粉煤灰的活性
- 格式:doc
- 大小:357.50 KB
- 文档页数:28
二级粉煤灰的标准
二级粉煤灰是一种常见的建筑材料,它是燃烧煤炭时产生的副产品。
根据国家标准,二级粉煤灰的物理和化学性质需要符合以下标准:
1. 外观:二级粉煤灰应为灰白色或灰色细粉末状物质。
2. 比表面积:二级粉煤灰的比表面积应大于250平方米/千克。
3. 比重:二级粉煤灰的比重应在2.0-2.5之间。
4. 细度:二级粉煤灰筛余物应小于20%。
5. 水分含量:二级粉煤灰的水分含量应小于3%。
6. 硅酸含量:二级粉煤灰的硅酸含量应大于45%。
7. 活性指数:二级粉煤灰的活性指数应大于75%。
8. 重金属含量:二级粉煤灰的重金属含量应符合国家相关标准。
以上是二级粉煤灰的标准,生产和使用二级粉煤灰的单位和个人应按照标准进行生产和使用,以保证二级粉煤灰的质量和安全性。
- 1 -。
低品质粉煤灰的活性激发研究孙福凯1井敏1刘萌萌2李杨1刘静宇1(1.山东建筑大学材料科学与工程学院,山东济南250101;2.山东省产品质量检验研究院,山东济南250102)摘要:通过物理球磨和化学激发剂两种不同方法对本地电厂的一种低品质粉煤灰进行活性激发。
试验结果表明:低品质粉煤灰强度活性指数随球磨时间增加而提高。
硫酸钠、氢氧化钙和氯化钙三种化学激发剂对粉煤灰都有激发作用,其中氢氧化钙激发效果最佳,掺量为10%时强度活性指数可达到75.73%。
关键词:粉煤灰;物理球磨;化学激发剂;强度活性指数Study on activation of low quality fly ashSUN Fu-kai JING Min LIU Meng-meng LI Yang LIU Jing-yuAbstract:Physical milling and chemical activator are used to activate a low quality fly ash in a local power plant. The test results show that the strength activity index of low quality fly ash increases with increasing ball milling time.Sodium sulfate,calcium hydroxide and calcium chloride,these three kinds of chemical activators all have the effect of stimulating fly ash.Among them,calcium hydroxide has the best excitation effect.When the content is 10%,the strength activity index can reach75.73%.Key Words:fly ash,physical ball milling,chemical activator,strength activity index1前言我国是一个产煤大国、用煤大国,大量煤炭被用于电力生产,燃煤发电过程中会产生一种极轻的飞灰样固体废弃物,被称为粉煤灰。
低标号水泥配比设计实验报告针对我公司粉煤灰将出现保供困难的局面,为此我处为了完善粉煤灰保供紧张时的生产质量应急预案,拟定了低标号水泥在不同粉煤灰配比下的小磨实验方案。
通过实验小磨制得PI型水泥样品(80um细度小于4.0%,SO3控制在2.5%),石灰石样品(80um细度小于4.0%)、火山灰样品(80um细度小于4.0%)、粉煤灰样品(80um细度小于4.0%)。
经检测各样品细度比表如下:将上述样品按不同配比进行混合制得如下样品:将上述样品分别进行三天龄期、二十八天龄期的胶砂强度试验。
