制论文
专业:机械电子工程
班级:机械0904
*****
学号:************
****: ***
浅析高速铁路振动产生的噪声及防治措施
摘要:针对高速铁路行车速度造成噪声污染急剧增加的问题,从噪声控制理论
出发,对高速铁路产生噪声对沿线环境的影响特点和干扰程度进行了分析,提出了控制轮轨噪声、列车整体噪声、隧道反射噪声以降低高速铁路噪声源,以及在线路两侧设置绿化带及防声屏障限制噪声的传播等措施,从而实现高速铁路对环境保护的要求。
关键词:高速铁路;振动噪声;噪声源;轮轨噪声;辐射噪声;防声屏障
在交通运输高速发达的今天,世界许多发达国家都已经有了自己的高速铁路系统。
随着京津高速铁路和合武新干线、石太客远专线的开通运行,以及郑西高铁、武广高铁和京沪高铁的开通,我国也已经跨人了世界行列,大大加速了我国铁路高速化的进程。
然而与高速铁路行车速度有关的环境因素,主要为噪声污染已严重影响了铁路两侧居民的正常工作和学习生活。
国际上已把振动噪声列为七大环境公害之一,高速铁路的噪声问题日益受到各方关注。
如何降低铁路环境噪声对敏感点的影响,一直是环境保护工作者的重要任务之一。
因此,如何减小高铁噪声污染,是当前车辆制造和铁路建设中的一个十分重要的课题.
1 、高速铁路的噪声源
1.1高速铁路噪声的特点
相对于普速铁路,高速铁路具有高速、高架、电气化等特点,因而其噪声传播的空间和时间也较普速铁路远,其噪声的构造也较普速铁路复杂。
尤其是高速铁路穿越人口稠密的区域时,问题尤其严重。
1、2 高速铁路的噪声源分析
高速铁路噪声是由各种不同类型的噪声组合而成,按发生部位的不同,可分为轮轨噪声、空气动力性噪声、集电系统噪声和桥梁构造物噪声。
如图1所示。
高速铁路噪声是上述4种噪声总集合的结果。
随着列车速度的增快而增大,在不同的列车速度和不同的减振降噪措施条件下,上述4种噪声影响的程度是不一样的。
我国目前尚未对各类噪声源对总噪声的影响展开研究,根据日本对高速铁路的噪声测试情况,可以对各部分声级源对总声级的贡献进行剖析。
主要噪声声源的声级见表1。
声音是由物体振动产生的,通过声波传到人们的耳朵。
声波具有能量,能量越大,其声音越强。
正常人刚能听到最小的声音叫做听阈,听阈的声强为0 dB,人耳开始感到疼痛的声音叫做痛阈,痛阈为120 dB。
目前世界上主要高速铁路的辐射噪声强度见表2所示。
2、高速铁路噪声的相应防治措施
控制噪声一般可从噪声源、传播途径及受声点3个方面人手。
在噪声源方面,可通过优化列车相关结构及参数来降低噪声源源强;在传播途径方面,以拦截噪声的传播,从而隔离噪声源来保护对象。
其中从噪声源方面降低噪声污染是较为
经济有效的方法。
结合我国国情和已经发展了高速铁路的国家积累的经验,提出治理途径。
2.1 、降低高速铁路噪声源
2.1.1 控制轮轨噪声
轮轨噪声是高速铁路噪声的主要组成部分。
主要是列车运行时,车轮与钢轨接头处的撞击和已磨损的车轮在钢轨上的摩擦而产生的。
因此,高速铁路应采用改善轨道结构和车轮结构来降低列车运行的噪声。
目前采取的措施有:
1)采用中型钢轨及弹性钢轨;
2)减少钢轨的波形磨损;
3)采用无缝钢轨,钢轨削正研磨;
4)采用弹性轨道基础和适合高速铁路的弹性车
轮;
5)采用吸音装置。
2.1.2 控制列车整体噪声
