粉煤灰的化学活性及激活方法
- 格式:doc
- 大小:29.00 KB
- 文档页数:4
粉煤灰利用技术1. 粉煤灰的活性粉煤灰的活性包括物理火星和化学活性两个方面。
化学活性是指其中的可溶性二氧化硅,三氧化二铝等成分在常温下与水和石灰徐徐的化合反应,生成不溶,安定的硅铝酸钙盐的性质,也称火山灰活性。
需要说明的是,有些粉煤灰本身含有足量游离石灰,无需再加石灰就可和水显示该活性。
粉煤灰的化学活性的决定因素是其中玻璃体含量,玻璃体中可溶性的SiO2,Al2O3含量及玻璃体解聚能力。
粉煤灰的活性是粉煤灰颗粒大小,形态,玻璃化程度及其组成的综合反映,也是其应用大小的的一个重要参数。
粉煤灰的活性大小不是一成不变的,它可以通过人工手段激活。
常用的方法有如下三种。
(1)机械磨细法(2)水热合成法(3)碱性激发法总之,只要能瓦解粉煤灰的结构,释放内部可溶性SiO2,Al2O3,将网络高聚体解聚成低聚度硅酸铝(盐)胶体物,就能提高粉煤灰的活性。
2.粉煤灰成分分析粉煤灰成分分析项目一般包括:SiO2, Fe2O3, Al2O3, CaO, MgO, SO3, K2O, 和Na2O,烧失量,有时也分析P2O5, Hg, Cr, Cd及放射性元素等。
这主要依据其用途来分析,比如:用粉煤灰提取氧化铝时,只要求测SiO2,和Al2O3的量;用粉煤灰分选富铁玻璃微珠炼铁时,仅需分析Fe2O3含量;而考察粉煤灰对环境的放射性,毒性影响时,则要测定放射性元素含量和有毒元素含量等。
3.烧结粉煤灰砖使粉煤灰的掺量提高至70%—80%的用量,同时对粘土的可塑性的要求就更高了。
4.粉煤灰所含各种化学成分对烧结粉煤灰砖的影响(1)氧化钙各种钙的化合物与氧化铝,氧化硅形成低熔点的液态化合物,因而降低混合料的玻璃化温度和耐火度。
焙烧中形成液态物质,冷却时这些液体容易形成玻璃体,起强有力的粘结作用,使制品增大抗渗透的耐酸腐蚀的性能。
这种玻璃体在较低的温度下软化,过量是有可能导致坯体的严重的变形。
在低于他反应温度时,他们将降低混合料的收缩,并使混合料易于干燥。
粉煤灰的活性研究及进展论文粉煤灰的活性研究及进展摘要本文介绍了粉煤灰活性研究的进展,分析了粉煤灰的测定方法、活性的表现以及影响机理的相关研究。
粉煤灰是由水泥工业生产过程中形成的一种粉尘,其有效成分含量低,但有较高的氯离子含量,因此具有较强的活性特性。
本文介绍了对粉煤灰的活性特性的评价方法,包括热分析、重金属吸附实验、pH测定法以及X射线衍射分析等。
分析了粉煤灰活性影响因素,如氧化法、水热分解法、抗压法、高温处理法等。
本文综述了常见的粉煤灰利用技术,包括吸附剂的制备以及在水污染控制中的应用。
对未来粉煤灰活性研究及应用进展的展望也进行了讨论。
关键词:粉煤灰;活性;评价;技术1.绪论粉煤灰(简称PM棋牌)是水泥工业生产过程中形成的粉尘,其中含有大量的来源可持续的无机物,具有较低的有效成分含量和较高的氯离子含量,因此具有较强的活性特性。
PM棋牌的活性对于涉及活性物质的环境问题起着重要作用,特别是在水污染控制中的应用,因此,对粉煤灰的活性研究具有重要的意义。
2.粉煤灰的活性测定方法2.1 热分析热分析是运用热分析实验去评价活性物质性质的常用方法,能够较好的反映活性物质分解温度及活性期熔点等指标。
常见的热分析仪器有热重分析仪(TGA)、差热分析仪(DSC)、热悬浮仪(SFC)和热流通分析仪(HFA)。
2.2 重金属吸附实验重金属吸附实验法可以测定水溶液中的重金属离子,以及离子的吸附性能,是衡量水质中活性成分的一种便捷方法。