强度检验数据如下:依据上述数据得知,随着粉煤灰掺量的递减,后期强度损失较大。
但是各样品早期强度基本持平。
随着粉煤灰掺量的递减在配比方案设计的过程中考虑了火山灰活性混合材的替代补充。
在同样熟料料耗的情况下,为保证出厂产品质量稳定,在粉煤灰保供紧张的情况下,粉煤灰掺量应保证10%以上。
不同配比粉煤灰在大磨系统上的实验报告2009年9月10日前后我处在生技处的配下进行在不同粉煤灰配比下的大磨系统实验。
9月10日上午8时实验在1#、2#磨进行,执行配比为“熟料61.5%、石灰石12%、火山灰6%、粉煤灰15%”从取样器取连续的样品自上午11时结束,将样品单独留放(样品一)。
接着执行配比“熟料62.5%、石灰石13.2%、火山灰6.8%、粉煤灰13%”进行洗磨后取样至16时单独留样(样品二)。
将上述样品进行检测三天强度与二十八天强度,数据如下:在实验过程中各阶段工序质量稳定,从强度数据来看在粉煤灰锐减的情况下后期强度同比还呈上升的趋势,主要原因为熟料质量存在波动,造成实验与小磨实验情况反差较大。
后期为保证质量稳定粉煤灰掺量仍将保证在10%以上,如粉煤灰因保供紧张时不能保证10%以上,将考虑提高熟料料耗来保证水泥实物质量符合年度计划要求。
广东建材2011年第8期1引言粉煤灰又称飞灰,是一种颗粒非常细以致能在空气中流动并能被特殊设备收集的粉状物质。
我们通常所指的粉煤灰是指燃煤电厂中磨细煤粉在锅炉中燃烧后从烟道排出、被收尘器收集的物质。
我国煤炭资源丰富,能源生产以火力发电为主,是粉煤灰排放大国,每年超过1亿吨[1],粉煤灰大量占用土地,严重污染环境,已经成为国民经济持续发展的障碍。
因此,粉煤灰的资源化成为我国可持续发展战略的重要组成部分[2]。
长期以来,在所利用的粉煤灰中大部分是用于建筑材料和筑路材料,这主要是基于对粉煤灰中活性组分的利用。
然而由于粉煤灰特殊的结构及化学稳定性,其在应用的过程中活性发挥非常缓慢,因此,粉煤灰活化技术成为人们近年关注的热点[3,4]。
2粉煤灰活性来源粉煤灰的活性一般包括物理活性和化学活性。
2.1物理活性粉煤灰的物理活性产生的效应包括颗粒(形态)效应、微集料效应和密实(火山灰)效应[5]。
粉煤灰的颗粒效应泛指由其颗粒的外观形貌、内部结构、颗粒级配等物理性状所产生的效应。
粉煤灰中含有大量的玻璃微珠,粒形完整,表面光滑,球形玻璃微珠在掺粉煤灰体系中起到润滑、滚动作用,系统流动性、和易性改善的同时,增加了保水性和均匀性,降低了需水量[6];微集料效应是粉煤灰颗粒充当微小集料,使集料的匹配更加合理,填充率提高;密实效应是微集料效应和火山灰效应共同作用的宏观表现,使粉煤灰形成类似托勃莫来石次生晶相,填充系统的孔隙,提高密实度。
2.2化学活性粉煤灰的化学活性是指粉煤灰的火山灰性质,它来源于熔融后被迅速冷却而形成的玻璃态的颗粒中可溶性的SiO2、Al2O3等活性组分。
活性的SiO2、Al2O3在有水存在时,可以与Ca(OH)2反应,生成水化硅酸钙(C-S-H)和水化铝酸钙(C-A-H)。
粉煤灰中的玻璃体越多,火山灰化学反应性能越强,然而粉煤灰中的玻璃相结构致密,聚合度高,可溶性SiO2、Al2O3少,其早期化学活性低,因此,要提高粉煤灰的利用率,提高粉煤灰的早期活性将是一个突破口。
粉煤灰的标准
粉煤灰,是一种煤矿煤炭燃烧后产生的细粉状灰烬,常用于混
凝土、水泥制品和砌体材料中。
粉煤灰的质量标准对于保障建筑材
料的质量和工程的安全具有重要意义。
下面将对粉煤灰的标准进行
详细介绍。
首先,粉煤灰的外观应该呈现为灰色或灰白色,不得有明显的
异色和异物。
其次,粉煤灰的化学成分应符合国家标准,主要指标
包括SiO2、Al2O3、Fe2O3、CaO、MgO等元素的含量,以及SO3含量、总碱含量等。
这些化学成分的合理比例对于保证混凝土的强度和耐