由于集电系统的噪声,主要是由电动通风机、电动压缩机、电动发电机和牵引电动机运行时所发出的.因此,相对应的措施是改进集电弓滑板的形状,减少滑板的宽度;尽量减少集电弓的数量和安装电工外罩。
空气动力性噪声与列车运行速度及列车的密闭性能相关连。
减少空气噪声最有效的方法是设计出流线性的车体,车体材料大部分选用隔音材料,再辅以密封措施减小车内壁板的孔隙数和尺
寸。
2.1.3 控制桥梁辐射噪声和隧道反射噪声
由于桥梁结构在车辆的动力作用下,产生振动并辐射低频噪声。
因此,桥梁构造物的噪声控制主要从设计和安装着手。
比如在桥梁的结构形式设计上采用混凝土梁、有砟桥面或板式轨道的无砟桥面和加强桥头横梁,以降低车辆对桥梁的冲击效应,有效减低桥梁低频噪声。
隧道噪声在高速运行时尤为明显。
当车辆以高速冲入隧道入口时,在隧道内将形成压缩波;当车辆以高速冲出隧道口时,压缩波将向外部放射而产生很大的噪声。
因此,应在隧道的内壁、桥梁外表面饰以吸声材料,以改善桥梁、隧道中轨道下的减振吸声结构。
2.2、传播途径及受声点方面的措施
2.2.1 线路两侧设绿化带
一般说来,铁路沿线两侧的绿化带既可以遮挡噪声的传播,又可以保护路基的稳定,还有净化空气,美化路容的作用。
一般认为,矮的乔木比高的乔木防噪效果好;阔叶树比针叶树好;几条窄林带比一层稠密林带效果好。
不同宽度灌木降噪效果见表3。
2.2.2 设置防声屏障以限制噪声的传播
噪声在传播途径中,若遇到障碍物尺寸远大于声波时,则大部分声波能被反射,一部分被衍射,于是在障碍物或一定距离内形成“声影区”,其区域的大小与声响频率有关,声响频率越高,声影区范围越大。
如果被保护点处于声影区,等效声级可以降低8 dB(A)~15 dB(A);如果处于非声影区,也可降低3 dB(A)。
为了增强防声屏障的效果,可在防声屏上铺设一些吸声材料,以避免和附近建筑之间形成反射。
防声屏障的效果与其结构本身的隔声值有关,而所涉及的最小单位面积与屏障高度、屏障与声源的位置有关。
2.2.3 合理布置路线
在进行路网规划时,应注意不同功能线路之间的配合,避免穿越市中心和文教区、住宅区。
对穿越城市的进站列车应开辟专用区域,以便集中采取措施。
对于住宅区、文教区等特殊区域,应与铁路干线保持一定距离,利用环境自然条件降低噪声,必要时还可采用路堑或高架路。
对于列车流量大的区域,应通过运行图控制车流密度,车辆匀速运行,以降低噪声。
3、结束语
随着铁路高速化,铁路噪声已经越来越多地引起公众的强烈反应,此问题不可忽视。
我国应该根据国情和路情,在吸收、消化国外已取得的先进经验和技术的基础上,选择和确定综合防治技术措施,而且要具有超前意识,才能不仅给乘客舒适的乘坐环境,更能给铁路周边居民一个安静、和谐的生活环境。
参考文献:
【1】李桂强.铁路交通噪声分析和防治措施[J].交通科技,2004,6(207):66—68.
【2】汤波.京沪高速铁路噪声污染及降噪措施探讨[J].北方环境,2004,8(4):1—3.
【3】郭志云,左志武.高速铁路营运期交通噪声污染与防治措施[J].山东交通科技,2002(1):92-94.
【4】胡强强,陈云.高速铁交通噪声污染调查及防治对策研究[J].交通环保,2004,10(5):4-6.
【5】张鹏飞,姚成.高速铁路与城市道路沿线交通噪声对环境的污染分析[J】.城市环境与城市生态,1999,l2(3):29—31.。