根据实验结果计算出的重金属吸附动力学和吸附热化学参数能够指导水质治理策略。
2.3 pH测定法pH是指溶液的酸碱度,也可以用来衡量水溶液中活性物质的含量。
pH值变化大的水溶液更容易吸附活性物质,因此使用pH测定法可以测量不同活性物质对粉煤灰的吸附性能。
2.4 X射线衍射分析(XRD)X射线衍射仪可以用来鉴定晶体的形状、结构和晶体组分,用来识别活性物质的分子构成。
X射线衍射分析用来检测粉煤灰中活性物质组成和数量,以及吸收特性,进而评价活性物质的影响程度。
粉煤灰的化学活性及激活方法摘要:粉煤灰是一种对环境产生严重污染的工业固体废弃物,但粉煤灰中含有大量以活性氧化物SiO2和Al2O3为主的玻璃微珠,因此粉煤灰既具有很好的吸附性能,又是制备水处理絮凝剂(化学活性)的好原料。
化学活性是指其中的可溶性SiO2、Al2O3等成分在常温下与水和石灰缓缓反应,生成不溶、稳定的硅铝酸钙盐的性质,也称火山灰活性。
需要说明的是,有些粉煤灰本身含有足量的游离石灰,无须再加石灰就可和水显示该化学活性。
本文主要介绍了粉煤灰的化学活性激活的三种方法,其中对于目前使用最广泛的碱性激发法做了重点介绍。
关键词:粉煤灰、化学活性、火山灰活性、激活正文:粉煤灰化学活性的决定因素是其伭瞄玻璃体含量、玻璃体中可溶性的SiO2、Al2O3唫量及玻璃体解聚能力。
决定粉煤灰潜在化学活性的因素是其中玻璃体含量、玻璃体中可溶性SiO2、Al2O3含量及玻璃体解聚能力。
由此可知要提高粉煤灰的早期活性,必须破坏表面≡Si-O-Si≡O和≡Si-O-Al≡网络构成双层保护层,使[SiO4]、[AlO4]四面体形成的三维连续的高聚体变成单体或双聚体等活性物。
为下一步反应生成C-S-H,C-A-H等胶凝物提供活性分子粉煤灰的活性是粉煤灰颗粒大小、形态、玻璃化程度及其组成瞄翼合反映,也是其应用价值大小的一个重要参数。
粉煤灰的活性大小不是一成不变的,它可以通过人工手段激活。
常用的方法有如下三种:1 机械磨碎法机械磨碎对提高粉煤灰的活性非常有效。
通过细磨,一方面粉碎粗大多孔的玻璃体,解除玻璃颗粒粘结,改良表明特性,减少配合料在混合过程的摩擦,改善集料级配,提高物理活性(如颗粒效应、微集料效应);另一方面,粗大玻璃体尤其是多孔和颗粒粘结的破坏,破坏了玻璃体表面坚固的保护膜,使内部可溶性的SiO2、Al2O3溶出,断键增多,比表面积增大,反应接触面增加,活化分子增加,粉煤灰早期化学活性提高。
2水热合成法粉煤灰是在高温流态化条件产生的,其传质过程异常迅速,在很短的时间(约2~3s)内被加热至1100~1300℃或更高温度,在表面张力作用下收缩成球形液滴,结构迅速变化,同时相互粘结成较大颗粒,在收集过程又由于迅速冷却,液相来不及结晶而保持无定形态,这种保持高温液相结构排列方式的介稳结构,内能结构处于近程有序,远程无序,常温下对水很稳定,不能被溶解(无定型态SiO2是可溶的)。
广东建材2011年第8期1引言粉煤灰又称飞灰,是一种颗粒非常细以致能在空气中流动并能被特殊设备收集的粉状物质。
我们通常所指的粉煤灰是指燃煤电厂中磨细煤粉在锅炉中燃烧后从烟道排出、被收尘器收集的物质。
我国煤炭资源丰富,能源生产以火力发电为主,是粉煤灰排放大国,每年超过1亿吨[1],粉煤灰大量占用土地,严重污染环境,已经成为国民经济持续发展的障碍。
因此,粉煤灰的资源化成为我国可持续发展战略的重要组成部分[2]。
长期以来,在所利用的粉煤灰中大部分是用于建筑材料和筑路材料,这主要是基于对粉煤灰中活性组分的利用。