久性具有重要作用。
另外,粉煤灰的物理性能也是评定其质量的重要指标之一。
包
括细度、比表面积、活性指数、水需量等。
细度和比表面积是影响
粉煤灰活性的重要因素,通常要求粉煤灰的细度不得低于300m2/kg,比表面积不得低于400m2/kg。
活性指数是评价粉煤灰活性的重要参数,其数值应符合国家标准要求。
此外,粉煤灰的热特性也是需要考虑的因素之一。
包括煅烧试验、水热活性试验等热性能指标。
这些指标可以反映粉煤灰在混凝
土中的影响程度,以及其对混凝土性能的改善作用。
最后,粉煤灰的质量标准还包括了包装、运输和贮存等方面的要求。
包装应符合国家标准,保证产品的完整性和干燥度。
运输和贮存过程中要注意防潮防晒,避免受潮发霉,影响产品质量。
总的来说,粉煤灰的质量标准涵盖了化学成分、物理性能、热特性以及包装运输等多个方面。
严格执行这些标准,可以保证粉煤灰产品的质量稳定,为建筑材料的生产和工程建设提供保障。
粉煤灰验收标准和验收方法粉煤灰是燃煤过程中产生的一种固体废弃物,其综合利用可以减少对环境的污染,节约资源。
粉煤灰验收标准和验收方法是进行粉煤灰综合利用的重要依据,下面将详细介绍。
一、粉煤灰验收标准1.外观和颗粒形状:粉煤灰的外观应均匀细腻,颗粒形状呈球状或块状,不应有结块和结晶现象。
2.物理性质:(1)比表面积:粉煤灰的比表面积直接影响其水化反应和活性,一般要求比表面积大于300㎡/kg。
(2)尺度适应性:粉煤灰的颗粒大小要适中,一般要求颗粒粒径小于45μm。
3.化学性质:(1)含灰量:粉煤灰的有效成分是其中的煤灰,其含灰量一般要求大于70%。
(2)硅酸含量:粉煤灰中含有较高的SiO2,用作混凝土掺合料时,硅酸含量一般要求在30%-40%之间。
(3)AL2O3含量:粉煤灰中的Al2O3含量可影响其水泥矿物的形成,一般要求在15%-25%之间。
(4)Fe2O3含量:粉煤灰中的Fe2O3含量一般要求小于10%,以防止引起混凝土的颜色变化。
(5)粉煤灰中还应满足一定的含量要求,如Na2O、K2O、CaO等。
4.化学活性:(1)水化活性:对于用作混凝土掺合料的粉煤灰,其水化活性是十分重要的,要求其具有较高的水化活性。
(2)强度活性比:粉煤灰的强度活性比是评价其活性的重要指标之一,一般要求大于0.955.粉煤灰对环境的影响:(1)放射性:粉煤灰中的放射性元素污染应符合国家规定的限值。
(2)重金属含量:粉煤灰中的重金属含量应符合国家规定的限值,以防止对土壤和地下水造成污染。
二、粉煤灰验收方法1.外观和颗粒形状:通过目测和造粒试验来评估粉煤灰的外观和颗粒形状。
2.物理性质:(1)比表面积:采用比表面积测定仪进行测试,按照国家标准的要求进行测定。
(2)尺度适应性:通过粒度分析和传统筛选方法来测试粉煤灰的颗粒大小分布。
3.化学性质:(1)含灰量:使用灰分量测定仪进行测试,按照国家标准的要求进行测定。
(2)化学成分:通过原子吸收光谱仪、荧光光谱仪等分析仪器进行测试,按照国家标准的要求进行测定。
粉煤灰利用技术1. 粉煤灰的活性粉煤灰的活性包括物理火星和化学活性两个方面。
化学活性是指其中的可溶性二氧化硅,三氧化二铝等成分在常温下与水和石灰徐徐的化合反应,生成不溶,安定的硅铝酸钙盐的性质,也称火山灰活性。
需要说明的是,有些粉煤灰本身含有足量游离石灰,无需再加石灰就可和水显示该活性。
粉煤灰的化学活性的决定因素是其中玻璃体含量,玻璃体中可溶性的SiO2,Al2O3含量及玻璃体解聚能力。
粉煤灰的活性是粉煤灰颗粒大小,形态,玻璃化程度及其组成的综合反映,也是其应用大小的的一个重要参数。
粉煤灰的活性大小不是一成不变的,它可以通过人工手段激活。
常用的方法有如下三种。
(1)机械磨细法(2)水热合成法(3)碱性激发法总之,只要能瓦解粉煤灰的结构,释放内部可溶性SiO2,Al2O3,将网络高聚体解聚成低聚度硅酸铝(盐)胶体物,就能提高粉煤灰的活性。
2.粉煤灰成分分析粉煤灰成分分析项目一般包括:SiO2, Fe2O3, Al2O3, CaO, MgO, SO3, K2O, 和Na2O,烧失量,有时也分析P2O5, Hg, Cr, Cd及放射性元素等。
这主要依据其用途来分析,比如:用粉煤灰提取氧化铝时,只要求测SiO2,和Al2O3的量;用粉煤灰分选富铁玻璃微珠炼铁时,仅需分析Fe2O3含量;而考察粉煤灰对环境的放射性,毒性影响时,则要测定放射性元素含量和有毒元素含量等。
3.烧结粉煤灰砖使粉煤灰的掺量提高至70%—80%的用量,同时对粘土的可塑性的要求就更高了。
4.粉煤灰所含各种化学成分对烧结粉煤灰砖的影响(1)氧化钙各种钙的化合物与氧化铝,氧化硅形成低熔点的液态化合物,因而降低混合料的玻璃化温度和耐火度。
焙烧中形成液态物质,冷却时这些液体容易形成玻璃体,起强有力的粘结作用,使制品增大抗渗透的耐酸腐蚀的性能。
这种玻璃体在较低的温度下软化,过量是有可能导致坯体的严重的变形。
在低于他反应温度时,他们将降低混合料的收缩,并使混合料易于干燥。
粉煤灰的主要特性简介粉煤灰是一种在燃煤发电厂中产生的废弃物,由煤炭燃烧过程中生成的煤灰经过捕集和处理后产生。
粉煤灰具有许多独特的特性,使其在建筑材料、土壤改良、环保和其他领域得到广泛应用。
本文将介绍粉煤灰的主要特性。
(字数:77)特性一:化学成分粉煤灰主要由二氧化硅(SiO2)、氧化铝(Al2O3)、氧化钙(CaO)和氧化铁(Fe2O3)等化学组分组成。
其中,二氧化硅是粉煤灰的主要成分,占总重量的大约50%以上。
同时,粉煤灰中还含有一定量的无机盐、重金属元素和放射性元素。
这些化学成分决定了粉煤灰的性质和用途。
(字数:97)粉煤灰的物理性质包括颗粒形态、比表面积、粒径分布和密度等。
通常,粉煤灰颗粒的形状呈球形或碎块状,具有较大的比表面积和细小的粒径分布。
此外,粉煤灰的密度较低,通常在0.8~1.2 g/cm³之间。
这些物理性质使得粉煤灰在混凝土和水泥制品中具有较高的活性和填充性能。
(字数:98)特性三:活性粉煤灰具有较高的活性,可以与水中的氢氧根离子(OH-)发生反应,并形成胶凝产物。
这种活性主要是由其中的二氧化硅和铝酸盐成分引起的。
粉煤灰的活性可以通过测定其胶凝时间和强度发展来评估。
粉煤灰与水混合形成的胶凝产物可以填充混凝土中的细孔隙,提高混凝土的致密性和强度。
(字数:87)粉煤灰中的矿物组成主要包括玻璃体、晶体和非晶体三种类型。
玻璃体是最主要的组成部分,占总重量的70%以上。
晶体主要包括硅酸盐矿物和铝酸盐矿物,其中硅酸盐矿物的含量较高。
非晶体是粉煤灰中的次要组成部分,含有一些铁酸盐和其他化合物。
这些矿物组成决定了粉煤灰的硬化过程和性能。
(字数:96)特性五:环境影响粉煤灰作为一种废弃物,其处理和利用对环境具有重要的影响。
首先,粉煤灰可以用于控制大气中的污染物排放,减少气溶胶和颗粒物对人体健康的危害。
其次,粉煤灰的利用可以减少对自然资源的开采,降低对环境的破坏。
此外,将粉煤灰用于建筑材料和土壤改良可以提高资源利用效率和土壤肥力。
粉煤灰的标准粉煤灰是一种常用的混凝土掺合料,其质量对混凝土的性能有着重要影响。
因此,制定粉煤灰的标准对于保证混凝土质量、推动建筑行业的可持续发展具有重要意义。
本文将从粉煤灰的物理性质、化学性质、掺量标准等方面进行详细介绍,希望能够对相关行业提供一定的参考。
首先,粉煤灰的物理性质包括外观、颗粒度、比表面积等指标。
粉煤灰通常为细粉末状,灰色或灰白色,颗粒度较细,通常比水泥的颗粒度要小。
比表面积是评价粉煤灰细度的重要指标,粉煤灰的比表面积较大,有利于提高混凝土的强度和耐久性。
其次,粉煤灰的化学性质包括主要化学成分、活性指标等。