然而由于粉煤灰特殊的结构及化学稳定性,其在应用的过程中活性发挥非常缓慢,因此,粉煤灰活化技术成为人们近年关注的热点[3,4]。
2粉煤灰活性来源粉煤灰的活性一般包括物理活性和化学活性。
2.1物理活性粉煤灰的物理活性产生的效应包括颗粒(形态)效应、微集料效应和密实(火山灰)效应[5]。
粉煤灰的颗粒效应泛指由其颗粒的外观形貌、内部结构、颗粒级配等物理性状所产生的效应。
粉煤灰中含有大量的玻璃微珠,粒形完整,表面光滑,球形玻璃微珠在掺粉煤灰体系中起到润滑、滚动作用,系统流动性、和易性改善的同时,增加了保水性和均匀性,降低了需水量[6];微集料效应是粉煤灰颗粒充当微小集料,使集料的匹配更加合理,填充率提高;密实效应是微集料效应和火山灰效应共同作用的宏观表现,使粉煤灰形成类似托勃莫来石次生晶相,填充系统的孔隙,提高密实度。
2.2化学活性粉煤灰的化学活性是指粉煤灰的火山灰性质,它来源于熔融后被迅速冷却而形成的玻璃态的颗粒中可溶性的SiO2、Al2O3等活性组分。
活性的SiO2、Al2O3在有水存在时,可以与Ca(OH)2反应,生成水化硅酸钙(C-S-H)和水化铝酸钙(C-A-H)。
粉煤灰中的玻璃体越多,火山灰化学反应性能越强,然而粉煤灰中的玻璃相结构致密,聚合度高,可溶性SiO2、Al2O3少,其早期化学活性低,因此,要提高粉煤灰的利用率,提高粉煤灰的早期活性将是一个突破口。
粉煤灰的活性日期:2008-1-30 8:57:00 保护色:默认白牵牛紫苹果绿沙漠黄玫瑰红字体:小字大字粉煤灰的活性也即火山灰效应,是指粉煤灰中的活性氧化硅、活性氧化铝与氢氧化钙发生反应,生成具有胶凝性质的水化铝硅酸钙,以此来增强砂浆、混凝土的强度。
粉煤灰的常量化学成分氧化硅、氧化铝是硅铝酸盐的主要成分,其中的可溶性成分越多,说明粉煤灰的活性越好,掺加到混凝土中越易与水泥水化析出的Ca(OH)2 反应,生成类似于水泥水化的产物,从而增强反应物的活性。
一般来说,氧化硅、氧化铝含量越多,其28天抗压强度比越高,两者有一定的相关性。
在材料学界,“活性”只是针对无机胶凝材料而言,“无机胶凝材料”是指磨细了的无机粉末材料。
当其与水或水溶液拌合后,所形成的浆体有塑性,可任意成型,经过一系列物理、化学作用后,能够逐渐硬化,并形成有强度的人造石。
大量的研究事实认为:粉煤灰的活性是“潜在”的,它需要一定条件的激发。
这是因为:粉煤灰与水泥熟料等类的无机盐胶凝材料,在矿物组成、结构,和性能方面,都有很大的不同,它本身没有胶凝性能。
但是粉煤灰具有一定潜在化学活性的火山灰材料,在常温、常压下、和有水存在时,它所含的大量铝酸盐玻璃体中的活性组分,具有能与Ca(OH)2发生火山灰反应,并生成具有强度的胶凝物质。
所以粉煤灰具有一定的胶凝性能。
活性效应主要取决于粉煤灰颗粒表面化学的和物理的特性,在很大程度上受形态效应的影响,也受微集料效应的影响。
粉煤灰的活性效应仅对水泥水化反应起辅助作用,而且只有到砂浆硬化后期,才能比较明显地显示出来,即粉煤灰活性效应具有潜在性质的特点。
粉煤灰的活性效应一般用28天抗压强度比来表示。
改善粉煤灰活性方法,目前激发粉煤灰活性的较为有效的途径主要有三种:一是物理活化即通过机械磨细来破坏粉煤灰的玻璃体的结果,同时增加比表面积,以加快水化反应速度;二是化学活化即通过化学激发剂和改性剂来激发粉煤灰的活性,目前常用的粉煤灰激发剂有:碱性激发剂、硫酸盐、纯碱、卤化物等。
粉煤灰活性的激发及其机理研究粉煤灰(flyash)是一种常见的可再生性再生资源,它是煤炭燃烧过程产生的最常见的副产物。