粉煤灰的主要化学成分主要是氧化硅、氧化铝和氧化铁等,这些成分对混凝土的性能有着重要影响。
活性指标是评价粉煤灰活性的重要指标,活性较高的粉煤灰可以在混凝土中起到更好的填充作用,提高混凝土的强度和耐久性。
最后,粉煤灰的掺量标准是制定粉煤灰标准的重要内容。
掺量标准应根据混凝土的用途和性能要求来确定,一般情况下,掺量不宜过大,以免影响混凝土的工作性能和强度。
同时,应根据粉煤灰的物理性质和化学性质来确定合适的掺量范围,以保证混凝土的性能稳定。
综上所述,粉煤灰的标准是保证混凝土质量、推动建筑行业可持续发展的重要保障。
制定粉煤灰的标准需要充分考虑其物理性质、化学性质和掺量标准等因素,以期望能够为相关行业提供参考,推动行业的发展和进步。
希望本文的内容能够对相关行业有所帮助,也希望相关行业能够对粉煤灰的标准进行更加深入的研究和探讨,为行业的发展贡献力量。
粉煤灰与矿渣粉的超细化活性提升技术发布时间:2022-05-20T02:25:14.885Z 来源:《科技新时代》2022年4期作者:范明达[导读] 粉煤灰与矿渣粉属于大宗工业固体废弃物,但均具备潜在活性。
华北水利水电大学河南省郑州市 450045摘要:粉煤灰与矿渣粉属于大宗工业固体废弃物,但均具备潜在活性。
由于现阶段对其利用率不高,因此采用超细化处理以提升其活性。
通过将普通粉煤灰与矿渣粉进行粉磨处理,使得其比表面积大于600m2/kg。
采用活性指数对超细粉体活性进行了表征,通过激光粒度分析、XRD、SEM等方式分析了机械粉磨对超细粉煤灰、超细矿渣粉的粒度分布、矿物成分、微观形貌等影响,讨论了活性提升机理。
结果表明:经机械粉磨之后的超细粉煤灰与超细矿渣粉的活性指数有了明显提升,28d活性指数最高分别达到了99.87%、130.1%。
关键词:粉煤灰;矿渣粉;活性指数;矿物成分;微观形貌1 引言截止到2020年,我国大宗工业固废累计堆存量已达600亿吨,年新增堆存量近30亿吨[1]。
人们发现将粉煤灰、矿渣等工业废料作为矿物掺合料加入水泥中制备混凝土,不仅能通过减少水泥用量从而减少生产水泥所造成的的环境污染和能源、资源消耗,也降低了制备混凝土的成本,并且所制备的混凝土又具有很多优良的性能[2-3]。
但是粉煤灰、矿渣粉等固废粉体的成分及比例差别很大,优质灰较少。
而劣质粉体的活性通常较低,不经过进一步的加工用作掺合料时,制备的胶凝材料的性能往往不能满足要求。
因此,利用一些手段激发其活性成为当前众多学者研究的重点。
2 试验2.1 原材料本文所用粉煤灰为Ⅱ级粉煤灰,矿渣粉为产自河北省灵寿县的S95级粒化高炉矿渣粉。
具体化学成分见表1。
表1 粉煤灰与矿渣粉化学成分式中:Rα为7d、28d超细粉煤灰或超细矿渣粉试块抗压强度,MPa;R0为对应龄期的42.5级普通硅酸盐水泥试块的抗压强度,MPa。
3 结果与讨论3.1 粒径分布表2为经粉磨后粉煤灰与矿渣粉的比表面积与特征粒径的变化。
水玻璃激发粉煤灰、矿粉活性的试验研究论文水玻璃激发粉煤灰、矿粉活性的试验研究本文旨在对水玻璃激发粉煤灰和矿粉活性进行实践研究。
研究包括在不同参数条件下检测激发粉煤灰和矿粉的活性,并探索如何最大限度地发挥其功能特性。
为了使水玻璃激发粉煤灰和矿粉活性保持最佳性能,首先需要进行适当的操作和设置,以保证实验室环境中的参数保持稳定。
温度、湿度、粉尘浓度是影响水玻璃激发粉煤灰和矿粉活性性能的重要因素,一般情况下,室内温度、湿度要求在常温25℃和50%左右,粉尘最大控制在2mg/m3以下(根据公司标准)。
在实验室环境设置完成之后,可以开始测试水玻璃激发粉煤灰和矿粉的活性。
实验中,室内气象参数应保持稳定,考虑空气运输因素,测试试块恒温恒湿24小时后检测活性。
实验结果显示,水玻璃激发粉煤灰和矿粉活性表现出到达一定水平,随着温度和湿度升高,活性会有所提高,且其上限不会太高,一般情况下,活性可以在60-75之间稳定。
此外,为了验证不同工况下水玻璃激发粉煤灰和矿粉活性的性能,可以将粉煤灰和矿粉均匀混合在一起,使用原料比例:水玻璃激发粉煤灰:矿粉=1:1,并在恒温恒湿控制的实验室环境中测试,实验结果表明,在此种工况下的混合活性比单一成分活性更高。
综上所述,水玻璃激发粉煤灰和矿粉活性在正确操作参数条件下表现最佳,而单独使用时,活性上限一般在60—75之间;如果混合使用,活性会更高。
未来,可以针对特殊工况以及不同混合比例进一步完善粉煤灰和矿粉的活性,实现更好的控制效果。
总之,本文研究了水玻璃激发粉煤灰和矿粉活性,根据实验结果得出,水玻璃激发粉煤灰和矿粉活性在正确操作参数下表现最佳,如果混合使用,活性更优。
未来,可以进一步探索不同混合比例来实现更好的控制效果。
粉煤灰的活性日期:2008-1-30 8:57:00 保护色:默认白牵牛紫苹果绿沙漠黄玫瑰红字体:小字大字粉煤灰的活性也即火山灰效应,是指粉煤灰中的活性氧化硅、活性氧化铝与氢氧化钙发生反应,生成具有胶凝性质的水化铝硅酸钙,以此来增强砂浆、混凝土的强度。
粉煤灰的常量化学成分氧化硅、氧化铝是硅铝酸盐的主要成分,其中的可溶性成分越多,说明粉煤灰的活性越好,掺加到混凝土中越易与水泥水化析出的Ca(OH)2 反应,生成类似于水泥水化的产物,从而增强反应物的活性。
一般来说,氧化硅、氧化铝含量越多,其28天抗压强度比越高,两者有一定的相关性。
在材料学界,“活性”只是针对无机胶凝材料而言,“无机胶凝材料”是指磨细了的无机粉末材料。
当其与水或水溶液拌合后,所形成的浆体有塑性,可任意成型,经过一系列物理、化学作用后,能够逐渐硬化,并形成有强度的人造石。
大量的研究事实认为:粉煤灰的活性是“潜在”的,它需要一定条件的激发。
这是因为:粉煤灰与水泥熟料等类的无机盐胶凝材料,在矿物组成、结构,和性能方面,都有很大的不同,它本身没有胶凝性能。
但是粉煤灰具有一定潜在化学活性的火山灰材料,在常温、常压下、和有水存在时,它所含的大量铝酸盐玻璃体中的活性组分,具有能与Ca(OH)2发生火山灰反应,并生成具有强度的胶凝物质。
所以粉煤灰具有一定的胶凝性能。
活性效应主要取决于粉煤灰颗粒表面化学的和物理的特性,在很大程度上受形态效应的影响,也受微集料效应的影响。
粉煤灰的活性效应仅对水泥水化反应起辅助作用,而且只有到砂浆硬化后期,才能比较明显地显示出来,即粉煤灰活性效应具有潜在性质的特点。
粉煤灰的活性效应一般用28天抗压强度比来表示。
改善粉煤灰活性方法,目前激发粉煤灰活性的较为有效的途径主要有三种:一是物理活化即通过机械磨细来破坏粉煤灰的玻璃体的结果,同时增加比表面积,以加快水化反应速度;二是化学活化即通过化学激发剂和改性剂来激发粉煤灰的活性,目前常用的粉煤灰激发剂有:碱性激发剂、硫酸盐、纯碱、卤化物等。
改性剂为生石灰,低钙粉煤灰天生缺钙,加石灰主要是为了提高体系中的CaO/SiO2,从而提高粉煤灰的活化效率。
选择激发剂时需要注意的是强碱可能会增加混凝土的碱骨料反应的危险性,氯化物会引起混凝土中的钢筋锈蚀。
三是水热激发。
粉煤灰活性的测试办法,一般采用〈石灰吸收法〉和〈强度试验法〉及〈溶出度法〉来检验。
这三种办法中,只有强度试验法,较为合理一些。
石灰吸收法:这是测定粉煤灰活性的,最古老的方法,又称维卡法。
但是如果粉煤灰中的氧化钙,本身就偏高,那石灰的吸收值,自然也就低。
溶出度法:是将粉煤灰,置于或酸、或碱的溶液中,溶解出其中可溶物的成份,测定其可溶部分的含量。
但它并不能真实地反映出粉煤灰的活性。
而强度试验法:是目前国内外公认的粉煤灰活性的最佳评定方法。
它是用粉煤灰与石灰或水泥熟料结合后,所呈现的强度做为衡量粉煤灰活性的指标。
当然这种方法,也仅仅是在某种特定的试验条件下,才反映出粉煤灰的使用价值的相关性。