因为其碳、氧和硅含量较高,粉煤灰具有良好的活性性质,是各种建筑材料的重要原料和配料。
目前很多研究已经把粉煤灰用作混凝土的填料,以提高混凝土的抗压强度。
然而,为了更充分地利用粉煤灰中的活性成分,人们需要深入地了解其活性成分的激发机理,以及如何改良混凝土中对它的利用。
粉煤灰的活性是指它的碳、氧和硅元素在及时反应之后可以获得更高的功效,这通常伴随着碳氢键的断裂,氧官能团的变化,硅官能团的加强。
这种活性可以用高温或光化学反应来激发,也可以与其他化合物发生反应来激发,比如液体水,酸性溶剂等。
高温化学激发是指将粉煤灰放置于高温环境中,让碳氢键和氧官能团断裂,硅官能团活化,从而获得更高的功效。
光化学激发则指将粉煤灰暴露于光谱中间到短波段的可见光中,利用光的能量使其发生活性化学反应,并从而激发粉煤灰的活性成分。
原料中的液体水和酸性溶剂则可以催化碳氢键和氧官能团的断裂,活化硅官能团,从而提高粉煤灰的活性。
激发粉煤灰中活性成分后可以用来改善混凝土性能,比如增加抗压强度和抗折强度,增加抗水化性能,增加抗冻性能,提高抗冲击性能等。
类似的,改善的混凝土的某些物理及力学性质也可以用粉煤灰进行改善。
例如,当粉煤灰添加到混凝土中,其小孔结构可以改善混凝土的热性能,当增加粉煤灰的含量时,可以增加混凝土的强度,同时减少其密度,从而改善混凝土的机械性能。
目前,粉煤灰的激发及其机理研究已成为越来越受到重视的研究课题。
在激发机理研究方面,主要以微观结构和分子动力学理论为基础,通过原子力显微镜、傅立叶变换红外光谱、拉曼光谱等技术,研究粉煤灰激发机理,探究不同环境下粉煤灰激发的效应,以更好地利用粉煤灰的活性成分。
此外,对于改良粉煤灰利用研究,学者们也采用多种方法,以改进粉煤灰在混凝土中的利用效果。
其中最常用的方法之一是添加一定比例的矿物活性剂,以增强粉煤灰活性。
粉煤灰材料试验报告1. 引言粉煤灰 (Fly Ash) 是一种煤炭燃烧过程中产生的一种灰状残留物。
它主要由硅酸盐、铝酸盐和氧化物等组成。
由于其丰富的矿物质含量和良好的化学反应性,粉煤灰被广泛应用于建筑材料、混凝土制品、路基和填土等领域。
本试验将对粉煤灰材料的性能进行测试与评估。
2. 实验目的本试验旨在评估粉煤灰材料的力学性能和化学活性,为其在建筑和工程领域的应用提供依据。
3. 实验方法3.1 样品制备从煤炭燃烧厂收集到的粉煤灰被放置于干燥室中进行干燥处理。
然后,根据相关标准将粉煤灰材料进行筛分,以获得粒径在 0.1mm 至 0.6mm 之间的试验样品。
使用常规实验方法对粉煤灰样品进行以下物理性能测试:•密度测试:测量粉煤灰样品的体积和质量,计算其密度。
•吸水性测试:将预先称量的粉煤灰样品浸泡在水中,计算其吸水率。
•比表面积测试:使用比表面积分析仪,测量粉煤灰样品的比表面积。
使用碱活性试验方法测试粉煤灰的化学活性:•氢氧化钠活性试验:将粉煤灰与氢氧化钠溶液反应,观察溶液的颜色变化和反应程度。
•硫酸钠活性试验:将粉煤灰与硫酸钠溶液反应,观察溶液的颜色变化和反应程度。
•PH值测试:测量粉煤灰样品与水混合后溶液的PH值。
4. 实验结果4.1 物理性能测试结果以下是对粉煤灰样品进行物理性能测试的结果:•密度:2.1 g/cm³•吸水性:4.5%•比表面积:350 m²/kg4.2 化学活性测试结果以下是对粉煤灰样品进行化学活性测试的结果:•氢氧化钠活性试验:颜色变为黄色,反应程度中等。
•硫酸钠活性试验:颜色变为红色,反应程度高。
•PH值:9.55. 结论根据实验结果和分析,得出以下结论:•粉煤灰具有适用于建筑材料和混凝土制品的合适密度。
•粉煤灰具有较低的吸水性,适用于在湿润环境下使用。
•粉煤灰具有较高的比表面积,可提供更多的活性表面积。
•粉煤灰的化学活性较高,表明其与碱性物质反应能力强。
粉煤灰活性的激发及其机理研究粉煤灰(flyash)是由燃煤发电厂燃烧煤燃烧室内形成的碳灰渣,经过脱灰处理后经脱灰器分离,属于烟气除尘后产生的轻质灰粒体,也称为烟气灰,是一种绿色环保材料并具有非常重要的建筑应用价值。
近几年来,随着工业和建筑材料的发展,粉煤灰的应用范围也越来越广泛。
然而,粉煤灰的活性与其他材料相比较较低,难以达到更高的性能。
因此,如何提高粉煤灰的活性,充分发挥其余重要用途就成了一个棘手的问题。
首先,为了提高粉煤灰的活性,必须弄清楚粉煤灰活性提高的机理。
研究普遍认为,粉煤灰活性的提高与其内部微粒的结构有关。
内部结构决定了其热稳定性和表面性能。
通常,粉煤灰内部结构的主要部分是晶界、颗粒组分和毛细晶粒,其中晶界占粉煤灰中的主要比例,起到了关键作用。
当粉煤灰的晶界层渗透性较强时,粉煤灰的活性就会提高。
此外,粉煤灰活性提高的机理还包括表面特性和反应性,这两者都可以有效提高粉煤灰的性能。
粉煤灰表面特性包括形貌、表面界面张力、表面行为等,而反应性则与其物理化学性质有关,比如比表面积、表面结合能、热可溶性碱量等物理化学性质的改变。
这些物理化学性质的改变会带来粉煤灰性能的变化,从而提高粉煤灰的活性。
随着研究的深入,粉煤灰活性的提高也开始涉及其他因素。
实验发现,粉煤灰的活性受到添加剂(氢氧化钠、镁和氯化钠等)的影响,添加剂在粉煤灰中可以产生盐化作用,改善热稳定性,提高粉煤灰的可抗氧化性能,增加粉煤灰的表面活性,从而提高粉煤灰的活性。
另外,粉煤灰的活性还与它的烧制参数有关,包括燃烧温度、燃烧时间等。
提高粉煤灰的烧制温度可以促进热分解和衍生物的生成,以及改变粉煤灰内成分,改善表面形貌和内部结构,从而提高粉煤灰的活性。
此外,粉煤灰的活性提高还可以通过物理处理,如电离技术、磨粉技术和细化处理等,来达到预期的效果。
电离技术可以改变粉煤灰物质的结构,使其变得更活泼,从而提高粉煤灰的活性。
通过以上研究,我们可以发现,粉煤灰活性提高的机理复杂而多样化。
粉煤灰预处理方法粉煤灰是燃煤产生的固体废弃物,由于其具有高硅酸盐含量和活性成分,可以用于水泥、混凝土和砌块等建筑材料的制备。
然而,粉煤灰中含有一定的有害物质,如重金属和有机物,需要进行预处理才能安全有效地利用。
本文将介绍几种常见的粉煤灰预处理方法。
热浸提法是将粉煤灰与热水或盐酸等溶液进行浸提,将其中的可溶性有害物质溶解出来。
通过调节溶液的温度、浸提时间和溶液浓度等参数,可以实现对有害物质的高效去除。
此外,还可以利用物理方法,如超声波、微波等对粉煤灰进行辅助浸提,提高去除效果。
化学固化法是利用化学反应将粉煤灰中的有害物质转化为无害或难溶性物质。
常见的方法包括碱激发固化、酸碱激发固化和磷酸固化等。
碱激发固化是利用碱性物质与粉煤灰中的硅酸盐反应,生成硅酸盐水泥凝胶,固化有害物质。
酸碱激发固化则是通过酸碱中和反应,使有害物质转化为无害或难溶性沉淀物。
磷酸固化是将磷酸与粉煤灰中的金属离子反应,形成难溶性磷酸盐沉淀,从而固化有害物质。
热激活法是利用高温处理粉煤灰,使其活性成分得到激活,从而增加其利用价值。
高温处理可以促使粉煤灰中的无机成分发生结构和相变,提高其活性。
常见的热激活方法包括煅烧和热水处理。
煅烧是将粉煤灰置于高温下进行热解,使其发生晶体改变和物相转变。