而不能最终表现出水泥石中多种材料的组成、成分、物理学性质和化学性质。
淀粉醚 EMCOL DA 1688 EMCOL DA 1688是一种环氧丙烷在碱性条件下与淀粉醚化反应而制得的一类非离子型淀粉,又称淀粉醚。
由于其具有低粘、高亲水性、流动性好、凝沉性弱、稳定性高等特点,因而被广泛用于建筑装饰行业,如建筑干粉、粉刷石膏、接缝粘结剂等中性及碱性复合材料中,改善材料的内部结构,并可与多种添加剂有很好的配伍性,使产品更具有抗干裂性、抗流挂性及提高和易性能及施工性能。
EMCOL DA 1688由EMSLAND淀粉集团在德国研发生产。
随着我国建筑装饰业的快速稳定发展,以及厂商对产品品质的不断提高及完善,EMSLAND公司现将该种建筑业多用途的添加剂带入中国来满足生产应用中的不同需求。
一、EMCOL DA 1688技术指标:产品类型: 淀粉醚;溶解性:冷水可溶;外观:白色粉末;堆积密度:600kg/m3;水分含量:≤6%;PH:9;粘度:(1:19溶解) 二、 EMCOL DA 1688在几种应用较广的产品中的建议添加量及作用:胶粉聚苯颗粒保温砂浆的添加量:~起到增稠效果;抗裂抹面砂浆的添加量:~起到提高手感及施工性的作用;保温板抹面砂浆的添加量:~起到延长开放时间的作用;抹灰砂浆的添加量:~起到提高手感及施工性;瓷砖粘结剂的添加量:~起到抗下滑、增加饱满度的作用;保温板胶粘剂的添加量:~起到提高湿润性的饿作用;墙砖填缝剂的添加量:~起到提高手感及施工性的作用;粉刷石膏的添加量:~起到增加和易性、抗流挂的作用。
注:更为具体的添加量需根据实际材料和配方调试,以获得较高的性能价格比。
粉煤灰在砂浆中的应用日期:2008-2-2 10:54:00 保护色:默认白牵牛紫苹果绿沙漠黄玫瑰红字体:小字大字1 粉煤灰在建筑砂浆中的应用建筑砂浆是一种量大面广的建筑材料。
砂浆中石灰膏含水50%呈膏状,难以实现重量计量,而且石灰膏质量不稳定,纯水泥砂浆缺乏保水增稠材料,显得操作性差、易结硬,现场为改善和易性往往多放水泥,使砂浆质量波动大。
砌筑砂浆强度波动大,抹灰层开裂、渗漏现象屡见不鲜,影响了整个工程质量。
目前,上海市工程建设都使用商品混凝土,施工现场文明施工、标化管理要求严格,现场使用干排粉煤灰须配置筒仓,使用湿灰则含水率受天气影响大,影响现场施工环境,上海地区粉煤灰在砂浆中应用逐步减少。
随着住宅产业化的发展,建筑砂浆采取工业化生产,确保砂浆质量,从材性上稳定砂浆质量,消除抹灰层渗漏裂也就迫在眉睫,势在必行。
2 商品砂浆研究与应用商品砂浆配合比试验方法和试验用原材料商品砂浆分为干粉砂浆和预拌砂浆两大类。
干粉砂浆的主要原材料为水泥、稠化粉、粉煤灰和经烘干处理的砂。
预拌砂浆的主要原材料为水泥、稠化粉、粉煤灰、经筛分处理的砂、缓凝剂和水。
由于商品砂浆原材料中水泥、稠化粉、粉煤灰和砂均为固体,缓凝剂和水为液体,取消了含水率经常波动难以实现质量计量的传统保水材料——石灰膏。
因此,商品砂浆配合比设计可如同混凝土配合比设计实现科学合理的绝对体积法计量,并以质量来表示。
试验用原材料水泥:425矿渣水泥(上海水泥厂生产)表1 水泥物理性质项目测试值抗折强度(MPa)抗压强度(MPa)细度%3d28d3d28d 初凝时间2h20min终凝时间3h15min安定性合格粉煤灰:质量品质符合Ⅱ级灰要求。
砂:河砂,细度模数。
稠化粉:由建科院研制的一种非石灰非引气型粉状保水增稠材料。
缓凝剂:建科院研制的砂浆专用缓凝剂水:一般饮用水干粉砂浆试验普通干粉砂浆是经烘干筛分处理的砂与水泥、稠化粉和粉煤灰按一定比例混合而成的一种颗粒状混合物。
它具有计量准确、质量稳定、使用方便和不污染环境的特点。
各组分对砂浆性能影响水泥、粉煤灰用量对砂浆性能影响(见图1、图2)图1 水泥用量对干粉砂浆强度影响图2 粉煤灰掺量对干粉砂浆强度影响试验表明,水泥、粉煤灰主要影响砂浆强度。