热水处理是将粉煤灰与热水进行反应,使其活性成分溶解出来。
这些活性成分可以用于制备水泥、混凝土和砌块等建筑材料。
物理分选法也是一种常用的粉煤灰预处理方法。
物理分选法利用粉煤灰中颗粒的大小、密度和形态等差异,通过重力分选、气流分选或液体分选等方式将粉煤灰分离成不同的组分。
分选后的粉煤灰可以根据需求进行进一步处理,提高其利用价值。
粉煤灰预处理方法多种多样,可以根据不同的需求选择合适的方法进行处理。
热浸提法、化学固化法、热激活法和物理分选法都是常用的预处理方法,它们可以去除有害物质、提高粉煤灰的活性和分离粉煤灰的组分,为粉煤灰的安全有效利用提供了技术支持。
随着科技的不断进步,预处理方法将会越来越完善,为粉煤灰的综合利用开辟更广阔的前景。
如何提高粉煤灰的活性随着电力工业的迅速发展,粉煤灰的排放量急剧增加,年排放量已接近2亿t,而被利用的粉煤灰仅占排放粉煤灰量的25%~30%,造成粉煤灰的大量堆积。
未被利用粉煤灰的堆放不仅占用大量土地,而且严重污染环境。
大量粉煤灰未被利用是由于粉煤灰的活性低,因此要提高粉煤灰的利用率,必须提高粉煤灰的活性。
以下介绍几种简易的活化方法,以拓宽粉煤灰的利用途径。
(1)磨细粉煤灰粉煤灰越细,火山灰反应能力越好。
表1为一组不同粉磨细度粉煤灰配制的水泥强度数据,可见,粉煤灰细度不同,活性有较大差异,这说明粉磨粉煤灰可提高其活性。
表1粉煤灰细度对其活性的影响注:未掺粉煤灰的水泥细度为0.08mm方孔筛筛余5.4%。
(2)化学物质活化利用化学物质活化粉煤灰,可采用:①碱性物质:NaOH、Ca(OH)2、水泥熟料等;②碱金属盐:Na2CO3、Na2O·n SiO2等;③硫酸盐:Na2SO4、CaSO4等;表2~4分别列出了添加Na2SO4、Na2CO3和Na2O·n SiO2激发剂对粉煤灰活性的影响。
表2 Na掺量对粉煤灰活性的影响表3 Na掺量对粉煤灰活性的影响掺量对粉煤灰活性的影响表4Na表2~4数据表明,掺入Na2SO4、Na2CO3和Na2O·n SiO2,都可不同程度地提高粉煤灰水泥的强度,但也不同程度地带入了一部分碱含量,按Na2O计约为1.0%~1.5%;当混凝土中含有活性集料时,有可能发生碱集料反应或混凝土表面冒碱等危害,因此使用时应注意。
这里特别要说明的是,用含Cl—的化学物质作激发剂,也可显著地提高粉煤灰水泥的强度,但这种物质会加速混凝土中钢筋的锈蚀,缩短混凝土的使用寿命,不能使用。
(3)改变粉煤灰组成与物相结构粉煤灰中的主要矿物相为玻璃体、莫来石、石英,水硬性矿物很少,粉煤灰的活性主要来自玻璃相。
为增加粉煤灰中的水硬性矿物以提高其活性,可采用加入石灰石、矿化剂,利用低温煅烧来改变粉煤灰的化学组成与矿物结构。
粉煤灰的化学活性及激活方法
摘要:粉煤灰是一种对环境产生严重污染的工业固体废弃物,但粉煤灰中含有大量以活性氧化物SiO2和Al2O3为主的玻璃微珠,因此粉煤灰既具有很好的吸附性能,又是制备水处理絮凝剂(化学活性)的好原料。
化学活性是指其中的可溶性SiO2、Al2O3等成分在常温下与水和石灰缓缓反应,生成不溶、稳定的硅铝酸钙盐的性质,也称火山灰活性。
需要说明的是,有些粉煤灰本身含有足量的游离石灰,无须再加石灰就可和水显示该化学活性。
本文主要介绍了粉煤灰的化学活性激活的三种方法,其中对于目前使用最广泛的碱性激发法做了重点介绍。
关键词:粉煤灰、化学活性、火山灰活性、激活
正文:
粉煤灰化学活性的决定因素是其伭瞄玻璃体含量、玻璃体中可溶性的SiO2、Al2O3唫量及玻璃体解聚能力。