水泥用量增加砂浆强度基本呈线性增加,但也存在一个最高点(450kg/m3),超过该点后,继续增加水泥用量,砂浆强度不会继续提高。
掺加粉煤灰后,其规律性相同。
由于粉煤灰火山灰效应,粉煤灰砂浆在等水泥用量条件下,其强度有一定的提高(见图1)。
同样由于粉煤灰的胶凝性显著低于水泥,表现为粉煤灰等体积取代水泥,砂浆强度随其取代比例增大而下降(见图2)。
通过调整粉煤灰与水泥比例,可配制不同强度等级的砂浆。
砂灰比对砂浆强度影响(见图3)图3 砂灰比对强度影响试验表明,砂灰比提高,砂用量增加,相应胶凝材料减少,强度随之下降,也存在一个最佳砂灰比,其值为。
通过调整水泥用量,可配制强度等级到M30的各种类型砂浆。
稠化粉、粉煤灰和水泥共同工作性表2干粉砂浆与传统砂浆性质对比试验试验表明,稠化粉对砂浆保水性起着至关重要的作用。
纯水泥砂浆由于缺乏保水增稠材料,砂浆保水性差,表现为砂浆泌水量和分层度都很大;混合砂浆由于掺入石灰膏砂浆保水性得到明显改善。
在等水泥用量条件下,掺入稠化粉后砂浆保水性显著提高,分层度和泌水都很小;粉煤灰商品砂浆28d强度大大高于传统砂浆,稠化粉与水泥、粉煤灰共同工作性良好。
存放时间及方式对强度影响袋装干粉砂浆保存期试验结果见表3。
表3 干粉砂浆存放时间555)混合后立即成型混合后6个月成型1009410099试验表明,干粉砂浆经6个月储存,强度基本保持不变。
预拌砂浆预拌砂浆的特点是:生产批量大,砂浆凝结时间可以根据用户需要进行调节。
与干粉砂浆区别在于掺加了一种特殊砂浆缓凝剂以保证砂浆在密闭容器中能储存相当长时间(8~36h),而在储存时间内取出使用又能保证砂浆与基体材料粘结牢固并能在大气中迅速硬化。
预拌砂浆与干粉砂浆组分的最大区别在于掺加了特制的缓凝剂。
缓凝剂种类及掺量已研制成一种满足砂浆缓凝要求的砂浆缓凝剂。
试验结果见图4、图5。
图4 缓凝剂掺量对缓凝时间影响图5 缓凝剂掺量对强度影响试验表明,缓凝剂掺量增加,凝结时间可延长至48h(图4),对强度基本无影响(图5)。
缓凝剂掺量可根据施工需要调整以获得砂浆的不同凝结时间。
砂浆凝结时间控制在8~24h,可满足当日和隔夜施工之需。
水泥用量对砂浆性能影响用不同水泥用量可配制不同强度等级的预拌砂浆,最高可配制M30砂浆。
图6 水泥用量与预拌砂浆强度关系存放时间及重塑在存放时间内,砂浆强度较出机强度有一定的损失(见表4),为出机强度80%。
由于存放期内砂浆稠度有损失,特别在砂浆稠度较低情况下,为保持砂浆可操作性,在砌筑或抹灰前必须再添加一部分水拌合到砂浆中,使砂浆重新获得原来的稠度,上述过程称为砂浆的重塑。
为考察重塑对砂浆强度的影响,特进行了重塑试验(见表5),试验结果表明,重塑后强度为出机强度的81%。
表4存放期内强度变化砂浆的重塑砂浆粘结强度试验研究砂浆作为1~2cm薄层材料,与基层材料粘结牢固尤为重要。
工程中抹灰砂浆质量指标是抹灰层无起壳开裂、空鼓和爆裂。
抹灰砂浆粘结强度试验结果见表6。
表6预拌抹灰砂浆与传统砂浆粘结强度的对比试验表明,水泥用量大,粘结强度高,但其也不一定成正比;而稠化粉改善了预拌砂浆保水性,在一定水泥用量情况下,粘结强度较传统砂浆高30%以上。
3.商品砂浆性能商品砂浆原材料目前为水泥、粉煤灰、砂、缓凝剂(预拌砂浆用)和水,砂浆耐久性与原材料及其相互比例有关。
商品砂浆的主要物理力学性能及耐久性试验结果见表7。
表7粉煤灰预拌砂浆与传统砂浆性能比较表7表明,预拌砂浆各项耐久性均优于传统砂浆,长期强度发展稳定,粘结强度高,耐水抗渗性优良。
4.砌体性能试验砌体力学性能指标主要有:轴心抗压强度、通缝抗剪强度,其中砂浆对砌体通缝抗剪强度影响最大。
试验表明,用稠化粉砂浆砌筑的砌体,其砌体力学性能均大大超过了规范(GBJ3-88)要求。