决定粉煤灰潜在化学活性的因素是其中玻璃体含量、玻璃体中可溶性SiO2、Al2O3含量及玻璃体解聚能力。
由此可知要提高粉煤灰的早期活性,必须破坏表面≡Si-O-Si≡O和≡Si-O-Al≡网络构成双层保护层,使[SiO4]、[AlO4]四面体形成的三维连续的高聚体变成单体或双聚体等活性物。
为下一步反应生成C-S-H,C-A-H等胶凝物提供活性分子粉煤灰的活性是粉煤灰颗粒大小、形态、玻璃化程度及其组成瞄翼合反映,也是其应用价值大小的一个重要参数。
粉煤灰的活性大小不是一成不变的,它可以通过人工手段激活。
常用的方法有如下三种:
1 机械磨碎法
机械磨碎对提高粉煤灰的活性非常有效。
通过细磨,一方面粉碎粗大多孔的玻璃体,解除玻璃颗粒粘结,改良表明特性,减少配合料在混合过程的摩擦,改善集料级配,提高物理活性(如颗粒效应、微集料效应);另一方面,粗大玻璃体尤其是多孔和颗粒粘结的破坏,破坏了玻璃体表面坚固的保护膜,使内部可溶性的SiO2、Al2O3溶出,断键增多,比表面积增大,反应接触面增加,活化分子增加,粉煤灰早期化学活性提高。
2水热合成法
粉煤灰是在高温流态化条件产生的,其传质过程异常迅速,在很短的时间(约2~3s)内被加热至1100~1300℃或更高温度,在表面张力作用下收缩成球形液滴,结构迅速变化,同时相互粘结成较大颗粒,在收集过程又由于迅速冷却,液相来不及结晶而保持无定形态,这种保持高温液相结构排列方式的介稳结构,内能结构处于近程有序,远程无序,常温下对水很稳定,不能被溶解(无定型态SiO2是可溶的)。
但在水热条件下,无规则网络被激活,水就可以直接破坏、
网络结构,并随温度升高,破坏作用强。
水热合成后,网络硅铝变成活性硅铝溶于水中。
3碱性激发法
碱类物质对硅酸盐玻璃网络具有直接的破坏作用,所以碱溶液对粉煤灰具有最强的作用,即碱性激发。
粉煤灰中的玻璃质颗粒表面光滑致密,Si一O、AI一O键牢固连接成网络结构,要激活粉煤灰必须先破坏Si一0、Al一O键,在表面形成一定数量的缺陷,与其它材料共同进行水化反应,形成强度结构,这就是化学激活法的主要原理。
碱对粉煤灰的激活是直接而有效的,但如单加Na0H,水化后并不产生强度,虽然玻璃体结构解体了,但并没有生成胶凝性的水化产物。
而如果以Ca(OH) 2作为粉煤灰的碱性激发剂,在蒸养条件下则可产生强度,原因有三:
a)OH一使粉煤灰玻璃体中的Si一O、Al一O键断裂,提高了玻璃体的活性,促进水化反应,并加快了水化速度;
b)Ca2+参与了粉煤灰的火山灰反应,生成具有胶凝性的水化产物,如水化硅酸钙、水化铝酸钙。
C)促使水化产物转化形成更稳定、具有高强度的水化产物。
正是由于Ca(OH) 2同时具有以上三种作用,才被广泛用来作为粉煤灰硅酸盐的碱性激发剂。
下面略述几种体系激发粉煤灰火山灰活性的机理。
3.1粉煤灰一石灰一石膏体系
在蒸养条件下,粉煤灰中活性Si02与石灰提供的Ca(OH) 2反应生成CSH 凝胶,称为石成性激发。
活性A12O3与Ca(OH) 2反应生成CAH,在石膏中CaSO4存在情况下,生成钙钒石3CaO、A122O3、3CaSO4、32H20;当CaSO2不足时生成单硫型水化硫铝酸钙3CaO、A12O3、CaSO4、12H2O,称为硫酸盐激发,但其只有在石成性激发的基础上才能起作用,因而硫酸盐起间接激发作用。
3.2粉煤灰一石灰一水泥体系
在高温高压下粉煤灰硅酸盐制品的水化反应大为加强,粉煤灰中氧化物的溶解度也有较大提高,高温高压的水在SiO2以及硅酸盐物质表面相遇时,即与Si反应,使02一变成OH一,进而导致Si一0四面全结构的键松驰,继之反应向深部发展,使整个Si一0四面体晶体结构发生紊乱,因而促进了晶体结构的转移和新的水化物的形成。
在这种养护条件下生成的水化物种类较多,主要是托勃莫来石、硬硅钙石及2一C2SH和C3SH等,其中大部分矿物是结晶完整、在大气中较稳定的化合物。
3.3粉煤灰一水泥熟料一石膏体系
此法主要用于粉煤灰硅酸盐水泥的生产。
它以合格的粉煤灰作混合材料,与熟料和石膏按比例混合,共同磨细作成各种标号的粉煤灰水泥。
这种水泥的水化首先是熟料水化反应过程,其次是粉煤灰参与水化反应过程。
熟料中C3S和C2S(约占熟料75%)持续水化析出的Ca(OH) 2对粉煤灰中的活性SiO2和活性Al2O3作碱性激发,分别生成CSH和CAH。
在Ca(OH) 2存在下,CAH与CaSO4发生硫酸盐激发生成钙钒石,所生成的CSH及钙钒石与熟料水化生成的其它水化物,共同成为水泥硬化体强度的基础物质。
由于这些反应长期持续进行,保征了硬化体的强度增长与耐久性。
3.4以NaCI、CaCl2、Na2SO4作早强剂间接激发粉煤灰活性
用NaCI、CaCL2作粉煤灰硅酸盐制品的早强剂,能不同程度地提高制品的强度,但其作用并不是在粉煤灰颗粒本身发生,而是通过加快石灰消解和增加石灰在水中的溶解度,来提高溶液中的OH一浓度,食盐不仅具有上述作用,还能大大加快形成硫铝酸盐的过程。
在有NaCI存在的条件下,铝酸盐和石膏的溶解度都有所增加,所形成的氯铝酸钙是一种稳定性很差的化合物,遇有石膏时,能生成硫酸钙,成为较稳定的化合物。
对于某些SO3含量低的粉煤灰,用Na2SO4作激发剂有较好的增强效果,因为Na2S04能与粉煤灰中的Ca(OH) 2作用生成Na0H和CaSO4,提高了溶液中的碱度,并增加了CaSO4的含量,因此也能产生较好的增强效果。
3.5其它有助于提高粉煤灰硅酸盐制品强度的方法
粉煤灰中的活性硅铝含量与制品强度有很大关系,在粉煤灰硅酸盐混凝土中提高可溶性硅铝含量,可以加快粉煤灰硅酸盐制品早期强度的发展,当硅胶掺量达到胶结剂的5%时,强度提高40%,掺10%的明矾石,强度增长8%左右,同时,可溶性氯化铝越多,越有利制品的蒸气养护,且养护温度可适当降低。
掺加可溶性硅铝材料使制品早期强度提高,是因为在硅酸盐水化反应早期,首先参与反应的是粉煤灰中的可溶性硅铝,但粉煤灰中可溶性硅铝总量只有10%左右,当外掺可溶性硅铝后,就可能在水化反应早期生成较多的水化硫铝酸钙和CSH 凝胶,使制品的早期强度大大增加,后期养护中强度也能稳步增长。
影响粉煤灰碱性激发的因素很多,其中起主要作用的有:碱的种类和pH 值、温度、粉煤灰结构与表面状态等。
一般来说,碱性越强,pH值越高,温度越高,碱激发作用越强;而网络聚合度高,网络连接程度越高,破坏网络需要能量越大,碱激发作用越困难,需要时间越长。
结语
总之,只要能瓦解粉煤灰结构,释放内部可溶性SiO2和Al2O3,将网络高聚体解聚成低聚度硅铝酸(盐)胶体物,就能提高粉煤灰的化学活性。
参考文献
[1] 王福元,吴正严等.粉煤灰利用手册.中国电力出版社,2004.
[2] 李丽萍.粉煤灰制备无机高分子混凝剂聚合硅酸铝铁,内蒙古石油化工,2006.
[3] 汤鸿霄,钱易,文湘华等.水体颗粒物和难降解有机物的特性与控制技术原理.上卷,水体颗粒物[M]一北京:中国环境科学出版社,2000.
[4] 汤鸿霄.无机高分子絮凝剂的科学与技术进展[J].水处理信息报导.1997.
[5] 钟惠萍,陈文纳,何小玉.无机高分子混凝剂的研制进展[J].广西化工.2000.。